JP4307927B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4307927B2
JP4307927B2 JP2003206877A JP2003206877A JP4307927B2 JP 4307927 B2 JP4307927 B2 JP 4307927B2 JP 2003206877 A JP2003206877 A JP 2003206877A JP 2003206877 A JP2003206877 A JP 2003206877A JP 4307927 B2 JP4307927 B2 JP 4307927B2
Authority
JP
Japan
Prior art keywords
active material
lithium
negative electrode
mah
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003206877A
Other languages
Japanese (ja)
Other versions
JP2005063673A (en
Inventor
圭司 最相
精司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003206877A priority Critical patent/JP4307927B2/en
Publication of JP2005063673A publication Critical patent/JP2005063673A/en
Application granted granted Critical
Publication of JP4307927B2 publication Critical patent/JP4307927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池などの非水電解質二次電池に関するものである。
【0002】
【従来の技術】
リチウムイオン二次電池に代表される非水電解質二次電池は、その安全性を確保するために保護回路を付与した状態で使用されるのが一般的である。しかしながら、携帯機器の低価格化に伴い、電池にもさらなる低価格化が求められている。電池パックの価格の中で大きな割合を占める保護回路を取り除くことが可能になれば、価格を大きく低下させることが可能となる。
【0003】
保護回路を取り除くためには電池特性のさらなる改善が必要となり、その課題の1つとして過放電による電池特性の劣化が挙げられる。
非水電解質二次電池の長期保存において、自己放電が進行し、特に電池電圧が0V付近に到達した場合、負極電位が上昇し、集電体である銅の溶解電位に到達して、電解液中に銅が溶出する。溶出した銅は充電時に析出し、充放電を阻害するため、結果として電池特性を劣化させる。
【0004】
特許文献1においては、集電体である銅の酸化電位よりも貴な電位を有するLiCoO2などの主活物質と、集電体である銅の酸化電位よりも卑な電位を有するLixMoO3などの副活物質とを正極活物質として用いることにより、集電体である銅の溶解を防止し、過放電特性を改善することが提案されている。
【0005】
【特許文献1】
特許第2797390号公報
【0006】
【発明が解決しようとする課題】
しかしながら、LixMoO3を副活物質として用いても、過放電特性を十分に改善することができなかった。特に、ビニレンカーボネートやビニルエチレンカーボネートなどの、還元分解によりリチウムと反応してリチウム含有化合物を生成する物質が電解液中に含まれている場合、負極中へのリチウムの挿入量が減少し、過放電時における負極の電位上昇が促進されるため、過放電による電池特性の劣化を十分に防止することができないという問題があった。
【0007】
本発明の目的は、過放電による電池特性の劣化を有効に防止することができる非水電解質二次電池を提供することにある。
【0008】
【課題を解決するための手段】
本発明の非水電解質二次電池は、リチウムを吸蔵放出可能な正極活物質を含む正極と、リチウムを吸蔵放出可能な負極活物質を含みかつ集電体に銅が用いられている負極と、非水系溶媒及び溶質を含む電解液とを備える非水電解質二次電池であり、電解液中に、還元分解によりリチウムと反応してリチウム含有化合物を生成するリチウム消費物質が含まれており、正極活物質が、主活物質と、Tiの一部を少なくとも1種の金属で置換したLi2TiO3からなる副活物質とを含むことを特徴としている。
【0009】
電解液中に上記リチウム消費物質が含まれていると、正極から放出されたリチウムの一部は負極中に挿入されることなく上記リチウム消費物質によって消費される。このため、放電末期に負極中に残存するリチウム量は相対的に減少し、負極電位が上昇しやすいこととなる。
【0010】
本発明に従い、Tiの一部を少なくとも1種の金属で置換したLi2TiO3からなる副活物質を用いることにより、負極活物質中に挿入されるリチウム量が増加し、放電時においても正極に戻るリチウム量が少なくなるため、負極中にリチウムが残った状態となる。このため、過放電の状態での負極電位の上昇が抑制され、正極電位支配で放電が終了するため、集電体に含まれる銅の溶出が発生しない。
【0011】
上記リチウム消費物質としては、還元分解により電解液中のリチウムと反応してリチウム含有化合物を生成する物質であれば特に限定されないが、一般には、溶媒として用いられるエチレンカーボネート、プロピレンカーボネート等の環状カーボネート系溶媒、ジエチルカーボネート、ジメチルカーボネート等の鎖状カーボネート系溶媒が挙げられる。これらの溶媒は、通常使用される領域において比較的安定であるが、黒鉛などの負極の表面が活性な状態である電池作製初期において、比較的容易に還元分解され、正極から放出されたリチウムを消費して炭酸リチウムなどのリチウム含有化合物を負極表面上に形成する。特に容易に還元分解してリチウム含有化合物を形成しやすい物質として、ビニレンカーボネート及びビニルエチレンカーボネートが挙げられる。ビニレンカーボネート及びビニルエチレンカーボネートは、高い還元分解電位を有し、電池作製初期においてほぼ100%分解し、リチウム含有化合物の被膜を負極表面上に形成する。このため、負極中へのリチウム挿入量がより減少することとなり、過放電時の負極電位上昇が加速される。本発明に従い正極中に副活物質を添加し、負極上で消費されるリチウムを補うことにより、負極中へのリチウムの挿入が十分になされ、負極電位の上昇が抑制される。
【0012】
本発明において用いる副活物質としては、Tiの一部をFe、Co、Mn、V、Ni及びMgからなるグループより選ばれる少なくとも1種の金属で置換したLi2TiO3(チタン酸リチウム)が挙げられる。このようなチタン酸リチウムは、大きな充電容量を有するが、放電作動電圧が著しく低いため、充放電効率が低くなる。このため、初期の充電で負極中に挿入されたリチウムはその大部分が負極中に残存する。
【0013】
上記の金属置換チタン酸リチウムにおいて、置換する金属量は、Tiの25〜75%(モル%)であることが好ましく、さらに好ましくは25〜50%(モル%)である。このような金属置換量とすることにより、充電可能なリチウム量を増加させることができ、より少量の添加で本発明の効果を得ることが可能になる。
【0014】
本発明において、主活物質とは、正極活物質中の主成分(50重量%以上)となる活物質であり、電池の充放電に主体的に関与する活物質である。
本発明において用いる負極活物質は、リチウムイオンを吸蔵放出可能な材料であれば特に限定されないが、炭素系材料を用いることが好ましい。具体的には、天然黒鉛、人造黒鉛、難黒鉛化性炭素、フェノール樹脂等の有機化合物焼成体、コークス等が挙げられる。また、酸化錫、金属リチウム、珪素なども好適に使用される。また、これらの化合物を単独で用いる他に、2種類以上の活物質を混合して用いることも可能である。
【0015】
本発明において用いる正極主活物質は、リチウムイオンを吸蔵放出可能な材料であれば特に限定されないが、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウムなどの遷移金属酸化物が好適に使用される。また、これらの酸化物を単独で用いてもよいし、2種類以上を混合して用いてもよい。
【0016】
正極主活物質、正極副活物質、及び負極活物質の充放電効率は、これらを作用極とし、対極及び参照極として金属リチウムを用いた三極式セルを作製して測定することができる。このときの電解液としては、実際の電池に用いる電解液にできるだけ近い組成のものが好ましく用いられる。なお、ここでいう充放電効率は、初回の充放電効率である。
【0017】
本発明で用いられる電解液の非水系溶媒としては、非水電解質二次電池に用いることができる溶媒であれば特に限定されるものではないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネートなどの環状カーボネート、並びにジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートなどが挙げられる。これらのカーボネート系溶媒は、上述のようにリチウム消費物質となる。これらの中でも、特にビニレンカーボネート、ビニルエチレンカーボネートが含まれている場合に、過放電特性が劣化しやすいため、本発明が特に有用となる。
【0018】
電解液に用いられる溶質としては、非水電解質二次電池に用いることができる溶質であれば特に限定されるものではないが、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C25SO2)2、LiN(CF3SO2)(C49SO2)、LiC(CF3SO2)3、LiC(C25SO2)3、LiAsF6、LiClO4、Li210Cl10、Li212Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF6(ヘキサフルオロリン酸リチウム)が好ましく用いられる。
【0019】
また、本発明における電解液は、ポリマー電解質を用いたゲル状電解質であってもよい。
正極活物質における副活物質の添加量は、以下の▲1▼式〜▲3▼式から算出することができる。なお、▲1▼式及び▲2▼式は、▲3▼式で用いられる安全性を低下させない正極当量の決定に必要となる値を求める式である。
【0020】
(1)負極電位上昇抑制に必要な放電容量
プレドープ必要量=正極有効容量−移動可能リチウム量 …▲1▼式
(2)プレドープ材料の添加量
添加量=(プレドープ必要量)/{初回充電容量×(1−充放電効率)}…▲2▼式
(3)過充電の安全性を確保した場合の副活物質添加量
【0021】
【数1】

Figure 0004307927
【0022】
以下、具体例を示して説明する。
正極にコバルト酸リチウム単独、負極に黒鉛を用い、正負極容量比=1.10とした従来設計電池では、以下の関係が成り立っている。
【0023】
i)正極活物質:コバルト酸リチウム
初回充放電効率95%、初回充電容量165mAh/g、正極合剤中85%が活物質に相当
(混合比率は使用する活物質により任意に決定することができる)
