JP2002083588A - Manufacturing method of positive electrode mixture for lithium ion secondary battery - Google Patents

Manufacturing method of positive electrode mixture for lithium ion secondary battery

Info

Publication number
JP2002083588A
JP2002083588A JP2000272813A JP2000272813A JP2002083588A JP 2002083588 A JP2002083588 A JP 2002083588A JP 2000272813 A JP2000272813 A JP 2000272813A JP 2000272813 A JP2000272813 A JP 2000272813A JP 2002083588 A JP2002083588 A JP 2002083588A
Authority
JP
Japan
Prior art keywords
positive electrode
minutes
electrode mixture
kneading
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000272813A
Other languages
Japanese (ja)
Inventor
Takaya Saito
貴也 齊藤
Teruyoshi Morita
彰克 守田
Takeshi Hatanaka
剛 畑中
Yasutaka Furuyui
康隆 古結
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000272813A priority Critical patent/JP2002083588A/en
Publication of JP2002083588A publication Critical patent/JP2002083588A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new manufacturing method for a lithium ion secondary battery, a positive electrode mixture in particular, by solving such problem in a conventional method that if the mixing time is short, the distribution of a conductive agent is not uniformed although lowering of conductivity is suppressed, and if the mixing time is long, lowering of conductivity of AB is increased, when manufacturing the positive electrode mixture. SOLUTION: This positive electrode mixture consists of a positive electrode active material and two kinds of carbon black, AS and KB of a conductive agent, and the positive electrode active material, KB and a binding agent (NMP solution containing PVDF) are mixed for 60-120 minutes, preferably for 80-100 minutes in the primary mixing. In addition, AB, the binding agent and NMP are thrown in and are mixed for 20-60 minutes, preferably for 30-40 minutes in the secondary mixing. The distribution of the conductive agent in the positive electrode mixture is uniformed, conductivity and liquid retaining capability of an electrode is enhanced, and deterioration of a cycle caused by electrolyte is suppressed, by this manufacturing method. Thereby, the lithium ion secondary battery having a long cycle life can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池、特に正極合剤の製造方法に関するものである。
The present invention relates to a lithium ion secondary battery, and more particularly to a method for producing a positive electrode mixture.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、軽量化が急速
に進んでおり、その電源としての電池に対しても小型、
軽量化、さらに高容量化の要望が高まっており、高エネ
ルギー密度のリチウム二次電池が盛んに研究開発され、
実用化にいたっている。リチウム二次電池において、金
属リチウム、あるいはリチウム合金を負極活物質として
用いた場合、充電によってリチウムが樹脂状に析出する
ことによる内部短絡の発生、合金が微細化することによ
るサイクル特性の劣化など、この電池系の実用化には多
くの問題が残されている。
2. Description of the Related Art In recent years, electronic devices have been rapidly becoming smaller and lighter.
The demand for lighter weight and higher capacity is increasing, and high energy density lithium secondary batteries are actively researched and developed.
It has been put to practical use. In a lithium secondary battery, when lithium metal or a lithium alloy is used as a negative electrode active material, an internal short circuit occurs due to deposition of lithium into a resin upon charging, and deterioration in cycle characteristics due to miniaturization of the alloy. Many problems remain for the practical use of this battery system.

【0003】これに対し、負極活物質として炭素質材料
を用い、正極活物質にLiCoO2やLiMn24など
Li含有遷移金属酸化物を用いたリチウム二次電池が各
社で実用化されている。この電池系は、充電により負極
上へリチウム析出が生じないため良好なサイクル特性が
得られており、現在、実用化されているリチウム二次電
池の主流となっている。またさらなる高エネルギー密度
化、または電気自動車や電力貯蓄用といった大容量・高
エネルギー密度型二次電池の開発も盛んに行われてお
り、正・負極活物質の高容量化、極板の大面積化、高密
度化が進んでいる。
On the other hand, lithium secondary batteries using a carbonaceous material as a negative electrode active material and a transition metal oxide containing Li such as LiCoO 2 or LiMn 2 O 4 as a positive electrode active material have been put to practical use by various companies. . This battery system has excellent cycle characteristics because lithium does not precipitate on the negative electrode due to charging, and is currently the mainstream of lithium secondary batteries that are in practical use. In addition, the development of high-capacity, high-energy-density secondary batteries, such as those for higher energy density or electric vehicles and power storage, is also being actively pursued. And high densification are progressing.

【0004】現在、正極活物質の主流はLiCoO2
あるが、Coは埋蔵量が少なく高価であるため、最近で
は、低コスト化をねらい、豊富な埋蔵量をもち低価格な
Mnを用いたLiMn24を正極に用いたリチウムイオ
ン二次電池の開発が盛んになってきている。
At present, the mainstream of the positive electrode active material is LiCoO 2 , but Co has a small amount of reserve and is expensive. Therefore, in recent years, low cost Mn with a large amount of reserve has been used in order to reduce the cost. The development of a lithium ion secondary battery using LiMn 2 O 4 for the positive electrode has been active.

