JP2001254067A - Electroconductive adhesive and connecting structure therewith - Google Patents

Electroconductive adhesive and connecting structure therewith

Info

Publication number
JP2001254067A
JP2001254067A JP2000398536A JP2000398536A JP2001254067A JP 2001254067 A JP2001254067 A JP 2001254067A JP 2000398536 A JP2000398536 A JP 2000398536A JP 2000398536 A JP2000398536 A JP 2000398536A JP 2001254067 A JP2001254067 A JP 2001254067A
Authority
JP
Japan
Prior art keywords
group
resin
conductive adhesive
electrode
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000398536A
Other languages
Japanese (ja)
Inventor
Hiroteru Takezawa
弘輝 竹沢
Takashi Kitae
孝史 北江
Yukihiro Ishimaru
幸宏 石丸
Tsutomu Mitani
力 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000398536A priority Critical patent/JP2001254067A/en
Publication of JP2001254067A publication Critical patent/JP2001254067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a packing technology having an enhanced adhesive strength and improved reliability to bending force by introducing a functional group which is easy to form a coordinate bond with an electrode metal to the molecular chain of a binder resin which comprises main components together with a metal filler. SOLUTION: As a thermoplastic resin, one at least two same or different functional groups selected from the group consisting of a carbonyl group, carboxyl group, amino group, imino group, iminoacetic group, iminopropionate group, hydroxyl group, thiol group, pyridinium group, imide group, azo group, nitrilo group, ammonium group, and imidazole group, are introduced to a resin such as a polyester resin, silicone resin, vinyl resin, and thermoplastic epoxy resin, etc., is used. This enables strong adhesion with an electrode metal. This packed structure is prepared by printing an electroconductive adhesive 3 to an electrode 2 on a substrate 1, and mounting an electrode 5 on a part 4 to it, and then heating it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品分野にお
けるはんだフリー実装に用いる導電性接着剤とそれを用
いた接続構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive adhesive used for solder-free mounting in the field of electronic components and a connection structure using the same.

【0002】[0002]

【従来の技術】近年、環境調和に対する意識の高まりか
ら、電機業界に対しては電子部品の実装に用いられてい
る鉛入りはんだの全廃を求める動きが具体化しつつあ
る。
2. Description of the Related Art In recent years, with the increasing awareness of environmental harmony, there has been a concrete movement in the electric machinery industry to completely eliminate lead-containing solder used for mounting electronic components.

【0003】鉛フリー実装技術としては、鉛フリーはん
だを用いた実装技術の開発が盛んに行われており一部実
用化が始まっているが、実装温度の上昇による弱耐熱部
品への影響や、部品電極の鉛フリーなど数々の問題が残
されている。
[0003] As lead-free mounting technology, mounting technology using lead-free solder has been actively developed, and some of them have been put into practical use. Numerous problems remain, such as lead-free component electrodes.

【0004】一方、導電性接着剤を用いた鉛フリー実装
は、まだあまり報告例がないが、鉛フリー以外にも、次
に述べるような利点を有している。
[0004] On the other hand, lead-free mounting using a conductive adhesive has not yet been reported, but has the following advantages in addition to lead-free.

【0005】第一に、処理温度が150℃程度とはんだ
に比べて低く、電子部品の低コスト・高性能化が実現で
きること。第二に、導電性接着剤の比重がはんだの半分
程度であるため、電子機器の軽量化がより容易であるこ
と。第三に、はんだのように金属による接合ではないた
め、金属疲労が発生せず、実装信頼性が優れることであ
る。
First, the processing temperature is as low as about 150 ° C., which is lower than that of solder, so that low cost and high performance of electronic components can be realized. Second, since the specific gravity of the conductive adhesive is about half that of the solder, it is easier to reduce the weight of the electronic device. Third, since it is not a joint made of metal like solder, metal fatigue does not occur and mounting reliability is excellent.

【0006】このため、導電性接着剤を用いた実装技術
を完成させることにより、環境調和、低コスト、高信頼
性を満足した画期的な実装の実現が期待できる。
For this reason, by completing a mounting technique using a conductive adhesive, it is expected that an epoch-making mounting satisfying environmental harmony, low cost and high reliability can be realized.

【0007】導電性接着剤実装の課題としては、はんだ
と比較して接着強度が弱いことが挙げられる。特に曲げ
応力に対する強度がはんだの10分の1程度であるた
め、曲げ応力がかかりやすい大面積の電子部品では、電
極と導電性接着剤との界面で剥離が発生し、接続不良を
起こす場合があった。
One of the problems of mounting the conductive adhesive is that the adhesive strength is lower than that of solder. In particular, since the strength against bending stress is about one-tenth that of solder, in a large-area electronic component that is easily subjected to bending stress, peeling may occur at the interface between the electrode and the conductive adhesive, and a connection failure may occur. there were.

【0008】接着強度を改善する試みは、数多く報告さ
れているが、いずれもはんだと同等の強度が実現できる
技術は未だ報告されていない。主な例を以下に示す。
[0008] Many attempts have been made to improve the adhesive strength, but none of them has yet reported a technique capable of realizing the same strength as solder. The main examples are shown below.

【0009】例えば、宮入裕夫監修、「機能性接着剤の
開発と最新技術」(シー・エム・シー編、1997年6月30
日、194頁)に示されるように、接着剤材料中にシラン
カップリング剤と呼ばれる、樹脂および金属の両方と化
学結合できる有機金属類を添加し、接着強度を改善させ
るという技術が数多く報告されている。
For example, supervised by Hiroo Miyairi, "Development of functional adhesives and the latest technology" (CMC, edited by June 30, 1997)
As shown in JP, 194), many techniques have been reported to improve the adhesive strength by adding an organic metal called a silane coupling agent, which can chemically bond to both resin and metal, to the adhesive material. ing.

【0010】しかし、脱水反応や置換反応を利用してい
るため、カップリング剤と樹脂、または金属との反応性
が乏しいことや、反応を最適化するための条件設定(温
度、水素イオン濃度等)が不明確である等、接着強度の
大幅な改善は困難であった。
However, since the dehydration reaction or the substitution reaction is used, the reactivity between the coupling agent and the resin or the metal is poor, and the conditions for optimizing the reaction (temperature, hydrogen ion concentration, etc.) ), It was difficult to significantly improve the adhesive strength.