ii)負極活物質:黒鉛
初回充放電効率93%、初回充電容量380mAh/g、負極合剤中98%が活物質に相当
iii)電池
負極/正極容量比=1.10設計
1C実測容量(4.2−3.0Vの範囲):700mAh
正極塗布量5.63g(活物質4.79g)
・初回正極充電容量=165mAh/g×5.63g×85%=789mAh
・正極有効容量=789mAh×0.95=750mAh
負極塗布量2.6g(正極対向部2.34g、活物質対向部2.29g)
・初回負極充電容量(対向部)=380mAh/g×2.34g×98%=870mAh
・負極対向部有効容量=2.29g×380mAh/g×0.93=809mAh
・移動可能Li量=789mAh−870mA×(100−93)/100=789mAh−61mAh=728mAh
・1C放電時余剰Li分(負極残存Li量)=728mAh−700mAh=28mAh
・最大プレドープ必要分=正極有効容量−移動可能Li量=750mAh−728mAh=22mAh…▲1▼式
・負極Li吸蔵余剰能力=809mAh−728mAh=81mAh
※正負極容量比=初回負極充電容量/初回正極充電容量=870mAh/789mAh=1.10
完全に放電を行った場合に、負極から正極へ戻るLi量は728mAhであり、正極が吸蔵し得るLi量である750mAhに対して22mAh少ない。従って、放電を行った場合は先に負極中のLi量が消失されるので負極電位が上昇することになり銅の溶解が生じることになる(正極のLi吸蔵量が初期状態を上回らないので電位は初期の3.0Vよりも高い電位になる)。これを改善するためには、計算上では22mAh分のLiを正極へ供給することが必要となる。
【0024】
この時必要な副活物質添加量は、
初回充電容量(mAh/g)×(1−充放電効率)×副活物質添加量(g)=プレドープ量(mAh)
の関係式から求められることから、22mAh分のプレドープを、25%Fe置換Li2TiO3により行う場合、
150(mAh/g)×(1−0.1)×x(g)=22(mAh)…▲2▼式
x=0.16(g)
となり、電極中に0.16gの25%Fe置換Li2TiO3を添加することで、負極電位の上昇を抑制することが可能となる。
【0025】
しかし、上記設計で22mAh分の副活物質をプレドープした場合、負極の有効容量は809mAhで変化していない。すなわち、従来は移動可能なLi量が725mAhで809mAh−725mAh=84mAhの余剰Li吸蔵能力があったが、プレドープにより84mAh−22mAh=62mAhの余剰Li吸蔵能力しかなくなる。このため、過充電を行った場合にはプレドープ量分、負極表面上へ析出Li量が増加することになる。これまでの実験結果では、析出Liは電解液と激しく反応してさらに発熱するため、電池の安全性の低下に大きく影響する。従って、過放電特性の向上と過充電特性の向上はトレードオフの関係にある。この問題を解決するためには、プレドープするLi量を吸蔵し得る負極活物質を負極中に添加する必要がある。目的とする正極電位の低下、及び正負極容量比によってその添加量は異なるが、以下に具体例を説明する。
【0026】
i)正極活物質:コバルト酸リチウム+Fe置換Li2TiO3
初回充放電効率93%(本来使用域では95%)、初回充電容量170mAh/g、正極合剤中85%が活物質に相当
ii)負極活物質:黒鉛
初回充放電効率93%、初回充電容量380mAh/g、負極合剤中98%が活物質に相当
iii)電池
負極/正極容量比=1.10設計相当
1C実測容量(4.2−3.0Vの範囲):700mAh相当
正極塗布量5.51g(活物質4.68g)
・従来初回正極充電容量=165mAh/g×5.51g×85%=773mAh
・初回正極充放電容量=170mAh/g×5.51g×85%=795mAh
※プレドープ量=795mAh−773mAh=22mAh
・正極有効容量=773mAh×0.95=734mAh
負極塗布量2.60g(正極対向部2.34g、活物質対向部2.29g)
・初回負極充電容量(対向部)=380mAh/g×2.34g×98%=871mAh
・負極対向部有効容量=2.34g×380mAh/g×0.93=809mAh
・移動可能Li量=795mAh−871mA×(100−93)/100=795mAh−61mAh=734mAh
・1C放電時余剰Li分(負極残存Li量)=734mAh−700mAh=34mAh
・最大プレドープ必要分=正極有効容量−移動可能Li量=734mAh−728mAh=6mAh
負極Li吸蔵余剰能力=809mAh−728mAh=81mAh
※正負極容量比=初回負極充電容量/初回正極充電容量=871mAh/795mAh=1.10
【0027】
この時、必要となる副活物質添加量は、
(170−165)(mAh/g)×5.51(g)×0.85/{150(mAh/g)×(1−0.1)}=0.17(g)…▲3▼式
となり、正極中に0.17g副活物質を添加しておくことが必要となる。これは、正極主活物質であるコバルト酸リチウムと副活物質を96:4の重量比で混合して極板作製を行うことで可能となる。
このように、正極中への副活物質の添加量は、初回充電容量と充放電効率から決定することができる。
【0028】
【発明の実施の形態】
以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して実施することが可能なものである。
【0029】
<充放電効率の測定方法>
以下の方法により、正極副活物質の充放電効率を測定した。
副活物質を含むスラリーを塗布して作製した正極極板を所定の大きさに切り出し、その重量を測定し、その値から芯体重量を差し引いてバインダーとの混合比を換算することにより正極極板中の活物質重量を算出した。その後、集電タブを取り付けて作用極とした。
【0030】
上記のようにして作製した作用極を用いて、図3に示す測定用セルを作製した。図3に示すように、作用極1と、金属リチウムからなる対極2との間に、ポリエチレン製微多孔膜からなるセパレータ3を挟んで対向させ、これをガラス板4及び5で挟んだ後、十分に密着するようにクリップで固定した。対極2としては、作用極1の活物質塗布部分が完全に対向する大きさでかつ厚さ0.5mmの金属リチウム板を用いた。
【0031】
参照極として金属リチウム板を用い、上記測定用セルと共にガラス容器中に配置し、完全に浸る状態まで電解液を加え、三極式セルを作製した。なお、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:1となるように混合した溶媒に、LiPF6を1モル/リットルとなるように溶解させたものを用いた。
【0032】
作製した三極式セルを1mAの定電流で充電し、4.3Vに到達した後、定電圧で2時間充電を行い、満充電状態とした。15分間放置した後、1.0mAの定電流で3.1Vまで放電し、放電容量を測定した。
【0033】
充電容量に対する放電容量の割合から、正極副活物質の充放電効率を決定した。
負極活物質についても、上記と同様の方法で三極式セルを作製し、このセルを1.0mAの定電流で充電し、0.1Vに到達した後、定電圧で2時間充電し、満充電状態とした。15分間放置した後、1.0mAの定電流で3.1Vまで放電し、放電容量を測定した。
上記の方法で測定した充電容量に対する放電容量の割合から、負極活物質の充放電効率を決定した。
【0034】
<金属置換Li2TiO3の合成>
硫酸鉄(II)水和物水溶液と硫酸チタン(IV)水溶液を混合し、水酸化カリウム溶液をpHが11以上になるまで滴下した。この溶液を室温で3日間空気酸化し、60℃で1週間熟成した後、水洗、ろ過、乾燥することにより共沈物を得た。
【0035】
得られた共沈物に、水酸化リチウム及び塩素酸カリウムを添加し、蒸留水中で混合したものを200℃の温度で24時間水熱処理を行った。得られた生成物を水洗し、ろ過、乾燥することにより、目的の化合物を得た。なお、置換量は、原料として用いた硫酸鉄(II)水和物と硫酸チタン(IV)の混合比により決定された。
【0036】
また、Co、Mn、V、Ni、またはMgで置換したLi2TiO3は、原料として用いる硫酸鉄水和物を各金属の硫酸塩に代えることにより、上記と同様の方法により合成した。
得られた化合物について粉末X線測定を行い、単一相からなる目的物であることを確認した。
【0037】
<副活物質及び負極活物質の充放電効率の測定>
上記の方法により得られた金属置換Li2TiO3、無置換のLi2TiO3、LiMoO3、及び負極活物質としての天然黒鉛の初期充放電特性を測定した。なお、金属置換Li2TiO3については、その代表例として結晶中のTiの25%を金属元素で置換したものの値を示す。
【0038】
【表1】
Figure 0004307927
【0039】
<正極極板の作製>
正極主活物質としてのコバルト酸リチウムと、副活物質と、導電助剤としてのケッチェンブラックと、結着剤としてのフッ素樹脂とを質量比で85:5:5:5の割合で混合し、これをN−メチル−2−ピロリドン(NMP)に添加してペーストを作製した。
【0040】
このペーストを、ドクターブレード法により金属芯体(厚み20μmのアルミニウム箔)の両面に均一に塗布した。次に、加熱した乾燥機中で100〜150℃の温度で真空熱処理してNMPを除去した後、厚みが0.17mmとなるようにロールプレス機により圧延して正極極板を作製した。
【0041】
<負極極板の作製>
天然黒鉛からなる負極活物質と、結着剤としてのスチレンブタジエンゴムとを質量比で98:2の割合となるように混合し、これをN−メチル−2−ピロリドン(NMP)に添加してペーストを作製した。
【0042】
このペーストを、ドクターブレード法により金属芯体(厚み20μmの銅箔)の両面に均一に塗布した後、加熱した乾燥機中で100〜150℃の温度で真空熱処理してNMPを除去した後、厚みが0.14mmとなるようにロールプレス機により圧延して負極極板を作製した。
【0043】
<二次電池の作製>
正極極板及び負極極板の芯体にそれぞれ集電タブを取り付け、ポリオレフィン系微多孔膜を正極極板及び負極極板の間に挟み、この積層体を巻き取り、最外周をテープで止め、渦巻状電極体とした後、扁平に押しつぶして板状にした。
【0044】
次に、この渦巻状電極体を、PET及びアルミニウムなどを積層したラミネート材で作製した筒型外装体中に挿入し、一方端部から集電タブが外部に突き出る状態で一方端部を封止した。
【0045】
次に、電解液を、上記外装体の他方端部の開口部から5ml注入した後、開口部を加熱し封止した。
以上のようにして、容量700mAhの二次電池を作製した。
【0046】
(実験1)
副活物質として25%Fe置換Li2TiO3を用いた本発明電池A−1と、副活物質としてFeを置換していない無置換のLi2TiO3を用いた比較電池a−1と、副活物質を用いずに主活物質のみを用いた比較電池a−2と、副活物質としてLiMoO2を用いた比較電池a−3の4種類の電池を作製した。副活物質を用いたものについては、主活物質95重量%に対し副活物質5重量%となるように添加した。
【0047】
電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:1となるように混合した溶媒にLiPF6を1モル/リットルとなるように溶解させた電解液を用いた。
