JP2000208148A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2000208148A
JP2000208148A JP11006414A JP641499A JP2000208148A JP 2000208148 A JP2000208148 A JP 2000208148A JP 11006414 A JP11006414 A JP 11006414A JP 641499 A JP641499 A JP 641499A JP 2000208148 A JP2000208148 A JP 2000208148A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
anhydrous lioh
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11006414A
Other languages
Japanese (ja)
Inventor
Takuya Sakaguchi
琢哉 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11006414A priority Critical patent/JP2000208148A/en
Publication of JP2000208148A publication Critical patent/JP2000208148A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress the deterioration of a positive electrode and improve the cycle characteristic by adding anhydrous LiOH particle to the positive electrode. SOLUTION: A binder is dissolved in an organic solvent, and an active material and a conductive agent are mixed thereto followed by stirring. Finely pulverized anhydrous LiOH particle is mixed thereto followed by stirring to form a paste. The paste is printed on an aluminum current collecting foil, and drying, cutting and pressing are performed to complete a positive electrode. Since the anhydrous LiOH particle adsorbs the moisture from the air or the moisture originally contained in the material, the influence of moisture can be reduced by adding the anhydrous LiOH particle. The addition quantity of the anhydrous LiOH to the positive electrode is preferably set within the range of 0.3-1.1 wt.% to the positive electrode active material. According to this, the cycle characteristic of a lithium secondary battery can be improved, and the paste to be printed on the aluminum current collecting foil is prevented from being gelled by the inclusion of water in the manufacture of the positive electrode to make the formation of the positive electrode difficult.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン2次
電池、特にリチウムイオン2次電池用正極の改良に関す
る。
The present invention relates to a lithium ion secondary battery, and more particularly to an improvement of a positive electrode for a lithium ion secondary battery.

【0002】[0002]

【従来の技術】従来より、リチウムイオン2次電池に使
用される正極活物質の周りをLiOHで被覆することに
より、自己放電特性を向上させることが知られている。
これは、LiOHの被覆により、有機電解液の分解が抑
制される等の理由によるものと考えられる。たとえば、
特開平4−169076号公報にも、正極にアルカリ金
属水酸化物を添加し、これが有機電解液の分解を抑制
し、あるいは分解生成物と反応することにより、溶媒分
解生成物が原因と考えられる電池性能の低下を軽減する
技術が開示されている。
2. Description of the Related Art It has been known that a self-discharge characteristic is improved by coating the periphery of a positive electrode active material used in a lithium ion secondary battery with LiOH.
This is considered to be due to the reason that the decomposition of the organic electrolytic solution is suppressed by the LiOH coating. For example,
JP-A-4-169076 also discloses that an alkali metal hydroxide is added to the positive electrode, which suppresses the decomposition of the organic electrolytic solution or reacts with the decomposition product to cause a solvent decomposition product. Techniques for reducing the deterioration of battery performance have been disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の技
術においては、正極へのアルカリ金属水酸化物の添加を
行う場合に、たとえばLiOHを水溶液として添加し混
合する方法が採用されている。この方法では、事後に8
0℃、10時間程度の乾燥工程が入るが、これでは乾燥
が不十分であり、正極中に水分が残って、HF等の酸の
発生により正極の劣化が起こるという問題があった。ま
た、LiOH等のアルカリ金属水酸化物中に水分が存在
すると、正極作成時に正極活物質を含むペーストがゲル
化しやすくなり、電極形成が困難になるという問題もあ
った。
However, in the above prior art, when adding an alkali metal hydroxide to the positive electrode, for example, a method of adding and mixing LiOH as an aqueous solution is adopted. With this method, 8
Although a drying step of about 10 hours at 0 ° C. is performed, the drying is insufficient, and there has been a problem that moisture is left in the positive electrode and deterioration of the positive electrode occurs due to generation of an acid such as HF. In addition, when moisture is present in an alkali metal hydroxide such as LiOH, the paste containing the positive electrode active material tends to gel at the time of forming the positive electrode, and there has been a problem that electrode formation becomes difficult.

【0004】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、正極の周囲にある水分をトラ
ップし、酸の発生による電極の劣化を抑制でき、サイク
ル特性を向上できる正極を有するリチウムイオン2次電
池を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object the purpose of trapping moisture around the positive electrode, suppressing the deterioration of the electrode due to the generation of acid, and improving the cycle characteristics. It is to provide a lithium ion secondary battery having:

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、リチウムイオン2次電池であって、正極
に無水LiOH粒子を添加したことを特徴とする。
In order to achieve the above object, the present invention is a lithium ion secondary battery, characterized in that anhydrous LiOH particles are added to a positive electrode.

【0006】また、上記リチウムイオン2次電池におい
て、無水LiOH粒子は、正極活物質に対して0.3〜
1.1wt%添加されることを特徴とする。
In the above-mentioned lithium ion secondary battery, the anhydrous LiOH particles may be used in an amount of 0.3 to 0.3% with respect to the positive electrode active material.
It is characterized by being added at 1.1 wt%.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)を説明する。
Embodiments of the present invention (hereinafter, referred to as embodiments) will be described below.

【0008】リチウムイオン2次電池のサイクル特性を
向上させるために、本発明者らが検討した結果、正極に
無水LiOH粒子を少量添加することによりサイクル特
性を向上できることを見いだした。これは無水LiOH
粒子が水を吸着しトラップする効果を有するため、正極
中に存在する水分が電解液と反応することを抑制でき、
酸の発生を低減できるためと考えられる。
As a result of investigations by the present inventors to improve the cycle characteristics of the lithium ion secondary battery, they have found that the cycle characteristics can be improved by adding a small amount of anhydrous LiOH particles to the positive electrode. This is anhydrous LiOH
Since the particles have an effect of adsorbing and trapping water, the water present in the positive electrode can be suppressed from reacting with the electrolytic solution,
It is considered that the generation of acid can be reduced.

【0009】本発明に係るリチウムイオン2次電池に使
用される正極を製造するには、まず有機溶媒中にPVd
F等の結着剤を溶解し、これに活物質及び導電化材を混
合して攪拌する。次に、これに100μm以下に粉砕し
た無水LiOH粒子を混合し、攪拌してペースト化す
る。ここで、無水LiOHを100μm以下に粉砕する
のは、電極の厚さに対して無水LiOH粒子の粒径が大
きくなりすぎないようにするためである。さらに、上述
のようにして製造したペーストをアルミ集電箔上に印刷
し、乾燥、切断、プレスを経て正極が完成する。この場
合、乾燥は、175℃で1時間行う。
In order to produce the positive electrode used in the lithium ion secondary battery according to the present invention, PVd is first dissolved in an organic solvent.
The binder such as F is dissolved, and the active material and the conductive material are mixed and stirred. Next, anhydrous LiOH particles pulverized to a size of 100 μm or less are mixed with the mixture and stirred to form a paste. Here, the reason why the anhydrous LiOH is pulverized to 100 μm or less is to prevent the particle size of the anhydrous LiOH particles from becoming too large with respect to the thickness of the electrode. Further, the paste manufactured as described above is printed on an aluminum current collector foil, dried, cut, and pressed to complete a positive electrode. In this case, drying is performed at 175 ° C. for 1 hour.

【0010】このように、正極に無水LiOH粒子を添
加すると、正極の製造中に空気から混入してくる水分
や、材料がもともと含有していた水分を吸着するので、
正極を単に加熱乾燥するのみの場合に比べ、より水分の
影響を低減させることができる。
As described above, when the anhydrous LiOH particles are added to the positive electrode, the water adsorbed from the air during the production of the positive electrode and the water originally contained in the material are adsorbed.
The effect of moisture can be reduced as compared with the case where the positive electrode is simply dried by heating.

【0011】図1には、正極活物質に対して導電化材を
0.4〜1.0wt%、結着剤を0.2〜1.0wt
%、有機溶媒を5〜15wt%混合し、無水LiOHの
添加量を種々変更した場合のリチウムイオン2次電池の
容量の劣化率の測定結果が示される。なお、この容量劣
化率は、60℃において充放電を80回繰り返した場合
の、1回の充放電当たりの容量の低下率として求められ
る。図1からわかるように、正極への無水LiOHの添
加量が少なくても、多くても劣化率が悪化している。し
たがって、無水LiOHの添加量には、最適範囲がある
ことがわかる。
FIG. 1 shows that the conductive material is 0.4 to 1.0 wt% and the binder is 0.2 to 1.0 wt% based on the positive electrode active material.
5 shows the measurement results of the rate of deterioration of the capacity of the lithium ion secondary battery in the case where the organic solvent is mixed with 5 to 15 wt% and the amount of anhydrous LiOH is variously changed. The capacity deterioration rate is obtained as a rate of decrease in capacity per charge / discharge when charge / discharge is repeated 80 times at 60 ° C. As can be seen from FIG. 1, even if the amount of anhydrous LiOH added to the positive electrode is small or large, the deterioration rate is deteriorated. Therefore, it can be seen that there is an optimum range for the amount of anhydrous LiOH added.

【0012】たとえば、本発明に係るリチウムイオン2
次電池をEV自動車に使用する場合、求められる電池の
耐久性としては、常温(25℃)で10万kmの走行を
保証することが挙げられる。これを、リチウムイオン2
次電池の充放電回数として評価すると、1回の充電で約
300km走行可能であるので、10万kmを保証する
には、約300回の充放電を行う必要がある。ただし、
使用時間が長くなるにつれて、リチウムイオン2次電池
が劣化していき、1回の充電で走行できる距離が減少し
ていくので、実際に10万kmを保証するには、500
回程度の充放電を、実用レベルの電池容量を維持した状
態で保証する必要がある。このような実用レベルの電池
容量としては、500回充放電後の容量が初期の50%
以上確保されている必要がある。
For example, the lithium ion 2 according to the present invention
When the secondary battery is used in an EV vehicle, the required durability of the battery is to guarantee 100,000 km running at normal temperature (25 ° C.). This is lithium ion 2
When evaluated as the number of times of charging and discharging of the secondary battery, it is possible to travel about 300 km with one charging, and it is necessary to perform about 300 charging and discharging to guarantee 100,000 km. However,
As the usage time becomes longer, the lithium ion secondary battery deteriorates and the distance that can be traveled by one charge decreases. Therefore, in order to actually guarantee 100,000 km, 500 km is required.
It is necessary to guarantee the charge and discharge of about once while maintaining a practical level of battery capacity. As such a practical level of battery capacity, the capacity after 500 charge / discharge cycles is 50% of the initial capacity.
It is necessary to secure above.

【0013】以上は、常温でリチウムイオン2次電池を
使用した場合のものであるが、60℃程度の高温状態で
充放電を行わせると、常温(25℃)と比べて劣化速度
が約6倍となる。したがって、60℃の高温充放電試験
において、約80回の充放電後に、電池容量が50%以
上確保されていれば、上述した常温において500回の
充放電後の容量を50%以上確保することが可能とな
る。この場合の電池の劣化率としては、0.6(%/c
y)以下であることが必要である。
The above description is for a case where a lithium ion secondary battery is used at room temperature. However, when charging and discharging are performed at a high temperature of about 60 ° C., the deterioration rate is about 6 times higher than that at room temperature (25 ° C.). Double. Therefore, in a high-temperature charge / discharge test at 60 ° C., if the battery capacity is 50% or more after about 80 charge / discharge cycles, the capacity after 500 charge / discharge cycles at normal temperature should be 50% or more. Becomes possible. The deterioration rate of the battery in this case is 0.6 (% / c
y) It must be:

【0014】図1を参照して、劣化率が0.6(%/c
y)以下であるためには、正極への無水LiOH添加量
を正極活物質に対して0.3〜1.1wt%の範囲とす
ればよいことがわかる。これ以上無水LiOHの添加量
を減らすと、十分な効果が得られず、また添加量を増や
すと、電気抵抗の高いLiOHにより正極活物質の周囲
が完全に覆われ、電極の抵抗が上昇するので、いずれも
リチウムイオン2次電池のサイクル特性の向上を十分に
達成することができなくなる。
Referring to FIG. 1, the deterioration rate is 0.6 (% / c).
y) It can be seen that the amount of anhydrous LiOH added to the positive electrode should be in the range of 0.3 to 1.1 wt% based on the positive electrode active material in order to be less than y). If the addition amount of anhydrous LiOH is further reduced, a sufficient effect cannot be obtained, and if the addition amount is increased, the periphery of the positive electrode active material is completely covered by LiOH having high electric resistance, and the resistance of the electrode increases. In either case, the improvement of the cycle characteristics of the lithium ion secondary battery cannot be sufficiently achieved.