【0011】また、特開平9(1997)‐176285号公報に
は、バインダ樹脂として、その骨格にリン酸エステル基
を導入した樹脂を用いることが提案されている。この方
法では、バインダ樹脂の官能基が金属に吸着するため、
接着強度向上の効果が若干あるものの、吸着力は共有結
合や配位結合と比較すると微力であるため、顕著な向上
効果は得られないという問題があった。
Japanese Patent Application Laid-Open No. 9 (1997) -176285 proposes to use a resin having a phosphate ester group introduced into its skeleton as a binder resin. In this method, since the functional group of the binder resin is adsorbed on the metal,
Although there is some effect of improving the adhesive strength, there is a problem that a remarkable improvement effect cannot be obtained because the adsorptive force is weaker than the covalent bond or the coordinate bond.

【0012】このように、接着強度の改善は、導電性接
着剤を用いた実装技術の実用化における大きな鍵となっ
ていた。
[0012] As described above, the improvement of the adhesive strength has been a major key in the practical use of the mounting technique using the conductive adhesive.

【0013】[0013]

【発明が解決しようとする課題】本発明は、前記従来の
問題を解決するため、接着強度を大幅に改善し曲げ力に
対する信頼性を向上させた導電性接着剤とそれを用いた
接続構造体を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention provides a conductive adhesive and a connection structure using the same, which have significantly improved adhesive strength and improved reliability against bending force. The purpose is to provide.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するた
め、本発明の導電性接着剤は、バインダ樹脂と金属フィ
ラーを主成分とし、硬化後の前記バインダ樹脂が電極金
属と多座配位結合を形成する官能基を分子鎖に含むこと
を特徴とする。
In order to achieve the above object, the conductive adhesive of the present invention comprises a binder resin and a metal filler as main components, and the cured binder resin has a multidentate coordinate bond with an electrode metal. Is characterized in that the molecular chain contains a functional group that forms

【0015】また本発明の接続構造体は、バインダ樹脂
と金属フィラーを主成分とし、硬化後の前記バインダ樹
脂が電極金属と多座配位結合を形成する官能基を分子鎖
に含む導電性接着剤を用いて、前記接着剤と電極を電気
的に接続したことを特徴とする。
Further, the connection structure of the present invention comprises a binder resin and a metal filler as main components, and the binder resin after curing contains a functional group forming a polydentate bond with an electrode metal in a molecular chain. The adhesive and the electrode are electrically connected using an agent.

【0016】また本発明の接続構造体の製造方法は、バ
インダ樹脂と金属フィラーを主成分とし、硬化後の前記
バインダ樹脂が電極金属と多座配位結合を形成する官能
基を分子鎖に含む導電性接着剤を用いて、前記接着剤と
電極を電気的に接続したことを特徴とする。
Further, in the method of manufacturing a connection structure according to the present invention, the binder resin and the metal filler are main components, and the cured binder resin contains a functional group forming a polydentate bond with an electrode metal in a molecular chain. The adhesive and the electrode are electrically connected by using a conductive adhesive.

【0017】[0017]

【発明の実施の形態】本発明において、多座配位結合と
は、バインダ樹脂中に多座配位子(複数のキレート配位
子)が導入されており、この多座配位子が電極金属と配
位結合を形成することをいう。すなわち、通常の弱い水
素結合によるファンデアワールス力のみを利用した接着
ではなく、バインダ樹脂と電極との間で化学結合(配位
結合)を形成させるのである。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a polydentate bond means that a polydentate ligand (a plurality of chelating ligands) is introduced into a binder resin, and the polydentate ligand is an electrode. Forming a coordination bond with a metal. That is, a chemical bond (coordination bond) is formed between the binder resin and the electrode, instead of the adhesion using only the Van der Waals force due to a normal weak hydrogen bond.

【0018】バインダ樹脂に多座配位子を導入する方法
について、以下の実施形態で説明する。
A method for introducing a polydentate ligand into a binder resin will be described in the following embodiments.

【0019】(実施の形態1)第1の方法は、バインダ
樹脂中の添加剤成分(反応性希釈剤、硬化剤等)とし
て、所望の多座配位子を導入した樹脂を用いることであ
る。
(Embodiment 1) The first method is to use a resin into which a desired polydentate ligand is introduced as an additive component (a reactive diluent, a curing agent, etc.) in a binder resin. .

【0020】たとえば下記式(化1)に示すジカルボニ
ル基を分子鎖に導入した直鎖状エポキシ樹脂を、開環触
媒と混合して電極(Cu箔)の表面に塗布し、加熱硬化さ
せると、分子中央部のジカルボニル基が、下記式(化
2)に示すように電極(Cu箔)と配位結合を形成する。
もちろん分子両末端のエポキシ環は開環して架橋結合を
形成する。
For example, a linear epoxy resin having a dicarbonyl group represented by the following formula (Chemical Formula 1) introduced into a molecular chain is mixed with a ring-opening catalyst, applied to the surface of an electrode (Cu foil), and cured by heating. The dicarbonyl group at the center of the molecule forms a coordinate bond with the electrode (Cu foil) as shown in the following formula (Formula 2).
Of course, the epoxy rings at both ends of the molecule open to form cross-links.

【0021】[0021]

【化1】 Embedded image

【0022】[0022]

【化2】 Embedded image

【0023】この際、バインダ樹脂の主成分は、配位子
を有さない通常のエポキシ樹脂(ビスフェノールA、ビ
スフェノールF、ノボラックエポキシ樹脂)を用いる。
前記多座配位子を導入した樹脂は、バインダ樹脂中に1
0〜50重量%となるように混練して用いる。
At this time, as a main component of the binder resin, a normal epoxy resin having no ligand (bisphenol A, bisphenol F, novolak epoxy resin) is used.
The resin into which the polydentate ligand has been introduced is one in the binder resin.
The mixture is kneaded so as to be 0 to 50% by weight.

【0024】また、反応性希釈剤だけでなく、硬化剤と
して使用する樹脂にも配位子を導入して用いることがで
きる。
In addition to a reactive diluent, a ligand can be introduced into a resin used as a curing agent.

【0025】(実施の形態2)第2の方法は、バインダ
樹脂中の主成分(最も含有量の多い成分)として、所望
の多座配位子を導入した樹脂を用いることである。
(Embodiment 2) The second method is to use a resin into which a desired polydentate ligand is introduced as a main component (a component having the largest content) in the binder resin.

【0026】たとえば下記式(化3)に示すジカルボニ
ル基を分子鎖に導入したビスフェノールF型エポキシ樹
脂を、開環触媒と混合して電極(Cu箔)の表面に塗布
し、加熱硬化させると、実施の形態1と同様に分子中央
部のカルボニル基が、電極(Cu箔)と配位結合を形成す
る。
For example, a bisphenol F epoxy resin having a dicarbonyl group represented by the following formula (Chemical Formula 3) introduced into a molecular chain is mixed with a ring-opening catalyst, applied to the surface of an electrode (Cu foil), and cured by heating. As in the first embodiment, the carbonyl group at the center of the molecule forms a coordination bond with the electrode (Cu foil).