【0048】
上記各電池を1.0C(700mA)の定電流で充電し、4.2Vに到達した後、定電圧で2時間充電を行い、満充電状態とした。15分間放置した後、1.0Cの定電流で3.0Vまで放電し、放電容量を測定した。その後、自己放電による電池電圧の低下を想定して、1mAの定電流で0.0Vまで放電した。このように過放電を行った後、上記と同様の条件により充放電サイクルを実施し、放電容量を測定した。以下の式により、容量復帰率を算出し、その結果を表2に示した。
【0049】
容量復帰率(%)=(過放電後の放電容量)/(過放電前の放電容量)×100
【0050】
【表2】
Figure 0004307927
【0051】
表2に示すように、本発明に従う副活物質を用いた本発明電池A−1では高い容量復帰率が得られているのに対し、比較電池a−1〜a−2では容量復帰率が低くなっている。また、比較電池a−3では、比較電池a−1〜a−2に比べ、容量復帰率が若干改善されているものの、その度合いは比較的小さなものであった。
【0052】
図1は、上記過放電中の電池電圧及び負極電位を、Li金属を基準として測定した結果を示す図である。本発明電池A−1では、過放電末期において負極電位が単調に増加していき、電池電圧も単調に減少して放電が終了しており、放電末期において負極電位が3.0Vよりも低い状態に維持されていることがわかる。これに対し、比較電池a−1では、電池電圧が0.3V付近に到達した時点で電圧低下が抑制され、プラトーが出現していることがわかる。このときの負極の電位は3.4V付近で一定になっており、この電位は負極集電体として用いている銅の溶解電位に相当する。
【0053】
また、比較電池a−2においても、その挙動は比較a−1とほぼ同様であることが確認されている。また、比較電池a−3においてはプラトー自体の大きさが小さくなっているものの、負極電位は比較電池a−1と同様に3.4V付近まで上昇していることが確認されている。
【0054】
次に、過放電後の電池内部から電解液を抽出し、ICP発光分析による測定を行った。この結果、比較電池a−1〜a−3では多量の銅が検出されたのに対し、本発明電池A−1では過放電前の電池とほぼ同量の銅しか検出されなかった。
【0055】
以上のことから、過放電状態に到達した後に発生する放電容量の減少は、負極集電体として用いている銅の溶解がその主な原因であることがわかる。すなわち、本発明電池では正極中に副活物質としてFe置換Li2TiO3を添加することにより、過放電末期における負極の電位上昇を抑制することができ、これによって銅の溶質が発生しなくなり、放電容量の低下が抑制されたものと考えられる。
【0056】
本発明において副活物質として用いている金属置換Li2TiO3は、一般に正極活物質として用いられているLiCoO2、LiMn24、LiNiO2などと比べた場合、ほぼ同じ電位領域で充電が進行するが、放電時の作動電圧は1.0V以上低い。この結果、この領域での充放電においてLi2TiO3の充放電効率は著しく低くなり、Li2TiO3から放出されて負極中に挿入されたリチウムの大部分は、通常の電池の使用領域では不可逆的に負極中に存在することとなる。
【0057】
これにより過放電時に負極から過剰にリチウムが放出される場合においても、残存するリチウム量が増加しているため、負極電位は上昇しにくくなり、逆に正極主活物質中にリチウムが挿入されることにより正極電位が低下し、結果的に正極電位支配で放電が終了することとなる。このため、負極集電体である銅の溶出が進行せず、電池特性の劣化を大幅に抑制することができる。
【0058】
比較電池a−3においては、特許文献1において副活物質として用いられているモリブデン酸リチウムが正極中に添加されている。モリブデン酸リチウムも、主活物質として用いられているLiCoO2やLiMn24などに比べ、低い作動電圧を有している。しかしながら、モリブデン酸リチウムは充電電圧と放電電圧の差が小さいため、通常の使用範囲で高い充放電効率を有し、放電状態において負極中に残るリチウム量は少ない。このため、負極中に残存するリチウムの量は少なく、本発明における副活物質の場合に比べ、その効果は非常に小さなものとなる。
【0059】
また、モリブデン酸リチウムを用いて、本発明と同様に負極中に多量のリチウムを残存させようとすると、正極中に副活物質をより多く添加する必要がある。この場合、作動電圧が低下するなどの弊害が生じる。
【0060】
上記の実施例では、Fe置換Li2TiO3を副活物質として用いているが、Feに代えて、Co、Mn、V、Cr、Ni、またはMgで置換したLi2TiO3も、表1に示すように負極活物質より充放電効率が低いものであるので、Fe置換Li2TiO3と同様の効果を与える。
【0061】
(実験2)
上記実験1の本発明電池A−1と同様にして本発明電池B−1を作製した。また、上記電解液(EC:DEC=1:1、LiPF6=1.0モル/リットル)に、2重量%となるようにビニレンカーボネート(VC)を添加した電解液を用いる以外は、上記実験1の本発明電池A−1と同様にして、本発明電池B−2を作製した。また、上記電解液(EC:DEC=1:1、LiPF6=1.0モル/リットル)に、2重量%となるようにビニルエチレンカーボネート(VEC)を添加した電解液を用いる以外は、上記実験1の本発明電池A−1と同様にして、本発明電池B−3を作製した。
【0062】
また、比較として、正極中に副活物質を含ませない以外は、上記本発明電池B−1〜B−3と同様の電解液を用いて、比較電池b−1〜b−3を作製した。
本実験2で作製した各電池を以下の表3にまとめて示す。
【0063】
【表3】
Figure 0004307927
【0064】
上記の各電池について、実験1と同様にして充放電サイクル試験を行い、容量復帰率をまとめた。結果を表4に示す。
【0065】
【表4】
Figure 0004307927
【0066】
表4に示す結果から明らかなように、VC及びVECが添加されている本発明電池B−2及びB−3は、これらが添加されていない本発明電池B−1よりも高い容量復帰率を示している。これに対し、副活物質が添加されていない比較電池b−2及びb−3は、比較電池b−1よりも容量復帰率が著しく低下している。
以上のことから、VCまたはVECが電解液に添加された電池において、本発明の効果がより顕著に発揮されることがわかる。
【0067】
(実験3)
Fe置換量を、10%、20%、25%、50%、75%、及び90%とした6種類のFe置換Li2TiO3を合成し、これを10重量%となるように正極中に添加して、本発明電池C−1〜C−6を作製した。電解液としては、EC:DEC=1:1の混合溶媒に、LiPF6を1.0モル/リットルとなるように溶解させたものを用いた。なお、ここでは、VCまたはVECを電解液に添加していない。
【0068】
本発明電池C−1〜C−6において用いた副活物質のFe置換量を表5に示す。
【0069】
【表5】
Figure 0004307927
【0070】
上記各電池について、実験1と同様にして充放電サイクル試験を行い、容量復帰率を求めた。結果を表6に示す。
【0071】
【表6】
Figure 0004307927
【0072】
また、図2に、副活物質におけるFe置換量と容量維持率との関係を示す。
表6及び図2から明らかなように、Fe置換量が25〜75%の範囲において、高い容量復帰率が得られており、Fe置換量が25〜50%の範囲において、特に高い容量復帰率が得られいてる。
【0073】
上記のFe置換量の異なるFe置換Li2TiO3について、4.2V〜3.0Vの間で充放電を行った場合の不可逆容量を表7に示す。
【0074】
【表7】
Figure 0004307927
【0075】
表7に示すように、不可逆容量は、Fe置換量が25〜75%の範囲で大きくなっており、25〜50%の範囲でさらに大きくなっていることがわかる。
副活物質の不可逆容量が増加することにより、負極中の残存リチウム量を増加させることができる。このため、不可逆容量のより大きな副活物質を用いることにより、より優れた放電特性が得られる。従って、金属置換Li2TiO3の金属置換量は、25〜75%が好ましく、さらに好ましくは25〜50%である。
【0076】
【発明の効果】
本発明によれば、正極中に副活物質を添加することにより、過放電による電池特性の劣化を防止するとこができる。
【図面の簡単な説明】
【図1】本発明電池A−1及び比較電池a−1の過放電中における電池電圧及び負極電位を示す図。
【図2】Fe置換Li2TiO3においてFe置換量を変化させたときの容量復帰率を示す図。
【図3】充放電効率の測定に用いた測定用セルを示す側面図。
【符号の説明】
1…作用極
2…対極
3…セパレータ
4,5…ガラス板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
[0002]
[Prior art]
In general, a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery is used in a state where a protection circuit is provided in order to ensure its safety. However, with the reduction in the price of portable devices, there is a demand for further price reduction in batteries. If it becomes possible to remove the protection circuit that occupies a large proportion of the price of the battery pack, the price can be greatly reduced.
[0003]
In order to remove the protection circuit, it is necessary to further improve the battery characteristics, and one of the problems is deterioration of the battery characteristics due to overdischarge.
In long-term storage of a non-aqueous electrolyte secondary battery, self-discharge proceeds, especially when the battery voltage reaches around 0 V, the negative electrode potential rises, reaches the dissolution potential of copper as the current collector, and the electrolyte solution Copper elutes inside. The eluted copper precipitates during charging and inhibits charging and discharging, resulting in deterioration of battery characteristics.
