JP2004259680A - Non-aqueous lithium secondary battery - Google Patents

Non-aqueous lithium secondary battery Download PDF

Info

Publication number
JP2004259680A
JP2004259680A JP2003051942A JP2003051942A JP2004259680A JP 2004259680 A JP2004259680 A JP 2004259680A JP 2003051942 A JP2003051942 A JP 2003051942A JP 2003051942 A JP2003051942 A JP 2003051942A JP 2004259680 A JP2004259680 A JP 2004259680A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
negative electrode
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003051942A
Other languages
Japanese (ja)
Other versions
JP4270904B2 (en
Inventor
Kentaro Takahashi
健太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003051942A priority Critical patent/JP4270904B2/en
Publication of JP2004259680A publication Critical patent/JP2004259680A/en
Application granted granted Critical
Publication of JP4270904B2 publication Critical patent/JP4270904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous lithium secondary battery which has a small irreversible capacity and is superior in charge and discharge characteristics and durability. <P>SOLUTION: This is the non-aqueous lithium secondary battery which uses at least a positive electrode having a positive electrode material that stores and releases lithium reversibly, a negative electrode having a negative electrode material that stores and releases lithium reversibly, and a non-aqueous electrolyte. Alkyl lithium carbonate as expressed by chemical structure formula (I), (II) hereunder is added in at least one of the positive electrode and the non-aqueous electrolyte. (I): R1-OCO<SB>2</SB>Li, (II): Li-CO<SB>2</SB>O-R2-OCO<SB>2</SB>Li, ( wherein, R1 and R2 show alkyl group having carbons 1-4). It is preferable that the added quantity of the alkyl lithium carbonate is the same mole number as the lithium quantity corresponding to the irreversible capacity of the negative electrode or less. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
この発明は、非水系リチウム二次電池に関し、特に不可逆容量(初回充電容量と初回放電容量との差)が小さく、充放電特性及び耐久性の優れた非水系リチウム二次電池に関する。
【0002】
【従来の技術】
非水系リチウム二次電池は、金属リチウムを負極に用いると、リチウム金属の標準電極電位は最も卑であるために得られる電池の起電力は高くなるが、充電時にデンドライトが発生してセパレータを貫通してしまうために、内部短絡が起こる危険性や、充放電効率が低下するなどの問題があった。そこで、負極材料として黒鉛、非晶質炭素などの炭素質材料や金属酸化物材料が、リチウム金属に次ぐ卑な電位でリチウムを可逆的に吸蔵・放出することができること、及び、充放電サイクル中での容量劣化が少なく、優れた耐久性を示すことから注目されている。この炭素質材料等を負極材料として使用した非水系リチウム二次電池は、正極、負極、セパレータ及び非水系電解液を使用して電池を組立て終った状態では放電状態であるが、組立後に第1サイクル目の充電を行うと、正極中のリチウムは電気化学的に負極炭素質材料の層間にドープされて放電可能な状態になる。このドープされたリチウムは、放電によって脱ドープし、再び正極中に戻り、以後これが繰り返されることになる。
【0003】
【発明が解決しようとする課題】
ところが、実際には電解液の種類により程度の差はあるが、第1サイクルにおけるリチウムのドープ量に対して脱ドープ量は100%とはならずに、両者の間に差を生じる。これは、不可逆容量とよばれ、正極からのリチウムの一部が負極の炭素質材料等の表面ないしは内部で不活性化し、充放電に利用されなくなるものであって、非水系リチウム二次電池ではこの不可逆容量が大きいために電池容量が理論容量よりも低下するという問題があった。
【0004】
このような不可逆容量を低減する目的で、下記特許文献1には蓚酸リチウムを予め正極、負極ないしは電解液中に添加しておき、また下記特許文献2には蟻酸リチウムを予め正極中に添加しておき、それぞれ非水系リチウム二次電池の組立直後の充電時に必要とされるリチウムイオンをこの蓚酸リチウムないしは蟻酸リチウムから供給するようになしたものが開示されているが、電池容量の向上効果が不充分であった。また、下記特許文献3には同様の目的で正極、負極ないしは電解液中に蓚酸アルキルアンモニウム塩を添加するものが開示されているが、電池容量の向上効果が不充分であるばかりか、サイクル特性の低下をもたらすという問題点が存在していた。
【0005】
【特許文献1】
特開平 7−254436号公報(特許請求の範囲、段落[0015]〜[0017])
【特許文献2】
特開平11−339807号公報(特許請求の範囲、段落[0009]〜[0014])
【特許文献3】
特開平 9−283181号公報(特許請求の範囲、段落[0006]〜[0008])