【0015】なお、前述した従来法では、常温において
500回の充放電後の容量劣化率が1.5(%/cy)
程度となるので、本発明により、リチウムイオン2次電
池のサイクル特性を大きく向上できることがわかる。
In the above-described conventional method, the capacity deterioration rate after charging and discharging 500 times at normal temperature is 1.5 (% / cy).
This indicates that the present invention can greatly improve the cycle characteristics of the lithium ion secondary battery.

【0016】さらに、上記のように常温ではなく、60
℃程度の高温で3万kmの走行を保証するには、上記以
上に条件を厳しくする必要がある。この場合、上述した
1回の充電で走行できる距離から割り出した充放電回数
は100回であるので、これを容量の劣化率としてみた
場合0.5(%/cy)以下とすることが必要となる。
この場合には、図1からわかるように、正極への無水L
iOHの添加量は、正極活物質に対して0.5〜0.9
wt%であることがわかる。
Further, instead of the normal temperature as described above,
In order to guarantee a running of 30,000 km at a high temperature of about ℃, it is necessary to make the conditions stricter than the above. In this case, since the number of times of charge / discharge determined from the distance traveled by one charge described above is 100 times, it is necessary to set this to 0.5 (% / cy) or less in terms of the capacity deterioration rate. Become.
In this case, as can be seen from FIG.
The addition amount of iOH is 0.5 to 0.9 with respect to the positive electrode active material.
It can be seen that it is wt%.

【0017】以上のように、正極に無水LiOH粒子を
添加することにより、正極中に混入してくる水分を吸着
でき、水分による悪影響を除去できるので、リチウムイ
オン2次電池のサイクル特性を向上することができる。
また、正極の作成時に、水分の混入により、前述したア
ルミ集電箔に印刷するためのペーストがゲル化し、正極
の形成が困難となるという問題も解消できる。さらに、
加熱乾燥等により正極から水分を除去する工程が不要と
なり、工程の簡略化を図ることができる。
As described above, by adding anhydrous LiOH particles to the positive electrode, water mixed in the positive electrode can be adsorbed and the adverse effect of the water can be removed, thereby improving the cycle characteristics of the lithium ion secondary battery. be able to.
In addition, it is possible to solve the problem that the paste for printing on the aluminum current collector foil is gelled due to the incorporation of moisture when the positive electrode is formed, making it difficult to form the positive electrode. further,
The step of removing moisture from the positive electrode by heating and drying or the like becomes unnecessary, and the process can be simplified.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
正極に添加した無水LiOH粒子により水が吸着されト
ラップされるので、正極に混入した水分による酸の発生
を抑制でき、リチウムイオン2次電池のサイクル特性を
向上させることができる。
As described above, according to the present invention,
Since water is adsorbed and trapped by the anhydrous LiOH particles added to the positive electrode, generation of acid due to water mixed in the positive electrode can be suppressed, and the cycle characteristics of the lithium ion secondary battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 正極へのLiOHの添加量と、この正極を使
用したリチウムイオン2次電池の容量劣化率との関係を
示す図である。
FIG. 1 is a diagram showing the relationship between the amount of LiOH added to a positive electrode and the capacity deterioration rate of a lithium ion secondary battery using this positive electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極に無水LiOH粒子を添加したこと
を特徴とするリチウムイオン2次電池。
1. A lithium ion secondary battery characterized in that anhydrous LiOH particles are added to a positive electrode.
【請求項2】 請求項1記載のリチウムイオン2次電池
において、前記無水LiOH粒子は、正極活物質に対し
て0.3〜1.1wt%添加されることを特徴とするリ
チウムイオン2次電池。
2. The lithium ion secondary battery according to claim 1, wherein the anhydrous LiOH particles are added in an amount of 0.3 to 1.1 wt% based on a positive electrode active material. .
JP11006414A 1999-01-13 1999-01-13 Lithium ion secondary battery Pending JP2000208148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11006414A JP2000208148A (en) 1999-01-13 1999-01-13 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11006414A JP2000208148A (en) 1999-01-13 1999-01-13 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2000208148A true JP2000208148A (en) 2000-07-28

Family

ID=11637720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11006414A Pending JP2000208148A (en) 1999-01-13 1999-01-13 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2000208148A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237277A1 (en) * 2004-12-20 2010-09-23 Haruchika Ishii Nonaqueous electrolyte battery, battery pack and positive electrode active material
JP2011210609A (en) * 2010-03-30 2011-10-20 Denso Corp Lithium secondary battery and method of manufacturing the same
CN111788723A (en) * 2018-02-26 2020-10-16 尤米科尔公司 Positive electrode slurry for lithium ion battery
CN112042020A (en) * 2018-09-19 2020-12-04 株式会社Lg化学 Electrode for lithium secondary battery comprising LiOH, method for manufacturing same, and lithium secondary battery comprising same
CN112042020B (en) * 2018-09-19 2024-04-26 株式会社Lg新能源 Electrode for lithium secondary battery comprising LiOH, method for manufacturing same, and lithium secondary battery comprising same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237277A1 (en) * 2004-12-20 2010-09-23 Haruchika Ishii Nonaqueous electrolyte battery, battery pack and positive electrode active material
JP2011210609A (en) * 2010-03-30 2011-10-20 Denso Corp Lithium secondary battery and method of manufacturing the same
CN111788723A (en) * 2018-02-26 2020-10-16 尤米科尔公司 Positive electrode slurry for lithium ion battery
JP2021515363A (en) * 2018-02-26 2021-06-17 ユミコア Positive electrode slurry for Li-ion batteries
JP7332611B2 (en) 2018-02-26 2023-08-23 ユミコア Cathode slurry for Li-ion batteries
CN112042020A (en) * 2018-09-19 2020-12-04 株式会社Lg化学 Electrode for lithium secondary battery comprising LiOH, method for manufacturing same, and lithium secondary battery comprising same
US20210098792A1 (en) * 2018-09-19 2021-04-01 Lg Chem, Ltd. Lithium secondary battery electrode comprising lioh, manufacturing method therefor, and lithium secondary battery comprising electrode
CN112042020B (en) * 2018-09-19 2024-04-26 株式会社Lg新能源 Electrode for lithium secondary battery comprising LiOH, method for manufacturing same, and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
US9440861B2 (en) Method for modification of lithium ion battery positive electrode material
EP2436066B1 (en) Titanium system composite and the preparing method of the same
JPS63114064A (en) Nonaqueous secondary battery
CN109786702B (en) High nickel material and preparation method and application thereof
TWI357169B (en) Secondary battery comprising electrolyte for impro
JPH0945373A (en) Lithium secondary battery
JP2002075368A (en) Positive electrode active material, nonaqueous electrolyte battery, and their manufacturing method
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
JP2001126766A (en) Nonaqueous electrolyte secondary battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP6232931B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP2021534554A (en) Sulfur-based positive electrode active material for solid-state batteries and its preparation method and application
CN110660975A (en) Osmium-doped LiAlSiO4Coated lithium nickel cobalt manganese oxide positive electrode material and preparation method and application thereof
JPH09265984A (en) Nonaqueous electrolyte secondary battery
KR101424865B1 (en) Method of manufacturing positive electrode active material and electrode, and electrode
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JP2000208148A (en) Lithium ion secondary battery
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
CN106848254B (en) Sodium-ion battery negative electrode material, preparation method thereof and sodium-ion battery
JP4307927B2 (en) Nonaqueous electrolyte secondary battery
JPWO2013146115A1 (en) Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP6839380B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2002083588A (en) Manufacturing method of positive electrode mixture for lithium ion secondary battery
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207