[0004]
In Patent Document 1, LiCoO having a potential nobler than the oxidation potential of copper as a current collector.2Li having a base potential lower than the oxidation potential of the main active material such as copper and the current collector copperxMoOThreeIt has been proposed to prevent the dissolution of copper as a current collector and improve the overdischarge characteristics by using a secondary active material such as the above as a positive electrode active material.
[0005]
[Patent Document 1]
Japanese Patent No. 2797390
[0006]
[Problems to be solved by the invention]
However, LixMoOThreeEven if was used as a secondary active material, the overdischarge characteristics could not be sufficiently improved. In particular, when the electrolyte contains a substance that reacts with lithium by reductive decomposition to form a lithium-containing compound, such as vinylene carbonate or vinyl ethylene carbonate, the amount of lithium inserted into the negative electrode is reduced. Since the potential increase of the negative electrode during discharge is promoted, there has been a problem that the deterioration of battery characteristics due to overdischarge cannot be sufficiently prevented.
[0007]
An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can effectively prevent deterioration of battery characteristics due to overdischarge.
[0008]
[Means for Solving the Problems]
The nonaqueous electrolyte secondary battery of the present invention includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and copper as a current collector, A non-aqueous electrolyte secondary battery comprising a non-aqueous solvent and an electrolyte containing a solute, wherein the electrolyte contains a lithium consuming substance that reacts with lithium by reductive decomposition to produce a lithium-containing compound, The active material is a main active material and Li in which a part of Ti is replaced with at least one metal.2TiOThreeAnd a secondary active material.
[0009]
When the lithium consuming substance is contained in the electrolytic solution, a part of lithium released from the positive electrode is consumed by the lithium consuming substance without being inserted into the negative electrode. For this reason, the amount of lithium remaining in the negative electrode at the end of discharge is relatively reduced, and the negative electrode potential is likely to rise.
[0010]
According to the present invention, Li in which part of Ti is replaced with at least one metal2TiOThreeBy using the secondary active material, the amount of lithium inserted into the negative electrode active material is increased, and the amount of lithium returning to the positive electrode is reduced even during discharge, so that lithium remains in the negative electrode. For this reason, an increase in the negative electrode potential in the overdischarge state is suppressed, and the discharge is terminated by controlling the positive electrode potential, so that elution of copper contained in the current collector does not occur.
[0011]
The lithium consuming substance is not particularly limited as long as it is a substance that reacts with lithium in the electrolytic solution by reductive decomposition to produce a lithium-containing compound, but in general, cyclic carbonates such as ethylene carbonate and propylene carbonate used as a solvent. Examples thereof include chain solvents such as system solvents, diethyl carbonate, and dimethyl carbonate. These solvents are relatively stable in the region where they are normally used. However, in the initial stage of battery production in which the surface of the negative electrode such as graphite is active, reductive decomposition is relatively easy, and lithium released from the positive electrode is reduced. Consume to form a lithium-containing compound such as lithium carbonate on the negative electrode surface. Vinylene carbonate and vinyl ethylene carbonate are examples of substances that are particularly easily reductively decomposed to form a lithium-containing compound. Vinylene carbonate and vinyl ethylene carbonate have a high reductive decomposition potential and decompose almost 100% at the initial stage of battery production to form a film of a lithium-containing compound on the negative electrode surface. For this reason, the amount of lithium inserted into the negative electrode is further reduced, and the negative electrode potential rise during overdischarge is accelerated. By adding a secondary active material in the positive electrode according to the present invention and supplementing the lithium consumed on the negative electrode, lithium is sufficiently inserted into the negative electrode, and an increase in the negative electrode potential is suppressed.