【0006】
そこで、本発明者は上述の従来技術の問題点を解決すべく種々実験を繰り返した結果、添加剤として特定の化学構造式で表されるアルキル炭酸リチウムを正極及び電解液の少なくとも一方に添加すると、得られる非水系リチウム二次電池の不可逆容量が小さくなり、電池の容量のロスが小さくなって高エネルギー密度の電池が得られることを見出し、本発明を完成するに至ったのである。
【0007】
【課題を解決するための手段】
すなわち、本発明は、少なくともリチウムを可逆的に吸蔵・放出する負極材料を有する正極と、リチウムを可逆的に吸蔵・放出する負極材料を有する負極と、非水系電解質とを用いてなる非水系リチウム二次電池において、前記正極及び非水系電解液の少なくとも一方に下記化学構造式(I)又は(II)で表されるアルキル炭酸リチウムを添加したことを特徴とする。
R1−OCOLi (I)
Li−COO−R2−OCOLi (II)
(ただし、Rl及びR2は炭素数が1〜4のアルキル基を示す)
係る場合において、前記アルキル炭酸リチウムの添加量は、前記負極の不可逆容量に相当するリチウム量と同モル数であるか或いはそれ以下であることが好ましい。
【0008】
本発明の非水系リチウム二次電池における有機溶媒としては、周知のカーボネート類、ラクトン類、エーテル類、ケトン類、ニトリル類、アミド類、スルホン系化合物、エステル類、芳香族炭化水素などを用いることができる。これら溶媒の2種類以上を適宜混合して用いてもよい。これらの中では、特にカーボネート類、ラクトン類、エーテル類、ケトン類、ニトリル類、エステル類などが好ましく、カーボネート類が更に好適に用いられる。
【0009】
この有機溶媒の具体例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、γ−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、4−メチル−2−ペンタノン、シクロヘキサノン、アセトニトリル、プロピオニトリル、ジエチルカーボネート(DEC)、ジメチルホルムアミド、スルホラン、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチルなどを挙げることができ、充放電効率を高める点からプロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネートが特に好ましい。
【0010】
又、本発明の非水系リチウム二次電池における電解質としては、周知の過塩素酸リチウム(LiClO)、六フツ化リン酸リチウム(LiPF)、ホウフツ化リチウム(LiBF)、六フツ化砒酸リチウム(LiAsF)、トリフルオロメチルスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム(LiN(CFSO)などのリチウム塩が適宜選択して使用し得る。中でもLiPFを用いるのが好ましく、前記非水溶媒に対する添加量は、0.5〜2.0モル/lとするのが好ましい。
【0011】
更に、電解液には、電極界面の被膜安定化、低被膜抵抗化などの目的で、前記非水系電解液にビニレンカーボネート(VC)、ビニルエチレンカーボネート、トリフルオロメチルビニレンカーボネート、トリフルオロプロピレンカーボネート、無水マレイン酸、無水コハク酸、ヒドロキノン、カテコール、レゾルシンなどを添加してもよい。
【0012】
更に、本発明の非水系リチウム二次電池における正極活物質には、周知のLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわちLiCoO、LiNiO、LiNiyCo(1−y)、Li0.5MnO、LiMnOなどを一種単独もしくは複数種を適宜混合して用いることができる。また、負極活物質には、周知のリチウムを吸蔵・放出することが可能な炭素質物や金属酸化物からなる群から選ばれる少なくとも1種以上との混合物を用い得る。
【0013】
本発明の非水系リチウム二次電池において、電解液や正極中に添加されたアルキル炭酸リチウムは、初回の充電時にこのアルキル炭酸リチウム中のリチウムイオンが負極中にドープされるが、このとき解離したアニオン(アルキル炭酸イオン)の大部分は酸化分解されて炭酸ガスと中性分子に変わり、溶質として作用することはなくなる。したがって、このアルキル炭酸リチウムは、負極の不可逆容量分を補うために利用されるものであるので、その添加量はアルキル炭酸リチウム中のリチウム量が負極の不可逆容量を補うだけの量以下であることが望ましい。アルキル炭酸リチウムの最適な添加量は、負極活物質の量や材質によって変化し、添加量に応じて不可逆容量が減少するが、多すぎると負極にリチウムが析出してしまい、逆に電池の容量が滅少する。したがって、最適なアルキル炭酸リチウムの添加量は実験的に求めて定めることが好ましい。
【0014】
以下、本発明の具体例を実施例及び比較例により説明するが、まず最初に実施例及び比較例に共通の正極板、負極板、電極体、電解液及び電池の製造方法の一例を説明する。
<正極板の作成>
LiCoOからなる正極活物質をアセチレンブラック、グラファイト等の炭素系導電剤(5質量%)と、ポリビニリデンフルオライド(PVdF)よりなる結着剤(3質量%)等を、N−メチルピロリドンからなる有機溶媒に溶解したものを混合して、正極活物質スラリー或いはペーストとする。本発明において正極にアルキル炭酸リチウムを混合する場合は、上述した正極活物質スラリー或いはペーストに所定量混合して作成する。これらの正極活物質スラリー或いはペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により正極芯体(厚みが20μmのアルミニウム箔或いはアルミニウムメッシュ)の両面に均一に塗付して、活物質層を塗布した正極板を形成する。この後、活物質層を塗布した正極板を乾燥機中に通過させて、スラリー或いはペースト作成時に必要であった有機溶媒を除去して乾燥させ、乾燥後にこの正極板をロールプレス機により圧延して、厚みが0.17mmの正極板とする。
【0015】
<負極板の作成>
天然黒鉛よりなる負極活物質、ポリビニリデンフルオライド(PVdF)よりなる結着剤(8質量%)等と、N−メチルピロリドンからなる有機溶媒に溶解したものを混合して、負極活物質スラリー或いはペーストとする。これらの負極活物質スラリー或いはペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により負極芯体(厚みが20μmの銅箔)の両面の全面にわたって均一に塗布して、活物質層を塗布した負極板を形成する。この後、活物質層を塗布した負極板を乾燥機中に通過させて、負極活物質スラリー或いはペースト作成時に必要であった有機溶媒を除去して乾燥させ、乾燥後にこの負極板をロールプレス機により圧延して、厚みが0.14mmの負極板とする。
【0016】
<電極体の作成>
上述のようにして作成した正極板と負極板を、有機溶媒との反応性が低く、かつ安価なポリオレフイン系樹脂からなる微多孔膜(厚みが0.025mmのポリプロピレン)を間にし、かつ、各極板の幅方向の中心線を一致させて重ね合わせる。この後、巻き取り機により巻回し、最外周をテープ止めして渦巻状電極体とする。上述のようにして作成した電極体をアルミラミネートにより構成された外装体にそれぞれ挿入し、次いで、電極体より延出した正極集電タブ、負極集電タブを外装体と共に溶着する。