【0027】[0027]

【化3】 Embedded image

【0028】この際、バインダ樹脂の副成分は、配位子
を有さない通常のエポキシ樹脂(反応性希釈剤、硬化剤
等)を用いる。前記多座配位子を導入した樹脂は、バイ
ンダ樹脂中に30〜100重量%となるように混練して
用いる。
At this time, as a sub-component of the binder resin, an ordinary epoxy resin having no ligand (a reactive diluent, a curing agent, etc.) is used. The resin into which the polydentate ligand is introduced is kneaded and used in the binder resin so as to be 30 to 100% by weight.

【0029】本発明の前記接着剤及び接続構造体におい
ては、多座配位結合の結合数が2〜4であることが好ま
しい。もちろんこれ以上の数であってもよい。
In the adhesive and the connection structure of the present invention, the number of polydentate bonds is preferably 2 to 4. Of course, the number may be more than this.

【0030】また前記接着剤及び接続構造体において
は、多座配位結合を形成する官能基を分子鎖に含む樹脂
の存在量が、全樹脂中の10〜100重量%の範囲であ
ることが好ましい。
In the adhesive and the connection structure, the amount of the resin containing a functional group capable of forming a polydentate bond in the molecular chain may be in the range of 10 to 100% by weight of the whole resin. preferable.

【0031】また前記接着剤及び接続構造体において
は、導電性接着剤を100重量%としたとき、バインダ
樹脂が5〜25重量%の範囲、かつ金属フィラーが75
〜95重量%の範囲であることが好ましい。このほか、
必要に応じてバインダ樹脂の硬化剤、硬化触媒、架橋
剤、開環触媒、金属フィラーの分散剤、粘度調節剤、p
H調節剤等を任意に加えてもよい。したがって、本発明
において「バインダ樹脂と金属フィラーを主成分とす
る」における「主成分」とは、バインダ樹脂と金属フィ
ラーで導電性接着剤の90重量%以上を構成することを
いう。
In the adhesive and the connection structure, when the conductive adhesive is 100% by weight, the binder resin is in the range of 5 to 25% by weight, and the metal filler is 75% by weight.
Preferably, it is in the range of ~ 95% by weight. other than this,
If necessary, a curing agent for the binder resin, a curing catalyst, a cross-linking agent, a ring-opening catalyst, a dispersant for the metal filler, a viscosity modifier, p
An H regulator and the like may be optionally added. Therefore, in the present invention, the "main component" in the "mainly comprising a binder resin and a metal filler" means that the binder resin and the metal filler constitute 90% by weight or more of the conductive adhesive.

【0032】また前記接着剤及び接続構造体において
は、前記官能基が、カルボニル基、カルボキシル基、ア
ミノ基、イミノ基、イミノ酢酸基、イミノプロピオン酸
基、水酸基、チオール基、ピリジニウム基、イミド基、
アゾ基、ニトリロ基、アンモニウム基及びイミダゾール
基から選ばれる同一又は異なった少なくとも2つの官能
基であることが好ましい。
In the adhesive and the connection structure, the functional group may be a carbonyl group, a carboxyl group, an amino group, an imino group, an iminoacetic acid group, an iminopropionic acid group, a hydroxyl group, a thiol group, a pyridinium group, an imide group. ,
It is preferable that the functional groups are at least two same or different functional groups selected from an azo group, a nitrile group, an ammonium group and an imidazole group.

【0033】また前記接着剤及び接続構造体において
は、金属フィラーが、銀、銀メッキしたニッケル及び銀
メッキした銅から選ばれる少なくとも一つの粒子である
ことが好ましい。金属フィラーの表面が銀であれば、バ
インダ樹脂の配位子と反応せず、電極金属と選択的に反
応するからである。ただし、バインダ樹脂の配位子の量
が多い場合は、金属フィラーとして例えば銅を用いて
も、すべての配位子が金属フィラーと反応するわけでは
ないので、金属フィラーとして銅を使用することもでき
る。
In the adhesive and the connection structure, the metal filler is preferably at least one particle selected from silver, silver-plated nickel and silver-plated copper. This is because if the surface of the metal filler is silver, it does not react with the ligand of the binder resin but selectively reacts with the electrode metal. However, when the amount of the ligand in the binder resin is large, even if copper is used as the metal filler, for example, not all ligands react with the metal filler, so that copper may be used as the metal filler. it can.

【0034】また前記接着剤及び接続構造体において
は、前記バインダ樹脂が、熱可塑性樹脂及び熱硬化性樹
脂から選ばれる少なくとも一つの樹脂であることが好ま
しい。
In the adhesive and the connection structure, it is preferable that the binder resin is at least one resin selected from a thermoplastic resin and a thermosetting resin.

【0035】また前記接着剤及び接続構造体において
は、熱可塑性樹脂がポリエステル樹脂、シリコーン樹
脂、ビニル樹脂、塩化ビニル樹脂、アクリル樹脂、ポリ
スチレン樹脂、アイオノマー樹脂、ポリメチルペンテン
樹脂、ポリイミド樹脂、ポリカーボネート樹脂、フッ素
樹脂及び熱可塑性エポキシ樹脂から選ばれる少なくとも
一つの樹脂であることが好ましい。
In the adhesive and the connection structure, the thermoplastic resin is a polyester resin, a silicone resin, a vinyl resin, a vinyl chloride resin, an acrylic resin, a polystyrene resin, an ionomer resin, a polymethylpentene resin, a polyimide resin, a polycarbonate resin. , A fluororesin and a thermoplastic epoxy resin.

【0036】前記した本発明によれば、接着強度を大幅
に改善した導電性接着剤による実装技術を実現できる。
According to the present invention described above, it is possible to realize a mounting technique using a conductive adhesive whose adhesive strength is greatly improved.

【0037】本発明により、本導電性接着剤と電極金属
が接触すると、バインダ樹脂の配位子は、金属と非常に
反応しやすいため、電極金属に速やかに配位して、キレ
ート結合、つまり強力な化学結合を形成する。樹脂の分
子鎖に配位子が結合しているため、バインダ樹脂と電極
金属との間の結合、ならびに導電性接着剤と電極金属と
の間の結合も強くなる。
According to the present invention, when the conductive adhesive and the electrode metal come into contact with each other, the ligand of the binder resin is very easily reacted with the metal. Form strong chemical bonds. Since the ligand is bound to the molecular chain of the resin, the bond between the binder resin and the electrode metal and the bond between the conductive adhesive and the electrode metal are also strengthened.

【0038】本発明の接続構造体は、前記本発明の導電
性接着剤と電極を電気的に接続したものであり、従来の
接続構造体と比較して接着強度が向上する。また、熱可
塑性樹脂は、熱硬化性樹脂と比較して柔軟性が優れるた
め、この導電性接着剤は、曲げ力に対する応力緩和能力
が優れた結合が実現できる。
The connection structure of the present invention is obtained by electrically connecting the conductive adhesive of the present invention and an electrode, and has improved adhesive strength as compared with a conventional connection structure. Further, since the thermoplastic resin is superior in flexibility as compared with the thermosetting resin, this conductive adhesive can realize bonding with excellent stress relaxation ability against bending force.

【0039】本発明の好ましい接続構造体は、前記導電
性接着剤を用いて部品と基板を実装したものであり、さ
らに曲げ力に対する接着強度が向上する。
A preferred connection structure of the present invention is one in which a component and a substrate are mounted using the conductive adhesive, and the bonding strength against bending force is further improved.

【0040】本発明は、従来のハンダの置き換えとし
て、例えば半導体基板と電子部品チップとの導電性接着
剤として使用することができ、また電気絶縁基材に開け
たスルーホール内に充填して前記電気絶縁基材の厚さ方
向に電気的導通を行うための導電性ペーストにも応用す
ることができる。
The present invention can be used as a replacement for conventional solder, for example, as a conductive adhesive between a semiconductor substrate and an electronic component chip. The present invention can also be applied to a conductive paste for conducting electrical conduction in the thickness direction of the electrically insulating base material.

【0041】[0041]

【実施例】以下に本発明の実施例について図面を示しな
がら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0042】(共通実験方法)評価に用いた実装構造体
の側面図を図1に示す。基板1の電極2に導電性接着剤
3をスクリーン印刷し、部品4の電極5を搭載した後、
150℃で30分間オーブン中で加熱することにより、
実装構造体を作製した。なお、基板1と部品4の材質お
よび電極2と電極5の材質は、それぞれ同じものを用い
た。
(Common Experimental Method) FIG. 1 shows a side view of the mounting structure used for the evaluation. After the conductive adhesive 3 is screen-printed on the electrode 2 of the substrate 1 and the electrode 5 of the component 4 is mounted,
By heating in an oven at 150 ° C. for 30 minutes,
A mounting structure was manufactured. The same material was used for the substrate 1 and the component 4 and for the electrode 2 and the electrode 5.

【0043】評価方法を図2に示す。作製した実装構造
体の裏面から、基板押し治具6を用いて部品4を加圧し
て、接続抵抗が初期値の2倍以上に上昇した時のたわみ
量を測定し、曲げ力に対する接着強度を評価した。な
お、基板固定治具7と8の間の距離は100mmとし
た。
FIG. 2 shows an evaluation method. The component 4 is pressurized from the back surface of the fabricated mounting structure using the substrate pressing jig 6 to measure the amount of deflection when the connection resistance rises to twice or more the initial value, and to determine the adhesive strength with respect to the bending force. evaluated. The distance between the substrate fixing jigs 7 and 8 was 100 mm.

【0044】基板と部品の詳細を以下に示す。 (1)部品:0オーム抵抗 基材;アルミナまたはガラスエポキシ基板(3216サ
イズ) 電極仕様;表1に示すとおりである。 (2)基板 基材;アルミナまたはガラスエポキシ基板(30×150×
1.6mm) 電極仕様;表1に示すとおりである。 (3)導電性接着剤 フィラー;銀粉末(85wt%)(平均粒子直径3〜10μ
m) バインダ樹脂(15wt%);表1に示すとおりである。
The details of the board and the components are shown below. (1) Parts: 0 ohm resistance Base material: alumina or glass epoxy substrate (3216 size) Electrode specifications: as shown in Table 1. (2) Substrate Base material: Alumina or glass epoxy substrate (30 × 150 ×
1.6mm) Electrode specifications; as shown in Table 1. (3) Conductive adhesive filler; silver powder (85wt%) (average particle diameter 3-10μ)
m) Binder resin (15 wt%); as shown in Table 1.

【0045】各実施例の内容を以下に説明する。以下の
実施例において、実施例1〜2は熱硬化性樹脂に官能基
を導入した導電性接着剤材料の例であり、実施例3〜4
は熱可塑性樹脂に官能基を導入した導電性接着剤材料の
例である。
The contents of each embodiment will be described below. In the following examples, Examples 1 and 2 are examples of conductive adhesive materials in which a functional group is introduced into a thermosetting resin, and Examples 3 and 4
Is an example of a conductive adhesive material obtained by introducing a functional group into a thermoplastic resin.

【0046】(実施例1)本実施例は、実施の形態1で
説明したように、バインダ樹脂の添加成分(反応性希釈
剤)として、多座配位子を導入した樹脂を用いた例であ
る。
Example 1 In this example, as described in the first embodiment, a resin in which a polydentate ligand is introduced is used as an additive component (reactive diluent) of a binder resin. is there.

【0047】導電性接着剤のバインダ樹脂として、下記
式(化4)に示されるジカルボニル基を分子鎖に導入し
た反応性希釈剤15重量部と、ビスフェノールFエポキ
シ樹脂75重量部と、硬化剤(無水マレイン酸)5重量
部と、溶剤(ブチルカルビトールアセテート)5重量部
を混合したものを用いた。
As a binder resin for the conductive adhesive, 15 parts by weight of a reactive diluent having a dicarbonyl group represented by the following formula (4) introduced into a molecular chain, 75 parts by weight of a bisphenol F epoxy resin, and a curing agent A mixture of 5 parts by weight of (maleic anhydride) and 5 parts by weight of a solvent (butyl carbitol acetate) was used.

【0048】[0048]

【化4】 Embedded image

【0049】その結果、比較例1(従来の導電性接着
剤)、比較例5(シランカップリング剤添加)、比較例
7(リン酸エステル基導入エポキシ樹脂)よりもNG時の
タワミ量が上昇し、曲げ力に対する接着強度が向上し
た。
As a result, the amount of deflection at the time of NG was higher than that of Comparative Example 1 (conventional conductive adhesive), Comparative Example 5 (containing a silane coupling agent), and Comparative Example 7 (phosphoric ester group-introduced epoxy resin). Thus, the adhesive strength with respect to the bending force was improved.