[0012]
As a side active material used in the present invention, a part of Ti is substituted with at least one metal selected from the group consisting of Fe, Co, Mn, V, Ni and Mg.2TiOThree(Lithium titanate). Such lithium titanate has a large charge capacity, but the discharge operating voltage is remarkably low, so the charge / discharge efficiency is low. For this reason, most of the lithium inserted into the negative electrode in the initial charge remains in the negative electrode.
[0013]
In the metal-substituted lithium titanate, the amount of metal to be substituted is preferably 25 to 75% (mol%) of Ti, and more preferably 25 to 50% (mol%). By setting it as such metal substitution amount, the amount of lithium which can be charged can be increased and the effect of this invention can be acquired by addition of a small amount.
[0014]
In the present invention, the main active material is an active material that is a main component (50% by weight or more) in the positive electrode active material, and is an active material that mainly participates in charge / discharge of the battery.
The negative electrode active material used in the present invention is not particularly limited as long as it is a material capable of occluding and releasing lithium ions, but a carbon-based material is preferably used. Specifically, natural graphite, artificial graphite, non-graphitizable carbon, an organic compound fired body such as phenol resin, coke and the like can be mentioned. Further, tin oxide, metallic lithium, silicon and the like are also preferably used. In addition to using these compounds alone, it is also possible to use a mixture of two or more active materials.
[0015]
The positive electrode main active material used in the present invention is not particularly limited as long as it is a material capable of occluding and releasing lithium ions, but transition metal oxides such as lithium cobaltate, lithium manganate, and lithium nickelate are preferably used. Moreover, these oxides may be used independently and may mix and use 2 or more types.
[0016]
The charge / discharge efficiency of the positive electrode main active material, the positive electrode sub active material, and the negative electrode active material can be measured by preparing a tripolar cell using these as working electrodes and using metallic lithium as a counter electrode and a reference electrode. As the electrolytic solution at this time, one having a composition as close as possible to the electrolytic solution used in an actual battery is preferably used. The charge / discharge efficiency referred to here is the initial charge / discharge efficiency.
[0017]
The non-aqueous solvent of the electrolytic solution used in the present invention is not particularly limited as long as it is a solvent that can be used for a non-aqueous electrolyte secondary battery, but ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, Examples thereof include cyclic carbonates such as vinyl ethylene carbonate, and chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. These carbonate solvents become lithium consuming substances as described above. Among these, particularly when vinylene carbonate or vinyl ethylene carbonate is contained, the overdischarge characteristics are likely to deteriorate, and the present invention is particularly useful.
[0018]
The solute used in the electrolytic solution is not particularly limited as long as it is a solute that can be used in a non-aqueous electrolyte secondary battery, but LiPF6, LiBFFour, LiCFThreeSOThree, LiN (CFThreeSO2)2, LiN (C2FFiveSO2)2, LiN (CFThreeSO2) (CFourF9SO2), LiC (CFThreeSO2)Three, LiC (C2FFiveSO2)Three, LiAsF6LiClOFour, Li2BTenClTen, Li2B12Cl12And mixtures thereof. Among these, LiPF6(Lithium hexafluorophosphate) is preferably used.
[0019]
Further, the electrolytic solution in the present invention may be a gel electrolyte using a polymer electrolyte.
The addition amount of the secondary active material in the positive electrode active material can be calculated from the following formulas (1) to (3). The formulas (1) and (2) are formulas for obtaining values necessary for determining the equivalent of the positive electrode that does not reduce the safety used in the formula (3).
[0020]
(1) Discharge capacity necessary for suppressing negative electrode potential rise
Necessary amount of pre-doping = positive electrode effective capacity-movable lithium amount (1) Formula
(2) Amount of pre-dope material added
Amount of addition = (required pre-dope) / {initial charge capacity × (1-charge / discharge efficiency)} (2) formula
(3) Addition amount of secondary active material when ensuring overcharge safety
[0021]
[Expression 1]
Figure 0004307927
[0022]
Hereinafter, a specific example will be described.
In the conventional design battery in which lithium cobaltate alone is used for the positive electrode, graphite is used for the negative electrode, and the positive / negative electrode capacity ratio is 1.10, the following relationship is established.
[0023]
i) Positive electrode active material: lithium cobaltate
Initial charge / discharge efficiency of 95%, initial charge capacity of 165 mAh / g, 85% of positive electrode mixture is equivalent to active material
(The mixing ratio can be determined arbitrarily depending on the active material used)
ii) Negative electrode active material: graphite
Initial charge / discharge efficiency of 93%, initial charge capacity of 380 mAh / g, 98% of the negative electrode mixture corresponds to the active material
iii) Battery
Negative electrode / positive electrode capacity ratio = 1.10 design
1C measured capacity (range of 4.2-3.0V): 700 mAh
Positive electrode coating amount 5.63 g (active material 4.79 g)
・ First positive electrode charge capacity = 165 mAh / g × 5.63 g × 85% = 789 mAh
-Positive electrode effective capacity = 789 mAh x 0.95 = 750 mAh
Negative electrode application amount 2.6 g (positive electrode facing portion 2.34 g, active material facing portion 2.29 g)
First-time negative electrode charge capacity (opposite part) = 380 mAh / g × 2.34 g × 98% = 870 mAh
Effective capacity of negative electrode facing area = 2.29 g × 380 mAh / g × 0.93 = 809 mAh
・ Motable Li amount = 789 mAh-870 mA × (100-93) / 100 = 789 mAh-61 mAh = 728 mAh
・ Excess Li content during 1 C discharge (amount of negative electrode remaining Li) = 728 mAh−700 mAh = 28 mAh
・ Maximum pre-doping requirement = positive electrode effective capacity−movable Li amount = 750 mAh−728 mAh = 22 mAh (1) Formula
Negative electrode Li occlusion surplus capacity = 809 mAh-728 mAh = 81 mAh
* Positive / negative electrode capacity ratio = initial negative electrode charge capacity / initial positive electrode charge capacity = 870 mAh / 789 mAh = 1.10
When fully discharged, the amount of Li returning from the negative electrode to the positive electrode is 728 mAh, which is 22 mAh less than 750 mAh which is the amount of Li that can be occluded by the positive electrode. Therefore, when the discharge is performed, the amount of Li in the negative electrode disappears first, so that the negative electrode potential rises and copper is dissolved (the positive electrode Li storage amount does not exceed the initial state. Is higher than the initial 3.0V). In order to improve this, it is necessary to supply Li for 22 mAh to the positive electrode in calculation.
[0024]
At this time, the amount of side active material required is
Initial charge capacity (mAh / g) × (1-charge / discharge efficiency) × addition amount of secondary active material (g) = pre-dope amount (mAh)
Therefore, pre-doping for 22 mAh is performed using 25% Fe-substituted Li.2TiOThreeIf you do
150 (mAh / g) × (1-0.1) × x (g) = 22 (mAh) (2) Formula
x = 0.16 (g)
And 0.16 g of 25% Fe-substituted Li in the electrode2TiOThreeBy adding, it is possible to suppress the increase in the negative electrode potential.
[0025]
However, when 22 mAh worth of the secondary active material is pre-doped in the above design, the effective capacity of the negative electrode does not change at 809 mAh. That is, conventionally, there was a surplus Li occlusion capacity of 809 mAh−725 mAh = 84 mAh when the amount of movable Li was 725 mAh, but only a surplus Li occlusion capacity of 84 mAh−22 mAh = 62 mAh due to pre-doping. For this reason, when overcharging is performed, the amount of precipitated Li increases on the negative electrode surface by the amount of pre-doping. In the experimental results so far, the deposited Li reacts violently with the electrolytic solution and further generates heat, which greatly affects the reduction in battery safety. Therefore, there is a trade-off relationship between improvement of overdischarge characteristics and improvement of overcharge characteristics. In order to solve this problem, it is necessary to add a negative electrode active material capable of occluding the amount of Li to be predoped into the negative electrode. A specific example will be described below, although the amount of addition differs depending on the target decrease in positive electrode potential and positive / negative electrode capacity ratio.