【0005】リチウムイオン二次電池用正極合剤の製造
方法には、特開平10−312811公報に示すような
ものがあった。この製造方法は図2に示すように、導電
剤としてカーボンブラックやグラファイト等の数種類の
炭素粉末を用い、正極活物質と数種類の導電剤を同時に
混合して練合した後、塗工・圧延を行っている。導電剤
には活物質粒子間および集電体との導電性を確保する役
割のほかに、電解液を保持する役割もある。これは電子
の移動に伴いLiイオンの移動が起こる際、Liイオン
の補給に大きな役割を果たす。サイクル特性のさらなる
長寿命化のためには、導電性と保液性が高く電解液の分
解を抑えた導電剤が要求されている。
A method for producing a positive electrode mixture for a lithium ion secondary battery has been disclosed in Japanese Patent Application Laid-Open No. 10-312811. As shown in FIG. 2, this manufacturing method uses several types of carbon powder such as carbon black and graphite as a conductive agent, simultaneously mixes and mixes a positive electrode active material and several types of conductive agents, and then performs coating and rolling. Is going. The conductive agent not only has a role of ensuring conductivity between the active material particles and with the current collector, but also has a role of holding the electrolytic solution. This plays a large role in replenishing Li ions when Li ions move along with the movement of electrons. In order to further extend the life of the cycle characteristics, a conductive agent which has high conductivity and liquid retention and suppresses decomposition of the electrolyte is required.

【0006】[0006]

【発明が解決しようとする課題】しかしながら導電性を
良くし保液性を高めるには導電剤を大量に用いれば良い
が、合剤中の活物質密度の低下により電池容量が低下す
る、塗工の際の極板乾燥に時間がかかる、圧延回数が増
加するなどの課題を有していた。
However, in order to improve conductivity and enhance liquid retention, a large amount of a conductive agent may be used. However, a decrease in the active material density in the mixture lowers the battery capacity. In such a case, it takes time to dry the electrode plate, and the number of times of rolling increases.

【0007】導電剤として導電性と保液性の高いKBを
用いると、比表面積が高いために、導電剤表面で起こる
電解液の分解反応が増加して、サイクル寿命が短くな
る。このためKBの量を減らし、KBと比較して比表面
積の低い導電剤(AB)を混合することにより、電解液
の分解を抑えることができる。
When KB having high conductivity and liquid retention is used as the conductive agent, the specific surface area is high, so that the decomposition reaction of the electrolytic solution occurring on the surface of the conductive agent is increased, and the cycle life is shortened. Therefore, decomposition of the electrolytic solution can be suppressed by reducing the amount of KB and mixing a conductive agent (AB) having a lower specific surface area than KB.

【0008】一方、正極合剤中の導電剤の分布に偏りが
あると、活物質中の電子やLiイオンの移動に伴う劣化
反応にも偏りが生じサイクル寿命が短くなる。導電剤の
分布を均一にするためには練合時間を長くする必要があ
るが、導電剤は練合時間を長くすると、導電性が低下し
てしまう。特にABは鎖状構造をしており、そのネット
ワークにより導電性を保っているので、練合による機械
的なストレスによりこのネットワークが破壊され導電性
が顕著に低下する。このため、従来方法で正極合剤を製
造した場合、練合時間が短いとABの導電性の低下を抑
えることができるが導電剤の分布が不均一となり、練合
時間が長いとABの導電性の低下が大きくなるという課
題がある。
On the other hand, if the distribution of the conductive agent in the positive electrode mixture is biased, the degradation reaction accompanying the movement of electrons and Li ions in the active material is also biased, and the cycle life is shortened. In order to make the distribution of the conductive agent uniform, it is necessary to lengthen the kneading time. However, if the kneading time is long, the conductivity of the conductive agent is reduced. In particular, since AB has a chain structure and maintains conductivity by its network, the network is destroyed by mechanical stress due to kneading, and the conductivity is significantly reduced. For this reason, when the positive electrode mixture is manufactured by the conventional method, if the kneading time is short, the decrease in the conductivity of AB can be suppressed, but the distribution of the conductive agent becomes non-uniform, and if the kneading time is long, the conductivity of AB is reduced. There is a problem that the deterioration of the property becomes large.

【0009】本発明はこのような従来の課題を解決する
もので、導電性と保液性が高く、電解液の分解を抑える
ことによりサイクル寿命の長いリチウムイオン二次電池
用正極合剤を得ることを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a positive electrode mixture for a lithium ion secondary battery having a high cycle life by having high conductivity and liquid retention and suppressing decomposition of an electrolytic solution. The purpose is to:

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、正極活物質とKBを練合する一次練合工程
と、前記工程後さらにABを投入して練合する二次練合
工程とを備えたものである。一次練合工程では長時間の
練合後も導電性の低下が少なく吸液性の高いABと正極
活物質の練合を行うことで、導電剤を合剤中に均一に分
布させ正極板の保液性と導電性を高めることができ、二
次練合工程では電解液の分解の少ないABを混合し、短
時間で練合を行うことで導電性の低下と電解液分解によ
るサイクル数の減少を抑えることができる。これらの相
乗効果により、サイクル寿命の長いリチウムイオン二次
電池用正極合剤を得ることができる。
In order to achieve the above object, the present invention provides a primary kneading step of kneading a positive electrode active material and KB, and a secondary kneading step of adding and kneading AB after the above step. And a combining step. In the primary kneading step, the conductive agent is uniformly distributed in the mixture by performing kneading of the AB and the positive electrode active material with little decrease in conductivity even after long-time kneading, so that the positive electrode plate is formed. In the secondary kneading step, AB with less decomposition of the electrolyte solution is mixed, and kneading is performed in a short time, thereby lowering the conductivity and reducing the number of cycles due to the decomposition of the electrolyte solution. Reduction can be suppressed. Due to these synergistic effects, a positive electrode mixture for a lithium ion secondary battery having a long cycle life can be obtained.

【0011】[0011]

【発明の実施の形態】以下、図1を参照しながら本発明
の実施の形態について説明する。正極活物質のMn酸化
物と、導電剤のABおよびKBの2種類のカーボンブラ
ックと、結着剤からなるリチウムイオン二次電池の正極
合剤であって、一次練合で正極活物質とKBと結着剤
(ポリフッ化ビニリデン(PVDF)を含むn−メチル
−2−ピロリドン(NMP)溶液)を60〜120分間
好ましくは80〜100分間練合する。さらにABと前
記結着剤とNMPを投入し、20〜60分間好ましくは
30〜40分間二次練合する。その後、例えば銅箔から
なる基盤上に塗工し、乾燥させ、圧延を行う。本発明に
よる製造方法により、正極合剤中の導電剤の分布を均一
にし、極板の導電性と保液性を高め、電解液によるサイ
クルの劣化を抑えることにより、サイクル寿命の長いリ
チウムイオン二次電池を得ることができる。
Embodiments of the present invention will be described below with reference to FIG. A positive electrode mixture for a lithium ion secondary battery comprising a Mn oxide of a positive electrode active material, two types of carbon blacks of AB and KB as conductive agents, and a binder, and the positive electrode material is mixed with KB by primary kneading. And a binder (an n-methyl-2-pyrrolidone (NMP) solution containing polyvinylidene fluoride (PVDF)) are kneaded for 60 to 120 minutes, preferably 80 to 100 minutes. Further, AB, the binder and NMP are charged, and secondary kneading is performed for 20 to 60 minutes, preferably 30 to 40 minutes. Then, it is coated on a base made of, for example, a copper foil, dried, and rolled. By the production method according to the present invention, the distribution of the conductive agent in the positive electrode mixture is made uniform, the conductivity and the liquid retention of the electrode plate are increased, and the deterioration of the cycle due to the electrolytic solution is suppressed. The following battery can be obtained.

【0012】このとき正極活物質の質量に対するKBの
添加量をx質量%、ABの添加量をy質量%とした場合
に、3x+yの値が2.5以上8.0以下となり、xの
値が0.5〜2.0、yの値が1.0〜4.0である。
これは電解液の吸液性においてKBはABに対して約3
倍を有することから、ABとKBの保液性を表すために
上記3x+yの計算式を用いる必要がある。
At this time, assuming that the added amount of KB and the added amount of AB to the mass of the positive electrode active material are x mass% and y mass%, the value of 3x + y becomes 2.5 or more and 8.0 or less, and the value of x becomes Is 0.5 to 2.0, and the value of y is 1.0 to 4.0.
This is because KB is about 3 times more than AB in the absorption of electrolyte.
Since it has twice the value, it is necessary to use the above 3x + y calculation formula to express the liquid retention properties of AB and KB.

【0013】前記のKBは、比表面積が500〜150
0m2/gであり、DBP吸油量が300〜450ml
/100gであるその他のカーボンブラックでも良い。
KB等のカーボンブラックの特性の指標としてフタル酸
ジブチル吸油量(DBP吸油量)が用いられ、このDB
P吸油量が電解液の吸液量に対応すると考えられる。結
着剤はNMPに溶解させたPVDFを用いているが、カ
ルボキシルメチルセルロース(CMC)水溶液に溶解さ
せたスチレンブタジエンゴム(SBR)を用いても良
い。
The above KB has a specific surface area of 500 to 150.
0 m 2 / g, DBP oil absorption 300 to 450 ml
/ 100 g other carbon black may be used.
Dibutyl phthalate oil absorption (DBP oil absorption) is used as an index of the characteristics of carbon black such as KB.
It is considered that the P oil absorption corresponds to the electrolyte absorption. As the binder, PVDF dissolved in NMP is used, but styrene butadiene rubber (SBR) dissolved in an aqueous carboxymethyl cellulose (CMC) solution may be used.

【0014】[0014]

【実施例】次に、本発明の具体的実施例について説明す
る。
Next, specific examples of the present invention will be described.

【0015】(実施例1)LiMn24粉末(三井金属
株式会社製)の質量に対して、KB(ケッチェンブラッ
クインターナショナル社製)を0.3、0.5、1.
0、1.5、2.0、2.5質量%それぞれ混合し、こ
れに結着剤(12質量%のPVDFを含むNMP溶液)
をPVDFがLiMn24に対して2.5質量%となる
ように加え、一次練合を90分間行い、団子状にした。
KBの特徴を以下に列挙する。 (1)表面積:1000m2/g (2)DBP吸油量:360ml/100g (3)多孔度:69.3% (4)見かけ比重:150g/l
Example 1 KB (Ketjen Black International Co., Ltd.) was added in an amount of 0.3, 0.5, and 1 to the mass of LiMn 2 O 4 powder (Mitsui Metals Co., Ltd.).
0, 1.5, 2.0, and 2.5% by mass, respectively, and a binder (NMP solution containing 12% by mass of PVDF)
Was added so that PVDF was 2.5% by mass with respect to LiMn 2 O 4 , and primary kneading was performed for 90 minutes to form a dumpling.
The characteristics of KB are listed below. (1) Surface area: 1000 m 2 / g (2) DBP oil absorption: 360 ml / 100 g (3) Porosity: 69.3% (4) Apparent specific gravity: 150 g / l