【0050】(実施例2)導電性接着剤として、実施例
1と同様のエポキシ樹脂の側鎖にジカルボニル基が結合
したバインダ樹脂(前記式(化4))を用い、電極とし
て従来のCu厚膜を用いた。
(Example 2) As the conductive adhesive, a binder resin (the above formula (Formula 4)) in which a dicarbonyl group is bonded to the side chain of the same epoxy resin as in Example 1 was used, and a conventional Cu was used as an electrode. A thick film was used.

【0051】その結果、比較例2(従来の導電性接着剤
を用いた場合)、比較例6(シランカップリング剤添
加)、比較例8(リン酸エステル基導入エポキシ樹脂)
よりもNG時のタワミ量が上昇し、曲げ力に対する接着強
度が向上した。
As a result, Comparative Example 2 (when a conventional conductive adhesive was used), Comparative Example 6 (with a silane coupling agent added), Comparative Example 8 (a phosphate ester group-introduced epoxy resin)
The amount of deflection at the time of NG was higher than that of NG, and the adhesive strength against bending force was improved.

【0052】(実施例3)反応性希釈剤として、下記式
(化5)に示されるシリコーンの側鎖にジカルボニル基
を導入した熱可塑性シリコーン樹脂を用いた以外は、実
施例1と同様にした。
Example 3 The same procedure as in Example 1 was carried out except that a thermoplastic silicone resin having a dicarbonyl group introduced into a side chain of the silicone represented by the following formula (Formula 5) was used as a reactive diluent. did.

【0053】[0053]

【化5】 Embedded image

【0054】その結果、比較例1(従来の導電性接着
剤)、比較例5(シランカップリング剤添加)、比較例
7(リン酸エステル基導入エポキシ樹脂)よりもNG時の
タワミ量が上昇し、曲げ力に対する接着強度が向上し
た。さらに実施例1よりも接着強度が向上した。
As a result, the amount of deflection at the time of NG was higher than that of Comparative Example 1 (conventional conductive adhesive), Comparative Example 5 (containing a silane coupling agent), and Comparative Example 7 (epoxy resin having a phosphate ester group). Thus, the adhesive strength with respect to the bending force was improved. Further, the adhesive strength was improved as compared with Example 1.

【0055】(実施例4)導電性接着剤として、シリコ
ーン樹脂の側鎖にジカルボニル基が結合したバインダ樹
脂(前記式(化4))に示される樹脂を用い、電極は従
来のCu箔を用いた。
Example 4 As a conductive adhesive, a resin represented by the above formula (Formula 4) in which a dicarbonyl group is bonded to a side chain of a silicone resin is used, and a conventional Cu foil is used for an electrode. Using.

【0056】その結果、比較例2(従来の導電性接着剤
を用いた場合)、比較例6(シランカップリング剤添
加)、比較例8(リン酸エステル基導入エポキシ樹脂)
よりもNG時のタワミ量が上昇し、曲げ力に対する接着強
度が向上した。さらに実施例2よりも接着強度が向上し
た。
As a result, Comparative Example 2 (when a conventional conductive adhesive was used), Comparative Example 6 (with a silane coupling agent added), Comparative Example 8 (a phosphate ester group-introduced epoxy resin)
The amount of deflection at the time of NG was higher than that of NG, and the adhesive strength against bending force was improved. Further, the adhesive strength was improved as compared with Example 2.

【0057】(実施例5)実施例1の配位子導入樹脂の
配位子をアミノカルボニル基に変更した下記式(化6)
に示されるエポキシ樹脂を用いた以外は、実施例1と同
様にした。
Example 5 The following formula (Chem. 6) in which the ligand of the ligand-introduced resin of Example 1 was changed to an aminocarbonyl group
The procedure was the same as in Example 1 except that the epoxy resin shown in (1) was used.

【0058】[0058]

【化6】 Embedded image

【0059】その結果、比較例1(従来の導電性接着
剤)、比較例5(シランカップリング剤添加)、比較例
7(リン酸エステル基導入エポキシ樹脂)よりもNG時の
タワミ量が上昇し、曲げ力に対する接着強度が向上し
た。
As a result, the amount of deflection at the time of NG was higher than that of Comparative Example 1 (conventional conductive adhesive), Comparative Example 5 (containing a silane coupling agent), and Comparative Example 7 (phosphoric ester group-introduced epoxy resin). Thus, the adhesive strength with respect to the bending force was improved.

【0060】(実施例6)電極を焼成Cu厚箔に変えた以
外は、実施例5と同様とした。
Example 6 The procedure was the same as Example 5 except that the electrode was changed to a thick baked Cu foil.

【0061】その結果、比較例2(従来の導電性接着剤
を用いた場合)、比較例6(シランカップリング剤添
加)、比較例8(リン酸エステル基導入エポキシ樹脂)
よりもNG時のタワミ量が上昇し、曲げ力に対する接着強
度が向上した。
As a result, Comparative Example 2 (when a conventional conductive adhesive was used), Comparative Example 6 (with a silane coupling agent added), Comparative Example 8 (a phosphate ester group-introduced epoxy resin)
The amount of deflection at the time of NG was higher than that of NG, and the adhesive strength against bending force was improved.

【0062】(実施例7)実施例1の配位子導入樹脂の
配位子をジカルボニル基に変更した下記式(化7)に示
されるエポキシ樹脂を用いた以外は、実施例1と同様に
した。
Example 7 The same as Example 1 except that an epoxy resin represented by the following formula (Formula 7) was used in which the ligand of the ligand-introduced resin of Example 1 was changed to a dicarbonyl group. I made it.

【0063】[0063]

【化7】 Embedded image

【0064】その結果、比較例1(従来の導電性接着
剤)、比較例5(シランカップリング剤添加)、比較例
7(リン酸エステル基導入エポキシ樹脂)よりもNG時の
タワミ量が上昇し、曲げ力に対する接着強度が向上し
た。
As a result, the amount of deflection at the time of NG was higher than that of Comparative Example 1 (conventional conductive adhesive), Comparative Example 5 (containing a silane coupling agent), and Comparative Example 7 (phosphoric ester group-introduced epoxy resin). Thus, the adhesive strength with respect to the bending force was improved.

【0065】(実施例8)電極を焼成Cu厚箔に変えた以
外は、実施例7と同様とした。
Example 8 The same operation as in Example 7 was performed except that the electrode was changed to a thick baked Cu foil.

【0066】その結果、比較例2(従来の導電性接着剤
を用いた場合)、比較例6(シランカップリング剤添
加)、比較例8(リン酸エステル基導入エポキシ樹脂)
よりもNG時のタワミ量が上昇し、曲げ力に対する接着強
度が向上した。
As a result, Comparative Example 2 (when a conventional conductive adhesive was used), Comparative Example 6 (with a silane coupling agent added), Comparative Example 8 (a phosphate ester group-introduced epoxy resin)
The amount of deflection at the time of NG was higher than that of NG, and the adhesive strength against bending force was improved.

【0067】(実施例9)実施例1の配位子導入樹脂の
配位子をジカルボニル基に変更した下記式(化8)に示
されるエポキシ樹脂を用いた以外は、実施例1と同様に
した。
Example 9 The same as Example 1 except that an epoxy resin represented by the following formula (Formula 8) was used in which the ligand of the ligand-introduced resin of Example 1 was changed to a dicarbonyl group. I made it.

【0068】[0068]

【化8】 Embedded image

【0069】その結果、比較例1(従来の導電性接着
剤)、比較例5(シランカップリング剤添加)、比較例
7(リン酸エステル基導入エポキシ樹脂)よりもNG時の
タワミ量が上昇し、曲げ力に対する接着強度が向上し
た。
As a result, the amount of deflection at the time of NG was higher than that of Comparative Example 1 (conventional conductive adhesive), Comparative Example 5 (containing a silane coupling agent), and Comparative Example 7 (phosphoric ester group-introduced epoxy resin). Thus, the adhesive strength with respect to the bending force was improved.

【0070】(実施例10)電極を焼成Cu厚箔に変えた
以外は、実施例9と同様とした。
Example 10 The procedure was the same as Example 9 except that the electrode was changed to a thick baked Cu foil.

【0071】その結果、比較例2(従来の導電性接着剤
を用いた場合)、比較例6(シランカップリング剤添
加)、比較例8(リン酸エステル基導入エポキシ樹脂)
よりもNG時のタワミ量が上昇し、曲げ力に対する接着強
度が向上した。
As a result, Comparative Example 2 (when a conventional conductive adhesive was used), Comparative Example 6 (with a silane coupling agent added), Comparative Example 8 (a phosphate ester group-introduced epoxy resin)
The amount of deflection at the time of NG was higher than that of NG, and the adhesive strength against bending force was improved.

【0072】(実施例11)実施例1の配位子導入樹脂
の配位子をジカルボニル基に変更した下記式(化9)に
示されるエポキシ樹脂を用いた以外は、実施例1と同様
にした。
Example 11 The same as Example 1 except that the ligand of the ligand-introduced resin of Example 1 was changed to a dicarbonyl group, and an epoxy resin represented by the following formula (Formula 9) was used. I made it.

【0073】[0073]

【化9】 Embedded image

【0074】その結果、比較例1(従来の導電性接着
剤)、比較例5(シランカップリング剤添加)、比較例
7(リン酸エステル基導入エポキシ樹脂)よりもNG時の
タワミ量が上昇し、曲げ力に対する接着強度が向上し
た。
As a result, the amount of deflection at the time of NG was higher than that of Comparative Example 1 (conventional conductive adhesive), Comparative Example 5 (containing a silane coupling agent), and Comparative Example 7 (phosphoric ester group-introduced epoxy resin). Thus, the adhesive strength with respect to the bending force was improved.

【0075】(実施例12)電極を焼成Cu厚箔に変えた
以外は、実施例11と同様とした。
Example 12 Example 11 was the same as Example 11 except that the electrode was changed to a baked Cu thick foil.

【0076】その結果、比較例2(従来の導電性接着剤
を用いた場合)、比較例6(シランカップリング剤添
加)、比較例8(リン酸エステル基導入エポキシ樹脂)
よりもNG時のタワミ量が上昇し、曲げ力に対する接着強
度が向上した。
As a result, Comparative Example 2 (when a conventional conductive adhesive was used), Comparative Example 6 (with a silane coupling agent added), Comparative Example 8 (a phosphate ester group-introduced epoxy resin)
The amount of deflection at the time of NG was higher than that of NG, and the adhesive strength against bending force was improved.

【0077】(実施例13)実施例1の配位子導入樹脂
の配位子をジカルボニル基に変更した下記式(化10、
ただしnは重合度を示し、平均約2である。)に示され
るエポキシ樹脂を用いた以外は、実施例1と同様にし
た。
(Example 13) The following formula (Chem. 10) in which the ligand of the ligand-introduced resin of Example 1 was changed to a dicarbonyl group.
Here, n indicates the degree of polymerization, and is about 2 on average. )), Except that the epoxy resin shown in (1) was used.

【0078】[0078]

【化10】 Embedded image

【0079】その結果、比較例1(従来の導電性接着
剤)、比較例5(シランカップリング剤添加)、比較例
7(リン酸エステル基導入エポキシ樹脂)よりもNG時の
タワミ量が上昇し、曲げ力に対する接着強度が向上し
た。
As a result, the amount of deflection at the time of NG was higher than that of Comparative Example 1 (conventional conductive adhesive), Comparative Example 5 (containing a silane coupling agent), and Comparative Example 7 (phosphoric ester group-introduced epoxy resin). Thus, the adhesive strength with respect to the bending force was improved.

【0080】(実施例14)電極を焼成Cu厚箔に変えた
以外は、実施例13と同様とした。
Example 14 Example 13 was the same as Example 13 except that the electrode was changed to a thick baked Cu foil.

【0081】その結果、比較例2(従来の導電性接着剤
を用いた場合)、比較例6(シランカップリング剤添
加)、比較例8(リン酸エステル基導入エポキシ樹脂)
よりもNG時のタワミ量が上昇し、曲げ力に対する接着強
度が向上した。
As a result, Comparative Example 2 (when a conventional conductive adhesive was used), Comparative Example 6 (with a silane coupling agent added), Comparative Example 8 (a phosphate ester group-introduced epoxy resin)
The amount of deflection at the time of NG was higher than that of NG, and the adhesive strength against bending force was improved.

【0082】(比較例1)実施例1のバインダ樹脂に変
えて、従来の導電性接着、すなわち下記の組成を用いた
以外は実施例1と同様に実験した。 ・ビスフェノールF型エポキシ樹脂 90重量部 ・硬化剤(ジエチレントリアミン) 5重量部 ・溶剤(ブチルカルビトールアセテート) 5重量部 (比較例2)比較例1のCu箔に変えて焼成Cu厚箔を
用いた以外は比較例1と同様に実験した。
(Comparative Example 1) An experiment was conducted in the same manner as in Example 1 except that the binder resin used in Example 1 was replaced with a conventional conductive adhesive, that is, the following composition was used. -Bisphenol F type epoxy resin 90 parts by weight-Hardener (diethylenetriamine) 5 parts by weight-Solvent (butyl carbitol acetate) 5 parts by weight (Comparative Example 2) A fired Cu thick foil was used in place of the Cu foil of Comparative Example 1. Except for the above, the experiment was performed in the same manner as in Comparative Example 1.

【0083】(比較例3)実施例3のバインダ樹脂に変
えて、両末端ハイドロジェン−ジメチルジシリコーン樹
脂を用いた以外は実施例1と同様に実験した。
(Comparative Example 3) An experiment was conducted in the same manner as in Example 1, except that the binder resin of Example 3 was replaced with a hydrogen-dimethyldisilicone resin at both ends.

【0084】(比較例4)比較例3のCu箔に変えて焼
成Cu厚箔を用いた以外は比較例3と同様に実験した。
(Comparative Example 4) An experiment was performed in the same manner as in Comparative Example 3 except that a thick baked Cu foil was used instead of the Cu foil of Comparative Example 3.

【0085】(比較例5)実施例1のバインダ樹脂に変
えて、シランカップリング剤を用いた以外は実施例1と
同様に実験した。
Comparative Example 5 An experiment was performed in the same manner as in Example 1 except that a silane coupling agent was used instead of the binder resin of Example 1.

【0086】(比較例6)比較例5のCu箔に変えて焼
成Cu厚箔を用いた以外は比較例5と同様に実験した。
(Comparative Example 6) An experiment was performed in the same manner as in Comparative Example 5 except that a thick copper foil was used instead of the Cu foil of Comparative Example 5.

【0087】(比較例7)実施例1のバインダ樹脂に変
えて、分子骨格にリン酸エステル基を導入したエポキシ
樹脂を用いた以外は実施例1と同様に実験した。
Comparative Example 7 An experiment was conducted in the same manner as in Example 1 except that an epoxy resin having a phosphate group introduced into the molecular skeleton was used instead of the binder resin of Example 1.

【0088】(比較例8)比較例7のCu箔に変えて焼
成Cu厚箔を用いた以外は比較例7と同様に実験した。
Comparative Example 8 An experiment was performed in the same manner as in Comparative Example 7 except that a thick baked Cu foil was used instead of the Cu foil of Comparative Example 7.

【0089】以上の本発明の実施例1−14および比較
例1−8の結果を表1にまとめて示す。
The results of Example 1-14 and Comparative Example 1-8 of the present invention are shown in Table 1.

【0090】[0090]

【表1】 なお、本実施例において、導電性接着剤のバインダ樹脂
としてエポキシ樹脂とシリコーン樹脂のみを示したが、
実施の形態で述べたような他の樹脂を用いても有効であ
る。また、バインダ樹脂の側鎖に結合する配位子として
ジカルボニル基のみを示したが、実施の形態で述べたよ
うな他の配位子を用いても良い。さらに、電極金属とし
て銅のみを示したが、実施の形態で述べたような、電極
に一般的に用いられる他の金属を用いても良い。
[Table 1] In this embodiment, only the epoxy resin and the silicone resin are shown as the binder resin of the conductive adhesive.
It is effective to use another resin as described in the embodiment. Although only a dicarbonyl group is shown as a ligand bonded to a side chain of the binder resin, another ligand as described in the embodiment may be used. Further, only copper is shown as the electrode metal, but other metals generally used for the electrodes as described in the embodiment may be used.

【0091】[0091]

【発明の効果】本発明によれば、導電性接着剤実装にお
ける課題であった接着強度、特に曲げ力に対する強度を
容易に解決することができ、導電性接着剤を用いた実装
技術の実用化に大きく貢献するものである。
According to the present invention, it is possible to easily solve the bonding strength, particularly the strength against bending force, which has been a problem in the mounting of the conductive adhesive, and to commercialize the mounting technique using the conductive adhesive. It greatly contributes to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の評価に用いた実装構造体
の断面図。
FIG. 1 is a sectional view of a mounting structure used for evaluating one embodiment of the present invention.

【図2】 本発明の一実施例の評価方法を示す説明断面
図。
FIG. 2 is an explanatory sectional view showing an evaluation method according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 電極 3 導電性接着剤 4 部品 5 電極 6 基板押し治具 7,8 基板固定治具 DESCRIPTION OF SYMBOLS 1 Substrate 2 Electrode 3 Conductive adhesive 4 Parts 5 Electrode 6 Substrate pushing jig 7, 8 Substrate fixing jig

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/32 H05K 3/32 B (72)発明者 石丸 幸宏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 三谷 力 大阪府門真市大字門真1006番地 松下電器 産業株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/32 H05K 3/32 B (72) Inventor Yukihiro Ishimaru 1006 Kazuma Kazuma, Kadoma, Osaka Matsushita Electric Industrial (72) Inventor Riki Mitani 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 バインダ樹脂と金属フィラーを主成分と
し、接着後の前記バインダ樹脂が電極金属と多座配位結
合を形成する官能基を分子鎖に含むことを特徴とする導
電性接着剤。
1. A conductive adhesive comprising a binder resin and a metal filler as main components, and the binder resin after bonding contains, in a molecular chain, a functional group forming a polydentate bond with an electrode metal.
【請求項2】 多座配位結合の結合数が2〜4である請
求項1に記載の導電性接着剤。
2. The conductive adhesive according to claim 1, wherein the number of polydentate bonds is 2 to 4.
【請求項3】 多座配位結合を形成する官能基を分子鎖
に含む樹脂の存在量が、全樹脂中の10〜100重量%
の範囲である請求項1に記載の導電性接着剤。
3. An amount of a resin containing a functional group capable of forming a polydentate bond in a molecular chain is 10 to 100% by weight of the total resin.
The conductive adhesive according to claim 1, wherein
【請求項4】 導電性接着剤を100重量%としたと
き、バインダ樹脂が5〜25重量%の範囲、かつ金属フ
ィラーが75〜95重量%の範囲である請求項1に記載
の導電性接着剤。
4. The conductive adhesive according to claim 1, wherein the binder resin is in a range of 5 to 25% by weight and the metal filler is in a range of 75 to 95% by weight, when the conductive adhesive is 100% by weight. Agent.
【請求項5】 前記官能基が、カルボニル基、カルボキ
シル基、アミノ基、イミノ基、イミノ酢酸基、イミノプ
ロピオン酸基、水酸基、チオール基、ピリジニウム基、
イミド基、アゾ基、ニトリロ基、アンモニウム基及びイ
ミダゾール基から選ばれる同一又は異なった少なくとも
2つの官能基である請求項1に記載の導電性接着剤。
5. The method according to claim 1, wherein the functional group is a carbonyl group, a carboxyl group, an amino group, an imino group, an iminoacetic acid group, an iminopropionic acid group, a hydroxyl group, a thiol group, a pyridinium group,
The conductive adhesive according to claim 1, wherein the conductive adhesive is at least two different functional groups selected from the group consisting of an imide group, an azo group, a nitrile group, an ammonium group, and an imidazole group.
【請求項6】 金属フィラーが、銀、銀メッキしたニッ
ケル及び銀メッキした銅から選ばれる少なくとも一つの
粒子である請求項1に記載の導電性接着剤。
6. The conductive adhesive according to claim 1, wherein the metal filler is at least one particle selected from silver, silver-plated nickel, and silver-plated copper.
【請求項7】 前記バインダ樹脂が、熱可塑性樹脂及び
熱硬化性樹脂から選ばれる少なくとも一つの樹脂である
請求項1に記載の導電性接着剤。
7. The conductive adhesive according to claim 1, wherein the binder resin is at least one resin selected from a thermoplastic resin and a thermosetting resin.
【請求項8】 熱可塑性樹脂がポリエステル樹脂、シリ
コーン樹脂、ビニル樹脂、塩化ビニル樹脂、アクリル樹
脂、ポリスチレン樹脂、アイオノマー樹脂、メチルペン
テン樹脂、ポリイミド樹脂、ポリカーボネート樹脂、フ
ッ素樹脂及び熱可塑性エポキシ樹脂から選ばれる少なく
とも一つの樹脂である請求項7に記載の導電性接着剤。
8. The thermoplastic resin is selected from polyester resin, silicone resin, vinyl resin, vinyl chloride resin, acrylic resin, polystyrene resin, ionomer resin, methylpentene resin, polyimide resin, polycarbonate resin, fluororesin and thermoplastic epoxy resin. 8. The conductive adhesive according to claim 7, which is at least one resin.
【請求項9】 請求項1〜8のいずれかに記載の導電性
接着剤を用いて、前記接着剤と電極を電気的に接続した
ことを特徴とする接続構造体。
9. A connection structure, wherein the conductive adhesive according to claim 1 is used to electrically connect the adhesive to an electrode.
【請求項10】 請求項1〜8のいずれかに記載の導電
性接着剤を用いて、前記接着剤と電極を電気的に接続す
ることを特徴とする接続構造体の製造方法。
10. A method for manufacturing a connection structure, comprising: using the conductive adhesive according to claim 1 to electrically connect the adhesive to an electrode.
JP2000398536A 2000-01-07 2000-12-27 Electroconductive adhesive and connecting structure therewith Pending JP2001254067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398536A JP2001254067A (en) 2000-01-07 2000-12-27 Electroconductive adhesive and connecting structure therewith

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-1526 2000-01-07
JP2000001526 2000-01-07
JP2000398536A JP2001254067A (en) 2000-01-07 2000-12-27 Electroconductive adhesive and connecting structure therewith

Publications (1)

Publication Number Publication Date
JP2001254067A true JP2001254067A (en) 2001-09-18

Family

ID=26583233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398536A Pending JP2001254067A (en) 2000-01-07 2000-12-27 Electroconductive adhesive and connecting structure therewith

Country Status (1)

Country Link
JP (1) JP2001254067A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139949A (en) * 2005-11-16 2007-06-07 Hitachi Cable Ltd Liquid crystal aligning agent
JP2007207690A (en) * 2006-02-06 2007-08-16 Asahi Kasei Chemicals Corp Lithium-ion secondary battery
KR100951613B1 (en) * 2003-03-11 2010-04-09 주식회사 코미코 The Electrostatic Chuck having grooves on the lower side of a ceramic plate and projecting portions on the upper side of a lower electrode
JP2019153661A (en) * 2018-03-02 2019-09-12 ローム株式会社 Adhesive structure and semiconductor module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951613B1 (en) * 2003-03-11 2010-04-09 주식회사 코미코 The Electrostatic Chuck having grooves on the lower side of a ceramic plate and projecting portions on the upper side of a lower electrode
JP2007139949A (en) * 2005-11-16 2007-06-07 Hitachi Cable Ltd Liquid crystal aligning agent
JP4525563B2 (en) * 2005-11-16 2010-08-18 日立電線株式会社 Liquid crystal alignment agent
JP2007207690A (en) * 2006-02-06 2007-08-16 Asahi Kasei Chemicals Corp Lithium-ion secondary battery
JP2019153661A (en) * 2018-03-02 2019-09-12 ローム株式会社 Adhesive structure and semiconductor module
JP2022174198A (en) * 2018-03-02 2022-11-22 ローム株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
KR101085722B1 (en) Connecting film, bonded body and method for manufacturing the bonded body
KR101775864B1 (en) Conductive paste and multilayer substrate using same
CN102625564A (en) Shielded type printed circuit board
JP2011192651A (en) Anisotropic conductive film, connection method, and connection structure
KR20140024886A (en) Anisotropic conductive film, connection method, and connected structure
KR100939607B1 (en) Connecting structure and connecting method of circuit
KR20120028293A (en) Electrode structure, wiring body, adhesive connection structure, electronic device, and method for fabricating same
US6749774B2 (en) Conductive adhesive and connection structure using the same
JPWO2008078409A1 (en) Conductive paste
CN102461349A (en) Electrode connection method, electrode connection structure, conductive adhesive used therefor, and electronic device
JP2001254067A (en) Electroconductive adhesive and connecting structure therewith
CN102246607B (en) Electrode connection structure, conductive adhesive used therefor, and electronic device
KR20150060683A (en) Anisotropic conductive film, connection method, and connected body
JP5440478B2 (en) Anisotropic conductive adhesive, electrode connection structure and electronic equipment
CN104693965A (en) Composition for preventing ionic migration and preparation method, non-gel substrate and preparation method
JP2748615B2 (en) Conductive adhesive
JP2009070650A (en) Functional conductive coating, its manufacturing method, and printed wiring board
JPH07252460A (en) Adhesive
JPS608377A (en) Anisotropically electrically-conductive adhesive
KR20030070394A (en) Anisotropic Conductive Adhesive with Low Electrical Resistance and High Current Carrying Capacity for High Power Modules Applications
JP2002025339A (en) Mounting structure and manufacturing method of the same
JP2002338923A (en) Conductive adhesive
JP3846990B2 (en) Insulating adhesive composition for heat seal connector
Melton Alternatives of lead bearing solder alloys
KR101227795B1 (en) Connection structure