[0026]
i) Positive electrode active material: lithium cobaltate + Fe substituted Li2TiOThree
Initial charge / discharge efficiency of 93% (95% in the original use range), initial charge capacity of 170 mAh / g, and 85% of the positive electrode mixture corresponds to the active material
ii) Negative electrode active material: graphite
Initial charge / discharge efficiency of 93%, initial charge capacity of 380 mAh / g, 98% of the negative electrode mixture corresponds to the active material
iii) Battery
Negative electrode / positive electrode capacity ratio = 1.10 design equivalent
1C measured capacity (in the range of 4.2 to 3.0 V): 700 mAh equivalent
Positive electrode coating amount 5.51 g (active material 4.68 g)
Conventional conventional positive electrode charge capacity = 165 mAh / g × 5.51 g × 85% = 773 mAh
First-time positive electrode charge / discharge capacity = 170 mAh / g × 5.51 g × 85% = 795 mAh
* Pre-doping amount = 795 mAh-773 mAh = 22 mAh
-Positive electrode effective capacity = 773 mAh x 0.95 = 734 mAh
Negative electrode coating amount 2.60 g (positive electrode facing portion 2.34 g, active material facing portion 2.29 g)
First-time negative electrode charge capacity (opposite part) = 380 mAh / g × 2.34 g × 98% = 871 mAh
・ Negative electrode effective capacity = 2.34 g × 380 mAh / g × 0.93 = 809 mAh
・ Motable Li amount = 795 mAh-871 mA × (100-93) / 100 = 795 mAh-61 mAh = 734 mAh
-1C discharge excess Li content (negative electrode residual Li amount) = 734 mAh-700 mAh = 34 mAh
・ Maximum pre-dope requirement = positive electrode effective capacity−movable Li amount = 734 mAh−728 mAh = 6 mAh
Negative electrode Li occlusion surplus capacity = 809 mAh-728 mAh = 81 mAh
* Positive / negative electrode capacity ratio = initial negative electrode charge capacity / initial positive electrode charge capacity = 871 mAh / 795 mAh = 1.10
[0027]
At this time, the necessary amount of by-active material addition is
(170-165) (mAh / g) × 5.51 (g) × 0.85 / {150 (mAh / g) × (1-0.1)} = 0.17 (g) (3)
Therefore, it is necessary to add 0.17 g of a secondary active material in the positive electrode. This can be achieved by mixing the lithium cobalt oxide, which is the positive electrode main active material, and the secondary active material in a weight ratio of 96: 4 to produce the electrode plate.
Thus, the addition amount of the secondary active material in the positive electrode can be determined from the initial charge capacity and the charge / discharge efficiency.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described by way of specific examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. It is.
[0029]
<Measurement method of charge / discharge efficiency>
The charge / discharge efficiency of the positive electrode secondary active material was measured by the following method.
A positive electrode plate produced by applying a slurry containing a secondary active material is cut into a predetermined size, its weight is measured, and the weight of the core is subtracted from that value to convert the mixing ratio with the binder, thereby converting the positive electrode plate The active material weight in the plate was calculated. Then, the current collection tab was attached and it was set as the working electrode.
[0030]
Using the working electrode produced as described above, the measurement cell shown in FIG. 3 was produced. As shown in FIG. 3, between the working electrode 1 and the counter electrode 2 made of metallic lithium, the separator 3 made of a polyethylene microporous film is sandwiched and opposed, and this is sandwiched between the glass plates 4 and 5, It was fixed with a clip so that it was in close contact. As the counter electrode 2, a metal lithium plate having a size in which the active material application portion of the working electrode 1 is completely opposed and a thickness of 0.5 mm was used.
[0031]
A metal lithium plate was used as a reference electrode, placed in a glass container together with the measurement cell, and an electrolyte was added until it was completely immersed to produce a three-electrode cell. In addition, as an electrolytic solution, LiPF was added to a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1.6Was dissolved so as to be 1 mol / liter.
[0032]
The prepared tripolar cell was charged with a constant current of 1 mA, and after reaching 4.3 V, it was charged with a constant voltage for 2 hours to obtain a fully charged state. After leaving it for 15 minutes, it was discharged to 3.1 V at a constant current of 1.0 mA, and the discharge capacity was measured.
[0033]
The charge / discharge efficiency of the positive electrode secondary active material was determined from the ratio of the discharge capacity to the charge capacity.
As for the negative electrode active material, a tripolar cell was prepared in the same manner as described above, and this cell was charged at a constant current of 1.0 mA, reached 0.1 V, charged at a constant voltage for 2 hours, and fully charged. Charged. After leaving it for 15 minutes, it was discharged to 3.1 V at a constant current of 1.0 mA, and the discharge capacity was measured.
From the ratio of the discharge capacity to the charge capacity measured by the above method, the charge / discharge efficiency of the negative electrode active material was determined.
[0034]
<Metal-substituted Li2TiOThreeSynthesis>
An aqueous iron (II) sulfate hydrate solution and an aqueous titanium (IV) sulfate solution were mixed, and a potassium hydroxide solution was added dropwise until the pH reached 11 or more. This solution was air-oxidized at room temperature for 3 days, aged at 60 ° C. for 1 week, washed with water, filtered and dried to obtain a coprecipitate.
[0035]
To the obtained coprecipitate, lithium hydroxide and potassium chlorate were added and mixed in distilled water, and hydrothermally treated at a temperature of 200 ° C. for 24 hours. The obtained product was washed with water, filtered and dried to obtain the target compound. The amount of substitution was determined by the mixing ratio of iron (II) sulfate hydrate and titanium sulfate (IV) used as a raw material.
[0036]
Also, Li substituted with Co, Mn, V, Ni, or Mg2TiOThreeWas synthesized by the same method as described above by replacing the iron sulfate hydrate used as a raw material with sulfate of each metal.
The obtained compound was subjected to powder X-ray measurement, and confirmed to be a target product composed of a single phase.
[0037]
<Measurement of charge / discharge efficiency of secondary active material and negative electrode active material>
Metal-substituted Li obtained by the above method2TiOThreeUnsubstituted Li2TiOThree, LiMoOThreeThe initial charge / discharge characteristics of natural graphite as a negative electrode active material were measured. In addition, metal substitution Li2TiOThreeAs for a representative example, the value obtained by substituting 25% of Ti in the crystal with a metal element is shown.
[0038]
[Table 1]
Figure 0004307927
[0039]
<Preparation of positive electrode plate>
Lithium cobalt oxide as a positive electrode main active material, a secondary active material, ketjen black as a conductive additive, and a fluororesin as a binder are mixed at a mass ratio of 85: 5: 5: 5. This was added to N-methyl-2-pyrrolidone (NMP) to prepare a paste.
[0040]
This paste was uniformly applied to both surfaces of a metal core (a 20 μm thick aluminum foil) by a doctor blade method. Next, vacuum heat treatment was performed at a temperature of 100 to 150 ° C. in a heated drier to remove NMP, and then a positive electrode plate was produced by rolling with a roll press so that the thickness was 0.17 mm.
[0041]
<Preparation of negative electrode plate>
A negative electrode active material made of natural graphite and a styrene butadiene rubber as a binder are mixed at a mass ratio of 98: 2, and this is added to N-methyl-2-pyrrolidone (NMP). A paste was prepared.
[0042]
After this paste was uniformly applied to both surfaces of a metal core (copper foil having a thickness of 20 μm) by the doctor blade method, NMP was removed by vacuum heat treatment at a temperature of 100 to 150 ° C. in a heated dryer. A negative electrode plate was produced by rolling with a roll press so that the thickness was 0.14 mm.
[0043]
<Production of secondary battery>
A collector tab is attached to each of the cores of the positive electrode plate and the negative electrode plate, a polyolefin microporous membrane is sandwiched between the positive electrode plate and the negative electrode plate, the laminate is wound, the outermost periphery is fixed with tape, and the spiral shape After forming the electrode body, it was flattened into a plate shape.
[0044]
Next, this spiral electrode body is inserted into a cylindrical outer casing made of a laminate material obtained by laminating PET and aluminum, and one end portion is sealed with the current collecting tab protruding from the one end portion. did.
[0045]
Next, 5 ml of the electrolytic solution was injected from the opening at the other end of the exterior body, and then the opening was heated and sealed.
As described above, a secondary battery having a capacity of 700 mAh was manufactured.
[0046]
(Experiment 1)
25% Fe-substituted Li as a secondary active material2TiOThreeInventive battery A-1 using Li and non-substituted Li in which Fe is not substituted as a secondary active material2TiOThreeA comparative battery a-1 using a secondary battery, a comparative battery a-2 using only a main active material without using a secondary active material, and LiMoO as a secondary active material2Four types of batteries, Comparative Battery a-3, were used. About the thing using a secondary active material, it added so that it might become 5 weight% of secondary active materials with respect to 95 weight% of main active materials.
[0047]
As an electrolytic solution, LiPF was added to a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1.6An electrolytic solution in which 1 mol / liter was dissolved was used.
[0048]
Each battery was charged with a constant current of 1.0 C (700 mA), and after reaching 4.2 V, it was charged with a constant voltage for 2 hours to obtain a fully charged state. After leaving it for 15 minutes, it was discharged to 3.0 V at a constant current of 1.0 C, and the discharge capacity was measured. Thereafter, assuming a decrease in battery voltage due to self-discharge, the battery was discharged to 0.0 V at a constant current of 1 mA. After overdischarge in this manner, a charge / discharge cycle was performed under the same conditions as described above, and the discharge capacity was measured. The capacity recovery rate was calculated by the following formula, and the results are shown in Table 2.
[0049]
Capacity recovery rate (%) = (discharge capacity after overdischarge) / (discharge capacity before overdischarge) × 100
[0050]
[Table 2]
Figure 0004307927
[0051]
As shown in Table 2, the present invention battery A-1 using the secondary active material according to the present invention has a high capacity return rate, while the comparative batteries a-1 to a-2 have a capacity return rate. It is low. In comparison battery a-3, although the capacity recovery rate was slightly improved as compared with comparison batteries a-1 and a-2, the degree was relatively small.
[0052]
FIG. 1 is a diagram showing the results of measuring the battery voltage and negative electrode potential during overdischarge with reference to Li metal. In the present invention battery A-1, the negative electrode potential monotonously increases at the end of the overdischarge, the battery voltage monotonously decreases, and the discharge ends, and the negative electrode potential is lower than 3.0 V at the end of the discharge. It can be seen that On the other hand, in the comparative battery a-1, it can be seen that when the battery voltage reaches around 0.3 V, the voltage drop is suppressed and a plateau appears. The potential of the negative electrode at this time is constant at around 3.4 V, and this potential corresponds to the dissolution potential of copper used as the negative electrode current collector.
[0053]
Further, it has been confirmed that the behavior of the comparative battery a-2 is substantially the same as that of the comparative a-1. Further, in the comparative battery a-3, although the size of the plateau itself is small, it has been confirmed that the negative electrode potential rises to around 3.4 V like the comparative battery a-1.
[0054]
Next, an electrolytic solution was extracted from the inside of the battery after overdischarge, and measurement was performed by ICP emission analysis. As a result, a large amount of copper was detected in the comparative batteries a-1 to a-3, whereas only a substantially same amount of copper was detected in the battery A-1 of the present invention as in the battery before overdischarge.
[0055]
From the above, it can be seen that the main cause of the decrease in the discharge capacity generated after reaching the overdischarge state is the dissolution of copper used as the negative electrode current collector. That is, in the battery of the present invention, Fe-substituted Li as a secondary active material in the positive electrode.2TiOThreeIt is considered that the increase in the potential of the negative electrode at the end of the overdischarge can be suppressed by adding, thereby preventing the generation of copper solute and suppressing the decrease in the discharge capacity.
[0056]
Metal-substituted Li used as a secondary active material in the present invention2TiOThreeIs generally used as a positive electrode active material.2, LiMn2OFour, LiNiO2When compared with the above, charging proceeds in substantially the same potential region, but the operating voltage during discharging is 1.0 V or more lower. As a result, Li is charged and discharged in this region.2TiOThreeThe charging / discharging efficiency of Li is significantly reduced.2TiOThreeMost of the lithium released from the battery and inserted into the negative electrode is irreversibly present in the negative electrode in the normal battery use region.
[0057]
As a result, even when excessive lithium is released from the negative electrode during overdischarge, the amount of remaining lithium is increased, so that the negative electrode potential is less likely to rise, and conversely, lithium is inserted into the positive electrode main active material. As a result, the positive electrode potential is lowered, and as a result, the discharge is terminated by controlling the positive electrode potential. For this reason, elution of copper which is a negative electrode current collector does not proceed, and deterioration of battery characteristics can be significantly suppressed.
[0058]
In Comparative Battery a-3, lithium molybdate used as a secondary active material in Patent Document 1 is added to the positive electrode. LimoO is also used as the main active material.2And LiMn2OFourCompared to the above, it has a lower operating voltage. However, since lithium molybdate has a small difference between the charge voltage and the discharge voltage, it has a high charge / discharge efficiency in the normal use range, and the amount of lithium remaining in the negative electrode in the discharged state is small. For this reason, the amount of lithium remaining in the negative electrode is small, and the effect is very small compared to the case of the secondary active material in the present invention.
[0059]
Further, if a large amount of lithium is left in the negative electrode using lithium molybdate as in the present invention, it is necessary to add a larger amount of a secondary active material to the positive electrode. In this case, adverse effects such as a decrease in operating voltage occur.
[0060]
In the above example, Fe-substituted Li2TiOThreeIs used as a secondary active material, but instead of Fe, Li substituted with Co, Mn, V, Cr, Ni, or Mg2TiOThreeAs shown in Table 1, since the charge / discharge efficiency is lower than that of the negative electrode active material, Fe-substituted Li2TiOThreeGives the same effect.
[0061]
(Experiment 2)
Inventive battery B-1 was prepared in the same manner as Inventive battery A-1 in Experiment 1 above. The electrolyte solution (EC: DEC = 1: 1, LiPF6= 1.0 mol / liter), the present invention battery is the same as the present invention battery A-1 of Experiment 1 except that an electrolytic solution in which vinylene carbonate (VC) is added to 2 wt% is used. B-2 was produced. The electrolyte solution (EC: DEC = 1: 1, LiPF6= 1.0 mol / liter), except that an electrolytic solution in which vinyl ethylene carbonate (VEC) is added so as to be 2 wt% is used in the same manner as the battery A-1 of the present invention in Experiment 1 above. Battery B-3 was produced.
[0062]
For comparison, comparative batteries b-1 to b-3 were prepared using the same electrolyte solution as the above-described inventive batteries B-1 to B-3 except that the secondary active material was not included in the positive electrode. .
The batteries prepared in Experiment 2 are shown together in Table 3 below.
[0063]
[Table 3]
Figure 0004307927
[0064]
About each said battery, the charge / discharge cycle test was done like experiment 1, and the capacity | capacitance return rate was put together. The results are shown in Table 4.
[0065]
[Table 4]
Figure 0004307927
[0066]
As is clear from the results shown in Table 4, the present invention batteries B-2 and B-3 to which VC and VEC are added have a higher capacity recovery rate than the present invention battery B-1 to which these are not added. Show. On the other hand, comparative batteries b-2 and b-3 to which no secondary active material is added have a significantly lower capacity recovery rate than comparative battery b-1.
From the above, it can be seen that the effect of the present invention is more remarkably exhibited in the battery in which VC or VEC is added to the electrolytic solution.
[0067]
(Experiment 3)
Six types of Fe-substituted Li with 10%, 20%, 25%, 50%, 75%, and 90% Fe substitution2TiOThreeWas added to the positive electrode so as to be 10% by weight, thereby producing inventive batteries C-1 to C-6. As an electrolytic solution, a mixed solvent of EC: DEC = 1: 1, LiPF6Was dissolved so as to be 1.0 mol / liter. Here, VC or VEC is not added to the electrolytic solution.
[0068]
Table 5 shows the Fe substitution amounts of the secondary active materials used in the batteries C-1 to C-6 of the present invention.
[0069]
[Table 5]
Figure 0004307927
[0070]
About each said battery, it carried out similarly to Experiment 1, and performed the charging / discharging cycle test, and calculated | required the capacity | capacitance return rate. The results are shown in Table 6.