【0016】この練合物に、AB(電気化学工業株式会
社製)を0.5、1.0、2.0、3.0、4.0質量
%と、結着剤とNMPをPVDFがLiMn24に対し
て2.0質量%で固形分率が60質量%となるようにそ
れぞれ混合し、二次練合を40分間行い、粘度が200
00cpsであるペースト状にした。
To this kneaded material, 0.5 (1.0, 2.0, 3.0, 4.0% by mass) of AB (manufactured by Denki Kagaku Kogyo Co., Ltd.) and PVDF of binder and NMP were added. The mixture was mixed so that the solid content was 2.0% by mass with respect to LiMn 2 O 4 to be 60% by mass.
It was made into a paste of 00 cps.

【0017】このペーストを厚さ0.02mmのアルミ
箔の両面に塗工し、乾燥後圧延して正極合剤密度2.8
g/cc、厚さ0.205mm、幅37mm、長さ35
0mmの正極板とした。
This paste is coated on both sides of an aluminum foil having a thickness of 0.02 mm, dried and rolled to obtain a positive electrode mixture density of 2.8.
g / cc, thickness 0.205mm, width 37mm, length 35
The positive electrode plate was 0 mm.

【0018】負極活物質には、大阪ガス株式会社製の人
造黒鉛をもちいた。この人造黒鉛の重量に対して、正極
と同じ結着剤をPVDFが9質量%となるように混合し
た後、NMPを加えてから練合を行い、ペースト状にし
た。このペーストの厚さ0.014mmの銅箔の表面に
塗工し、乾燥後圧延して、厚さ0.132mm、長さ4
20mmの負極板とした。
As the negative electrode active material, artificial graphite manufactured by Osaka Gas Co., Ltd. was used. After mixing the same binder as that of the positive electrode with respect to the weight of the artificial graphite so that PVDF was 9% by mass, NMP was added thereto, followed by kneading to form a paste. This paste is coated on a surface of a copper foil having a thickness of 0.014 mm, dried and rolled, and has a thickness of 0.132 mm and a length of 4 mm.
A 20 mm negative electrode plate was used.

【0019】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリードを合剤剥離後それぞれ取り付
け、厚さ0.036mm、幅40mm、長さ1100m
mのポリプロピレンとポリエチレンを原料とする日東電
工株式会社製のセパレータを介して渦巻き状に巻回し、
直径17mm、高さ50mmの電池ケースに挿入した。
A lead made of aluminum is attached to the positive electrode plate and a lead made of nickel is attached to the negative electrode plate after the mixture is peeled off, and has a thickness of 0.036 mm, a width of 40 mm and a length of 1100 m.
spirally through a separator manufactured by Nitto Denko Corporation using polypropylene and polyethylene as raw materials,
It was inserted into a battery case having a diameter of 17 mm and a height of 50 mm.

【0020】電解液にはエチレンカーボネート(EC)
とジメチルカーボネート(DMC)とエチルメチルカー
ボネート(EMC)を30:56:14の体積比で混合
した溶媒に1.5mol/lのLiPF6を溶解したも
のを用い、これを注液した後封口し、本実施例の電池A
とした。
The electrolyte is ethylene carbonate (EC)
And 1.5 mol / l of LiPF 6 dissolved in a solvent obtained by mixing dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) at a volume ratio of 30:56:14, and after injecting the solution, sealing it. The battery A of the present embodiment
And

【0021】(比較例1)LiMn24粉末の質量に対
して、KBのみを0.5、1.0、1.5、2.0、
2.5、3.0質量%それぞれ混合し、これに結着剤と
NMPをPVDFがLiMn24に対して4.5質量
%、固形分率が60質量%となるように加え、練合を3
0、60、90、120、150分間行い、粘度が20
000cpsであるペースト状にした。その手順は(実
施例1)と同様に行い、比較の電池Bを作製した。
(Comparative Example 1) With respect to the mass of LiMn 2 O 4 powder, only KB was 0.5, 1.0, 1.5, 2.0,
2.5 and 3.0% by mass were respectively mixed, and a binder and NMP were added thereto so that PVDF was 4.5% by mass with respect to LiMn 2 O 4 and the solid content was 60% by mass. 3
Perform for 0, 60, 90, 120 and 150 minutes, and have a viscosity of 20
000 cps. The procedure was performed in the same manner as in (Example 1), and a comparative battery B was produced.

【0022】(比較例2)LiMn24粉末の質量に対
して、ABのみを1.0、2.0、3.0、4.0、
5.0質量%それぞれ混合し、これに結着剤とNMPを
PVDFがLiMn 24に対して4.5質量%、固形分
率が60質量%となるように加え、練合を10、20、
40、60、80分間行い、粘度が20000cpsで
あるペースト状にした。その手順は(実施例1)と同様
に行い、比較の電池Cを作製した。
Comparative Example 2 LiMnTwoOFourTo the mass of the powder
Then, only AB is changed to 1.0, 2.0, 3.0, 4.0,
5.0 mass% respectively, and the binder and NMP were added thereto.
PVDF is LiMn TwoOFour4.5% by mass, solid content
The kneading is performed so that the ratio becomes 60% by mass.
Perform for 40, 60, 80 minutes, viscosity is 20,000 cps
Made into a paste. The procedure is the same as in (Example 1)
To make a comparative battery C.

【0023】(比較例3)LiMn24粉末の質量に対
して、KBを0.3、0.5、1.0、1.5、2.
0、2.5質量%とABを0.5、1.0、2.0、
3.0、4.0質量%それぞれ同時に添加混合し、これ
に結着剤とNMPをPVDFがLiMn24に対して
4.5質量%、固形分率が60質量%となるように加
え、練合を30、60、90、120分間行い、粘度が
20000cpsであるペースト状にした。その手順は
(実施例1)と同様に行い、比較の電池Dを作製した。
The relative (Comparative Example 3) LiMn 2 O 4 powder mass, the KB 0.3,0.5,1.0,1.5,2.
0, 2.5% by mass and AB at 0.5, 1.0, 2.0,
3.0 and 4.0% by mass were added and mixed at the same time, and a binder and NMP were added thereto so that PVDF was 4.5% by mass with respect to LiMn 2 O 4 and the solid content was 60% by mass. Kneading was performed for 30, 60, 90, and 120 minutes to obtain a paste having a viscosity of 20,000 cps. The procedure was performed in the same manner as in (Example 1), and a comparative battery D was produced.

【0024】本発明の実施例電池Aおよび比較例電池
B、C、D各3セルずつについて、初期充放電を4サイ
クル行い、20℃で7日間保存後、充放電サイクル寿命
試験を行った。充放電条件は20℃において充電は充電
電圧4.3V、制限電流は電池容量の20%の定電流定
電圧充電を行い、放電は放電電流を電池容量の20%、
放電終止電圧を3.0Vの定電流放電を行った。1サイ
クル目の容量の80%を下回った時点をサイクル寿命と
し、(表1)、(表2)、(表3)、(表4)に1サイ
クル目の容量とサイクル数の結果を示す。
The battery A of the present invention and the batteries B, C, and D of the comparative example were each subjected to four cycles of initial charge / discharge, stored at 20 ° C. for 7 days, and then subjected to a charge / discharge cycle life test. The charging and discharging conditions were as follows: charging at 20 ° C. performed charging at a charging voltage of 4.3 V, and limiting current at a constant current and constant voltage of 20% of the battery capacity.
A constant current discharge at a discharge end voltage of 3.0 V was performed. The point at which the capacity falls below 80% of the capacity in the first cycle is defined as the cycle life, and (Table 1), (Table 2), (Table 3) and (Table 4) show the results of the capacity and the number of cycles in the first cycle.

【0025】[0025]

【表1】 [Table 1]

【0026】(表1)に示す比較の電池Bの結果より、
KBの添加量はLiMn24粉末に対して1.0〜2.
5質量%が望ましく、0.5質量%の場合では正極の導
電性が低いために、サイクル特性が悪かった。3.0質
量%の場合では、合剤中の正極活物質密度が低下し、電
池容量が650mAh未満であり、またKBは高表面積
のため、導電剤表面で起こる電解液の分解が多く、サイ
クル数は350未満であった。練合時間は60〜120
分間が望ましく、30分間では導電剤が合剤中に均一分
布していないために、不均一な電極反応が起こり、サイ
クル数は350未満であった。KBもAB程ではないが
練合時間の増加に伴い導電性が低下するので、150分
間の練合では、サイクル数は減少した。また粘度が15
000cps未満となり、塗工の際に粘度が低すぎて、
アルミニウム芯材に正極合剤を均一に塗布することがで
きなかった。
From the results of the comparative battery B shown in Table 1,
The amount of KB to be added is 1.0 to 2.0 based on the LiMn 2 O 4 powder.
5 mass% is desirable, and when it is 0.5 mass%, the conductivity of the positive electrode is low, so that the cycle characteristics are poor. In the case of 3.0% by mass, the density of the positive electrode active material in the mixture is reduced, the battery capacity is less than 650 mAh, and since KB has a high surface area, the decomposition of the electrolytic solution that occurs on the surface of the conductive agent is large, and the cycle is reduced. The number was less than 350. Kneading time is 60 to 120
For 30 minutes. Since the conductive agent was not uniformly distributed in the mixture for 30 minutes, a non-uniform electrode reaction occurred, and the number of cycles was less than 350. Although the KB is not as good as the AB, the conductivity decreases with the increase in the kneading time. Therefore, the kneading for 150 minutes reduces the number of cycles. The viscosity is 15
Less than 000 cps, the viscosity is too low during coating,
The positive electrode mixture could not be uniformly applied to the aluminum core material.

【0027】[0027]

【表2】 [Table 2]

【0028】(表2)に示す比較の電池Cの結果より、
ABの添加量はLiMn24粉末に対して2.0〜4.
0質量%が望ましく、1.0質量%の場合では正極の導
電性が低いために、サイクル特性が悪かった。5.0質
量%の場合では、合剤中の正極活物質密度が低下し、電
池容量が650mAh未満であった。練合時間は20〜
60分間が望ましく、10分間では導電剤が合剤中に均
一混合できず、サイクル数は300未満であった。AB
は鎖状の構造をしており、そのネットワークにより導電
性を保っており、練合時間を長くすると、機械的ストレ
スによりネットワークが破壊され、導電性の低下が起こ
る。このため、80分間の練合では、導電性の低下によ
りサイクル数は300以下であった。
From the results of the comparative battery C shown in (Table 2),
Amount of AB is 2.0 to 4 with respect to LiMn 2 O 4 powder.
0 mass% was desirable, and when it was 1.0 mass%, the conductivity of the positive electrode was low, so that the cycle characteristics were poor. In the case of 5.0% by mass, the density of the positive electrode active material in the mixture was reduced, and the battery capacity was less than 650 mAh. Kneading time is 20 ~
It was desirable to be 60 minutes, and in 10 minutes, the conductive agent could not be uniformly mixed into the mixture, and the number of cycles was less than 300. AB
Has a chain-like structure, and is kept conductive by its network. If the kneading time is lengthened, the network is broken by mechanical stress, and the conductivity is reduced. Therefore, in the kneading for 80 minutes, the number of cycles was 300 or less due to a decrease in conductivity.

【0029】[0029]

【表3】 [Table 3]

【0030】(表3)に示す比較の電池Dの結果より、
KBの添加量がLiMn24粉末に対して2.5質量%
の場合には、合剤中の正極活物質密度が低下し、電池容
量が650mAh未満であった。0.3質量%の場合に
は、サイクル数は400未満であった。KBの添加量を
x質量%、ABの添加量をy質量%としたとき、3x+
yの値が8.0より大きいと、電池容量が650mAh
未満であり、練合した際になめらかなインク状にするこ
とができず、塗工後の極板乾燥に通常の数倍の時間がか
かった。3x+yが2.5より小さいと、合剤中の導電
剤量の割合が少なく、導電性の低下により、サイクル数
は400未満であった。従って、3x+yの値は2.5
〜8.0、xの値は0.5〜2.0が望ましく、このと
きyの値は1.0〜4.0が望ましい。
From the results of the comparative battery D shown in Table 3,
The amount of KB added is 2.5% by mass based on the LiMn 2 O 4 powder.
In the case of, the density of the positive electrode active material in the mixture was reduced, and the battery capacity was less than 650 mAh. In the case of 0.3% by mass, the number of cycles was less than 400. When the addition amount of KB is x mass% and the addition amount of AB is y mass%, 3x +
When the value of y is larger than 8.0, the battery capacity becomes 650 mAh.
It was not possible to form a smooth ink when kneaded, and it took several times longer than usual to dry the electrode plate after coating. When 3x + y was smaller than 2.5, the ratio of the amount of the conductive agent in the mixture was small, and the number of cycles was less than 400 due to a decrease in conductivity. Therefore, the value of 3x + y is 2.5
The value of x is preferably 0.5 to 2.0, and the value of y is preferably 1.0 to 4.0.

【0031】練合時間は60〜90分間がどの条件でも
サイクル数の極大値があった。これはKBとABを導電
剤として単独で用いたとき、サイクル数が極大値となる
時の練合時間がそれぞれ120分間と40分間(表
1)、(表2)であるためと考えられる。
The kneading time had a maximum value of the number of cycles under any conditions for 60 to 90 minutes. This is presumably because, when KB and AB were used alone as the conductive agent, the kneading time when the cycle number reached a maximum value was 120 minutes and 40 minutes (Table 1) and (Table 2), respectively.

【0032】[0032]

【表4】 [Table 4]

【0033】(表4)より、本発明の電池Aは、(表
1)、(表2)、(表3)に示す比較の電池B、C、D
と比較してサイクル特性に優れている。一次練合で導電
性と保液性の高いKBを合剤中に均一に混合した後、二
次練合で表面積が小さく嵩密度の低いABを短時間で混
合することで、電解液の分解、ABの導電性の低下、極
板製造での圧延回数の増加や塗工の際の乾燥時間の増加
などの課題を改善でき、サイクル特性を向上させること
ができたと考えられる。このとき3x+yの値は2.5
〜8.0、xの値は0.5〜2.0、yの値は1.0〜
4.0が望ましい。
From Table 4, it can be seen that the battery A of the present invention is comparative batteries B, C, and D shown in Table 1, Table 2, and Table 3.
Cycle characteristics are superior to those of In the primary kneading process, a mixture of KB having high conductivity and liquid retention properties is uniformly mixed in the mixture, and then in a second kneading process, AB having a small surface area and a low bulk density is mixed in a short time to decompose the electrolytic solution. It is considered that problems such as a decrease in conductivity of AB, an increase in the number of times of rolling in production of an electrode plate, and an increase in a drying time at the time of coating could be improved, and the cycle characteristics could be improved. At this time, the value of 3x + y is 2.5
~ 8.0, x value is 0.5 ~ 2.0, y value is 1.0 ~
4.0 is desirable.

【0034】なお本実施例(実施例1)では、PVDF
のLiMn24に対する割合をKB練合時2.5質量
%、一次練合時間を90分間、PVDFのLiMn24
に対する割合をAB練合時2.0質量%、二次練合時間
を40分間としたが、それぞれ1.5〜4.0質量%、
60〜120分間、0.5〜3.5質量%、20〜60
分間であれば同様に実施することができる。
In this embodiment (Embodiment 1), PVDF
LiMn 2 O 4 ratio of KB Nerigoji 2.5 wt% with respect to the primary kneading time 90 minutes, PVDF of LiMn 2 O 4
Is 2.0 mass% at the time of AB kneading, and the secondary kneading time is 40 minutes.
0.5 to 3.5% by mass, 20 to 60 minutes for 60 to 120 minutes
In the case of minutes, it can be similarly carried out.

【0035】なお本実施例(比較例1,2,3)ではP
VDFのLiMn24に対する割合を4.5質量%とし
たが、それぞれ3.0〜6.0質量%であれば同様に実
施することができる。
In this embodiment (Comparative Examples 1, 2, and 3), P
Although the ratio of VDF to LiMn 2 O 4 is 4.5% by mass, the same can be applied if the ratio is 3.0 to 6.0% by mass.

【0036】なお本実施例ではペーストの固形分率を4
0質量%、粘度を20000cpsとしたが、それぞれ
50〜70質量%、15000〜25000cpsであ
れば同様に実施することができる。
In this example, the solid content of the paste was set to 4%.
Although 0 mass% and the viscosity were set to 20000 cps, the same can be applied to 50 to 70 mass% and 15,000 to 25000 cps, respectively.

【0037】[0037]

【発明の効果】以上のように本発明によれば、正極活物
質とKBを練合する一次練合工程と、前記工程後さらに
ABを投入して練合する二次練合工程とを備えるので、
導電剤の分布が均一で導電性が高く、保液性が高いリチ
ウムイオン二次電池用正極合剤が得られ、サイクル寿命
が延びるという有利な効果を有する。
As described above, according to the present invention, there is provided a primary kneading step of kneading the positive electrode active material and KB, and a secondary kneading step of adding AB and kneading after the above-mentioned step. So
A positive electrode mixture for a lithium ion secondary battery having a uniform distribution of the conductive agent, high conductivity, and high liquid retention can be obtained, and has an advantageous effect of extending cycle life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリチウムイオン二次電池用正極合剤の
製造方法の工程図
FIG. 1 is a process diagram of a method for producing a positive electrode mixture for a lithium ion secondary battery of the present invention.

【図2】従来のリチウムイオン二次電池用正極合剤の製
造方法の工程図
FIG. 2 is a process diagram of a conventional method for producing a positive electrode mixture for a lithium ion secondary battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑中 剛 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 古結 康隆 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ05 AJ06 AK03 AL07 AM03 AM05 AM07 CJ08 CJ28 DJ08 EJ04 HJ00 HJ01 5H050 AA07 AA13 BA17 CA09 DA10 EA10 GA10 GA26 HA01 HA20 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tsuyoshi Hatanaka 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. F term (reference) 5H029 AJ05 AJ06 AK03 AL07 AM03 AM05 AM07 CJ08 CJ28 DJ08 EJ04 HJ00 HJ01 5H050 AA07 AA13 BA17 CA09 DA10 EA10 GA10 GA26 HA01 HA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質と、導電剤のアセチレンブラ
ック(AB)およびケッチェンブラック(KB)の2種
類のカーボンブラックを含むリチウムイオン二次電池用
正極合剤の製造方法であって、正極活物質とKBを練合
する一次練合工程と、前記工程後さらにABを投入して
練合する二次練合工程を有することを特徴とするリチウ
ム二次電池用正極合剤の製造方法。
1. A method for producing a positive electrode mixture for a lithium ion secondary battery, comprising a positive electrode active material and two kinds of carbon blacks of acetylene black (AB) and Ketjen black (KB) as conductive agents, A method for producing a positive electrode mixture for a lithium secondary battery, comprising: a primary kneading step of kneading an active material and KB; and a secondary kneading step of adding and kneading AB after the step.
【請求項2】 正極活物質の重量に対するKBの添加量
をx質量%、ABの添加量をy質量%とした場合に、3
x+yの値が2.5以上8.0以下となり、xの値が
0.5〜2.0、yの値が1.0〜4.0となる請求項
1記載のリチウムイオン二次電池用正極合剤の製造方
法。
2. When the amount of KB and the amount of AB relative to the weight of the positive electrode active material are x mass% and y mass%, respectively.
2. The lithium ion secondary battery according to claim 1, wherein the value of x + y is 2.5 or more and 8.0 or less, the value of x is 0.5 to 2.0, and the value of y is 1.0 to 4.0. A method for producing a positive electrode mixture.
【請求項3】 一次練合は60〜120分間、二次練合
は20〜60分間とする請求項1記載のリチウムイオン
二次電池用正極合剤の製造方法。
3. The method for producing a positive electrode mixture for a lithium ion secondary battery according to claim 1, wherein the primary kneading is performed for 60 to 120 minutes and the secondary kneading is performed for 20 to 60 minutes.
【請求項4】 正極活物質はMn酸化物である請求項1
記載のリチウムイオン二次電池用正極合剤の製造方法。
4. The positive electrode active material is a Mn oxide.
The method for producing a positive electrode mixture for a lithium ion secondary battery according to the above.
JP2000272813A 2000-09-08 2000-09-08 Manufacturing method of positive electrode mixture for lithium ion secondary battery Pending JP2002083588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272813A JP2002083588A (en) 2000-09-08 2000-09-08 Manufacturing method of positive electrode mixture for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272813A JP2002083588A (en) 2000-09-08 2000-09-08 Manufacturing method of positive electrode mixture for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2002083588A true JP2002083588A (en) 2002-03-22

Family

ID=18758866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272813A Pending JP2002083588A (en) 2000-09-08 2000-09-08 Manufacturing method of positive electrode mixture for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2002083588A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268026A (en) * 2004-03-18 2005-09-29 Dainippon Printing Co Ltd Coating composite for active material layer, electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery
WO2012066600A1 (en) 2010-11-18 2012-05-24 株式会社日立製作所 Lithium ion battery and production method therefor
CN104766948A (en) * 2014-01-08 2015-07-08 中山天贸电池有限公司 Processing method of lithium ion battery positive electrode slurry
WO2015176241A1 (en) * 2014-05-21 2015-11-26 GM Global Technology Operations LLC Distributing conductive carbon black on active material in lithium battery electrodes
CN105206797A (en) * 2015-09-10 2015-12-30 中天储能科技有限公司 Lithium ion battery water-based positive electrode slurry dosing technology
WO2018232286A1 (en) * 2017-06-15 2018-12-20 Cabot Corporation Electrodes and batteries containing different carbon black particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130383B2 (en) * 1978-12-12 1986-07-12 Matsushita Electric Ind Co Ltd
JPH09213309A (en) * 1996-02-02 1997-08-15 Mitsubishi Chem Corp Manufacture of positive electrode for lithium secondary cell and lithium secondary cell
JPH10312811A (en) * 1997-03-11 1998-11-24 Matsushita Electric Ind Co Ltd Nonaqeous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130383B2 (en) * 1978-12-12 1986-07-12 Matsushita Electric Ind Co Ltd
JPH09213309A (en) * 1996-02-02 1997-08-15 Mitsubishi Chem Corp Manufacture of positive electrode for lithium secondary cell and lithium secondary cell
JPH10312811A (en) * 1997-03-11 1998-11-24 Matsushita Electric Ind Co Ltd Nonaqeous electrolyte secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527423B2 (en) * 2004-03-18 2010-08-18 大日本印刷株式会社 Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005268026A (en) * 2004-03-18 2005-09-29 Dainippon Printing Co Ltd Coating composite for active material layer, electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery
US9269957B2 (en) 2010-11-18 2016-02-23 Hitachi, Ltd. Lithium ion battery and method for producing the same
WO2012066600A1 (en) 2010-11-18 2012-05-24 株式会社日立製作所 Lithium ion battery and production method therefor
CN104766948A (en) * 2014-01-08 2015-07-08 中山天贸电池有限公司 Processing method of lithium ion battery positive electrode slurry
WO2015176241A1 (en) * 2014-05-21 2015-11-26 GM Global Technology Operations LLC Distributing conductive carbon black on active material in lithium battery electrodes
US20170098817A1 (en) * 2014-05-21 2017-04-06 GM Global Technology Operations LLC Distributing conductive carbon black on active material in lithium battery electrodes
CN107078284A (en) * 2014-05-21 2017-08-18 通用汽车环球科技运作有限责任公司 Dispensing of conductive carbon black on active material in lithium battery group electrode
CN105206797A (en) * 2015-09-10 2015-12-30 中天储能科技有限公司 Lithium ion battery water-based positive electrode slurry dosing technology
WO2018232286A1 (en) * 2017-06-15 2018-12-20 Cabot Corporation Electrodes and batteries containing different carbon black particles
KR20200017486A (en) * 2017-06-15 2020-02-18 캐보트 코포레이션 Batteries and Electrodes Containing Different Carbon Black Particles
CN110998934A (en) * 2017-06-15 2020-04-10 卡博特公司 Electrode and battery containing different carbon black particles
JP2020524362A (en) * 2017-06-15 2020-08-13 キャボット コーポレイションCabot Corporation Electrodes and batteries containing different carbon black particles
EP3639312B1 (en) 2017-06-15 2021-10-06 Cabot Corporation Electrodes and batteries containing different carbon black particles
KR102310584B1 (en) * 2017-06-15 2021-10-08 캐보트 코포레이션 Electrodes and batteries containing different carbon black particles

Similar Documents

Publication Publication Date Title
JP3111791B2 (en) Non-aqueous electrolyte secondary battery
KR20190068476A (en) Anode Active Material for lithium secondary battery and Method for preparing the same
JP5931916B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP6739823B2 (en) Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution containing the same for lithium secondary battery, and lithium secondary battery
KR20070040853A (en) Negative electrode for lithtum secondary battery, method for producing same, and lithtum secondary battery using same
JP2971451B1 (en) Lithium secondary battery
EP2426761A2 (en) Positive electrode for non-aqueous electrolyte secondary battery, battery using the same, and method of manufacturing positive electrode for non-aqueous electrolyte secondary battery
WO2012073874A1 (en) Conductive agent for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US20180277831A1 (en) Nonaqueous electrolyte secondary battery and production method thereof
EP3016197A1 (en) Lithium secondary battery
KR20170030518A (en) Cathode for lithium batteries
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
CN113994512B (en) Lithium secondary battery and method for manufacturing the same
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
US20140157587A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, battery using the same, and method of manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP6844602B2 (en) electrode
JP2002083588A (en) Manufacturing method of positive electrode mixture for lithium ion secondary battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
KR20170135425A (en) Electrode for lithium secondary battery and lithium secondary battery comprising the same
US20240014392A1 (en) Positive electrode and lithium secondary battery including the same
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102