【0017】
<電解液の作成>
電解液としてエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)をそれぞれ質量比で30/10/60の割合となるように混合した溶媒に1.0M LiPFを溶解させた。この電解液にアルキル炭酸リチウムを混合する場合は、5.0gの電解液にアルキル炭酸リチウムを所定量添加して電解液を作成する。
【0018】
(実施例1)
アルキル炭酸リチウムとして(CHCH−OCO−Li(R1=−CH(CH)を用い、これを5gの上記電解液に0.0016モル溶解した。この電解液を上述のようにして作成された電池の外装体の関口部より注液して初回充電を行い、発生したガスを飛散させた後にシールを行い、リチウム二次電池を作成し、以下に述べる条件で充放電試験を行い、初回充電容量、初回放電容量及び100サイクル充放電時のサイクル特性(容量残存率)を測定した。
(1)初回充放電条件:
充電:定電流0.1It(0.1C)−定電圧4.2V、20hr:25℃
放電:定電流0.1It(0.1C)、終止電圧2.75V:25℃
(2)サイクル特性試験時充放電条件
充電:定電流1It(1C)−定電圧4.2V、3hr:25℃
放電:定電流1It(1C)、終止電圧2.75V:25℃
なお、サイクル試験後の容量残存率は次の式により求めた。
容量残存率(%)=(100サイクル時の放電容量/初回放電容量)×100
使用したアルキル炭酸リチウムの化学構造式及び添加量を表1に、初回充電容量、初回放電容量及びサイクル試験後の容量残存率を表2にそれぞれ他の実施例及び比較例のものとまとめて示した。
【0019】
(実施例2)
アルキル炭酸リチウムとして(CHC−OCO−Li(R1=−C(CH)を用い、これを5gの上記電解液に0.0016モル溶解した。この電解液を使用して実施例1と同様にしてリチウム二次電池を作成し、同様の条件で充放電試験を行った。使用したアルキル炭酸リチウムの化学構造式及び添加量を表1に、初回充電容量、初回放電容量及びサイクル試験後の容量残存率を表2にそれぞれ他の実施例及び比較例のものとまとめて示した。
【0020】
(実施例3)
アルキル炭酸リチウムとしてLi−COO−CHCH−OCO−Li(R2=−CHCH−)を用い、これを5gの上記電解液に、リチウム濃度換算で実施例1に記載のものと同じになるように、半分の0.0008モル溶解した。この電解液を使用して実施例1と同様にしてリチウム二次電池を作成し、同様の条件で充放電試験を行った。使用したアルキル炭酸リチウムの化学構造式及び添加量を表1に、初回充電容量、初回放電容量及びサイクル試験後の容量残存率を表2にそれぞれ他の実施例及び比較例のものとまとめて示した。
【0021】
(実施例4)
アルキル炭酸リチウムとして実施例3と同じLi−COO−CHCH−OCO−Li(R2=−CHCH−)を用い、これを今度は正極活物質中に0.0008モル添加して使用した。この正極及び上記の電解液を使用して実施例1と同様にしてリチウム二次電池を作成し、同様の条件で充放電試験を行った。使用したアルキル炭酸リチウムの化学構造式及び添加量を表1に、初回充電容量、初回放電容量及びサイクル試験後の容量残存率を表2にそれぞれ他の実施例及び比較例のものとまとめて示した。
【0022】
(実施例5)
アルキル炭酸リチウムとして実施例3と同じLi−COO−CHCH−OCO−Li(R2=−CHCH−)を用い、これを5gの上記の電解液中に0.0004モルと正極活物質中に0.0004モル添加して使用した。この正極及び電解液を使用して実施例1と同様にしてリチウム二次電池を作成し、同様の条件で充放電試験を行った。使用したアルキル炭酸リチウムの化学構造式及び添加量を表1に、初回充電容量、初回放電容量及びサイクル試験後の容量残存率を表2にそれぞれ他の実施例及び比較例のものとまとめて示した。
【0023】
(実施例6)
アルキル炭酸リチウムとしてLi−COO−CHCHCH(CH)−OCO−Li(R2=−CHCHCH(CH)−)を用い、これを5gの上記の電解液中に0.0008モル添加して使用した以外は全て実施例1と同様にしてリチウム二次電池を作成し、同様の条件で充放電試験を行った。使用したアルキル炭酸リチウムの化学構造式及び添加量を表1に、初回充電容量、初回放電容量及びサイクル試験後の容量残存率を表2にそれぞれ他の実施例及び比較例のものとまとめて示した。
【0024】
(比較例1)
アルキル炭酸リチウムとしてCHCHCH(CH)CH−OCO−Li(R1=−CH(CH)CHCHCH)を用い、これを5gの上記の電解液中に0.0016モル添加して使用した以外は全て実施例1と同様にしてリチウム二次電池を作成し、同様の条件で充放電試験を行った。使用したアルキル炭酸リチウムの化学構造式及び添加量を表1に、初回充電容量、初回放電容量及びサイクル試験後の容量残存率を表2にそれぞれ他の実施例及び比較例のものとまとめて示した。
【0025】
(比較例2)
アルキル炭酸リチウムとしてLi−COO−(CH−OCO−Li(R2=−(CH−)を用い、これを5gの上記の電解液中に0.0008モル添加添加して使用した以外は全て実施例1と同様にしてリチウム二次電池を作成し、同様の条件で充放電試験を行った。使用したアルキル炭酸リチウムの化学構造式及び添加量を表1に、初回充電容量、初回放電容量及びサイクル試験後の容量残存率を表2にそれぞれ他の実施例及び比較例のものとまとめて示した。
【0026】
(比較例3〜6)
比較例3としては従来例の蟻酸リチウムを、比較例4としては従来例の蓚酸リチウムを、比較例5としては同じく従来例の蓚酸テトラブチルアンモニウムを、それぞれ上述の電解液中に全てリチウムイオン濃度換算で実施例1と同じになるように添加し、また、比較例5としてはアルキル炭酸リチウムを添加せずに上述の電解液をそのまま用い、他の条件は実施例1と同様にしてリチウム二次電池を作成し、同様の条件で充放電試験を行った。使用したアルキル炭酸リチウムの化学構造式及び添加量を表1に、初回充電容量、初回放電容量及びサイクル試験後の容量残存率を表2にそれぞれ他の実施例及び比較例のものとまとめて示した。
【0027】
【表1】

Figure 2004259680
【表2】
Figure 2004259680
【0028】
表1及び表2に示した結果から、実施例1〜6の本発明に属する非水系リチウム二次電池は、初回充電容量が850mAh以上と大きいが、初回放電容量も754mAh以上と大きく、100サイクルの充放電試験後の容量残存率も90%以上と良好な結果を示していることがわかる。それに対し、比較例1及び2では、アルキル基の炭素数が5個と大きいためか、初回充電容量は839〜848mAh程度であるが、初回放電容量は726〜742mAhと実施例1〜6のものよりも小さく、また、100サイクルの充放電試験後の容量残存率も84〜88%と実施例1〜6のものよりも小さくなっている。したがって、添加するアルキル炭酸リチウムにおけるアルキル基の炭素数は4以下が好ましいことが分かる。
【0029】
一方、比較例3〜6においては、比較例3及び6のみ100サイクルの充放電試験後の容量残存率は共に91%と実施例1〜6のものと同程度の値を示しているが、比較例4及び5の100サイクルの充放電試験後の容量残存率は65〜87%と大幅に小さくなっており、加えて、初回放電容量は731〜744mAhと実施例1〜6のものと比すると大幅に小さくなっている。したがって、本願発明は、所定のアルキル炭酸リチウムを電解液及び正極の少なくとも一方に添加することにより、従来の添加剤を使用した場合或いは添加剤を使用しない場合と比すると優れた効果を奏することが分かる。
【0030】
なお、実施例1〜6では、アルキル炭酸リチウムの添加量をリチウム換算で全て等しい条件で行ったが、このアルキル炭酸リチウム添加の目的は非水系リチウム二次電池の不可逆容量の低下にあるから、その最適な添加量ないしは添加濃度は、電池の大きさ、活物質の種類及び量、電解液の種類及び量及び添加箇所によっても変化するが、製造される電池の公称容量毎に実験的に最適な添加量ないしは添加濃度を決定すればよい。更に、添加するアルキル炭酸リチウムのアルキル基は、炭素数が1以上であれば所定の作用・効果を奏することが確認されている。
【0031】
また、上記実施例1〜6においては、上述の特定の正極板、負極板、電極体、及び電解液を用いて非水系リチウム二次電池を製造して各種の測定を行った例を示したが、本発明は、これらのものに限定されるべきものではなく、その動作原理上、従来から非水系二次電池用として使用し得るとされているものを用いても同様の作用・効果を奏するものであることは当業者にとり自明であろう。さらに、電解液としてポリマーを含むゲル状非水電解質を用いたポリマー電池であっても同様の効果が得られる。
【0032】
【発明の効果】
以上述べたとおり、本発明によれば不可逆容量が小さく、充放電特性及び耐久性の優れた非水系リチウム二次電池が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous lithium secondary battery, and more particularly to a non-aqueous lithium secondary battery having a small irreversible capacity (difference between an initial charge capacity and an initial discharge capacity) and excellent charge / discharge characteristics and durability.
[0002]
[Prior art]
In non-aqueous lithium secondary batteries, when metallic lithium is used for the negative electrode, the standard electrode potential of lithium metal is the lowest and the resulting electromotive force of the battery increases, but dendrites are generated during charging and penetrate the separator. Therefore, there are problems such as a risk of occurrence of an internal short circuit and a reduction in charge / discharge efficiency. Therefore, a carbonaceous material such as graphite or amorphous carbon or a metal oxide material as a negative electrode material can reversibly occlude and release lithium at a lower potential next to lithium metal, and during a charge / discharge cycle. Owing to its low capacity degradation and excellent durability. A non-aqueous lithium secondary battery using this carbonaceous material or the like as a negative electrode material is in a discharged state after the battery is assembled using a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, When the charge in the cycle is performed, lithium in the positive electrode is electrochemically doped between the layers of the negative electrode carbonaceous material and becomes in a dischargeable state. This doped lithium is undoped by the discharge and returns to the positive electrode again, and this is repeated thereafter.
[0003]
[Problems to be solved by the invention]
However, in practice, although there is a difference depending on the type of the electrolytic solution, the undoped amount is not 100% with respect to the doping amount of lithium in the first cycle, but a difference is generated between the two. This is called irreversible capacity, in which part of lithium from the positive electrode is deactivated on the surface or inside of the carbonaceous material of the negative electrode, and is not used for charging and discharging.In non-aqueous lithium secondary batteries, Since the irreversible capacity is large, there is a problem that the battery capacity is lower than the theoretical capacity.
[0004]
For the purpose of reducing such irreversible capacity, lithium oxalate is added to the positive electrode, the negative electrode or the electrolytic solution in advance in Patent Document 1 below, and lithium formate is added to the positive electrode in advance in Patent Document 2 below. It should be noted that although lithium ions required at the time of charging immediately after the assembly of the nonaqueous lithium secondary battery are supplied from this lithium oxalate or lithium formate are disclosed, the effect of improving the battery capacity is disclosed. It was not enough. Patent Literature 3 below discloses a positive electrode, a negative electrode, or a solution in which an alkyl ammonium oxalate is added to an electrolytic solution for the same purpose, but the effect of improving the battery capacity is not sufficient, and the cycle characteristics are not sufficient. There is a problem that this leads to a decrease in
[0005]
[Patent Document 1]
JP-A-7-254436 (Claims, paragraphs [0015] to [0017])
[Patent Document 2]
JP-A-11-339807 (Claims, paragraphs [0009] to [0014])
[Patent Document 3]
JP-A-9-283181 (Claims, paragraphs [0006] to [0008])
[0006]
Therefore, the present inventor has repeated various experiments to solve the above-described problems of the conventional art, and as a result, when adding lithium alkyl carbonate represented by a specific chemical structural formula as an additive to at least one of the positive electrode and the electrolyte solution, The present inventors have found that the irreversible capacity of the obtained non-aqueous lithium secondary battery is reduced, the loss of battery capacity is reduced, and a battery with a high energy density can be obtained, and the present invention has been completed.
[0007]
[Means for Solving the Problems]
That is, the present invention provides a positive electrode having a negative electrode material that reversibly stores and releases lithium, a negative electrode having a negative electrode material that reversibly stores and releases lithium, and a nonaqueous lithium using a nonaqueous electrolyte. The secondary battery is characterized in that lithium alkyl carbonate represented by the following chemical structural formula (I) or (II) is added to at least one of the positive electrode and the non-aqueous electrolyte.
R1-OCO 2 Li (I)
Li-CO 2 O-R2- OCO 2 Li (II)
(However, R1 and R2 represent an alkyl group having 1 to 4 carbon atoms.)
In such a case, the amount of addition of the lithium alkyl carbonate is preferably equal to or less than the molar amount of lithium corresponding to the irreversible capacity of the negative electrode.
[0008]
As the organic solvent in the non-aqueous lithium secondary battery of the present invention, well-known carbonates, lactones, ethers, ketones, nitriles, amides, sulfone compounds, esters, aromatic hydrocarbons and the like may be used. Can be. Two or more of these solvents may be appropriately mixed and used. Among these, carbonates, lactones, ethers, ketones, nitriles, esters, and the like are particularly preferable, and carbonates are more preferably used.
[0009]
Specific examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate, γ-butyrolactone, γ-valerolactone, γ-dimethoxyethane, tetrahydrofuran, anisole, 1,4-dioxane, Methyl-2-pentanone, cyclohexanone, acetonitrile, propionitrile, diethyl carbonate (DEC), dimethylformamide, sulfolane, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, ethyl propionate, and the like, A cyclic carbonate such as propylene carbonate (PC) and ethylene carbonate (EC) is particularly preferable from the viewpoint of increasing the charge / discharge efficiency.
[0010]
Examples of the electrolyte in the non-aqueous lithium secondary battery of the present invention include well-known lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and arsenic hexafluoride. A lithium salt such as lithium (LiAsF 6 ), lithium trifluoromethylsulfonate (LiCF 3 SO 3 ), and lithium bistrifluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) can be appropriately selected and used. Among them, LiPF 6 is preferably used, and the amount added to the non-aqueous solvent is preferably 0.5 to 2.0 mol / l.
[0011]
Further, in the electrolytic solution, vinylene carbonate (VC), vinyl ethylene carbonate, trifluoromethyl vinylene carbonate, trifluoropropylene carbonate, Maleic anhydride, succinic anhydride, hydroquinone, catechol, resorcin and the like may be added.
[0012]
Further, the positive electrode active material in the non-aqueous lithium secondary battery of the present invention includes a lithium transition metal composite oxide represented by a well-known Li X MO 2 (where M is at least one of Co, Ni, and Mn). A product such as LiCoO 2 , LiNiO 2 , LiNiyCo (1-y) O 2 , Li 0.5 MnO 2 , and LiMnO 2 can be used singly or as a mixture of two or more. Further, as the negative electrode active material, a mixture with at least one or more kinds selected from the group consisting of carbonaceous materials and metal oxides capable of inserting and extracting lithium can be used.
[0013]
In the non-aqueous lithium secondary battery of the present invention, the lithium alkyl carbonate added to the electrolyte or the positive electrode is doped with lithium ions in the lithium alkyl carbonate during the first charge, but dissociated at this time. Most of the anions (alkyl carbonate ions) are oxidatively decomposed into carbon dioxide and neutral molecules, and no longer act as solutes. Therefore, since this lithium alkyl carbonate is used to compensate for the irreversible capacity of the negative electrode, the amount of lithium carbonate added is not more than the amount of lithium in the lithium alkyl carbonate sufficient to compensate for the irreversible capacity of the negative electrode. Is desirable. The optimum addition amount of lithium alkyl carbonate varies depending on the amount and material of the negative electrode active material, and the irreversible capacity decreases according to the addition amount. However, if it is too large, lithium is deposited on the negative electrode, and conversely, the capacity of the battery decreases. Diminishes. Therefore, it is preferable to determine the optimum amount of lithium alkyl carbonate to be obtained experimentally.
[0014]
Hereinafter, specific examples of the present invention will be described with reference to Examples and Comparative Examples. First, an example of a method of manufacturing a positive electrode plate, a negative electrode plate, an electrode body, an electrolyte, and a battery common to Examples and Comparative Examples will be described. .
<Preparation of positive electrode plate>
A positive electrode active material composed of LiCoO 2 is obtained by converting a carbon-based conductive agent (5% by mass) such as acetylene black or graphite and a binder (3% by mass) composed of polyvinylidene fluoride (PVdF) from N-methylpyrrolidone. The positive electrode active material slurry or paste is mixed by mixing those dissolved in the organic solvent. In the present invention, when lithium alkyl carbonate is mixed with the positive electrode, a predetermined amount is mixed with the above-mentioned positive electrode active material slurry or paste to prepare. These positive electrode active material slurries or pastes are applied to both surfaces of a positive electrode core (a 20 μm-thick aluminum foil or aluminum mesh) using a die coater, a doctor blade or the like in the case of a slurry, or a roller coating method in the case of a paste. A positive electrode plate is formed by applying the active material layer uniformly. Thereafter, the positive electrode plate coated with the active material layer is passed through a dryer to remove the organic solvent necessary for preparing the slurry or paste and dried. After drying, the positive electrode plate is rolled by a roll press. Thus, a positive electrode plate having a thickness of 0.17 mm is obtained.
[0015]
<Preparation of negative electrode plate>
A negative active material made of natural graphite, a binder (8% by mass) made of polyvinylidene fluoride (PVdF), and the like dissolved in an organic solvent made of N-methylpyrrolidone are mixed, and a negative active material slurry or Paste. These negative electrode active material slurries or pastes are uniformly spread over both surfaces of a negative electrode core (a copper foil having a thickness of 20 μm) by using a die coater, a doctor blade or the like in the case of a slurry, or by using a roller coating method in the case of a paste. To form a negative electrode plate coated with an active material layer. Thereafter, the negative electrode plate coated with the active material layer is passed through a dryer to remove the organic solvent necessary for preparing the negative electrode active material slurry or paste, and dried. After drying, the negative electrode plate is roll-pressed. To form a negative electrode plate having a thickness of 0.14 mm.
[0016]
<Creation of electrode body>
The positive electrode plate and the negative electrode plate prepared as described above are sandwiched between a microporous film (polypropylene having a thickness of 0.025 mm) having low reactivity with an organic solvent and made of an inexpensive polyolefin resin. The electrode plates are overlapped so that their center lines in the width direction are matched. Thereafter, the coil is wound by a winder, and the outermost periphery is taped to form a spiral electrode body. The electrode bodies prepared as described above are inserted into the exterior body made of aluminum laminate, and then the positive electrode current collection tab and the negative electrode current collection tab extending from the electrode body are welded together with the exterior body.
[0017]
<Preparation of electrolyte>
1.0 M LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC) were mixed at a mass ratio of 30/10/60 as an electrolytic solution. When lithium alkyl carbonate is mixed with this electrolytic solution, a predetermined amount of lithium alkyl carbonate is added to 5.0 g of the electrolytic solution to prepare an electrolytic solution.
[0018]
(Example 1)
(CH 3 ) 2 CH—OCO 2 —Li (R1 = —CH (CH 3 ) 2 ) was used as lithium alkyl carbonate, and this was dissolved in 5 g of the above electrolytic solution in an amount of 0.0016 mol. This electrolyte is injected for the first time by injecting it from the entrance of the battery exterior body created as described above, and sealing is performed after the generated gas is scattered, and a lithium secondary battery is created. A charge / discharge test was performed under the conditions described in (1) above, and the initial charge capacity, the initial discharge capacity, and the cycle characteristics (capacity remaining rate) during 100 cycles of charge / discharge were measured.
(1) Initial charge / discharge conditions:
Charge: constant current 0.1 It (0.1 C) -constant voltage 4.2 V, 20 hr: 25 ° C.
Discharge: constant current 0.1 It (0.1 C), final voltage 2.75 V: 25 ° C.
(2) Charge / discharge conditions during cycle characteristic test Charge: constant current 1 It (1 C) -constant voltage 4.2 V, 3 hr: 25 ° C.
Discharge: constant current 1 It (1 C), end voltage 2.75 V: 25 ° C.
The capacity remaining rate after the cycle test was determined by the following equation.
Capacity remaining rate (%) = (discharge capacity at 100 cycles / initial discharge capacity) × 100
Table 1 shows the chemical structural formula and the amount of lithium alkyl carbonate used, and Table 2 shows the initial charge capacity, the initial discharge capacity, and the residual capacity ratio after the cycle test together with those of the other examples and comparative examples. Was.
[0019]
(Example 2)
(CH 3 ) 3 C—OCO 2 —Li (R1 = —C (CH 3 ) 3 ) was used as lithium alkyl carbonate, and this was dissolved in 5 g of the above electrolytic solution in an amount of 0.0016 mol. Using this electrolyte, a lithium secondary battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions. Table 1 shows the chemical structural formula and the amount of lithium alkyl carbonate used, and Table 2 shows the initial charge capacity, the initial discharge capacity, and the residual capacity ratio after the cycle test together with those of the other examples and comparative examples. Was.
[0020]
(Example 3)
Li-CO 2 O—CH 2 CH 2 —OCO 2 —Li (R2 = —CH 2 CH 2 —) was used as lithium alkyl carbonate, and this was described in Example 1 in terms of lithium concentration in 5 g of the electrolytic solution. Dissolved half of 0.0008 mole to be the same as Using this electrolyte, a lithium secondary battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions. Table 1 shows the chemical structural formula and the amount of lithium alkyl carbonate used, and Table 2 shows the initial charge capacity, the initial discharge capacity, and the residual capacity ratio after the cycle test together with those of the other examples and comparative examples. Was.
[0021]
(Example 4)
Li-CO 2 O—CH 2 CH 2 —OCO 2 —Li (R2 = —CH 2 CH 2 —) as in Example 3 was used as lithium alkyl carbonate, and this was added to the positive electrode active material in an amount of 0.0008 mol. Used in addition. Using this positive electrode and the above electrolyte, a lithium secondary battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions. Table 1 shows the chemical structural formula and the amount of lithium alkyl carbonate used, and Table 2 shows the initial charge capacity, the initial discharge capacity, and the residual capacity ratio after the cycle test together with those of the other examples and comparative examples. Was.
[0022]
(Example 5)
The same Li-CO 2 O-CH 2 CH 2 Example 3 as alkyl lithium carbonate -OCO 2 -Li (R2 = -CH 2 CH 2 -) using a 0.0004 it in the above electrolytic solution 5g Mole and 0.0004 mole added to the positive electrode active material. Using this positive electrode and the electrolytic solution, a lithium secondary battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions. Table 1 shows the chemical structural formula and the amount of lithium alkyl carbonate used, and Table 2 shows the initial charge capacity, the initial discharge capacity, and the residual capacity ratio after the cycle test together with those of the other examples and comparative examples. Was.
[0023]
(Example 6)
As the alkyl lithium carbonate Li-CO 2 O-CH 2 CH 2 CH (CH 3) -OCO 2 -Li (R2 = -CH 2 CH 2 CH (CH 3) -) using which the above electrolytic solution of 5g A lithium secondary battery was prepared in the same manner as in Example 1 except that 0.0008 mol of the lithium secondary battery was used, and a charge / discharge test was performed under the same conditions. Table 1 shows the chemical structural formula and the amount of lithium alkyl carbonate used, and Table 2 shows the initial charge capacity, the initial discharge capacity, and the residual capacity ratio after the cycle test together with those of the other examples and comparative examples. Was.
[0024]
(Comparative Example 1)
CH 3 CH 2 CH 2 (CH 3 ) CH—OCO 2 —Li (R1 = —CH (CH 3 ) CH 2 CH 2 CH 3 ) was used as lithium alkyl carbonate, and 0% was added to 5 g of the above electrolyte. A lithium secondary battery was prepared in the same manner as in Example 1 except that .0016 mol was used, and a charge / discharge test was performed under the same conditions. Table 1 shows the chemical structural formula and the amount of lithium alkyl carbonate used, and Table 2 shows the initial charge capacity, the initial discharge capacity, and the residual capacity ratio after the cycle test together with those of the other examples and comparative examples. Was.
[0025]
(Comparative Example 2)
Li-CO 2 O— (CH 2 ) 5 —OCO 2 —Li (R 2 = — (CH 2 ) 5 —) was used as lithium alkyl carbonate, and 0.0008 mol of this was added to 5 g of the above electrolyte. A lithium secondary battery was prepared in the same manner as in Example 1 except that the battery was used before being subjected to a charge / discharge test under the same conditions. Table 1 shows the chemical structural formula and the amount of lithium alkyl carbonate used, and Table 2 shows the initial charge capacity, the initial discharge capacity, and the residual capacity ratio after the cycle test together with those of the other examples and comparative examples. Was.
[0026]
(Comparative Examples 3 to 6)
Comparative Example 3 was a conventional lithium formate, Comparative Example 4 was a conventional lithium oxalate, and Comparative Example 5 was a conventional tetrabutylammonium oxalate. In the same manner as in Example 1, the same electrolyte solution was used as in Example 1. In Comparative Example 5, the above-mentioned electrolyte solution was used without adding lithium alkyl carbonate, and the other conditions were the same as in Example 1. A secondary battery was prepared, and a charge / discharge test was performed under the same conditions. Table 1 shows the chemical structural formula and the amount of lithium alkyl carbonate used, and Table 2 shows the initial charge capacity, the initial discharge capacity, and the residual capacity ratio after the cycle test together with those of the other examples and comparative examples. Was.
[0027]
[Table 1]
Figure 2004259680
[Table 2]
Figure 2004259680
[0028]
From the results shown in Tables 1 and 2, the nonaqueous lithium secondary batteries belonging to the present invention of Examples 1 to 6 have a large initial charge capacity of 850 mAh or more, but also have a large initial discharge capacity of 754 mAh or more, and have 100 cycles. It can be seen that the residual capacity ratio after the charge / discharge test was 90% or more, indicating a good result. On the other hand, in Comparative Examples 1 and 2, the initial charge capacity is about 839 to 848 mAh, but the initial discharge capacity is 726 to 742 mAh and that of Examples 1 to 6 probably because the carbon number of the alkyl group is as large as 5. In addition, the capacity remaining rate after a 100-cycle charge / discharge test is also 84 to 88%, which is smaller than those of Examples 1 to 6. Therefore, it is understood that the carbon number of the alkyl group in the lithium alkyl carbonate to be added is preferably 4 or less.
[0029]
On the other hand, in Comparative Examples 3 to 6, only the comparative examples 3 and 6 showed a residual capacity ratio of 91% after a 100-cycle charge / discharge test, which is almost the same value as those in Examples 1 to 6. The capacity remaining rates after the 100-cycle charge / discharge test of Comparative Examples 4 and 5 were significantly reduced to 65 to 87%, and the initial discharge capacity was 731 to 744 mAh, which was lower than those of Examples 1 to 6. Then it is much smaller. Therefore, the invention of the present application can exhibit excellent effects as compared with the case where the conventional additive is used or the case where the additive is not used, by adding the predetermined lithium alkyl carbonate to at least one of the electrolyte solution and the positive electrode. I understand.
[0030]
In addition, in Examples 1 to 6, the addition amount of lithium alkyl carbonate was carried out under the same condition in terms of lithium, but the purpose of the addition of lithium alkyl carbonate was to decrease the irreversible capacity of the nonaqueous lithium secondary battery. The optimum addition amount or concentration varies depending on the size of the battery, the type and amount of the active material, the type and amount of the electrolytic solution, and the location of addition, but is experimentally optimal for each nominal capacity of the manufactured battery. What is necessary is just to determine the amount or the concentration of addition. Further, it has been confirmed that the alkyl group of the lithium alkyl carbonate to be added exhibits a predetermined action and effect when the number of carbon atoms is 1 or more.
[0031]
Further, in Examples 1 to 6, the specific positive electrode plate, the negative electrode plate, the electrode body, and an example in which a non-aqueous lithium secondary battery was manufactured using the electrolytic solution and various measurements were performed. However, the present invention should not be limited to these, and the same operation and effect can be obtained by using a conventional one that can be used for a non-aqueous secondary battery due to its operation principle. It will be obvious to those skilled in the art that it plays. Further, a similar effect can be obtained even in a polymer battery using a gelled non-aqueous electrolyte containing a polymer as an electrolytic solution.
[0032]
【The invention's effect】
As described above, according to the present invention, a non-aqueous lithium secondary battery having a small irreversible capacity and excellent charge / discharge characteristics and durability can be obtained.

Claims (2)

少なくともリチウムを可逆的に吸蔵・放出する正極材料を有する正極と、リチウムを可逆的に吸蔵・放出する負極材料を有する負極と、非水系電解液とを備えた非水系リチウム二次電池において、前記正極及び電解液の少なくとも一方に下記化学構造式(I)又は(II)で表されるアルキル炭酸リチウムが添加されていることを特徴とする非水系リチウム二次電池。
R1−OCOLi (I)
Li−COO−R2−OCOLi (II)
(ただし、Rl及びR2は炭素数が1〜4のアルキル基を示す。)
In a non-aqueous lithium secondary battery including at least a positive electrode having a positive electrode material that reversibly occludes and releases lithium, a negative electrode having a negative electrode material that reversibly occludes and releases lithium, and a non-aqueous electrolyte solution, A non-aqueous lithium secondary battery characterized in that lithium alkyl carbonate represented by the following chemical structural formula (I) or (II) is added to at least one of the positive electrode and the electrolytic solution.
R1-OCO 2 Li (I)
Li-CO 2 O-R2- OCO 2 Li (II)
(However, R1 and R2 represent an alkyl group having 1 to 4 carbon atoms.)
前記アルキル炭酸リチウムの添加量は、前記負極の不可逆容量に相当するリチウム量と同モル数以下であることを特徴とする請求項1に記載の非水系リチウム二次電池。2. The non-aqueous lithium secondary battery according to claim 1, wherein an addition amount of the lithium alkyl carbonate is equal to or less than a mole number of lithium corresponding to an irreversible capacity of the negative electrode. 3.
JP2003051942A 2003-02-27 2003-02-27 Non-aqueous lithium secondary battery Expired - Lifetime JP4270904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051942A JP4270904B2 (en) 2003-02-27 2003-02-27 Non-aqueous lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051942A JP4270904B2 (en) 2003-02-27 2003-02-27 Non-aqueous lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004259680A true JP2004259680A (en) 2004-09-16
JP4270904B2 JP4270904B2 (en) 2009-06-03

Family

ID=33116962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051942A Expired - Lifetime JP4270904B2 (en) 2003-02-27 2003-02-27 Non-aqueous lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4270904B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108498A (en) * 2009-11-18 2011-06-02 Hitachi Maxell Ltd Positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and device including nonaqueous secondary battery
US20120301784A1 (en) * 2011-05-24 2012-11-29 Akira Yano Nonaqueous secondary battery
JP2012243485A (en) * 2011-05-18 2012-12-10 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
WO2015134783A1 (en) * 2014-03-05 2015-09-11 A123 Systems, LLC Multivalent metal salts for lithium ion cells having oxygen containing electrode active materials
JP2021157959A (en) * 2020-03-27 2021-10-07 Tdk株式会社 Positive electrode and lithium ion secondary battery
US11387052B2 (en) * 2016-01-22 2022-07-12 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108498A (en) * 2009-11-18 2011-06-02 Hitachi Maxell Ltd Positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and device including nonaqueous secondary battery
JP2012243485A (en) * 2011-05-18 2012-12-10 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
US20120301784A1 (en) * 2011-05-24 2012-11-29 Akira Yano Nonaqueous secondary battery
JP2012243696A (en) * 2011-05-24 2012-12-10 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
WO2015134783A1 (en) * 2014-03-05 2015-09-11 A123 Systems, LLC Multivalent metal salts for lithium ion cells having oxygen containing electrode active materials
GB2538446A (en) * 2014-03-05 2016-11-16 A123 Systems Llc Multivalent metal salts for lithium ion cells having oxygen containing electrode active materials
US11387052B2 (en) * 2016-01-22 2022-07-12 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
JP2021157959A (en) * 2020-03-27 2021-10-07 Tdk株式会社 Positive electrode and lithium ion secondary battery
JP7279675B2 (en) 2020-03-27 2023-05-23 Tdk株式会社 Positive electrode, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP4270904B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
US7087349B2 (en) Organic electrolytic solution and lithium secondary battery employing the same
JP7233801B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery containing the same
US20110200886A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP2004134261A (en) Non-aqueous electrolyte secondary battery
JP2021501978A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery containing it
JP2009129721A (en) Non-aqueous secondary battery
JP2015170542A (en) Nonaqueous electrolyte secondary battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
US20030068555A1 (en) Non-aqueous electrolyte secondary battery
JP6820517B2 (en) Non-aqueous electrolyte secondary battery
JP6191602B2 (en) Lithium ion secondary battery
CN101483262A (en) Battery
JPH07254436A (en) Lithium secondary battery and manufacture thereof
JP4219187B2 (en) Non-aqueous lithium secondary battery
JP2009081067A (en) Non-aqueous secondary battery
JP4315705B2 (en) Non-aqueous lithium secondary battery
JP2000090980A (en) Lithium secondary battery
JP4270904B2 (en) Non-aqueous lithium secondary battery
US20190260080A1 (en) Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same
JP2011040333A (en) Nonaqueous electrolyte secondary battery
JPH10255762A (en) Lithium battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP2010186716A (en) Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4270904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

EXPY Cancellation because of completion of term