[0071]
[Table 6]
Figure 0004307927
[0072]
FIG. 2 shows the relationship between the Fe substitution amount and the capacity retention rate in the secondary active material.
As is apparent from Table 6 and FIG. 2, a high capacity recovery rate is obtained when the Fe replacement amount is in the range of 25 to 75%, and a particularly high capacity recovery rate is obtained when the Fe replacement amount is in the range of 25 to 50%. Is obtained.
[0073]
Fe-substituted Li with different amount of Fe substitution2TiOThreeTable 7 shows the irreversible capacity when charging / discharging between 4.2V and 3.0V.
[0074]
[Table 7]
Figure 0004307927
[0075]
As shown in Table 7, it can be seen that the irreversible capacity increases in the range where the Fe substitution amount is 25 to 75%, and further increases in the range of 25 to 50%.
By increasing the irreversible capacity of the secondary active material, the amount of residual lithium in the negative electrode can be increased. For this reason, more excellent discharge characteristics can be obtained by using a secondary active material having a larger irreversible capacity. Therefore, metal-substituted Li2TiOThreeThe metal substitution amount is preferably 25 to 75%, more preferably 25 to 50%.
[0076]
【The invention's effect】
According to the present invention, it is possible to prevent deterioration of battery characteristics due to overdischarge by adding a secondary active material in the positive electrode.
[Brief description of the drawings]
FIG. 1 is a diagram showing battery voltage and negative electrode potential during overdischarge of the present invention battery A-1 and comparative battery a-1.
FIG. 2 Fe-substituted Li2TiOThreeThe capacity | capacitance return rate when changing Fe substitution amount in FIG.
FIG. 3 is a side view showing a measurement cell used for measuring charge / discharge efficiency.
[Explanation of symbols]
1 ... Working electrode
2 ... Counter electrode
3 ... Separator
4,5 ... Glass plate

Claims (4)

リチウムを吸蔵放出可能な正極活物質を含む正極と、リチウムを吸蔵放出可能な負極活物質を含みかつ集電体に銅が用いられている負極と、非水系溶媒及び溶質を含む電解液とを備える非水電解質二次電池であって、
前記電解液中に、還元分解によりリチウムと反応してリチウム含有化合物を生成するリチウム消費物質が含まれており、前記正極活物質が主活物質と、Tiの一部を少なくとも1種の金属で置換したLi2TiO3からなる副活物質とを含むことを特徴とする非水電解質二次電池。
A positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and copper as a current collector, and an electrolyte containing a non-aqueous solvent and a solute A non-aqueous electrolyte secondary battery comprising:
The electrolytic solution includes a lithium consuming substance that reacts with lithium by reductive decomposition to form a lithium-containing compound, wherein the positive electrode active material is a main active material, and a part of Ti is at least one metal. A non-aqueous electrolyte secondary battery comprising a sub-active material made of substituted Li 2 TiO 3 .
前記リチウム消費物質が、ビニレンカーボネート及び/またはビニルエチレンカーボネートであることを特徴とする請求項1に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium consuming substance is vinylene carbonate and / or vinyl ethylene carbonate. 前記副活物質における置換金属が、Fe、Co、Mn、V、Ni及びMgからなるグループより選ばれる少なくとも1種の金属であることを特徴とする請求項1または2に記載の非水電解質二次電池。3. The non-aqueous electrolyte 2 according to claim 1, wherein the substitutional metal in the secondary active material is at least one metal selected from the group consisting of Fe, Co, Mn, V, Ni, and Mg. Next battery. 前記副活物質の金属置換量が25〜75%であることを特徴とする請求項3に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 3, wherein a metal substitution amount of the secondary active material is 25 to 75%.
JP2003206877A 2003-08-08 2003-08-08 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4307927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206877A JP4307927B2 (en) 2003-08-08 2003-08-08 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206877A JP4307927B2 (en) 2003-08-08 2003-08-08 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005063673A JP2005063673A (en) 2005-03-10
JP4307927B2 true JP4307927B2 (en) 2009-08-05

Family

ID=34363579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206877A Expired - Fee Related JP4307927B2 (en) 2003-08-08 2003-08-08 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4307927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122663A1 (en) 2016-01-13 2017-07-20 学校法人東京電機大学 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery, electronic device, and vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035834B2 (en) * 2007-02-27 2012-09-26 国立大学法人東京工業大学 Lithium manganese composite oxide
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
JP5686459B2 (en) * 2012-08-10 2015-03-18 テイカ株式会社 Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery including the positive electrode
CN108212074B (en) * 2016-12-12 2020-09-04 中国科学院过程工程研究所 Metatitanic acid type lithium ion sieve capable of being magnetically separated, preparation method and application thereof
JP6845782B2 (en) * 2017-11-02 2021-03-24 テイカ株式会社 Predoping agent for lithium ion capacitor, positive electrode and lithium ion capacitor for lithium ion capacitor using the predoping agent for lithium ion capacitor, manufacturing method of lithium ion capacitor and predoping method of lithium ion capacitor
CN109860584B (en) * 2019-04-01 2021-11-30 安普瑞斯(无锡)有限公司 High-energy density lithium ion secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478921A (en) * 1983-09-28 1984-10-23 Union Carbide Corporation Manganese carbonate additive for manganese dioxide-containing nonaqueous cells
JPH10251020A (en) * 1997-03-11 1998-09-22 Ishihara Sangyo Kaisha Ltd Metal substituted lithium titanate, its production and lithium battery using the same
JP2001319639A (en) * 2000-05-12 2001-11-16 Mitsubishi Electric Corp Battery
JP2002008658A (en) * 2000-06-27 2002-01-11 Toyota Central Res & Dev Lab Inc Lithium titanium compound oxide for lithium secondary battery electrode active material, and its manufacturing method
JP3500424B2 (en) * 2000-08-31 2004-02-23 独立行政法人産業技術総合研究所 Single-phase lithium ferrite composite oxide
JP3914981B2 (en) * 2001-08-01 2007-05-16 独立行政法人産業技術総合研究所 Cubic rock salt type lithium ferrite oxide and method for producing the same
US6878490B2 (en) * 2001-08-20 2005-04-12 Fmc Corporation Positive electrode active materials for secondary batteries and methods of preparing same
JP3835412B2 (en) * 2003-02-21 2006-10-18 三菱化学株式会社 Positive electrode active material, positive electrode material, lithium secondary battery using surface modified lithium nickel composite oxide, and method for producing surface modified lithium nickel composite oxide
JP4061648B2 (en) * 2003-04-11 2008-03-19 ソニー株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122663A1 (en) 2016-01-13 2017-07-20 学校法人東京電機大学 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery, electronic device, and vehicle
US10720641B2 (en) 2016-01-13 2020-07-21 National University Corporation Yokohama National University Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery, electronic device, and vehicle

Also Published As

Publication number Publication date
JP2005063673A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP3625680B2 (en) Lithium secondary battery
KR20060101328A (en) Non-aqueous electrolyte secondary battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2010135329A (en) Cathode and lithium battery adopting this
KR102220490B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20200036424A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP5036121B2 (en) Nonaqueous electrolyte secondary battery
CN111771301B (en) Positive active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
JPH09147913A (en) Nonaqueous electrolyte battery
JP2008091041A (en) Nonaqueous secondary battery
WO2005064735A1 (en) Nonaqueous electrolyte secondary battery
JP4949017B2 (en) Lithium ion battery with improved high-temperature storage characteristics
JP2004296098A (en) Nonaqueous electrolyte secondary battery
JP2011129258A (en) Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP4307927B2 (en) Nonaqueous electrolyte secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
WO2012043733A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2022512443A (en) Positive electrode active material for lithium secondary batteries and lithium secondary batteries containing them
JP2002025626A (en) Aging method for lithium secondary battery
JP3615416B2 (en) Lithium secondary battery
CN107836056B (en) Nonaqueous electrolyte secondary battery
JPH07105977A (en) Non-aqueous electrolyte secondary battery
JP2003077478A (en) Lithium ion secondary battery
JP2004111169A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary cell using above
JP2010177207A (en) Non aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees