JP2011210609A - Lithium secondary battery and method of manufacturing the same - Google Patents

Lithium secondary battery and method of manufacturing the same Download PDF

Info

Publication number
JP2011210609A
JP2011210609A JP2010078500A JP2010078500A JP2011210609A JP 2011210609 A JP2011210609 A JP 2011210609A JP 2010078500 A JP2010078500 A JP 2010078500A JP 2010078500 A JP2010078500 A JP 2010078500A JP 2011210609 A JP2011210609 A JP 2011210609A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
battery
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010078500A
Other languages
Japanese (ja)
Other versions
JP5541502B2 (en
Inventor
Norikazu Adachi
安達  紀和
Manabu Yamada
学 山田
Hisashi Umemoto
久 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010078500A priority Critical patent/JP5541502B2/en
Publication of JP2011210609A publication Critical patent/JP2011210609A/en
Application granted granted Critical
Publication of JP5541502B2 publication Critical patent/JP5541502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery in which lithium deactivated during initial charge can be replenished.SOLUTION: The lithium secondary battery includes positive and negative electrodes having active material which can store and emit lithium ions, and an electrolyte. The positive electrode includes: a lithium source as one or more compounds selected from a group of LiO, LiO, LiCO, LiOH, and LiH; and a lithium generation auxiliary agent as one or more compounds selected from a group of Pt, Au, MeO(Me is Mn, Fe, Co, Ni, V, or Cr, and X is a positive number corresponding to an oxidation number of Me).

Description

本発明は、高出力および高エネルギー密度であり、且つ充放電サイクル特性に優れた蓄電デバイスであるリチウム二次電池及びその製造方法に関するものである。   The present invention relates to a lithium secondary battery which is an electricity storage device having high output and high energy density and excellent charge / discharge cycle characteristics, and a method for producing the same.

ノート型パソコン、携帯電話などの携帯型電子機器の急速な市場拡大に伴い、これらに用いるための、エネルギー密度が大きく、充放電サイクル特性に優れた小型大容量二次電池への要求が高まっている。この要求に応えるためにリチウムイオンを荷電担体として用い、その荷電粒子による電荷授受に伴う電気化学反応を利用した二次電池が開発されている。   With the rapid market expansion of portable electronic devices such as notebook PCs and mobile phones, there is an increasing demand for small, large-capacity secondary batteries with high energy density and excellent charge / discharge cycle characteristics. Yes. In order to meet this demand, a secondary battery using lithium ions as a charge carrier and utilizing an electrochemical reaction accompanying charge transfer by the charged particles has been developed.

ところで、リチウム電池を製造した後、最初に行う充電である初期充電の量よりも、それ以後に充放電できる量が少なくなるという問題がある。
その主な原因は、初期充電時に負極活物質表面で電解液が分解してリチウム化合物等を生成するために、リチウムの活性が失われるためと考えられる。
更に、負極材料としてC、Sn、Si、CuSnなどの挿入型材料を採用した場合に、初期充電時に負極に取り込まれたリチウムをその後の放電時に全て取り出すことができないことも、その後の充放電容量低下の一因であると考えられる。すなわち、充電時において負極での副反応が進行し、負極でリチウムの失活が生じるものと考えられる。
副反応により減少したリチウムを補充するため、LiCO、LiOおよびLiOHから選ばれる少なくとも1つの化合物を初期充電時に正極に含有させる製造方法が開示されている(特許文献3)。
By the way, after manufacturing a lithium battery, there exists a problem that the quantity which can be charged / discharged after that becomes smaller than the quantity of the initial charge which is the charge performed initially.
The main cause is thought to be that the activity of lithium is lost because the electrolyte solution decomposes on the surface of the negative electrode active material during initial charging to produce lithium compounds and the like.
Further, when an insertion type material such as C, Sn, Si, Cu 6 Sn 5 is adopted as the negative electrode material, it is not possible to take out all of the lithium taken into the negative electrode during the initial charging during the subsequent discharge. This is considered to be a cause of a decrease in charge / discharge capacity. That is, it is considered that a side reaction at the negative electrode proceeds during charging and lithium deactivation occurs at the negative electrode.
In order to replenish lithium decreased due to side reactions, a production method is disclosed in which at least one compound selected from Li 2 CO 3 , Li 2 O and LiOH is contained in the positive electrode during initial charging (Patent Document 3).

他の要因として初期充電に伴い生成する酸の存在を考慮し、その酸の生成により発生する電池性能低下を抑制するために、電解質や「他のバッテリー成分」の分解によって生成される酸と反応し、中性化する物質である、LiOH、LiO、LiAlO、LiSiO、LiCO、NaCO、CaCOからなる群より選択された塩基性物質を正極に含有するリチウム電池が開示されている(特許文献1)。 Considering the presence of acid generated during initial charging as another factor, it reacts with acid generated by decomposition of electrolyte and other battery components in order to suppress degradation of battery performance caused by the acid generation. A basic substance selected from the group consisting of LiOH, Li 2 O, LiAlO 2 , Li 2 SiO 3 , Li 2 CO 3 , Na 2 CO 3 , and CaCO 3 , which is a neutralizing substance, is contained in the positive electrode A lithium battery is disclosed (Patent Document 1).

また、電極活物質に両性化合物、アルカリ金属硫化物又は酸化物を更に含むリチウム二次電池用電極活物質を提示している(特許文献2)。   Moreover, the electrode active material for lithium secondary batteries which further contains an amphoteric compound, an alkali metal sulfide, or an oxide in the electrode active material is shown (patent document 2).

特表2006−523368号公報(請求項27、0085〜0087段落など)JP-T-2006-523368 (Claim 27, paragraphs 0085-0087, etc.) 特表2005−510017号公報(特許請求の範囲、要約など)JP-T-2005-510017 (Claims, Abstract, etc.) 特開2004−172112号公報(請求項24、0052段落、0054段落など)JP 2004-172112 A (claim 24, paragraphs 0052, 0054, etc.)

以上の実情に鑑み、本発明においても失活したリチウムを効果的に補充することが可能なリチウム二次電池及びその製造方法を提供することを解決すべき課題とする。   In view of the above circumstances, it is an object of the present invention to provide a lithium secondary battery capable of effectively replenishing deactivated lithium and a method for manufacturing the same.

上記課題を解決する請求項1に係るリチウム二次電池の特徴は、リチウムイオンの吸蔵・放出が可能な活物質を備える正負極と、電解液とを備えるリチウム二次電池であって、
前記正極は、
LiO、Li、LiCO、LiOH、及びLiHからなる群より選択される1以上の化合物であるリチウム源と、
Pt、Au、MeO(MeはMn、Fe、Co、Ni、V、又はCr;XはMeの酸化数に対応した正数)からなる群より選択される1以上の化合物であるリチウム生成助剤と、
を有することにある。
The feature of the lithium secondary battery according to claim 1 for solving the above problem is a lithium secondary battery comprising a positive and negative electrode comprising an active material capable of occluding and releasing lithium ions, and an electrolyte solution,
The positive electrode is
A lithium source that is one or more compounds selected from the group consisting of Li 2 O, Li 2 O 2 , Li 2 CO 3 , LiOH, and LiH;
Lithium formation aid which is one or more compounds selected from the group consisting of Pt, Au, MeO X (Me is Mn, Fe, Co, Ni, V, or Cr; X is a positive number corresponding to the oxidation number of Me) Agent,
It is in having.

自身が分解することによりリチウムを生成するリチウム源に加え、リチウム源を効果的に分解することができるリチウム生成助剤を含有させることによって、最小限のリチウム源の添加により失活したリチウムを補充することができる。   In addition to the lithium source that generates lithium by its own decomposition, it contains lithium generation aids that can effectively decompose the lithium source, thereby supplementing the deactivated lithium with the addition of a minimum lithium source. can do.

上記課題を解決する請求項2に係るリチウム二次電池の特徴は、前記MeがMn、Fe、又はCoであることにある。これらの化合物は入手性に優れ且つ電池反応に悪影響を及ぼさない点で優れている。   The feature of the lithium secondary battery according to claim 2 for solving the above-mentioned problem is that the Me is Mn, Fe, or Co. These compounds are excellent in that they are highly available and do not adversely affect the battery reaction.

上記課題を解決する請求項3に係るリチウム二次電池の特徴は、前記リチウム源の含有量は初期充電時に失活するリチウムに相当する量又はそれ以上であることにある。本発明のリチウム二次電池はリチウム生成助剤の存在によりリチウム源からリチウムを効率的に生成することが可能であるため、リチウム源の添加量を少なくすることができる。   The feature of the lithium secondary battery according to claim 3 for solving the above-mentioned problem is that the content of the lithium source is an amount corresponding to or more than lithium deactivated during initial charging. Since the lithium secondary battery of the present invention can efficiently generate lithium from a lithium source due to the presence of a lithium generation aid, the amount of lithium source added can be reduced.

上記課題を解決する請求項4に係るリチウム二次電池の特徴は、前記負極活物質が炭素材料、リチウムと合金を形成できる金属材料、リチウムチタン酸化物、チタン酸化物、及びバナジウム酸化物からなる群より選択される1以上の化合物であることにある。負極活物質としてこれらの挿入型材料を採用する場合に初期充電によるリチウムの失活が顕著であるため、本願発明形態の採用が非常に効果的である。   The feature of the lithium secondary battery according to claim 4 for solving the above-mentioned problem is that the negative electrode active material comprises a carbon material, a metal material capable of forming an alloy with lithium, lithium titanium oxide, titanium oxide, and vanadium oxide. It is one or more compounds selected from the group. When these insertion type materials are employed as the negative electrode active material, the deactivation of lithium due to initial charging is remarkable, and therefore, the adoption of the embodiment of the present invention is very effective.

上記課題を解決する請求項5に係るリチウム二次電池の製造方法の特徴は、リチウムイオンの吸蔵・放出が可能な活物質を備える正負極と、電解液とを備えるリチウム二次電池を製造する方法であって、
LiO、Li、LiCO、LiOH、及びLiHからなる群より選択される1以上の化合物であるリチウム源と、
Pt、Au、MeO(MeはMn、Fe、Co、Ni、V、又はCr;XはMeの酸化数に対応した正数)からなる群より選択される1以上の化合物であるリチウム生成助剤と、
を前記正極活物質に共存させて、前記正負極を前記電解液の存在下、初期充電を行う初期充電工程を有することにある。
The feature of the method for producing a lithium secondary battery according to claim 5 for solving the above-mentioned problem is to produce a lithium secondary battery comprising a positive and negative electrode comprising an active material capable of occluding and releasing lithium ions, and an electrolyte. A method,
A lithium source that is one or more compounds selected from the group consisting of Li 2 O, Li 2 O 2 , Li 2 CO 3 , LiOH, and LiH;
Lithium formation aid which is one or more compounds selected from the group consisting of Pt, Au, MeO X (Me is Mn, Fe, Co, Ni, V, or Cr; X is a positive number corresponding to the oxidation number of Me) Agent,
In the presence of the positive electrode active material, and an initial charging step of performing initial charging of the positive and negative electrodes in the presence of the electrolytic solution.

リチウム電池の製造時において初期充電を行うことがあるが、その際にリチウム源に加え、リチウム源を効果的に分解することができるリチウム生成助剤を含有させることによって、最小限のリチウム源の添加により失活したリチウムを補充することができるため、高い充放電容量をもつリチウム二次電池を製造することが可能になる。   When a lithium battery is manufactured, initial charging may be performed. In this case, in addition to the lithium source, a lithium generation aid capable of effectively decomposing the lithium source is included, thereby reducing the minimum lithium source. Since lithium deactivated by the addition can be replenished, a lithium secondary battery having a high charge / discharge capacity can be manufactured.

上記課題を解決する請求項6に係るリチウム二次電池の製造方法の特徴は、前記MeがMn、Fe、又はCoであることにある。これらの化合物は入手性に優れ且つ電池反応に悪影響を及ぼさない点で優れている。   A feature of the method of manufacturing a lithium secondary battery according to claim 6 for solving the above-described problem is that the Me is Mn, Fe, or Co. These compounds are excellent in that they are highly available and do not adversely affect the battery reaction.

上記課題を解決する請求項7に係るリチウム二次電池の製造方法の特徴は、前記リチウム源の含有量は初期充電時に失活するリチウムに相当する量又はそれ以上であることにある。本発明のリチウム二次電池はリチウム生成助剤の存在によりリチウム源からリチウムを効率的に生成することが可能であるため、リチウム源の添加量を少なくすることができる。   The feature of the method for producing a lithium secondary battery according to claim 7 for solving the above-mentioned problem is that the content of the lithium source is an amount corresponding to or more than lithium deactivated during initial charging. Since the lithium secondary battery of the present invention can efficiently generate lithium from a lithium source due to the presence of a lithium generation aid, the amount of lithium source added can be reduced.

上記課題を解決する請求項8に係るリチウム二次電池の製造方法の特徴は、前記負極活物質が炭素材料、リチウムと合金を形成できる金属材料、チタン酸化物、及びバナジウム酸化物からなる群より選択される1以上の化合物であることにある。負極活物質としてこれらの挿入型材料を採用する場合に初期充電によるリチウムの失活が顕著であるため、本願発明形態の採用が非常に効果的である。   The feature of the method for producing a lithium secondary battery according to claim 8 for solving the above problem is that the negative electrode active material is a carbon material, a metal material capable of forming an alloy with lithium, a titanium oxide, and a vanadium oxide. It is to be one or more selected compounds. When these insertion type materials are employed as the negative electrode active material, the deactivation of lithium due to initial charging is remarkable, and therefore, the adoption of the embodiment of the present invention is very effective.

実施例の試験1(負極活物質の種類)の結果を示すグラフである。It is a graph which shows the result of the test 1 (type of negative electrode active material) of an Example. 実施例の試験1(リチウム源及びリチウム生成助剤の有無)の結果を示すグラフである。It is a graph which shows the result of the test 1 (existence of a lithium source and a lithium production | generation auxiliary agent) of an Example. 実施例の試験2(リチウム源の含有量)の結果を示すグラフである。It is a graph which shows the result of the test 2 (content of lithium source) of an Example. 実施例の試験3(リチウム生成助剤の含有量)の結果を示すグラフである。It is a graph which shows the result of the test 3 (content of lithium production | generation adjuvant) of an Example. 実施例の試験4(初期充電電圧)の結果を示すグラフである。It is a graph which shows the result of the test 4 (initial charge voltage) of an Example. 実施例の試験5(反応ガスの除去)の結果を示すグラフである。It is a graph which shows the result of the test 5 (removal of reaction gas) of an Example. 実施例の試験6(リチウム生成助剤の種類)の結果を示すグラフである。It is a graph which shows the result of the test 6 (type of lithium production | generation adjuvant) of an Example. 実施例の試験7(リチウム源の種類)の結果を示すグラフである。It is a graph which shows the result of the test 7 (type of lithium source) of an Example.

本発明のリチウム二次電池及びその製造方法について実施形態に基づき、以下詳細に説明を行う。   The lithium secondary battery and the manufacturing method thereof according to the present invention will be described below in detail based on the embodiments.

(リチウム二次電池)
本実施形態のリチウム二次電池は、リチウムイオンの吸蔵・放出が可能な活物質を備える正負極と、電解液とその他必要な部材とを備える。正極にはリチウム源とリチウム生成助剤とをもつ。
(Lithium secondary battery)
The lithium secondary battery of this embodiment includes a positive and negative electrode including an active material capable of occluding and releasing lithium ions, an electrolytic solution, and other necessary members. The positive electrode has a lithium source and a lithium production assistant.

正極活物質としてはリチウム含有遷移金属酸化物が採用できる。リチウム含有遷移金属酸化物は、Liを脱挿入できる材料であり、層状構造又はスピネル構造のリチウム−金属複合酸化物が例示できる。具体的にはLi1−ZNiO、Li1−ZMnO、Li1−ZMn、Li1−ZCoOなどの金属酸化物系材料、Li1−ZβPO(βがFeであるLiFePOなど)などがあり、それらのうちの1種以上含むことができる。この例示におけるZは0〜1の数を示す。各々にLi、Mg、Al、又はCo、Ti、Nb、Cr等の遷移金属を添加または置換した材料等であってもよい。また、これらのリチウム−金属複合酸化物を単独で用いるばかりでなくこれらを複数種類混合して用いることもできる。また、導電性高分子材料やラジカルを有する材料などを混在させることもできる。 As the positive electrode active material, a lithium-containing transition metal oxide can be employed. The lithium-containing transition metal oxide is a material capable of removing and inserting Li + , and can be exemplified by a lithium-metal composite oxide having a layered structure or a spinel structure. Specifically, Li 1 -Z NiO 2 , Li 1 -Z MnO 2 , Li 1 -Z Mn 2 O 4 , Li 1 -Z CoO 2 and other metal oxide materials, Li 1 -Z βPO 4 (β is And LiFePO 4 which is Fe), and one or more of them can be included. Z in this illustration shows the number of 0-1. A material obtained by adding or substituting a transition metal such as Li, Mg, Al, or Co, Ti, Nb, or Cr may be used. Moreover, not only these lithium-metal composite oxides are used alone, but also a plurality of them can be mixed and used. In addition, a conductive polymer material, a material having a radical, or the like can be mixed.

リチウム源はLiO、Li、LiCO、LiOH、及びLiHからなる群より選択される1以上の化合物である。リチウム源は粒子状などの形態にて正極内に含有させることができる。リチウム源はリチウム二次電池に対する充電により分解してリチウイオンを供給する。リチウム源は分解後に反応ガスを生じることが考えられる。例えば、酸素、二酸化炭素などが反応ガスとして生成する。 The lithium source is one or more compounds selected from the group consisting of Li 2 O, Li 2 O 2 , Li 2 CO 3 , LiOH, and LiH. The lithium source can be contained in the positive electrode in the form of particles. The lithium source is decomposed by charging the lithium secondary battery to supply lithium ions. It is conceivable that the lithium source generates a reaction gas after decomposition. For example, oxygen, carbon dioxide and the like are generated as a reaction gas.

リチウム源の含有量としてはリチウム二次電池の初期充電により失活するリチウムの量を予備実験、理論計算などにより求め、その量に対応する量又はそれ以上の量のリチウムを生成できる量を採用することが望ましい。例えば、必要なリチウム源の量に対して質量基準で1以上、更には1.2以上混合することが望ましい。リチウム源を混合する量の算出方法は特に限定しないが、式(1):(必要なリチウム源の量:g)={(負極単極の充電容量:mAh−負極単極の放電容量:mAh)−(正極単極の充電容量:mAh−正極単極の放電容量:mAh)}÷(リチウム源の1g当たりの放電理論容量:リチウム源がLiOの場合を例に挙げると、1794mAh/g。リチウム源の種類により一義的に決定される)などにて算出できる。なお、初期充電が終了したリチウム二次電池内においてはリチウム源が消費され尽くされ、リチウム源が存在しない場合もある。 As the lithium source content, the amount of lithium deactivated by the initial charge of the lithium secondary battery is obtained by preliminary experiments, theoretical calculations, etc., and the amount corresponding to that amount or the amount that can produce lithium more than that is adopted It is desirable to do. For example, it is desirable to mix 1 or more, further 1.2 or more on a mass basis with respect to the amount of lithium source required. The method for calculating the amount of the lithium source to be mixed is not particularly limited. Formula (1): (Amount of necessary lithium source: g) = {(Charge capacity of negative electrode single electrode: mAh−Discharge capacity of single electrode of negative electrode: mAh) )-(Positive electrode single electrode charge capacity: mAh-Positive electrode single electrode discharge capacity: mAh)} / (Theoretical discharge capacity per gram of lithium source: Lithium source is Li 2 O. For example, 1794 mAh / g, which is uniquely determined by the type of lithium source). Note that, in the lithium secondary battery that has been initially charged, the lithium source is consumed up, and the lithium source may not exist.

リチウム源は分解によりリチウムイオンが生成する。例えば、2LiO→4Li+O↑+4eといった反応が進行してリチウムイオンが供給される。リチウム源の分解により生成したOなどはガスなどの形態を採ってそのまま電池反応の系外に排出される。 Lithium ions are generated by decomposition of the lithium source. For example, a reaction of 2Li 2 O → 4Li + + O 2 ↑ + 4e proceeds and lithium ions are supplied. O 2 or the like produced by the decomposition of the lithium source takes a form such as a gas and is directly discharged out of the battery reaction system.

リチウム源が効率的に分解されるようにリチウム生成助剤が添加される。リチウム生成助剤はPt、Au、MeO(MeはMn、Fe、Co、Ni、V、又はCr;XはMeの酸化数に対応した正数)からなる群より選択された1以上の化合物である。MeとしてはMn、Fe、又はCoであることが特に好ましい。なお、正極活物質としてマンガン、鉄、ニッケル、コバルトを含有する化合物を採用する場合には、充電に伴い、電池反応が進行してリチウム生成助剤に類似する化合物(酸化物)が生成するが、本願発明では初期充電を行う前からこのようなリチウム生成助剤を含有させることにより、リチウム源からの効率的なリチウム生成を実現している。リチウム生成助剤を添加する量としては特に限定しないが、正極活物質の量を基準として1質量%以上含有させることができる。また、リチウム生成助剤は粒子状で添加することが好ましく、粒子状で添加する場合にはその粒径が正極活物質及びリチウム源よりも小さいことが望ましい。また、リチウム生成助剤はリチウム源との間でよく混合されていることが望ましい。 A lithium production aid is added so that the lithium source is efficiently decomposed. One or more compounds selected from the group consisting of Pt, Au, MeO X (Me is Mn, Fe, Co, Ni, V, or Cr; X is a positive number corresponding to the oxidation number of Me). It is. Me is particularly preferably Mn, Fe, or Co. When a compound containing manganese, iron, nickel, and cobalt is employed as the positive electrode active material, the battery reaction proceeds with the charging, and a compound (oxide) similar to the lithium generation aid is generated. In the present invention, efficient lithium production from a lithium source is realized by including such a lithium production assistant before the initial charging. Although it does not specifically limit as the quantity which adds a lithium production | generation adjuvant, 1 mass% or more can be contained on the basis of the quantity of a positive electrode active material. Moreover, it is preferable to add a lithium production | generation adjuvant in a particulate form, and when adding in a particulate form, it is desirable that the particle size is smaller than a positive electrode active material and a lithium source. Further, it is desirable that the lithium production assistant is well mixed with the lithium source.

負極活物質としてはグラファイトや非晶質炭素などの炭素材料、リチウムと合金を形成できる金属材料、リチウムチタン酸化物、チタン酸化物、及びバナジウム酸化物からなる群より選択される1以上の化合物が採用できる。これらの活物質は電池反応の進行に伴い、リチウム(イオン)の挿入・脱離が進行する。初期充電時に挿入されたリチウムの一部は脱離せず失活するため、本発明にて含有させるリチウム源から新たにリチウムを供給することにより充放電容量の低下を補償する。   The negative electrode active material includes one or more compounds selected from the group consisting of carbon materials such as graphite and amorphous carbon, metal materials capable of forming an alloy with lithium, lithium titanium oxide, titanium oxide, and vanadium oxide. Can be adopted. In these active materials, insertion / extraction of lithium (ion) proceeds as the battery reaction proceeds. Since a part of lithium inserted at the time of initial charging is deactivated without being desorbed, a decrease in charge / discharge capacity is compensated by newly supplying lithium from the lithium source contained in the present invention.

これらの正極活物質、負極活物質を採用して電極を形成する場合、その他必要な部材と共に合材とした上で集電体上に合材層を形成した状態で用いることができる。その他必要な部材としては導電材、結着材などである。   When these positive electrode active materials and negative electrode active materials are used to form an electrode, it can be used in a state in which a composite material layer is formed on a current collector after forming a composite material together with other necessary members. Other necessary members include a conductive material and a binder.

導電材としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等などが例示できる。また、アスペクト比が限定されない導電性高分子(ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセンなど)が例示できる。   Examples of the conductive material include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon. Moreover, conductive polymers (polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene, etc.) whose aspect ratio is not limited can be exemplified.

結着材は高分子材料から形成されることが望ましく、二次電池内の雰囲気において化学的・物理的に安定な材料であることが望ましい。例えばフッ素系の高分子材料(ポリフッ化ビニリデンなど)が挙げられる。   The binder is preferably formed of a polymer material, and is desirably a material that is chemically and physically stable in the atmosphere in the secondary battery. For example, a fluorine-based polymer material (polyvinylidene fluoride and the like) can be given.

このような合材層は適正な集電体の表面に形成される。集電体としては電気化学的に安定な金属から形成される箔が例示できる。集電体の表面に電極合材層を形成する方法としては合材層を構成する材料を適正な分散媒中に分散又は溶解させた後、集電体の表面に塗布・乾燥する方法が例示できる。   Such a composite material layer is formed on the surface of an appropriate current collector. An example of the current collector is a foil formed of an electrochemically stable metal. Examples of the method of forming the electrode mixture layer on the surface of the current collector include a method in which the material constituting the mixture layer is dispersed or dissolved in an appropriate dispersion medium and then applied to the surface of the current collector and dried. it can.

電解液としては特に限定しないが、有機溶媒などの溶媒に電解質を溶解させたもの、自身が液体状であるイオン液体、そのイオン液体に対して更に電解質を溶解させたものが例示できる。   Although it does not specifically limit as electrolyte solution, What melt | dissolved electrolyte in solvents, such as an organic solvent, the ionic liquid which is liquid itself, and what melt | dissolved electrolyte further with respect to the ionic liquid can be illustrated.

有機溶媒としては、通常リチウム二次電池の電解液に用いられる有機溶媒が例示できる。例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等及びそれらの混合溶媒が適当である。 例に挙げたこれらの有機溶媒のうち、特に、カーボネート類、エーテル類からなる群より選ばれた一種以上の非水溶媒を用いることにより、電解質の溶解性、誘電率および粘度において優れ、電池の充放電効率も高いので、好ましい。   As an organic solvent, the organic solvent normally used for the electrolyte solution of a lithium secondary battery can be illustrated. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds and the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like, and mixed solvents thereof are suitable. Among these organic solvents mentioned in the examples, in particular, by using one or more non-aqueous solvents selected from the group consisting of carbonates and ethers, the solubility, dielectric constant and viscosity of the electrolyte are excellent, and the battery Charge / discharge efficiency is also high, which is preferable.

イオン液体は、通常リチウム二次電池の電解液に用いられるイオン液体であれば特に限定されるものではない。例えば、イオン液体のカチオン成分としては、N−メチル−N−プロピルピペリジニウムや、ジメチルエチルメトキシアンモニウムカチオン等が挙げられ、アニオン成分としは、BF4−、N(SOCF2−等が挙げられる。 An ionic liquid will not be specifically limited if it is an ionic liquid normally used for the electrolyte solution of a lithium secondary battery. For example, examples of the cation component of the ionic liquid include N-methyl-N-propylpiperidinium and dimethylethylmethoxyammonium cation, and examples of the anion component include BF 4− , N (SO 2 CF 3 ) 2−. Etc.

電解質としては、特に限定されない。例えば、LiPF、LiBF、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiSbF、LiSCN、LiClO、LiAlCl、NaClO、NaBF、NaI、これらの誘導体等の塩化合物が挙げられる。これらの中でも、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiN(FSO、LiN(CFSO)(CSO)、LiCFSOの誘導体、LiN(CFSOの誘導体及びLiC(CFSOの誘導体からなる群から選ばれる1種以上の塩を用いることが、電気特性の観点からは好ましい。 The electrolyte is not particularly limited. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSCN, LiClO 4 , LiAlCl 4 , NaClO 4 , BClO 4 , NaI, and salt compounds such as derivatives thereof. Among these, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2 ) 2 , LiN (CF 3 One or more selected from the group consisting of a derivative of SO 2 ) (C 4 F 9 SO 2 ), a derivative of LiCF 3 SO 3, a derivative of LiN (CF 3 SO 2 ) 2 and a derivative of LiC (CF 3 SO 2 ) 3 It is preferable to use a salt from the viewpoint of electrical characteristics.

リチウム二次電池は正負極及び電解液の他、その他必要な部材を有することができる。その他必要な部材としては、セパレータ、ケースなどが例示できる。セパレータは正負極間に介装され、電気的な絶縁作用とイオン伝導作用とを両立する部材である。電解液が液状である場合にはセパレータは、液状の支持電解質を保持する役割をも果たす。セパレータとしては、多孔質合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔質膜が例示できる。更に、セパレータは、正極及び負極の間の絶縁を担保する目的で、正極及び負極の面積よりも更に大きい形態を採用することが好ましい。   The lithium secondary battery can have other necessary members in addition to the positive and negative electrodes and the electrolytic solution. Examples of other necessary members include a separator and a case. The separator is interposed between the positive and negative electrodes and is a member that achieves both electrical insulation and ion conduction. When the electrolytic solution is liquid, the separator also plays a role of holding the liquid supporting electrolyte. Examples of the separator include a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene or polypropylene). Furthermore, it is preferable that the separator adopts a form larger than the area of the positive electrode and the negative electrode for the purpose of ensuring insulation between the positive electrode and the negative electrode.

(リチウム二次電池の製造方法)
本実施形態のリチウム二次電池の製造方法はリチウムイオンの吸蔵・放出が可能な活物質を備える正負極と、電解液とを備えるリチウム二次電池を製造する方法である。
(Method for producing lithium secondary battery)
The manufacturing method of the lithium secondary battery of this embodiment is a method of manufacturing a lithium secondary battery including a positive and negative electrode including an active material capable of inserting and extracting lithium ions, and an electrolytic solution.

正極及び負極は正極及び負極活物質とその他必要な部材とを有する。正極及び負極活物質についてはリチウム二次電池の欄にて説明したものがほぼそのまま適用できる。電解液についても先に説明したものがほぼそのまま適用できる。その他必要な部材としては先に説明したリチウム二次電池の欄にて述べたように導電材、結着材、集電体などがそのまま採用できる。また、リチウム二次電池を形成するためのその他必要な部材(セパレータ、ケース、電極端子など)を用いることができる。   The positive electrode and the negative electrode have a positive electrode and a negative electrode active material and other necessary members. As the positive electrode and the negative electrode active material, those described in the column of the lithium secondary battery can be applied almost as they are. As for the electrolytic solution, the one described above can be applied almost as it is. As other necessary members, a conductive material, a binder, a current collector and the like can be employed as they are as described in the section of the lithium secondary battery described above. In addition, other necessary members (separator, case, electrode terminal, etc.) for forming the lithium secondary battery can be used.

このようにして形成されたリチウム二次電池は初期充電を行うことにより活性化される。この初期充電を行うときには、先に説明したリチウム源及びリチウム生成助剤を正極中に含有させる。リチウム源及びリチウム生成助剤は正極を形成するときに同時に正極内に含有させることが好ましい。   The lithium secondary battery thus formed is activated by performing initial charging. When this initial charging is performed, the lithium source and the lithium generation aid described above are contained in the positive electrode. It is preferable that the lithium source and the lithium production assistant are contained in the positive electrode simultaneously with the formation of the positive electrode.

初期充電条件としては特に限定しない。正負極間の電位差が、活物質の種類や電解液などにより適正に決定される上限電位(例えば4.1V以上)に至るまで充電を行うことができる。充電は定電流充電、定電圧充電、定電流−定電圧充電など一般的な充電方法が採用できる。そして、初期充電は一回で終了させなくても放電操作を加えて2回以上繰り返すこともできる。初期充電を2回以上行う場合には充電操作毎にリチウム源を正極内に添加することもできる。初期充電を行った後に電池内に存在するガス(リチウム源由来のもの)を除去するために電池内外を連通させたり、電池を封止する前の状態にて初期充電を行ったりすることができる。封止前に充電を行ったり、充電後に電池内外を連通させる場合には低湿度雰囲気にて行うことが望ましい。   The initial charging condition is not particularly limited. Charging can be performed until the potential difference between the positive and negative electrodes reaches an upper limit potential (for example, 4.1 V or more) that is appropriately determined depending on the type of the active material, the electrolytic solution, and the like. For charging, a general charging method such as constant current charging, constant voltage charging, or constant current-constant voltage charging can be employed. And even if it does not complete | finish an initial stage charge once, it can also add discharge operation and it can also repeat twice or more. When the initial charging is performed twice or more, a lithium source can be added into the positive electrode every charging operation. In order to remove the gas (derived from the lithium source) present in the battery after the initial charging, the inside and outside of the battery can be communicated, or the initial charging can be performed in a state before the battery is sealed. . When charging is performed before sealing, or when the inside and outside of the battery are connected after charging, it is desirable to perform in a low humidity atmosphere.

以下、本発明の非水電解液二次電池について実施例に基づき詳細に説明する。   Hereinafter, the nonaqueous electrolyte secondary battery of the present invention will be described in detail based on examples.

(試験1:負極活物質の種類の検討、及び、リチウム源及びリチウム生成助剤の有無の検討)
負極活物質としてグラファイト(炭素材料)を用いた試験電池1と、SnCu(金属材料)を用いた試験電池2とについて、リチウム源及びリチウム生成助剤を正極に含有させた場合の効果を検討した。
(Test 1: Examination of the type of negative electrode active material and examination of the presence or absence of a lithium source and a lithium generation aid)
The effect of including a lithium source and a lithium production assistant in the positive electrode for the test battery 1 using graphite (carbon material) as the negative electrode active material and the test battery 2 using Sn 5 Cu 6 (metal material). It was investigated.

・試験電池1の製造
試験電池1は、組成式LiNiOで表されるリチウムニッケル複合酸化物を正極活物質として用い、グラファイトを負極活物質として用いたリチウム二次電池である。
-Manufacture of the test battery 1 The test battery 1 is a lithium secondary battery using a lithium nickel composite oxide represented by the composition formula LiNiO 2 as a positive electrode active material and graphite as a negative electrode active material.

試験電池1の正極は以下のように製造した。まず、上記LiNiOを87質量部と、リチウム源としてのLiOを1.6質量部と、リチウム生成助剤としてのMnOを3質量部と、導電材としてのカーボンブラックを10質量部と、結着材としてのポリフッ化ビニリデン(PVdF)を3質量部とを混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の正極合材を得た。この正極合材を厚さ15μmのアルミニウム箔製正極集電体の両面に塗布、乾燥し、プレス工程を経て、シート状の正極を作製した。 The positive electrode of the test battery 1 was manufactured as follows. First, 87 parts by mass of the above LiNiO 2 , 1.6 parts by mass of Li 2 O as a lithium source, 3 parts by mass of MnO 2 as a lithium generation aid, and 10 parts by mass of carbon black as a conductive material Then, 3 parts by mass of polyvinylidene fluoride (PVdF) as a binder was mixed, and an appropriate amount of N-methyl-2-pyrrolidone was added and kneaded to obtain a paste-like positive electrode mixture. This positive electrode mixture was applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 15 μm, dried, and a sheet-like positive electrode was produced through a pressing process.

負極は、グラファイトを95質量部と、結着材としてのPVdFを5質量部とを混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の負極合材を得た。この負極合材を厚さ10μmの銅箔製負極集電体の両面に塗布、乾燥し、プレス工程を経て、シート状の負極を作製した。   The negative electrode is obtained by mixing 95 parts by mass of graphite and 5 parts by mass of PVdF as a binder, adding an appropriate amount of N-methyl-2-pyrrolidone and kneading to obtain a paste-like negative electrode mixture. It was. This negative electrode mixture was applied to both sides of a copper foil negative electrode current collector having a thickness of 10 μm, dried, and subjected to a pressing step to produce a sheet-like negative electrode.

上記正極および負極をそれぞれ所定の大きさ(正極:780mm×54mm、負極:820mm×56mm)に裁断した。裁断した正極と負極とを、その間に厚さ25μmのポリエチレン製セパレータを挟装して捲回して、ロール状の電極体を形成した。この電極体に集電用リードを付設し、18650型電池ケースに挿設し、その後その電池ケース内に電解液を注入した。電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で3:7に混合した混合溶媒にLiPFを1mol/Lの濃度で溶解させたものを用いた。最後に電池ケースを封缶して、本実施例のリチウム二次電池(円筒型)を完成させた。後述する初期充放電操作により反応ガス生成のおそれがあるため封止は初期充放電後に行った。
添加するリチウム源の量はリチウム源及びリチウム生成助剤を添加していないリチウム二次電池における初期充電後の充放電容量低下の値から失活するリチウムの量を換算して求めた。以下の実施例においても同様にして添加するリチウム源の量を算出した。
The positive electrode and the negative electrode were each cut into predetermined sizes (positive electrode: 780 mm × 54 mm, negative electrode: 820 mm × 56 mm). The cut positive electrode and negative electrode were wound with a 25 μm thick polyethylene separator sandwiched therebetween to form a roll-shaped electrode body. A current collecting lead was attached to the electrode body, inserted into a 18650 type battery case, and then an electrolytic solution was injected into the battery case. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 was used. Finally, the battery case was sealed to complete the lithium secondary battery (cylindrical type) of this example. Sealing was performed after the initial charge / discharge because there was a risk of reaction gas generation by the initial charge / discharge operation described below.
The amount of the lithium source to be added was determined by converting the amount of lithium to be deactivated from the value of the decrease in charge / discharge capacity after the initial charge in the lithium secondary battery to which the lithium source and the lithium generation aid were not added. In the following examples, the amount of lithium source added was calculated in the same manner.

・試験電池2の製造
試験電池2は、組成式LiNiOで表されるリチウムニッケル複合酸化物を正極活物質として用い、SnCuを負極活物質として用いたリチウム二次電池である。
-Manufacture of the test battery 2 The test battery 2 is a lithium secondary battery using a lithium nickel composite oxide represented by the composition formula LiNiO 2 as a positive electrode active material and Sn 5 Cu 6 as a negative electrode active material.

試験電池2の正極は以下のように製造した。まず、上記LiNiOを87質量部と、リチウム源としてのLiOを6.8質量部と、リチウム生成助剤としてのMnOを3質量部と、導電材としてのカーボンブラックを10質量部と、結着材としてのポリフッ化ビニリデン(PVdF)を3質量部とを混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の正極合材を得た。この正極合材を厚さ15μmのアルミニウム箔製正極集電体の両面に塗布、乾燥し、プレス工程を経て、シート状の正極を作製した。 The positive electrode of the test battery 2 was manufactured as follows. First, 87 parts by mass of the above LiNiO 2 , 6.8 parts by mass of Li 2 O as a lithium source, 3 parts by mass of MnO 2 as a lithium generation aid, and 10 parts by mass of carbon black as a conductive material Then, 3 parts by mass of polyvinylidene fluoride (PVdF) as a binder was mixed, and an appropriate amount of N-methyl-2-pyrrolidone was added and kneaded to obtain a paste-like positive electrode mixture. This positive electrode mixture was applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 15 μm, dried, and a sheet-like positive electrode was produced through a pressing process.

負極は、SnCuを85質量部と、結着材としてのPVdFを10質量部と導電材としてのケッチェンブラックを5質量部とを混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の負極合材を得た。この負極合材を厚さ10μmの銅箔製負極集電体の両面に塗布、乾燥し、プレス工程を経て、シート状の負極を作製した。 The negative electrode was prepared by mixing 85 parts by mass of Sn 5 Cu 6 , 10 parts by mass of PVdF as a binder and 5 parts by mass of Ketjen black as a conductive material, and adding an appropriate amount of N-methyl-2-pyrrolidone. By adding and kneading, a paste-like negative electrode mixture was obtained. This negative electrode mixture was applied to both sides of a copper foil negative electrode current collector having a thickness of 10 μm, dried, and subjected to a pressing step to produce a sheet-like negative electrode.

これらの正負極を用いて試験電池1と同様の方法にてリチウム二次電池を製造した。   Using these positive and negative electrodes, a lithium secondary battery was produced in the same manner as in test battery 1.

・試験電池3及び4の製造
正極において、リチウム源及びリチウム生成助剤を含有させない以外は試験電池1及び2と同様の構成をもつ電池を製造し、それぞれ試験電池3(グラファイト)及び4(SnCu)とした。
-Manufacture of test batteries 3 and 4 Batteries having the same configuration as those of the test batteries 1 and 2 except that the positive electrode does not contain a lithium source and a lithium generation auxiliary agent are manufactured. Test batteries 3 (graphite) and 4 (Sn 5 Cu 6 ).

・試験電池1aの製造
正極において、リチウム生成助剤を含有させない以外は試験電池1と同様の構成をもつ電池を製造し試験電池1aとした。
-Manufacture of test battery 1a A battery having the same configuration as that of the test battery 1 except that the positive electrode does not contain a lithium generation auxiliary agent was manufactured as a test battery 1a.

・充放電容量の測定
製造した各試験電池について4.1V、1/3Cの条件でCC−CV充電を行った。定電圧(CV)充電は2.5時間行った(以下、特に言及しない場合にはCV充電は2.5時間を行った)。その後、3Vまで1Cの条件でCC放電を行った。この充電及び放電の組を2回繰り返し、その後、内部に貯まった反応ガスを除去した。反応ガスの除去後、電池ケースを密閉封止した(初期充放電:以下、特に言及しない場合には本条件にて初期充放電を行った)。
-Measurement of charging / discharging capacity CC-CV charge was performed on the conditions of 4.1V and 1 / 3C about each manufactured test battery. Constant voltage (CV) charging was performed for 2.5 hours (hereinafter, CV charging was performed for 2.5 hours unless otherwise specified). Thereafter, CC discharge was performed under the condition of 1C up to 3V. This set of charging and discharging was repeated twice, and then the reaction gas stored inside was removed. After removal of the reaction gas, the battery case was hermetically sealed (initial charge / discharge: hereinafter, initial charge / discharge was performed under these conditions unless otherwise specified).

初期充放電終了後、4.1V、1Cの条件で、CC−CV充電と、3Vまで1Cの条件でCC放電を行った。放電時の容量を電池初期容量とした。   After completion of the initial charge / discharge, CC-CV charge was performed under conditions of 4.1V and 1C, and CC discharge was performed under conditions of 1C up to 3V. The capacity at the time of discharge was defined as the initial battery capacity.

結果を図1Aに示す。図1Aより明らかなように、リチウム源及びリチウム生成助剤を正極に加えることにより、リチウム源及びリチウム生成助剤を加えない場合と比較して、電池初期容量が大きくなった。電池初期容量の増大は負極活物質にグラファイトを用いた試験電池1でも、負極活物質にSnCuを用いた試験電池2でも双方共に認められた。なお、負極活物質としてグラファイトを用いた電池、SnCuを用いた電池のいずれについても、リチウム源を含有させてリチウム生成助剤を含有させない電池(試験3の試験電池10参照)、リチウム生成助剤を含有させてリチウム源は含有させない電池(試験電池1a:電池初期容量288mAh)は、双方共に、リチウム源及びリチウム生成助剤の両方を含有させた、試験電池1及び2よりも電池初期容量が小さかった(図1B)。 The results are shown in FIG. 1A. As is clear from FIG. 1A, the initial battery capacity was increased by adding the lithium source and the lithium generation aid to the positive electrode as compared with the case where the lithium source and the lithium generation aid were not added. Both the test battery 1 using graphite as the negative electrode active material and the test battery 2 using Sn 5 Cu 6 as the negative electrode active material were found to increase the initial capacity of the battery. In addition, for any of the battery using graphite as the negative electrode active material and the battery using Sn 5 Cu 6 , a battery that contains a lithium source and does not contain a lithium production assistant (see test battery 10 in Test 3), lithium Batteries containing a production assistant and no lithium source (test battery 1a: battery initial capacity 288 mAh) are both batteries than test batteries 1 and 2, both containing a lithium source and a lithium production assistant. The initial capacity was small (FIG. 1B).

(試験2:リチウム源(LiO)の混合量について)
上述した式(1)にて算出したリチウム源の質量を基準として、0.75(試験電池5)、1.0(試験電池6)、1.2(試験電池7)、1.45(試験電池8)、及び1.8(試験電池9)とした場合の電池初期容量を測定した。試験電池は、LiOの混合量をそれぞれ対応する比になるように混合する以外は試験電池2と同じ構成にて製造した。その後、電池初期容量を試験1と同じ方法にて測定した。結果を図2に示す。
(Test 2: Mixing amount of lithium source (Li 2 O))
0.75 (test battery 5), 1.0 (test battery 6), 1.2 (test battery 7), 1.45 (test) on the basis of the mass of the lithium source calculated by the above formula (1). The initial battery capacities of the batteries 8) and 1.8 (test battery 9) were measured. The test battery was manufactured in the same configuration as that of the test battery 2 except that the mixing amounts of Li 2 O were mixed so as to correspond to each other. Thereafter, the initial battery capacity was measured in the same manner as in Test 1. The results are shown in FIG.

図2より明らかなように、リチウム源の混合量の比が計算により算出した量を基準として1.0以上であれば高い効果を発揮でき、1.2以上であれば更に充分な効果が発揮できることが分かった。なお、1.2を超えた量を添加した場合には1.2の場合と比べて増加の程度が小さく、混合比としては1.2にて殆ど飽和していることが推測された。つまり、リチウム源を僅かに過剰に含有させることによって不活性化した量に相当する量のリチウムを補充することができたものと推測された。   As can be seen from FIG. 2, a high effect can be achieved if the ratio of the mixing amount of the lithium source is 1.0 or more based on the amount calculated by calculation, and a further sufficient effect is exhibited if the ratio is 1.2 or more. I understood that I could do it. When the amount exceeding 1.2 was added, it was estimated that the degree of increase was small compared to the case of 1.2, and the mixture ratio was almost saturated at 1.2. That is, it was speculated that an amount of lithium corresponding to the inactivated amount could be replenished by including a slight excess of the lithium source.

(試験3:リチウム生成助剤(MnO)の混合量について)
リチウム生成助剤としてのMnOの混合量を変化させたときの電池初期容量の変動を検討した。具体的にはMnOの混合量を、0質量部(試験電池10)、1質量部(試験電池11)、3質量部(試験電池12)、5質量部(試験電池13)とした以外は試験電池2と同じ構成にした。試験電池2においては正極における活物質と結着材と導電材との総量が100質量部となっている。結果を図3に示す。
(Test 3: Mixing amount of lithium production assistant (MnO 2 ))
The variation of the initial capacity of the battery when the amount of MnO 2 as a lithium generation aid was changed was examined. Specifically, the mixed amount of MnO 2 was changed to 0 part by mass (test battery 10), 1 part by mass (test battery 11), 3 parts by mass (test battery 12), and 5 parts by mass (test battery 13). The configuration was the same as test battery 2. In the test battery 2, the total amount of the active material, the binder, and the conductive material in the positive electrode is 100 parts by mass. The results are shown in FIG.

図3より明らかなように、活物質と結着材と導電材との総量を100質量部とした際に、リチウム生成助剤を1質量部含有することにより充分な電池初期容量を示すことが明らかになった。リチウム生成助剤の量は3質量部、及びそれ以上にしても、電池初期容量の増加は殆ど飽和していることが分かった。従ってリチウム生成助剤の含有量は、活物質と結着材と導電材との総量を100質量部とした際に、1質量部又はそれ以上含有させることが好ましいことが分かった。つまり、リチウム生成助剤は触媒様の作用を発揮するものであり、1質量部以上の添加で充分な作用を発揮することが推測された。   As can be seen from FIG. 3, when the total amount of the active material, the binder and the conductive material is 100 parts by mass, the inclusion of 1 part by mass of the lithium generation aid can provide a sufficient initial battery capacity. It was revealed. It was found that the increase in the initial capacity of the battery was almost saturated even when the amount of the lithium generation aid was 3 parts by mass or more. Therefore, it was found that the content of the lithium generation assistant is preferably 1 part by mass or more when the total amount of the active material, the binder and the conductive material is 100 parts by mass. In other words, it was estimated that the lithium production assistant exerts a catalyst-like action, and that the addition of 1 part by mass or more exerts a sufficient action.

(試験4:初期充放電の条件について)
リチウム源の量を8質量部とした以外は試験電池2と同じ構成にした電池である試験電池14を製造した。この試験電池14に対して、充電電圧(x)、1/3Cの条件でCC−CV充電を行った。その後、3Vまで1Cの条件でCC放電を行った。この充電及び放電の組を2回繰り返した。ここで、xを4V、4.1V、及び4.2Vの3つの条件にて初期充放電を行ったときの電池初期容量をそれぞれ検討した。結果を図4に示す。
(Test 4: Initial charge / discharge conditions)
A test battery 14, which is a battery having the same configuration as the test battery 2 except that the amount of the lithium source was 8 parts by mass, was manufactured. The test battery 14 was subjected to CC-CV charging under conditions of a charging voltage (x) and 1 / 3C. Thereafter, CC discharge was performed under the condition of 1C up to 3V. This set of charging and discharging was repeated twice. Here, the initial battery capacity when initial charge / discharge was performed under three conditions of x = 4V, 4.1V, and 4.2V was examined. The results are shown in FIG.

図4より明らかなように、初期充放電時の充電電圧(x)を4.1V以上にすることによって、高い電池初期容量になることが分かった。つまり、4.1Vの電圧を印加することによりリチウム源から必要なリチウムが放出されることが推測された。   As is clear from FIG. 4, it was found that by setting the charging voltage (x) during initial charging / discharging to 4.1 V or higher, a high battery initial capacity is obtained. That is, it was estimated that necessary lithium was released from the lithium source by applying a voltage of 4.1V.

(試験5:反応ガスの除去の有無について)
試験電池14に対して、反応ガスの除去を行う場合と、反応ガスの除去を行わない場合とで区別した以外は試験1にて行った初期充放電を行った後、電池初期容量を評価した。結果を図5に示す。
(Test 5: Presence or absence of reaction gas removal)
The initial capacity of the battery was evaluated after the initial charge / discharge performed in Test 1 except that the reaction gas was removed from the test battery 14 when the reaction gas was removed and when the reaction gas was not removed. . The results are shown in FIG.

図5より明らかなように、反応ガスの除去を行うことにより、電池初期容量が大きくなることが分かった。つまり、反応ガスを除去することによって、電池内部の構成要素の状態が適正なものになって高い電池初期容量を示すことが推測された。   As is clear from FIG. 5, it was found that the initial battery capacity was increased by removing the reaction gas. That is, it has been estimated that by removing the reaction gas, the state of the components inside the battery becomes appropriate and a high initial battery capacity is exhibited.

(試験6:リチウム生成助剤の種類について)
リチウム生成助剤を変化させた以外は試験電池1と同じ構成の電池を製造した。具体的にはリチウム生成助剤として、Fe(試験電池15)、Fe(試験電池16)、Co(試験電池17)、CoO(試験電池18)、及びPt(試験電池19)とした。結果を図6に示す。
(Test 6: Types of lithium production assistant)
A battery having the same configuration as that of the test battery 1 was produced except that the lithium production assistant was changed. Specifically, as a lithium production assistant, Fe 2 O 3 (test battery 15), Fe 3 O 4 (test battery 16), Co 3 O 4 (test battery 17), CoO (test battery 18), and Pt ( Test battery 19). The results are shown in FIG.

図6から明らかなように、それぞれのリチウム生成助剤について、効果の僅かな差はあっても、電池初期容量を向上できる充分な効果がそれぞれ発現できることが分かった。従って、リチウム生成助剤としては種々の化合物が採用できることが明らかになった。   As is clear from FIG. 6, it was found that sufficient effects for improving the initial capacity of the battery can be exhibited even though there is a slight difference in the effects of the respective lithium production assistants. Accordingly, it has been clarified that various compounds can be employed as the lithium generation aid.

(試験7:リチウム源の種類について)
リチウム源を変化させた以外は試験電池1と同じ構成の電池を製造した。具体的にはリチウム源として、Li(試験電池20:2.4質量部添加)、LiCO(試験電池21:3.9質量部添加)とした。ここで、添加量は上述した式(1)にて算出した値から決定した。結果を図7に示す。
(Test 7: Type of lithium source)
A battery having the same configuration as that of the test battery 1 was manufactured except that the lithium source was changed. Specifically, Li 2 O 2 (test battery 20: 2.4 parts by mass added) and Li 2 CO 3 (test battery 21: 3.9 parts by mass added) were used as the lithium source. Here, the addition amount was determined from the value calculated by the above-described equation (1). The results are shown in FIG.

図7から明らかなように、それぞれのリチウム源について、効果の僅かな差はあっても、電池初期容量を向上できる充分な効果がそれぞれ発現できることが分かった。従って、リチウム源としては種々の化合物が採用できることが明らかになった。   As is apparent from FIG. 7, it was found that sufficient effects that can improve the initial battery capacity can be exhibited for each lithium source, even if there is a slight difference in the effects. Therefore, it became clear that various compounds can be adopted as the lithium source.

Claims (8)

リチウムイオンの吸蔵・放出が可能な活物質を備える正負極と、電解液とを備えるリチウム二次電池であって、
前記正極は、
LiO、Li、LiCO、LiOH、及びLiHからなる群より選択される1以上の化合物であるリチウム源と、
Pt、Au、MeO(MeはMn、Fe、Co、Ni、V、又はCr;XはMeの酸化数に対応した正数)からなる群より選択される1以上の化合物であるリチウム生成助剤と、
を有することを特徴とするリチウム二次電池。
A lithium secondary battery comprising positive and negative electrodes comprising an active material capable of occluding and releasing lithium ions, and an electrolyte solution,
The positive electrode is
A lithium source that is one or more compounds selected from the group consisting of Li 2 O, Li 2 O 2 , Li 2 CO 3 , LiOH, and LiH;
Lithium formation aid which is one or more compounds selected from the group consisting of Pt, Au, MeO X (Me is Mn, Fe, Co, Ni, V, or Cr; X is a positive number corresponding to the oxidation number of Me) Agent,
A lithium secondary battery comprising:
前記MeがMn、Fe、又はCoである請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the Me is Mn, Fe, or Co. 前記リチウム源の含有量は初期充電時に失活するリチウムに相当する量又はそれ以上である請求項1又は2に記載のリチウム二次電池。   3. The lithium secondary battery according to claim 1, wherein the content of the lithium source is an amount corresponding to or more than lithium deactivated during initial charging. 前記負極活物質が炭素材料、リチウムと合金を形成できる金属材料、リチウムチタン酸化物、チタン酸化物、及びバナジウム酸化物からなる群より選択される1以上の化合物である請求項1〜3のいずれか1項に記載のリチウム二次電池。   The negative electrode active material is one or more compounds selected from the group consisting of a carbon material, a metal material capable of forming an alloy with lithium, lithium titanium oxide, titanium oxide, and vanadium oxide. The lithium secondary battery according to claim 1. リチウムイオンの吸蔵・放出が可能な活物質を備える正負極と、電解液とを備えるリチウム二次電池を製造する方法であって、
LiO、Li、LiCO、LiOH、及びLiHからなる群より選択される1以上の化合物であるリチウム源と、
Pt、Au、MeO(MeはMn、Fe、Co、Ni、V、又はCr;XはMeの酸化数に対応した正数)からなる群より選択される1以上の化合物であるリチウム生成助剤と、
を前記正極活物質に共存させて、前記正負極を前記電解液の存在下、初期充電を行う初期充電工程を有することを特徴とするリチウム二次電池の製造方法。
A method for producing a lithium secondary battery comprising a positive and negative electrode comprising an active material capable of occluding and releasing lithium ions, and an electrolyte solution,
A lithium source that is one or more compounds selected from the group consisting of Li 2 O, Li 2 O 2 , Li 2 CO 3 , LiOH, and LiH;
Lithium formation aid which is one or more compounds selected from the group consisting of Pt, Au, MeO X (Me is Mn, Fe, Co, Ni, V, or Cr; X is a positive number corresponding to the oxidation number of Me) Agent,
In the presence of the positive electrode active material, and an initial charging step in which the positive and negative electrodes are initially charged in the presence of the electrolytic solution.
前記MeがMn、Fe、又はCoである請求項5に記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 5, wherein the Me is Mn, Fe, or Co. 前記リチウム源の含有量は初期充電時に失活するリチウムに相当する量又はそれ以上である請求項5又は6に記載のリチウム二次電池の製造方法。   7. The method for producing a lithium secondary battery according to claim 5, wherein the content of the lithium source is an amount corresponding to or more than lithium deactivated during initial charging. 前記負極活物質が炭素材料、リチウムと合金を形成できる金属材料、チタン酸化物、及びバナジウム酸化物からなる群より選択される1以上の化合物である請求項5〜7のいずれか1項に記載のリチウム二次電池の製造方法。   The negative electrode active material is one or more compounds selected from the group consisting of a carbon material, a metal material capable of forming an alloy with lithium, a titanium oxide, and a vanadium oxide. Manufacturing method for lithium secondary battery.
JP2010078500A 2010-03-30 2010-03-30 Lithium secondary battery and manufacturing method thereof Expired - Fee Related JP5541502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078500A JP5541502B2 (en) 2010-03-30 2010-03-30 Lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078500A JP5541502B2 (en) 2010-03-30 2010-03-30 Lithium secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011210609A true JP2011210609A (en) 2011-10-20
JP5541502B2 JP5541502B2 (en) 2014-07-09

Family

ID=44941438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078500A Expired - Fee Related JP5541502B2 (en) 2010-03-30 2010-03-30 Lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5541502B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190062261A (en) * 2017-11-27 2019-06-05 주식회사 엘지화학 Cathode mixture, cathode including the same, lithium recharegable battery including the same
KR20190062259A (en) * 2017-11-27 2019-06-05 주식회사 엘지화학 Cathode and lithium recharegable battery including the same
KR20190064507A (en) * 2017-11-30 2019-06-10 주식회사 엘지화학 Positive electrode for lithium secondary battery and lithium secondary battery including the same
WO2020049104A1 (en) * 2018-09-05 2020-03-12 Albemarle Germany Gmbh Method of producing a rechargeable high-energy battery having an anionically redox-active composite cathode
JP2020167343A (en) * 2019-03-29 2020-10-08 旭化成株式会社 Method for manufacturing nonaqueous alkali metal power storage element
US20210126241A1 (en) * 2018-12-26 2021-04-29 Contemporary Amperex Technology Co., Limited Positive electrode lithium replenishment material, preparation method and uses thereof
WO2024098811A1 (en) * 2022-11-09 2024-05-16 华为技术有限公司 Positive electrode lithium supplementing agent, positive electrode material, battery, and electric device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103575A1 (en) * 2017-11-27 2019-05-31 주식회사 엘지화학 Positive electrode mixture, positive electrode comprising same and lithium secondary battery
WO2019103573A1 (en) * 2017-11-27 2019-05-31 주식회사 엘지화학 Positive electrode and lithium secondary battery comprising same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254436A (en) * 1994-03-16 1995-10-03 Fuji Elelctrochem Co Ltd Lithium secondary battery and manufacture thereof
JPH09147836A (en) * 1995-11-22 1997-06-06 Sanyo Electric Co Ltd Lithium secondary battery
JPH11144734A (en) * 1997-11-04 1999-05-28 Hitachi Ltd Lithium secondary battery and manufacture of lithium secondary battery
JP2000208148A (en) * 1999-01-13 2000-07-28 Toyota Motor Corp Lithium ion secondary battery
JP2002237295A (en) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2003115327A (en) * 2001-10-05 2003-04-18 Mitsubishi Heavy Ind Ltd Nonaqueous electrolyte secondary battery
JP2006066081A (en) * 2004-08-24 2006-03-09 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium-ion secondary battery and its manufacturing method
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
JP2008277087A (en) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254436A (en) * 1994-03-16 1995-10-03 Fuji Elelctrochem Co Ltd Lithium secondary battery and manufacture thereof
JPH09147836A (en) * 1995-11-22 1997-06-06 Sanyo Electric Co Ltd Lithium secondary battery
JPH11144734A (en) * 1997-11-04 1999-05-28 Hitachi Ltd Lithium secondary battery and manufacture of lithium secondary battery
JP2000208148A (en) * 1999-01-13 2000-07-28 Toyota Motor Corp Lithium ion secondary battery
JP2002237295A (en) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2003115327A (en) * 2001-10-05 2003-04-18 Mitsubishi Heavy Ind Ltd Nonaqueous electrolyte secondary battery
JP2006066081A (en) * 2004-08-24 2006-03-09 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium-ion secondary battery and its manufacturing method
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
JP2008277087A (en) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316149B2 (en) * 2017-11-27 2022-04-26 Lg Energy Solution, Ltd. Positive electrode mix, positive electrode including the same, and lithium secondary battery
KR20190062259A (en) * 2017-11-27 2019-06-05 주식회사 엘지화학 Cathode and lithium recharegable battery including the same
CN110506349A (en) * 2017-11-27 2019-11-26 株式会社Lg化学 Cathode mix, anode and lithium secondary battery comprising it
KR102434256B1 (en) * 2017-11-27 2022-08-19 주식회사 엘지에너지솔루션 Cathode mixture, cathode including the same, lithium recharegable battery including the same
KR20190062261A (en) * 2017-11-27 2019-06-05 주식회사 엘지화학 Cathode mixture, cathode including the same, lithium recharegable battery including the same
KR102434255B1 (en) 2017-11-27 2022-08-19 주식회사 엘지에너지솔루션 Cathode and lithium recharegable battery including the same
KR20190064507A (en) * 2017-11-30 2019-06-10 주식회사 엘지화학 Positive electrode for lithium secondary battery and lithium secondary battery including the same
KR102297246B1 (en) 2017-11-30 2021-09-03 주식회사 엘지에너지솔루션 Positive electrode for lithium secondary battery and lithium secondary battery including the same
WO2020049104A1 (en) * 2018-09-05 2020-03-12 Albemarle Germany Gmbh Method of producing a rechargeable high-energy battery having an anionically redox-active composite cathode
CN112789749A (en) * 2018-09-05 2021-05-11 雅宝德国有限责任公司 Method for producing rechargeable high-energy battery with composite cathode having anionic redox activity
US20210126241A1 (en) * 2018-12-26 2021-04-29 Contemporary Amperex Technology Co., Limited Positive electrode lithium replenishment material, preparation method and uses thereof
EP3796432A4 (en) * 2018-12-26 2021-10-13 Contemporary Amperex Technology Co., Limited Positive electrode lithium supplementing material, and manufacturing method therefor and use thereof
JP2020167343A (en) * 2019-03-29 2020-10-08 旭化成株式会社 Method for manufacturing nonaqueous alkali metal power storage element
WO2024098811A1 (en) * 2022-11-09 2024-05-16 华为技术有限公司 Positive electrode lithium supplementing agent, positive electrode material, battery, and electric device

Also Published As

Publication number Publication date
JP5541502B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5541502B2 (en) Lithium secondary battery and manufacturing method thereof
CN109980285B (en) Electrolyte system for lithium-chalcogen cells
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
JP2021510904A (en) Rechargeable metal halide battery
WO2014156011A1 (en) Non-aqueous electrolyte secondary battery
CN106663780B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2011071100A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2019079710A (en) Method for manufacturing positive electrode
WO2017047030A1 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
JP6241015B2 (en) Lithium secondary battery
JP6102494B2 (en) Non-aqueous electrolyte and lithium ion secondary battery
JP5435622B2 (en) Non-aqueous electrolyte secondary battery with film exterior
JP2004327444A (en) Electrolyte for lithium secondary battery, and lithium secondary battery including this
KR101520118B1 (en) Method for improving cycle performance of lithium secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
JP2013197052A (en) Lithium ion power storage device
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
CN109964346A (en) Active material, positive electrode and the battery cell of positive electrode for battery cell
WO2007040114A1 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5426809B2 (en) Secondary battery, electronic equipment using secondary battery and transportation equipment
JP2017126488A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5311123B2 (en) Non-aqueous electrolyte battery
JP5254825B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R151 Written notification of patent or utility model registration

Ref document number: 5541502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees