JP2012243696A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2012243696A
JP2012243696A JP2011115348A JP2011115348A JP2012243696A JP 2012243696 A JP2012243696 A JP 2012243696A JP 2011115348 A JP2011115348 A JP 2011115348A JP 2011115348 A JP2011115348 A JP 2011115348A JP 2012243696 A JP2012243696 A JP 2012243696A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium
mixture layer
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011115348A
Other languages
Japanese (ja)
Other versions
JP5629645B2 (en
Inventor
Akira Yano
亮 矢野
Yuji Sasaki
勇治 佐々木
Katsunori Kojima
克典 児島
Fusaji Kita
房次 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2011115348A priority Critical patent/JP5629645B2/en
Priority to US13/478,506 priority patent/US20120301784A1/en
Publication of JP2012243696A publication Critical patent/JP2012243696A/en
Application granted granted Critical
Publication of JP5629645B2 publication Critical patent/JP5629645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery capable of exerting excellent charge/discharge cycle characteristics even if charged at high voltage.SOLUTION: A nonaqueous secondary battery includes: a positive electrode having a mixture layer containing a lithium-containing composite oxide as an active material; a negative electrode; a separator; and a nonaqueous electrolyte. In the nonaqueous secondary battery, a surface of the active material layer or a surface of the mixture layer is covered with a polyvalent organic metal salt, specifically (favorably) with a fluorine-containing polyvalent organic lithium salt.

Description

本発明は、高電圧に充電しても優れた充放電サイクル特性を発揮し得る非水二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery that can exhibit excellent charge / discharge cycle characteristics even when charged to a high voltage.

近年、携帯電話、ノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型・軽量でかつ高容量の二次電池が必要とされるようになってきた。現在、この要求に応え得る高容量二次電池として、正極活物質にLiCoOなどのリチウム含有複合酸化物を用い、負極活物質に炭素系材料などを用いた非水二次電池(リチウムイオン二次電池)が商品化されている。そして、非水二次電池の適用機器の更なる発達に伴って、例えば、非水二次電池の更なる高容量化・高エネルギー密度化が求められている。 In recent years, with the development of portable electronic devices such as mobile phones and laptop computers, and the practical application of electric vehicles, secondary batteries with small size, light weight and high capacity have been required. Currently, as a high-capacity secondary battery capable of meeting this requirement, a non-aqueous secondary battery (lithium ion secondary battery) using a lithium-containing composite oxide such as LiCoO 2 as a positive electrode active material and a carbon-based material as a negative electrode active material. Secondary battery) has been commercialized. And with the further development of the application apparatus of a non-aqueous secondary battery, for example, further higher capacity and higher energy density of a non-aqueous secondary battery are required.

電池の高エネルギー密度化を図るには、例えば、高容量の正極活物質を用いる方法や、高電位で作動できる正極活物質を用いる方法が考えられる。現在、後者の観点から、終止電圧を高めたリチウムコバルト酸化物や、高電位作動タイプのスピネル型リチウムマンガン酸化物が検討されている。   In order to increase the energy density of the battery, for example, a method using a positive electrode active material having a high capacity or a method using a positive electrode active material capable of operating at a high potential can be considered. Currently, from the latter point of view, lithium cobalt oxide having a higher end voltage and spinel type lithium manganese oxide of high potential operation type are being studied.

例えば、LiCoOは、通常、リチウム基準で4.3V以下の電圧で充電して使用されるが、LiCoOのCoの一部を他の金属元素で置換した酸化物では、4.4V以上の電圧でも充放電が可能になることが報告されている。また、例えば、一般式LiNiMn2−x−y(ただし、Mは、NiおよびMn以外の少なくとも1種の遷移金属元素で、0.4≦x≦0.6、0≦y≦0.1)で表されるリチウム含有複合酸化物では、リチウム基準で4.5V以上の電位で作動し得ることが確認されている(特許文献1、2など)。 For example, LiCoO 2 is usually used by charging at a voltage of 4.3 V or less on the basis of lithium, but in an oxide in which a part of Co of LiCoO 2 is replaced with another metal element, 4.4 V or more is used. It has been reported that charging and discharging are possible even with voltage. Further, for example, the general formula LiNi x M y Mn 2-x -y O 4 ( provided that, M is at least one transition metal element other than Ni and Mn, 0.4 ≦ x ≦ 0.6,0 ≦ It has been confirmed that the lithium-containing composite oxide represented by y ≦ 0.1) can operate at a potential of 4.5 V or more on the basis of lithium (Patent Documents 1 and 2).

特開平9−147867号公報JP-A-9-147867 特開平11−73962号公報Japanese Patent Application Laid-Open No. 11-73962

しかしながら、一般式LiNiMn2−x−yで示される前記のリチウム含有複合酸化物や、その他の正極活物質を用いて電池を構成した場合、充放電を行うと、正極活物質と非水電解質とが反応して充放電サイクル特性が低下する虞がある。このような充放電サイクル特性の低下は、Li基準で4.4V以上に充電した場合により生じやすく、Li基準で4.5V以上に充電した場合に更に生じやすくなり、Li基準で5V以上に充電した場合に特に顕著となる。 However, the general formula LiNi x M y Mn 2-x -y O 4 wherein the lithium-containing composite oxide represented by or, in the case of constituting the batteries using other positive electrode active material, the charging and discharging, the positive electrode active There is a possibility that the charge / discharge cycle characteristics may deteriorate due to a reaction between the substance and the non-aqueous electrolyte. Such deterioration of the charge / discharge cycle characteristics is more likely to occur when charged to 4.4 V or higher on the Li basis, more likely to occur when charged to 4.5 V or higher on the Li basis, and charged to 5 V or higher on the Li basis. This is particularly noticeable.

本発明は前記事情に鑑みてなされたものであり、その目的は、高電圧で充電しても優れた充放電サイクル特性を発揮し得る非水二次電池を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the non-aqueous secondary battery which can exhibit the charging / discharging cycling characteristics which were excellent even if it charged by the high voltage.

前記目的を達成し得た本発明の非水二次電池は、リチウム含有複合酸化物を活物質として含有する合剤層を有する正極、負極、セパレータおよび非水電解質を備えた非水二次電池であって、前記活物質の表面が、多価の有機金属塩で被覆されたことを特徴とするものである。   The non-aqueous secondary battery of the present invention that has achieved the above object is a non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte having a mixture layer containing a lithium-containing composite oxide as an active material. The surface of the active material is coated with a polyvalent organometallic salt.

また、本発明の非水二次電池の前記とは別の形態は、リチウム含有複合酸化物を活物質として含有する合剤層を有する正極、負極、セパレータおよび非水電解質を備えた非水二次電池であって、前記合剤層の表面が、多価の有機金属塩で被覆されたことを特徴とするものである。   Further, the non-aqueous secondary battery according to the present invention is different from the above in that the non-aqueous secondary battery includes a positive electrode having a mixture layer containing a lithium-containing composite oxide as an active material, a negative electrode, a separator, and a non-aqueous electrolyte. The secondary battery is characterized in that the surface of the mixture layer is coated with a polyvalent organic metal salt.

本発明によれば、高電圧で充電しても優れた充放電サイクル特性を発揮し得る非水二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous secondary battery that can exhibit excellent charge / discharge cycle characteristics even when charged at a high voltage.

本発明の非水二次電池は、リチウム含有複合酸化物を活物質として含有する合剤層を有する正極、負極、セパレータおよび非水電解質を備えた非水二次電池であって、前記活物質の表面または前記合剤層の表面が、多価の有機金属塩で被覆されたものである。   The nonaqueous secondary battery of the present invention is a nonaqueous secondary battery comprising a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte having a mixture layer containing a lithium-containing composite oxide as an active material, the active material Or the surface of the mixture layer is coated with a polyvalent organic metal salt.

正極活物質の表面または正極合剤層の表面が多価の有機金属塩で被覆された正極を有する非水二次電池では、高電圧(例えば、Li基準で4.3V以上、好ましくは4.4V以上、より好ましくは4.5V以上、最も好ましくは5V以上)に充電しても、充放電サイクル特性の低下を抑制することができる。   In a non-aqueous secondary battery having a positive electrode in which the surface of the positive electrode active material or the surface of the positive electrode mixture layer is coated with a polyvalent organic metal salt, a high voltage (for example, 4.3 V or more on a Li basis, preferably 4. Even if it is charged to 4 V or higher, more preferably 4.5 V or higher, and most preferably 5 V or higher, deterioration of charge / discharge cycle characteristics can be suppressed.

多価の有機金属塩は、1価の有機金属塩、例えば、LiPFやLiBFなど通常用いられる電解質塩に比べて、正極活物質表面や正極合剤層表面に対する被着性が高いため、正極合剤層内において、正極活物質表面や正極合剤層表面を良好に被覆して、正極活物質と非水電解質との反応を十分に抑制することができ、これにより、前記のように電池を高電圧に充電しても、充放電サイクル特性の低下を抑えることができると推測される。 Since the polyvalent organometallic salt is higher in adhesion to the surface of the positive electrode active material or the surface of the positive electrode mixture layer than a monovalent organic metal salt, for example, a commonly used electrolyte salt such as LiPF 6 or LiBF 4 , In the positive electrode mixture layer, the surface of the positive electrode active material and the surface of the positive electrode mixture layer can be satisfactorily covered to sufficiently suppress the reaction between the positive electrode active material and the non-aqueous electrolyte. It is presumed that even if the battery is charged to a high voltage, a decrease in charge / discharge cycle characteristics can be suppressed.

正極活物質と非水電解質との反応抑制の点からは、正極活物質表面を多価の有機金属塩で被覆し、更に正極合剤層表面を多価の有機金属塩で被覆することが好ましい。すなわち、正極合剤層の全体に多価の有機金属塩を含有させ、かつ、正極合剤層の内部における多価の有機金属塩の含有割合よりも、正極合剤層の表面部における多価の有機金属塩の含有割合を多くすることが好ましい。   From the viewpoint of suppressing the reaction between the positive electrode active material and the non-aqueous electrolyte, it is preferable to coat the surface of the positive electrode active material with a polyvalent organic metal salt and further coat the surface of the positive electrode mixture layer with a polyvalent organic metal salt. . That is, a polyvalent organometallic salt is contained in the entire positive electrode mixture layer, and the polyvalent organic metal salt content in the surface portion of the positive electrode mixture layer is larger than the content ratio of the polyvalent organic metal salt in the positive electrode mixture layer. It is preferable to increase the content of the organometallic salt.

本明細書でいう「正極合剤層の表面部」とは、正極合剤層の表面から10μmまでの深さの範囲を指しており、また、「正極合剤層の内部」とは、前記表面部よりも内側、すなわち、正極合剤層が集電体上に形成されている場合には、前記表面部よりも集電体側の合剤の部分を意味している。   As used herein, the “surface portion of the positive electrode mixture layer” refers to a depth range from the surface of the positive electrode mixture layer to 10 μm, and the “inside of the positive electrode mixture layer” When the positive electrode mixture layer is formed on the current collector, that is, on the current collector side, it means the portion of the mixture on the current collector side with respect to the surface portion.

なお、正極活物質の表面での、有機金属塩の被覆量が多いと、正極活物質表面でのイオンの移動が妨げられて必要な電池反応が十分に進まず、電池特性が低下する懸念があるが、本発明の非水二次電池では、使用する有機金属塩が多価であるために、正極活物質表面でのイオンの移動がスムーズであり、電池特性の低下を良好に抑制できると考えられる。また、被着性が優れていることから、少ない量でも正極活物質表面や正極合剤層表面を良好に被覆できるので、電池特性を低下させずに非水電解質との反応を抑制することができると思われる。   If the amount of the organometallic salt coating on the surface of the positive electrode active material is large, the movement of ions on the surface of the positive electrode active material is hindered and the required battery reaction does not proceed sufficiently, and there is a concern that the battery characteristics may deteriorate. However, in the non-aqueous secondary battery of the present invention, since the organic metal salt used is multivalent, the movement of ions on the surface of the positive electrode active material is smooth, and the deterioration of the battery characteristics can be satisfactorily suppressed. Conceivable. In addition, since the adherence is excellent, the surface of the positive electrode active material or the surface of the positive electrode mixture layer can be satisfactorily coated even with a small amount, so that the reaction with the non-aqueous electrolyte can be suppressed without deteriorating the battery characteristics. I think I can do it.

本発明に係る有機金属塩は、多価であればよく、2価、3価、4価などの有機金属塩が挙げられる。また、非水電解質(例えば、液状の非水電解質。以下、これを「非水電解液」という。)への溶出を防ぐために、LiPFやLiBFなど通常用いられる電解質塩に比べて、非水電解質に対し難溶性であることが望ましい。 The organometallic salt according to the present invention may be multivalent, and examples thereof include divalent, trivalent, and tetravalent organometallic salts. In addition, in order to prevent elution into a non-aqueous electrolyte (for example, a liquid non-aqueous electrolyte, hereinafter referred to as “non-aqueous electrolyte”), the non-electrolyte is less non-aqueous electrolyte than commonly used electrolyte salts such as LiPF 6 and LiBF 4. It is desirable that it is sparingly soluble in the water electrolyte.

多価の有機金属塩の具体例としては、例えば、一般式〔R(Y)で表されるものが挙げられる。なお、前記一般式中、Rは、例えば、アルキル基、アルキレン基、芳香族基などの有機基であり、これらの基の有する水素原子の一部または全部がフッ素原子で置換されていてもよい。aは2以上の整数である。また、Yは、例えば、酸の金属塩基であり、具体的には、−SO 、−CO 、−PO 、−PFRf5−d [Rfは、フッ素置換したアルキル基(以下同じ)で、dは5以下の整数(以下同じ)]、−BFRf3−e (eは3以下の整数、以下同じ)、−RPO -[Rは有機残基(以下同じ)でRに結合していてもよく、gは0か1(以下同じ)]などが挙げられる。 Examples of polyvalent organic metal salts, for example, those represented by the general formula [R 1 (Y) a] b M c. In the general formula, R 1 is, for example, an organic group such as an alkyl group, an alkylene group, or an aromatic group, and a part or all of hydrogen atoms of these groups may be substituted with fluorine atoms. Good. a is an integer of 2 or more. Further, Y may, for example, a metal base of an acid, specifically, -SO 3 - alkyl [Rf is that fluorine-substituted -, -CO 2 -, -PO 4 -, -PF d Rf 5-d in group (hereinafter the same), d is 5 an integer (hereinafter the same)], - BF e Rf 3 -e - (e is 3 or less an integer, hereinafter the same), - R g PO 4 - [R is an organic residue A group (hereinafter the same) may be bonded to R 1 , and g is 0 or 1 (hereinafter the same)].

多価の有機金属塩の有する前記一般式におけるYは、前記例示のもののうちの1種のみであってもよく、2種以上であってもよい。また、前記一般式におけるMは、アルカリ金属、アルカリ土類金属、遷移金属、13族元素などの金属元素で、Li、Na、K、Mg、Ca、Mn、Alなどであり、アルカリ金属、アルカリ土類金属が望ましく、アルカリ金属がより望ましく、リチウムが最も望ましい。すなわち、多価の有機金属塩としては、多価の有機リチウム塩が最も望ましい。前記一般式におけるbおよびcは、金属Mの価数と〔R(Y)〕の価数で決まる整数である。 Y in the above general formula possessed by the polyvalent organic metal salt may be only one of the above examples, or may be two or more. Further, M in the general formula is a metal element such as an alkali metal, alkaline earth metal, transition metal, or group 13 element, such as Li, Na, K, Mg, Ca, Mn, Al, and the like. Earth metals are desirable, alkali metals are more desirable, and lithium is most desirable. That is, as the polyvalent organic metal salt, a polyvalent organic lithium salt is most desirable. In the general formula, b and c are integers determined by the valence of the metal M and the valence of [R 1 (Y) a ].

なお、前記一般式で表される多価の有機金属塩は、有機基Rの中に水酸基(−OH)や、酸基(−SOH、−COHなど)を含んでいてもよいが、これらの基は電池内において反応を起こす虞があるため、酸の金属塩基よりも少ないことが好ましく、酸の金属塩基の数の、1/10以下であることがより好ましい。 Note that the polyvalent organometallic salt represented by the general formula may contain a hydroxyl group (—OH) or an acid group (—SO 3 H, —CO 2 H, etc.) in the organic group R 1. Although these groups may cause a reaction in the battery, the number of these groups is preferably less than the number of acid metal bases, and more preferably 1/10 or less of the number of acid metal bases.

また、前記一般式におけるRの分子量は、大きすぎると効果的な被覆がし難くなることから、10万以下であることが望ましく、2000以下であることがより望ましく、500以下であることが最も望ましい。また、前記一般式におけるRの分子量は、小さすぎるとイオンが通過し難い被膜を形成する場合があることから、30以上であることが望ましく、50以上であることがより望ましく、70以上であることが最も望ましい。Rとしては、アルキレンや芳香族基、または主としてそれらを含む有機混成体であり、たとえば、−CHCHCHCH−、−CHFCHCHCH−、−CFCFCFCF−など、−C2h−i−(hおよびiは整数であり、h≧1、i≧0である)として表されるアルキレン、−C−、>C−、−C−C−、−CF−、−C−など、−(C4−j(C4−m−(j、k、l、m、n、uは整数であり、j≧0、k≧0、k≦j、m≧0、n≧0、n≦m、l+u≧1)として表される芳香族基、または、>C−C(CF−C<、>C−CF、−C−C(CF−C−、R(CHCH−C−)(R、Rは有機基)のような有機混成体である。 The molecular weight of R 1 in the general formula is preferably 100,000 or less, more preferably 2000 or less, and more preferably 500 or less because effective coating becomes difficult if the molecular weight is too large. Most desirable. The molecular weight of R 1 in the general formula is preferably 30 or more, more preferably 50 or more, and more preferably 70 or more because if R 1 is too small, ions may hardly form a film. Most desirable. R 1 is an alkylene or aromatic group, or an organic hybrid mainly containing them, such as —CH 2 CH 2 CH 2 CH 2 —, —CHFCH 2 CH 2 CH 2 —, —CF 2 CF 2 CF. 2 CF 2 — and the like, —C h H 2h-i F i — (h and i are integers, h ≧ 1, i ≧ 0), alkylene, —C 6 H 4 —,> C 6 H 3 -, - C 6 H 4 -C 6 H 4 -, - C 6 H 3 F -, - C 6 F 4 - , etc., - (C 6 H 4- j F k) l (C 6 H 4 −m F n ) u − (j, k, l, m, n, u are integers, j ≧ 0, k ≧ 0, k ≦ j, m ≧ 0, n ≧ 0, n ≦ m, l + u ≧ 1) an aromatic group represented by:> C 6 H 3 -C (CF 3 ) 2 -C 6 H 3 <,> C 6 H 3 -CF 3 , -C 6 H 4 -C (CF 3) 2 -C 6 H 4 -, R 2 (CH 2 CH 2 -C 6 H 4 -) n R 3 organic hybrid, such as (R 2, R 3 is an organic group) It is.

より具体的には、アルキレンや芳香族基に、Yとして−SO 、−CO または−PO を有する有機金属塩が例示される。 More specifically, an organometallic salt having —SO 3 , —CO 2 or —PO 4 as Y in an alkylene or aromatic group is exemplified.

また、多価の有機金属塩は、フッ素原子を含有していることがより好ましい。このような多価の有機金属塩としては、例えば、水素原子の一部または全部をフッ素原子で置換したアルキレンや芳香族基、またはそれら2種を有し、その末端に、−SOLi、−COLi、−PFRf5−dLi、−BFRf3−eLi、−Rf3−gPOLiなどを有する有機リチウム塩が挙げられる。 Moreover, it is more preferable that the polyvalent organometallic salt contains a fluorine atom. As such polyvalent organometallic salt, for example, it has an alkylene or aromatic group in which part or all of the hydrogen atoms are substituted with fluorine atoms, or two of them, and at its terminal, -SO 3 Li, -CO 2 Li, -PF d Rf 5 -d Li, -BF e Rf 3-e Li, include organic lithium salts with such -Rf 3-g PO 4 Li g .

また、より具体的な一般式R−(R−(C−R[RおよびR6は、水素原子やアルキル基(アルキル基の有する水素原子の一部または全部がフッ素原子で置換されていてもよい)で、RとR6とは、同じであっても、それぞれ異なっていてもよい。Rは、例えば、アルキレンなどの有機鎖(その水素原子の一部または全部がフッ素原子で置換されていてもよい)で、Yは、−SOLi、−COLi、−PFRf5−dLi、−BFRf3−eLi、−Rf3−gPOLi、−N(RfSO)Li、または−C(RfSOLiである。o、q、r、sは0以上の整数で、pは2以上の整数である。]で表される有機リチウム塩も使用することができる。 Further, more specific general formula R 4 - (R 5) o - (C q F r H s Y 2) p -R 6 [R 4 and R 6 is a hydrogen atom or an alkyl group (the hydrogen included in the alkyl group R 4 and R 6 may be the same or different from each other, in which part or all of the atoms may be substituted with fluorine atoms. R 5 is, for example, an organic chain such as alkylene (a part or all of the hydrogen atoms may be substituted with fluorine atoms), and Y 2 represents —SO 3 Li, —CO 2 Li, —PF d. Rf 5-d Li, a -BF e Rf 3-e Li, -Rf 3-g PO 4 Li g, -N (RfSO 2) Li or -C (RfSO 2) 2 Li, . o, q, r, and s are integers of 0 or more, and p is an integer of 2 or more. An organic lithium salt represented by the following formula can also be used.

多価の有機金属塩のより好ましいものとしては、LiSO−Rf’−SOLi、LiCO−Rf’−COLi、LiPF−Rf’−PFLi、LiBF−Rf’−BFLi(前記の各Rf’は、水素原子の一部または全部がフッ素置換されたアルキレン、芳香族鎖、芳香族含有アルキレンなどの有機鎖である。)などの有機リチウム塩が挙げられる。 More preferable polyvalent organic metal salts include LiSO 3 —Rf′—SO 3 Li, LiCO 2 —Rf′—CO 2 Li, LiPF 5 —Rf′—PF 5 Li, LiBF 3 —Rf′—BF. 3 Li (wherein each Rf ′ is an organic chain such as an alkylene, an aromatic chain, or an aromatic-containing alkylene in which some or all of hydrogen atoms are fluorine-substituted).

正極活物質の表面または正極合剤層の表面を多価の有機金属塩で被覆するためには、多価の有機金属塩を溶解した溶液と正極活物質を混合する方法、形成した正極合剤層に多価の有機金属塩を塗布する方法などが挙げられる。   In order to coat the surface of the positive electrode active material or the surface of the positive electrode mixture layer with the polyvalent organic metal salt, a method of mixing the solution in which the polyvalent organic metal salt is dissolved with the positive electrode active material, the formed positive electrode mixture Examples thereof include a method of applying a polyvalent organometallic salt to the layer.

また、正極合剤層における多価の有機金属塩の含有割合は、前記の通り、正極合剤層の内部よりも、正極合剤層の表面部の方が高くなっていることが望ましい。正極合剤層の表面では、非水電解質と正極との反応が充分に抑制される一方、正極の内部では、多価の有機金属塩の含有割合が少ないことにより、リチウムなどのイオンの輸送が損なわれ難くなるからである。正極合剤層の表面で多価の有機金属塩の含有割合を多くするためには、形成した正極合剤層に多価の有機金属塩を塗布する方法が例示される。更に、正極合剤層を重層塗布により形成し、表面側の合剤層の形成用の塗料(後述する正極合剤含有ペースト。以下同じ。)に、多価の有機金属塩の含有量の多い塗料を用いるのでもよい。   Further, as described above, the content ratio of the polyvalent organic metal salt in the positive electrode mixture layer is preferably higher in the surface portion of the positive electrode mixture layer than in the positive electrode mixture layer. On the surface of the positive electrode mixture layer, the reaction between the nonaqueous electrolyte and the positive electrode is sufficiently suppressed. On the other hand, in the positive electrode, the content ratio of the polyvalent organometallic salt is small, so that the transport of ions such as lithium is prevented. It is because it becomes difficult to be damaged. In order to increase the content ratio of the polyvalent organic metal salt on the surface of the positive electrode mixture layer, a method of applying the polyvalent organic metal salt to the formed positive electrode mixture layer is exemplified. Furthermore, a positive electrode mixture layer is formed by multilayer coating, and a coating material for forming a surface-side mixture layer (a positive electrode mixture-containing paste, which will be described later) has a high content of polyvalent organic metal salt. A paint may be used.

正極合剤層全体として、多価の有機金属塩の量は、その効果を十分に発揮させるために、正極活物質100質量部に対して、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることが更に好ましい。ただし、正極合剤層中における多価の有機金属塩の量が多すぎると、正極活物質の量が減って容量低下を引き起こす虞がある。よって、正極合剤層全体に含有させる多価の有機金属塩の量は、正極活物質100質量部に対して、5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。よって、正極合剤層の形成に際しては、正極合剤層全体における多価の有機金属塩の量が前記の好適値となるように、正極活物質や正極合剤層における多価の有機金属塩の被覆量を調整することが望ましい。   The amount of the polyvalent organic metal salt in the positive electrode mixture layer as a whole is preferably 0.01% by mass or more with respect to 100 parts by mass of the positive electrode active material in order to sufficiently exhibit the effect. It is more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more. However, if the amount of the polyvalent organic metal salt in the positive electrode mixture layer is too large, the amount of the positive electrode active material may be reduced, causing a decrease in capacity. Therefore, the amount of the polyvalent organic metal salt to be contained in the entire positive electrode mixture layer is preferably 5% by mass or less, more preferably 2% by mass or less with respect to 100 parts by mass of the positive electrode active material. More preferably, it is 1 mass% or less. Therefore, when forming the positive electrode mixture layer, the polyvalent organic metal salt in the positive electrode active material or the positive electrode mixture layer is adjusted so that the amount of the polyvalent organic metal salt in the whole positive electrode mixture layer becomes the above-mentioned preferable value. It is desirable to adjust the coating amount.

本発明の非水二次電池に係る正極は、リチウム含有複合酸化物を活物質(正極活物質)とするものであり、例えば、前記正極活物質、導電助剤およびバインダなどを含有する正極合剤層を、集電体の片面または両面に有する構造のものである。   The positive electrode according to the nonaqueous secondary battery of the present invention uses a lithium-containing composite oxide as an active material (positive electrode active material), and includes, for example, a positive electrode composite containing the positive electrode active material, a conductive additive, a binder, and the like. It has a structure having an agent layer on one side or both sides of a current collector.

本発明の非水二次電池に係る正極に使用する正極活物質としては、例えば、リチウム基準で4.3V以下の電圧で使用されるLiCoO;リチウム基準で4.4V以上の電圧で使用し得るリチウム含有複合酸化物[例えば、LiCoOのCoの一部を、Ti、Zr、Mg、Alなどの他の金属元素で置換したもの、またはマンガンサイトを他の金属元素で置換したリチウムマンガン酸化物、例えば、一般式LiNiMn2−x−y(ただし、Mは、Ni、MnおよびLi以外の少なくとも1種の金属元素で、0.4≦x、0≦y≦0.4である)で表される複合酸化物];リチウム基準で5V以上の電圧でも使用し得るリチウム含有複合酸化物、例えば、前記リチウムマンガン酸化物において、0.4≦x≦0.6、0≦y≦0.1である複合酸化物;などのリチウム含有複合酸化物が挙げられる。前記一般式における金属元素Mは、例えば、Cr、Fe、Co、Cu、Zn、Ti、Al、Mg、Ca、Baなどが好ましく、これらの中でも、Fe、Coを用いたものが、より良好な特性が得られることからより好ましい。本発明に係る正極の正極活物質には、これらのリチウム含有複合酸化物のうちの1種のみを使用してもよく、2種以上を併用してもよい。これらの正極活物質の中でも、電池の高容量化を図り得る点からは、リチウム基準で4.3Vより高い電圧でも構造が安定で、高電圧で充電できるリチウム含有複合酸化物が好ましい。 The positive electrode active material used for the positive electrode according to the nonaqueous secondary battery of the present invention is, for example, LiCoO 2 used at a voltage of 4.3 V or less on the basis of lithium; used at a voltage of 4.4 V or more on the basis of lithium. Lithium-containing composite oxide obtained [for example, lithium manganese oxide in which a part of Co in LiCoO 2 is replaced with another metal element such as Ti, Zr, Mg, Al, or manganese site is replaced with another metal element object, for example, the general formula LiNi x M y Mn 2-x -y O 4 ( provided that, M is, Ni, at least one metal element other than Mn and Li, 0.4 ≦ x, 0 ≦ y ≦ 0 Composite oxide represented by .4); a lithium-containing composite oxide that can be used even at a voltage of 5 V or more on the basis of lithium, for example, in the lithium manganese oxide, 0.4 ≦ x ≦ 0.6, ≦ y ≦ 0.1 at a complex oxide; and the lithium-containing composite oxide such as. The metal element M in the general formula is preferably, for example, Cr, Fe, Co, Cu, Zn, Ti, Al, Mg, Ca, Ba, etc. Among these, those using Fe and Co are better. It is more preferable because the characteristics can be obtained. For the positive electrode active material of the positive electrode according to the present invention, only one of these lithium-containing composite oxides may be used, or two or more thereof may be used in combination. Among these positive electrode active materials, a lithium-containing composite oxide that has a stable structure even at a voltage higher than 4.3 V on the basis of lithium and can be charged at a high voltage is preferable from the viewpoint of increasing the capacity of the battery.

電池内における正極活物質と非水電解質の反応による充放電サイクル特性の低下は、充電電圧が高くなるほど顕著に発現するが、本発明の非水二次電池では、多価の有機金属塩による前記の作用によって、喩え充電電圧が4.5V以上の場合であっても、充放電サイクル特性の低下を良好に抑制できる。よって、本発明においては、より高い電圧で使用できるリチウム含有複合酸化物を使用した場合に、その効果が顕著に発現する。   The decrease in charge / discharge cycle characteristics due to the reaction between the positive electrode active material and the non-aqueous electrolyte in the battery is more pronounced as the charging voltage is increased. In the non-aqueous secondary battery of the present invention, According to the above, even if the charging voltage is 4.5 V or more, the deterioration of the charge / discharge cycle characteristics can be satisfactorily suppressed. Therefore, in the present invention, when a lithium-containing composite oxide that can be used at a higher voltage is used, the effect is remarkably exhibited.

なお、本明細書でいう「リチウム基準で4.4以上の電圧で使用し得る」とは、例えば0.2Cの電流値で4.4Vまで定電流充電を行い、続いて、4.4Vで定電圧充電を行って、該定電流充電と該定電圧充電の合計時間を8時間とする条件での充電を問題なく行うことができることをいう。   As used herein, “can be used at a voltage of 4.4 or higher with respect to lithium” means that constant current charging is performed up to 4.4 V at a current value of 0.2 C, for example, and then at 4.4 V. It means that charging can be carried out without any problem under the condition that the constant voltage charging is performed and the total time of the constant current charging and the constant voltage charging is 8 hours.

正極の有する正極合剤層には、通常、導電助剤を含有させる。正極の導電助剤には、通常の非水二次電池と同様に、黒鉛;カーボンブラック(アセチレンブラック、ケッチェンブラックなど)や、表面に非晶質炭素を生成させた炭素材料などの非晶質炭素材料;繊維状炭素(気相成長炭素繊維、ピッチを紡糸した後に炭化処理して得られる炭素繊維など);カーボンナノチューブ(各種の多層または単層のカーボンナノチューブ)などを用いることができる。正極の導電助剤には、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。   The positive electrode mixture layer of the positive electrode usually contains a conductive additive. As a normal non-aqueous secondary battery, the conductive additive for the positive electrode is non-crystalline such as graphite; carbon black (acetylene black, ketjen black, etc.) or a carbon material with amorphous carbon formed on the surface. Carbonaceous materials (fibre-grown carbon fibers, carbon fibers obtained by carbonizing after spinning a pitch), carbon nanotubes (various multi-layer or single-wall carbon nanotubes), and the like can be used. As the conductive additive for the positive electrode, those exemplified above may be used alone or in combination of two or more.

前記例示の導電助剤の中でも、非晶質炭素材料と、繊維状炭素またはカーボンナノチューブとを併用することが好ましい。このような導電助剤を用いた正極であれば、充放電サイクル特性および負荷特性をより高めた非水二次電池を構成することができる。   Among the conductive aids exemplified above, it is preferable to use an amorphous carbon material in combination with fibrous carbon or carbon nanotubes. If it is a positive electrode using such a conductive support agent, the non-aqueous secondary battery which improved the charge / discharge cycle characteristic and load characteristic more can be comprised.

例えば、正極の導電助剤に黒鉛を用いて構成した電池を、4.5V以上に充電した場合には、非水電解質のアニオンの、黒鉛の層間への挿入反応、例えば、下記式に示されるようなPF錯イオンの黒鉛層間への挿入反応が生じる。
24 + PF → C24(PF) + e
For example, when a battery constituted by using graphite as a conductive additive for the positive electrode is charged to 4.5 V or higher, an insertion reaction of a nonaqueous electrolyte anion between graphite layers, for example, is represented by the following formula: An insertion reaction of such PF 6 complex ions between the graphite layers occurs.
C 24 + PF 6 → C 24 (PF 6 ) + e

前記の反応が生じると、黒鉛の層間距離が拡げられ、黒鉛の粒子が膨張して正極活物質との間に隙間が生じ、導電助剤としての機能が失われて、正極の充放電サイクル特性が低下する虞がある。しかしながら、導電助剤として、非晶質炭素材料を併用した場合には、例えばPF錯イオンが挿入されても、結晶のサイズ変化が起こり難いため、正極合剤層中の導電性を良好に保つことができる。 When the above reaction occurs, the interlayer distance of the graphite is expanded, the graphite particles expand and a gap is formed between the positive electrode active material, the function as a conductive additive is lost, and the charge / discharge cycle characteristics of the positive electrode May decrease. However, when an amorphous carbon material is used in combination as a conductive aid, for example, even if PF 6 complex ions are inserted, the crystal size hardly changes, so that the conductivity in the positive electrode mixture layer is improved. Can keep.

ただし、非晶質炭素材料は、一般に、比表面積が大きく嵩高いため、これを使用した正極合剤層では、その密度を高め難く、電池の高容量化の妨げとなる虞がある。しかし、繊維状炭素またはカーボンナノチューブを非晶質炭素材料とともに使用することで、正極合剤層での導電助剤の充填性を高めることが可能であり、非晶質炭素材料による前記効果を確保しつつ、電池をより高容量とすることができる。   However, since the amorphous carbon material generally has a large specific surface area and is bulky, it is difficult to increase the density of the positive electrode mixture layer using the amorphous carbon material, which may hinder the increase in battery capacity. However, by using fibrous carbon or carbon nanotubes together with an amorphous carbon material, it is possible to improve the filling property of the conductive auxiliary agent in the positive electrode mixture layer, and the above-mentioned effect by the amorphous carbon material is ensured. However, the capacity of the battery can be increased.

前記非晶質炭素材料は、その平均粒径が、1μm以下であることが好ましく、100nm以下であることがより好ましい。このような平均粒径の非晶質炭素材料であれば、正極合剤層を形成する際に、非晶質炭素材料の粒子が正極活物質粒子の間隙に入り込みやすく、充填性が高くなるからである。この非晶質炭素材料は、その平均粒径が小さいほど非水電解質の保持能力が高く、正極の特性を高め得るが、あまり小さなものは製造が困難であるため、平均粒径が1nm程度のものまでが実用的である。   The amorphous carbon material preferably has an average particle size of 1 μm or less, and more preferably 100 nm or less. With such an amorphous carbon material having an average particle diameter, when the positive electrode mixture layer is formed, the amorphous carbon material particles easily enter the gaps between the positive electrode active material particles, and the filling property is improved. It is. The amorphous carbon material has a higher ability to hold a non-aqueous electrolyte as its average particle size is smaller, and can improve the characteristics of the positive electrode. However, it is difficult to produce a material having a small average particle size, so that the average particle size is about 1 nm. Everything is practical.

また、繊維状炭素やカーボンナノチューブは、正極合剤層における充填性を向上させて充填率を高めやすくする観点から、その平均粒径が、10μm以下であることが好ましく、1μm以下であることがより好ましく、100nm以下であることが更に好ましい。また、繊維状炭素やカーボンナノチューブは、その平均粒径が、10nm以上であることが好ましい。   In addition, the fibrous carbon and carbon nanotubes have an average particle size of preferably 10 μm or less, preferably 1 μm or less, from the viewpoint of improving the filling property in the positive electrode mixture layer and facilitating an increase in the filling rate. More preferably, it is 100 nm or less. Moreover, it is preferable that the average particle diameter of fibrous carbon and a carbon nanotube is 10 nm or more.

なお、本明細書でいう非晶質炭素材料や繊維状炭素、カーボンナノチューブ、後述するリチウム含有複合酸化物の平均粒径は、レーザー回折・散乱式粒度分布計により測定される体積基準の積算分率50%における粒子直径の値であるD50である。   The average particle size of the amorphous carbon material, fibrous carbon, carbon nanotube, and lithium-containing composite oxide described later in this specification is the volume-based integrated value measured by a laser diffraction / scattering particle size distribution meter. D50 is the value of the particle diameter at a rate of 50%.

非晶質炭素材料と繊維状炭素材料またはカーボンナノチューブとを併用する場合は、正極に用いる全導電助剤中における非晶質炭素材料の量を、15質量%以上とすることが好ましく、30質量%以上とすることがより好ましく、50質量%以上とすることがより好ましい。このような量で非晶質炭素材料を使用することにより、例えばPF錯イオンの炭素材料への挿入反応が生じても、格子サイズの変化を抑制して良好な導電性を保つことができる。ただし、非晶質炭素材料の量が多くなりすぎると正極合剤層の密度が低下する虞があるため、正極に用いる全導電助剤中における非晶質炭素材料の量を、85質量%以下とすることが好ましい。 When the amorphous carbon material and the fibrous carbon material or the carbon nanotube are used in combination, the amount of the amorphous carbon material in the total conductive additive used for the positive electrode is preferably 15% by mass or more, and 30% by mass. % Or more, more preferably 50% by mass or more. By using an amorphous carbon material in such an amount, even if an insertion reaction of PF 6 complex ions into the carbon material occurs, for example, it is possible to suppress a change in lattice size and maintain good conductivity. . However, since the density of the positive electrode mixture layer may decrease if the amount of the amorphous carbon material is excessively large, the amount of the amorphous carbon material in the total conductive additive used for the positive electrode is 85% by mass or less. It is preferable that

また、正極容量を高めるために正極合剤層の密度を大きくするには、正極活物質であるリチウム含有複合酸化物の平均粒径が0.05〜30μmであることが好ましく、導電助剤の平均粒径が、リチウム含有複合酸化物の平均粒径以下であることが好ましい[すなわち、リチウム含有複合酸化物の平均粒径をRm(nm)、導電助剤のRg(nm)としたとき、Rg≦Rmであることが好ましい]。   In order to increase the density of the positive electrode mixture layer in order to increase the positive electrode capacity, the average particle size of the lithium-containing composite oxide that is the positive electrode active material is preferably 0.05 to 30 μm. It is preferable that the average particle size is equal to or less than the average particle size of the lithium-containing composite oxide [that is, when the average particle size of the lithium-containing composite oxide is Rm (nm), Rg (nm) of the conductive auxiliary agent, Rg ≦ Rm is preferable].

本発明に係る正極は、例えば、正極活物質であるリチウム含有複合酸化物と導電助剤とバインダなどとを混合して正極合剤とし、これを溶剤に分散させて正極合剤含有ペーストを調製し(この場合、バインダはあらかじめ溶剤に溶解または分散させておいてもよい)、この正極合剤含有ペーストを金属箔などからなる集電体の表面に塗布し、乾燥して正極合剤層を形成し、必要に応じて加圧する工程を経て製造することが好ましい。また、導電助剤に、前記の非晶質炭素材料と繊維状炭素またはカーボンナノチューブとを併用する場合には、正極合剤の混合に先立って、非晶質炭素材料と繊維状炭素またはカーボンナノチューブとを混合しておくことが好ましく、これにより非晶質炭素材料と繊維状炭素またはカーボンナノチューブとを併用することによる前記の効果がより良好に確保できる。なお、本発明に係る正極の製造方法は前記例示の方法に限定されず、他の方法で製造してもよい。   The positive electrode according to the present invention is prepared, for example, by mixing a lithium-containing composite oxide that is a positive electrode active material, a conductive additive, a binder, and the like into a positive electrode mixture, and dispersing this in a solvent to prepare a positive electrode mixture-containing paste. (In this case, the binder may be dissolved or dispersed in a solvent in advance), and this positive electrode mixture-containing paste is applied to the surface of a current collector made of metal foil or the like and dried to form a positive electrode mixture layer. It is preferable to manufacture through the process of forming and pressurizing as needed. Further, when the amorphous carbon material and fibrous carbon or carbon nanotube are used in combination as the conductive assistant, the amorphous carbon material and fibrous carbon or carbon nanotube are mixed prior to mixing the positive electrode mixture. Is preferably mixed, and thereby, the above-mentioned effect can be ensured better by using the amorphous carbon material and the fibrous carbon or carbon nanotube in combination. In addition, the manufacturing method of the positive electrode which concerns on this invention is not limited to the method of the said illustration, You may manufacture by another method.

正極に使用するバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリアクリル酸、スチレンブタジエンゴムなどが挙げられる。   Examples of the binder used for the positive electrode include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, and styrene butadiene rubber.

なお、正極合剤含有ペーストの安定性を向上させるために、前記ペーストを調製する前に、あらかじめリチウム含有複合酸化物の表面を多価の有機金属塩で被覆しておくことが望ましく、多価の有機金属塩を水などの溶媒に溶解させた溶液を調製し、リチウム含有複合酸化物を前記溶液に浸漬し、取り出して乾燥し、活物質表面に多価の有機金属塩を被着させておくことが好ましい。また、正極合剤層表面を多価の有機金属塩で被覆する場合は、正極合剤層の形成後に、その表面に、多価の有機金属塩を水などに溶解させた溶液を塗布し乾燥させて、合剤層表面に多価の有機金属塩を被着させればよい。   In order to improve the stability of the positive electrode mixture-containing paste, it is desirable to coat the surface of the lithium-containing composite oxide with a polyvalent organic metal salt in advance before preparing the paste. A solution in which the organic metal salt is dissolved in a solvent such as water is prepared, the lithium-containing composite oxide is immersed in the solution, taken out and dried, and a polyvalent organic metal salt is deposited on the active material surface. It is preferable to keep it. When the surface of the positive electrode mixture layer is coated with a polyvalent organic metal salt, after the positive electrode mixture layer is formed, a solution prepared by dissolving the polyvalent organic metal salt in water or the like is applied to the surface and dried. Then, a polyvalent organometallic salt may be deposited on the surface of the mixture layer.

なお、リチウム含有複合酸化物の表面や正極合剤層の表面に、多価の有機金属塩以外の有機化合物やAl、AlPO、ZrO、AlOOHなどの無機化合物で被覆する処理を併用してもよく、多価の有機金属塩と、それ以外の有機化合物や無機化合物との混合物で被覆することもできる。 The surface of the lithium-containing composite oxide or the surface of the positive electrode mixture layer is coated with an organic compound other than a polyvalent organic metal salt or an inorganic compound such as Al 2 O 3 , AlPO 4 , ZrO 2 , or AlOOH. They may be used in combination, and may be coated with a mixture of a polyvalent organic metal salt and other organic or inorganic compounds.

本発明に係る正極の正極合剤層においては、例えば、正極活物質であるリチウム含有複合酸化物が70〜99質量%であり、バインダが1〜30質量%であることが好ましい。また、導電助剤を使用する場合には、正極合剤層における導電助剤の量は、1〜20質量%であることが好ましい。更に、正極合剤層の厚みは、集電体の片面あたり、1〜100μmであることが好ましい。   In the positive electrode mixture layer of the positive electrode according to the present invention, for example, the lithium-containing composite oxide as the positive electrode active material is preferably 70 to 99% by mass, and the binder is preferably 1 to 30% by mass. Moreover, when using a conductive support agent, it is preferable that the quantity of the conductive support agent in a positive mix layer is 1-20 mass%. Furthermore, the thickness of the positive electrode mixture layer is preferably 1 to 100 μm per one side of the current collector.

正極の集電体には、例えば、アルミニウム、ステンレス鋼、ニッケル、チタンまたはそれらの合金からなる箔、パンチドメタル、エキスパンドメタル、網などを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   For the positive electrode current collector, for example, a foil made of aluminum, stainless steel, nickel, titanium, or an alloy thereof, a punched metal, an expanded metal, a net, or the like can be used. Usually, an aluminum foil having a thickness of 10 to 30 μm is used. Are preferably used.

本発明の非水二次電池に係る負極には、例えば、負極活物質やバインダなどを含有する負極合剤層を、集電体の片面または両面に有する構成のものを使用することができる。   For the negative electrode according to the nonaqueous secondary battery of the present invention, for example, a negative electrode mixture layer containing a negative electrode active material, a binder, or the like can be used on one side or both sides of a current collector.

負極活物質としては、リチウムイオンをドープ・脱ドープできるものであればよく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素質材料が挙げられる。また、リチウムまたはリチウム含有化合物なども負極活物質として使用することができる。前記のリチウム含有化合物としては、例えば、錫酸化物、ケイ素酸化物、ニッケル−ケイ素系合金、マグネシウム−ケイ素系合金、タングステン酸化物、リチウム鉄複合酸化物などの他、リチウム−アルミニウム、リチウム−鉛、リチウム−インジウム、リチウム−ガリウム、リチウム−インジウム−ガリウムなどのリチウム合金が挙げられる。これら例示の負極活物質の中には、製造時にはリチウムを含んでいないものもあるが、充電時にはリチウムを含んだ状態になる。   The negative electrode active material may be any material that can be doped / undoped with lithium ions. For example, graphite, pyrolytic carbons, cokes, glassy carbon, fired organic polymer compound, mesocarbon microbeads, carbon Examples thereof include carbonaceous materials such as fibers and activated carbon. Moreover, lithium or a lithium-containing compound can also be used as the negative electrode active material. Examples of the lithium-containing compound include tin oxide, silicon oxide, nickel-silicon alloy, magnesium-silicon alloy, tungsten oxide, lithium iron composite oxide, lithium-aluminum, and lithium-lead. Lithium alloys such as lithium-indium, lithium-gallium, and lithium-indium-gallium. Some of these exemplary negative electrode active materials do not contain lithium at the time of manufacture, but are in a state containing lithium at the time of charging.

負極は、例えば、前記負極活物質と、必要に応じて添加される導電助剤(正極の場合と同様のもの)や前記正極の場合と同様のバインダとを混合して負極合剤とし、これを溶剤に分散させて負極合剤含有ペーストを調製し(バインダはあらかじめ溶剤に溶解または分散させておいてから用いてもよい)、この負極合剤含有ペーストを集電体の表面に塗布し、乾燥して負極合剤層を形成し、必要に応じて加圧成形する工程を経ることによって作製される。なお、負極の製造方法は前記例示の方法に限定されず、他の方法で製造してもよい。   The negative electrode is, for example, a mixture of the negative electrode active material and a conductive additive added as necessary (same as in the case of the positive electrode) or the same binder as in the positive electrode to form a negative electrode mixture. Is dispersed in a solvent to prepare a negative electrode mixture-containing paste (the binder may be used after being dissolved or dispersed in a solvent in advance), and this negative electrode mixture-containing paste is applied to the surface of the current collector, It is produced by drying to form a negative electrode mixture layer and, if necessary, pressure forming. In addition, the manufacturing method of a negative electrode is not limited to the said illustrated method, You may manufacture by another method.

負極の負極合剤層においては、例えば、負極活物質が70〜99質量%であり、バインダが1〜30質量%であることが好ましい。また、導電助剤を使用する場合には、負極合剤層における導電助剤の量は、1〜20質量%であることが好ましい。更に、負極合剤層の厚みは、集電体の片面あたり、1〜100μmであることが好ましい。   In the negative electrode mixture layer of the negative electrode, for example, the negative electrode active material is preferably 70 to 99% by mass and the binder is preferably 1 to 30% by mass. Moreover, when using a conductive support agent, it is preferable that the quantity of the conductive support agent in a negative mix layer is 1-20 mass%. Furthermore, the thickness of the negative electrode mixture layer is preferably 1 to 100 μm per one side of the current collector.

負極の集電体には、例えば、銅、ステンレス鋼、ニッケル、チタンまたはそれらの合金などからなる箔、パンチドメタル、エキスパンドメタル、網などを用い得るが、通常、厚みが5〜30μmの銅箔が好適に用いられる。   The negative electrode current collector may be, for example, a foil, punched metal, expanded metal, net, or the like made of copper, stainless steel, nickel, titanium, or an alloy thereof. Usually, copper having a thickness of 5 to 30 μm is used. A foil is preferably used.

前記の正極と前記の負極とは、例えば、セパレータを介在させつつ積層した積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形で用いられる。   The positive electrode and the negative electrode are used, for example, in the form of a laminated electrode body that is laminated with a separator interposed therebetween, or a wound electrode body that is wound in a spiral shape.

セパレータとしては、強度が十分で且つ電解液を多く保持できるものがよく、そのような観点から、厚さが10〜50μmで開口率が30〜70%の、ポリエチレン、ポリプロピレン、またはエチレン−プロピレン共重合体を含む微多孔フィルムや不織布などが好ましい。   As the separator, it is preferable that the separator has sufficient strength and can hold a large amount of the electrolytic solution. From such a viewpoint, a polyethylene, polypropylene, or ethylene-propylene copolymer having a thickness of 10 to 50 μm and an aperture ratio of 30 to 70% is used. A microporous film or a nonwoven fabric containing a polymer is preferable.

多価の有機リチウム塩を含有させる非水電解質には、例えば、有機溶媒にリチウム塩などの電解質塩を溶解させたもの(非水電解液)が用いられる。その有機溶媒としては、特に限定されることはないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネートなどの鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの誘電率の高い環状エステル;鎖状エステルと環状エステルとの混合溶媒;などが挙げられ、特に鎖状エステルを主溶媒とした環状エステルとの混合溶媒が適している。また、一部をフッ素で置換した溶媒や添加剤(以下、これらを「フッ素化溶媒」という)を用いることもでき、例えば、COCHやダイキンD2として知られるフッ素化エーテル;またはHCFCFCFOCFCHFなどのフッ素化エーテル;フルオロエチレンカーボネート(F−EC)、ジフルオロエチレンカーボネート(DFEC)、トリフルオロメチルエチレンカーボネート(CF−EC)、やフッ素化した鎖状カーボネートなどのカーボネート類;フッ素化エステル;フッ素化ニトリル;などを例示できる。これらのうち、フッ素化エーテルとフッ素化カーボネートが望ましく、フッ素化エーテルが特に望ましい。 As the non-aqueous electrolyte containing a polyvalent organic lithium salt, for example, an electrolyte obtained by dissolving an electrolyte salt such as a lithium salt in an organic solvent (non-aqueous electrolyte) is used. The organic solvent is not particularly limited. For example, chain esters such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate; dielectrics such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate. A cyclic ester having a high rate; a mixed solvent of a chain ester and a cyclic ester; and the like. Particularly, a mixed solvent with a cyclic ester having a chain ester as a main solvent is suitable. Alternatively, a solvent or additive partially substituted with fluorine (hereinafter referred to as “fluorinated solvent”) can be used, for example, fluorinated ether known as C 3 F 7 OCH 3 or Daikin D2; or fluorinated ethers such as HCF 2 CF 2 CF 2 OCF 2 CHF 2; fluoroethylene carbonate (F-EC), difluoroethylene carbonate (DFEC), trifluoromethyl ethylene carbonate (CF 3 -EC), and fluorinated chain Carbonates such as carbonate; fluorinated esters; fluorinated nitriles; Of these, fluorinated ethers and fluorinated carbonates are desirable, and fluorinated ethers are particularly desirable.

フッ素化溶媒の使用量としては、非水電解液溶媒全量を100体積%としたときに、0.5体積%以上含まれていればよいが、5体積%以上であることが望ましく、より望ましくは10体積%以上、最も望ましくは20体積%以上である。ただし、フッ素化溶媒の量が多すぎると電池特性が低下するので、非水電解液溶媒全量を100体積%としたときのフッ素化溶媒の量は、60体積%以下であることが望ましく、より望ましくは50体積%以下、最も望ましくは40体積%以下である。フッ素化溶媒の添加効果は、少量で電極SEI被膜の改質もあるが、本発明に係る多価の有機金属塩との組み合わせでは、多価の有機金属塩の溶解性を抑えて被膜の安定性を改善することができるので、より優れた充放電サイクル特性の改善効果が生じる。   The amount of the fluorinated solvent used may be 0.5% by volume or more when the total amount of the non-aqueous electrolyte solvent is 100% by volume. Is 10% by volume or more, and most desirably 20% by volume or more. However, if the amount of the fluorinated solvent is too large, battery characteristics deteriorate. Therefore, the amount of the fluorinated solvent when the total amount of the non-aqueous electrolyte solvent is 100% by volume is desirably 60% by volume or less. The amount is desirably 50% by volume or less, and most desirably 40% by volume or less. Although the addition effect of the fluorinated solvent may modify the electrode SEI film in a small amount, the combination with the polyvalent organic metal salt according to the present invention suppresses the solubility of the polyvalent organic metal salt and stabilizes the film. Therefore, the charge / discharge cycle characteristics can be improved more effectively.

非水電解液の調製にあたって前記有機溶媒に溶解させる電解質塩としては、例えば、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiC2n+1SO(n≧2)、LiN(RfSO)(Rf’SO)、LiC(RfSO、LiN(RfOSO〔ここでRf、Rf’はフルオロアルキル基〕などが単独でまたは2種以上混合して用いられる。非水電解液中における電解質塩の濃度は、特に限定されることはないが、0.3mol/l以上であることが好ましく、0.4mol/l以上であることがより好ましく、また、1.7mol/l以下であることが好ましく、1.5mol/l以下であることがより好ましい。 As the non-aqueous electrolyte electrolyte salt to be dissolved in the organic solvent In the preparation of, for example, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfSO 2 ) (Rf′SO 2 ), LiC (RfSO 2 ) 3 , LiN (RfOSO 2 ) 2 [here And Rf and Rf ′ are fluoroalkyl groups] alone or in combination of two or more. The concentration of the electrolyte salt in the nonaqueous electrolytic solution is not particularly limited, but is preferably 0.3 mol / l or more, more preferably 0.4 mol / l or more. It is preferably 7 mol / l or less, more preferably 1.5 mol / l or less.

本発明の電池において、前記非水電解液は、ポリマーなどからなるゲル化剤でゲル化したゲル状の電解質として用いてもよい。また、本発明の電池には、非水電解液の代わりに固体状の電解質を用いることもできる。そのような固体状電解質としては、無機系電解質のほか、有機系電解質なども用いることができる。   In the battery of the present invention, the non-aqueous electrolyte may be used as a gel electrolyte gelled with a gelling agent composed of a polymer or the like. In the battery of the present invention, a solid electrolyte can be used instead of the nonaqueous electrolytic solution. As such a solid electrolyte, in addition to an inorganic electrolyte, an organic electrolyte can also be used.

本発明の非水二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。   Examples of the form of the non-aqueous secondary battery of the present invention include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.

本発明の非水二次電池は、前記の非水電解液、正極、負極、およびセパレータなどを使用し、従来から知られている非水二次電池の製造方法と同様の方法により製造することができる。   The non-aqueous secondary battery of the present invention is manufactured by using the non-aqueous electrolyte solution, the positive electrode, the negative electrode, and the separator, etc., by the same method as the conventionally known non-aqueous secondary battery manufacturing method. Can do.

本発明の非水二次電池は、高電圧充電を行っても充放電サイクル特性の低下を抑え得ることから、高容量で、かつ充放電サイクル特性が良好である。本発明の電池は、このような特性を生かして、電子機器(特に携帯電話やノート型パソコンなどのポータブル電子機器)、電源システム、乗り物(電気自動車、電動自転車など)などの各種機器の電源用途などに、好ましく用いることができる。   Since the non-aqueous secondary battery of the present invention can suppress a decrease in charge / discharge cycle characteristics even when high voltage charging is performed, it has a high capacity and good charge / discharge cycle characteristics. The battery of the present invention makes use of such characteristics, and uses it as a power source for various devices such as electronic devices (especially portable electronic devices such as mobile phones and laptop computers), power supply systems, vehicles (electric cars, electric bicycles, etc.). For example, it can be preferably used.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。なお、本実施例で使用したリチウム含有複合酸化物(LiNi0.5Mn1.5)、非晶質炭素材料およびカーボンナノチューブの平均粒径は、Honeywell社製のレーザー式回折・散乱式粒度分布計「MICROTRAC HRA 9320−X100」によって測定したD50である。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention. The average particle size of the lithium-containing composite oxide (LiNi 0.5 Mn 1.5 O 4 ), amorphous carbon material, and carbon nanotube used in this example is a laser diffraction / scattering type manufactured by Honeywell. It is D50 measured by the particle size distribution analyzer “MICROTRAC HRA 9320-X100”.

実施例1
<正極の作製>
正極活物質には、平均粒径5μmのLiNi0.5Mn1.5粉体を用いた。この活物質は、前記一般式LiNiMn2−x−yで表したとき、x=0.5、y=0のリチウム含有複合酸化物に該当するものである。
Example 1
<Preparation of positive electrode>
LiNi 0.5 Mn 1.5 O 4 powder having an average particle size of 5 μm was used as the positive electrode active material. This active material corresponds to a lithium-containing composite oxide having x = 0.5 and y = 0 when expressed by the general formula LiNi x M y Mn 2 -xy O 4 .

多価の有機金属塩としてLiSOCFCFCFSOLiを用い、これを水に溶解させた水溶液を作製し、前記正極活物質をこの水溶液に浸漬後、乾燥させて、表面を多価の有機金属塩で被覆した正極活物質(以下、これを表面被覆活物質という)を得た。なお、前記表面被覆活物質において、LiSOCFCFCFSOLiの被覆量は、LiNi0.5Mn1.5:100質量部に対して0.2質量部であった。 LiSO 3 CF 2 CF 2 CF 2 SO 3 Li is used as a polyvalent organometallic salt, and an aqueous solution in which this is dissolved in water is prepared. After the positive electrode active material is immersed in this aqueous solution, the surface is dried. A positive electrode active material coated with a polyvalent organic metal salt (hereinafter referred to as a surface coating active material) was obtained. Incidentally, in the surface coated active material, the coating amount of LiSO 3 CF 2 CF 2 CF 2 SO 3 Li is, LiNi 0.5 Mn 1.5 O 4: was 0.2 parts by mass with respect to 100 parts by weight .

導電助剤として、非晶質炭素材料(層間距離0.363nm、比表面積50m/g、平均粒径50nm):2質量部と、平均粒径が10μm以下のカーボンナノチューブ(層間距離0.343nm、比表面積270m/g):1質量部とを混合して炭素材料混合物を得た。 As a conductive aid, amorphous carbon material (interlayer distance 0.363 nm, specific surface area 50 m 2 / g, average particle size 50 nm): 2 parts by mass, carbon nanotubes having an average particle size of 10 μm or less (interlayer distance 0.343 nm) And a specific surface area of 270 m 2 / g): 1 part by mass was mixed to obtain a carbon material mixture.

次に、前記表面被覆活物質:93質量部と、前記炭素材料混合物:3質量部と、PVDF:4質量部とを混合して正極合剤とし、これをN−メチル−2−ピロリドン(NMP)に分散させて、正極合剤含有ペーストを調製した。この正極合剤含有ペーストを、厚みが15μmのアルミニウム箔からなる集電体の片面に塗布し、乾燥して正極合剤層を形成した。次いで、前記正極合剤層をプレスし成形した後、LiSOCFCFCFSOLiを溶解させた水溶液を表面にスプレー噴霧し、120℃で乾燥して正極合剤層の表面を多価の有機金属塩で被覆し、所定の大きさに裁断し、アルミニウム箔の露出部にリードを溶接して正極を得た。得られた正極の合剤層の厚みは55μmであった。 Next, 93 parts by mass of the surface coating active material, 3 parts by mass of the carbon material mixture, and 4 parts by mass of PVDF were mixed to obtain a positive electrode mixture, which was mixed with N-methyl-2-pyrrolidone (NMP). ) To prepare a positive electrode mixture-containing paste. This positive electrode mixture-containing paste was applied to one side of a current collector made of an aluminum foil having a thickness of 15 μm and dried to form a positive electrode mixture layer. Next, after the positive electrode mixture layer is pressed and molded, an aqueous solution in which LiSO 3 CF 2 CF 2 CF 2 SO 3 Li is dissolved is spray-sprayed on the surface and dried at 120 ° C. so that the surface of the positive electrode mixture layer is formed. It covered with the polyvalent organic metal salt, cut | judged to the predetermined magnitude | size, the lead was welded to the exposed part of aluminum foil, and the positive electrode was obtained. The thickness of the positive electrode mixture layer obtained was 55 μm.

<負極の作製>
負極活物質である黒鉛:92質量部と、PVDF:8質量部とを混合して負極合剤とし、これをNMPに分散させて負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、厚みが10μmの銅箔からなる集電体の両面に塗布し、乾燥して負極合剤層を形成し、プレスして負極を得た。この負極を裁断し、銅箔の露出部にリードを溶接した後、120℃で15時間真空乾燥した。得られた負極は、負極合剤層の厚みが、集電体の片面あたり60μmであった。
<Production of negative electrode>
A negative electrode active material containing graphite: 92 parts by mass and PVDF: 8 parts by mass were mixed to prepare a negative electrode mixture, which was dispersed in NMP to prepare a negative electrode mixture-containing paste. This negative electrode mixture-containing paste was applied to both sides of a current collector made of a copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer, and pressed to obtain a negative electrode. The negative electrode was cut and a lead was welded to the exposed portion of the copper foil, followed by vacuum drying at 120 ° C. for 15 hours. In the obtained negative electrode, the thickness of the negative electrode mixture layer was 60 μm per one surface of the current collector.

<電池の組み立て>
前記の正極2枚と前記の負極1枚とを、両正極が外側になるように、かつ微孔性ポリエチレンフィルム(厚み16μm)を介して正極合剤層と負極合剤層とが対向するように重ね、テープで固定して積層電極体とした。この積層電極体と、電位測定のための参照極としてのLi箔とを、ラミネートフィルム外装体内に装填し、一部を残して外装体の外周を溶着封止した。次に、エチレンカーボネートとジエチルカーボネートとの体積比2:5の混合溶媒に、LiPFを1.2mol/lの濃度で溶解させ、1質量%のプロパンスルトンと1質量%のビニレンカーボネートとを添加した非水電解液を調製し、外装体の外周のうち、封止していない箇所から、前記非水電解液を注入し、その後外装体を完全に溶着封止し、非水二次電池を得た。
<Battery assembly>
The positive electrode mixture layer and the negative electrode mixture layer are opposed to each other with the two positive electrodes and the negative electrode facing each other, with both positive electrodes facing outside, and a microporous polyethylene film (thickness: 16 μm). And laminated with a tape to obtain a laminated electrode body. This laminated electrode body and Li foil as a reference electrode for measuring the potential were loaded into the laminate film exterior body, and the outer periphery of the exterior body was welded and sealed, leaving a part. Next, LiPF 6 is dissolved at a concentration of 1.2 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 2: 5, and 1% by mass of propane sultone and 1% by mass of vinylene carbonate are added. The non-aqueous electrolyte solution is prepared, and the non-aqueous electrolyte solution is injected from a portion of the outer periphery of the outer package that is not sealed, and then the outer package is completely welded and sealed. Obtained.

実施例2
前記炭素材料混合物に代えて、前記非晶質炭素材料:3質量部のみを導電助剤とした以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 2
Instead of the carbon material mixture, a positive electrode was prepared in the same manner as in Example 1 except that only 3 parts by mass of the amorphous carbon material was used as a conductive additive, and Example 1 except that this positive electrode was used. A non-aqueous secondary battery was produced in the same manner as described above.

実施例3
前記非晶質炭素材料:2質量部および黒鉛:1質量部で炭素材料混合物を構成した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 3
Amorphous carbon material: 2 parts by mass and graphite: 1 part by mass Except that the carbon material mixture was constituted, a positive electrode was produced in the same manner as in Example 1, and this positive electrode was used, except that this positive electrode was used. Thus, a non-aqueous secondary battery was produced.

実施例4
多価の有機金属塩としてLiCOCHCHCHCOLiを用いた以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 4
A positive electrode was produced in the same manner as in Example 1 except that LiCO 2 CH 2 CH 2 CH 2 CO 2 Li was used as the polyvalent organometallic salt, and in the same manner as in Example 1 except that this positive electrode was used. A non-aqueous secondary battery was produced.

実施例5
多価の有機金属塩としてLiCOCOLiを用いた以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 5
A positive electrode was produced in the same manner as in Example 1 except that LiCO 2 C 6 H 4 CO 2 Li was used as the polyvalent organic metal salt, and non-water was produced in the same manner as in Example 1 except that this positive electrode was used. A secondary battery was produced.

実施例6
多価の有機金属塩としてLiCOFCOLiを用いた以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 6
A positive electrode was produced in the same manner as in Example 1 except that LiCO 2 C 6 H 3 FCO 2 Li was used as the polyvalent organometallic salt, and non-water was produced in the same manner as in Example 1 except that this positive electrode was used. A secondary battery was produced.

実施例7
多価の有機金属塩としてMg(COFCO)を用いた以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 7
A positive electrode was produced in the same manner as in Example 1 except that Mg (CO 2 C 6 H 3 FCO 2 ) was used as the polyvalent organometallic salt, and the same procedure as in Example 1 was conducted except that this positive electrode was used. A non-aqueous secondary battery was produced.

実施例8
多価の有機金属塩の被覆量を、LiNi0.5Mn1.5:100質量部に対して2質量部に変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 8
A positive electrode was produced in the same manner as in Example 1 except that the amount of the polyvalent organometallic salt was changed to 2 parts by mass with respect to LiNi 0.5 Mn 1.5 O 4 : 100 parts by mass. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that the positive electrode was used.

実施例9
多価の有機金属塩で表面を被覆していないLiNi0.5Mn1.5を用いた以外は実施例1と同様にして正極合剤含有ペーストを調製した。この正極合剤含有ペーストを、厚みが15μmのアルミニウム箔からなる集電体の片面に塗布し、乾燥して正極合剤層を形成した。次いで、前記正極合剤層をプレスし成形した後、LiSOCFCFCFSOLiを溶解させた水溶液を表面にスプレー噴霧し、120℃で乾燥して正極合剤層の表面を多価の有機金属塩で被覆した正極を作製した。この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 9
A positive electrode mixture-containing paste was prepared in the same manner as in Example 1 except that LiNi 0.5 Mn 1.5 O 4 whose surface was not coated with a polyvalent organometallic salt was used. This positive electrode mixture-containing paste was applied to one side of a current collector made of an aluminum foil having a thickness of 15 μm and dried to form a positive electrode mixture layer. Next, after the positive electrode mixture layer is pressed and molded, an aqueous solution in which LiSO 3 CF 2 CF 2 CF 2 SO 3 Li is dissolved is spray-sprayed on the surface and dried at 120 ° C. so that the surface of the positive electrode mixture layer is formed. A positive electrode coated with a polyvalent organometallic salt was prepared. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.

実施例10
非水電解液の溶媒を、エチレンカーボネート、ジエチルカーボネート、ダイキン製フッ化エーテル:HCFCFCFOCFCHFの体積比2:2:3の混合溶媒に変更した以外は、実施例1と同様にして非水二次電池を作製した。
Example 10
Example 1 except that the solvent of the non-aqueous electrolyte was changed to a mixed solvent of ethylene carbonate, diethyl carbonate, Daikin fluoride ether: HCF 2 CF 2 CF 2 OCF 2 CHF 2 in a volume ratio of 2: 2: 3. A non-aqueous secondary battery was produced in the same manner as described above.

実施例11
非水電解液の溶媒を、エチレンカーボネート、ジエチルカーボネート、フルオロエチレンカーボネート(4−フルオロ−1,3−ジオキソラン−2−オン)の体積比2:2:3の混合溶媒に変更した以外は、実施例1と同様にして非水二次電池を作製した。
Example 11
Implementation was performed except that the solvent of the non-aqueous electrolyte was changed to a mixed solvent of ethylene carbonate, diethyl carbonate, and fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one) in a volume ratio of 2: 2: 3. A non-aqueous secondary battery was produced in the same manner as in Example 1.

比較例1
多価の有機金属塩で表面を被覆していないLiNi0.5Mn1.5を用いた以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Comparative Example 1
A positive electrode was produced in the same manner as in Example 1 except that LiNi 0.5 Mn 1.5 O 4 whose surface was not coated with a polyvalent organometallic salt was used. In the same manner as in Example 1, a non-aqueous secondary battery was produced.

比較例2
非水電解液を、実施例10で用いた非水電解液に変更した以外は、比較例1と同様にして非水二次電池を作製した。
Comparative Example 2
A nonaqueous secondary battery was produced in the same manner as in Comparative Example 1 except that the nonaqueous electrolyte was changed to the nonaqueous electrolyte used in Example 10.

実施例および比較例の非水二次電池の充放電サイクル特性を、次の方法で評価した。まず、各電池について、電池電圧が5Vになるまで0.2Cの定電流で充電し、その後、0.2Cの定電流で、終止電圧を3.5Vとして放電する一連の操作を1サイクルとして、20サイクルの充放電を行った。その後、各電池について、参照極に対する正極の電位が5Vになるまで0.2Cの定電流で充電し、続いて1Cの定電流で終止電圧を3.5Vとして放電を行い、放電容量(充放電20サイクル経過後の1C放電容量)を求め、比較例1の電池の放電容量を100とした場合の相対値で充放電サイクル特性を評価した。その結果を表1に示す。   The charge / discharge cycle characteristics of the nonaqueous secondary batteries of Examples and Comparative Examples were evaluated by the following methods. First, for each battery, a series of operations of charging at a constant current of 0.2 C until the battery voltage reaches 5 V, and then discharging at a constant current of 0.2 C with a final voltage of 3.5 V is defined as one cycle. 20 cycles of charge and discharge were performed. Thereafter, each battery is charged with a constant current of 0.2 C until the potential of the positive electrode with respect to the reference electrode reaches 5 V, and then discharged with a constant current of 1 C with a final voltage of 3.5 V, and a discharge capacity (charge / discharge) 1C discharge capacity after 20 cycles) was determined, and the charge / discharge cycle characteristics were evaluated using relative values when the discharge capacity of the battery of Comparative Example 1 was 100. The results are shown in Table 1.

Figure 2012243696
Figure 2012243696

なお、表1における「多価の有機リチウム塩の割合」は、正極活物質100質量部に対する多価の有機金属塩の量(質量部)を意味している。   In addition, “the ratio of the polyvalent organic lithium salt” in Table 1 means the amount (part by mass) of the polyvalent organometallic salt relative to 100 parts by mass of the positive electrode active material.

表1に示すように、実施例1〜11の非水二次電池は、比較例1の電池に比べて、充放電20サイクル経過後の1C放電容量が大きく、優れた充放電サイクル特性を有している。   As shown in Table 1, the non-aqueous secondary batteries of Examples 1 to 11 have a large 1C discharge capacity after 20 cycles of charge / discharge compared to the battery of Comparative Example 1, and have excellent charge / discharge cycle characteristics. doing.

また、正極活物質の表面が、フッ素を含有する多価の有機金属塩:LiSOCFCFCFSOLiで被覆され、正極の導電助剤として、非晶質炭素材料とカーボンナノチューブとを混合した炭素材料混合物を用いた実施例1の電池は、正極の導電助剤として、非晶質炭素材料と繊維状炭素またはカーボンナノチューブとを併用していない実施例2および実施例3、多価の有機金属塩としてフッ素を含有しないLiCOCHCHCHCOLiを用いた実施例4の各電池に比べ、充放電20サイクル経過後の1C放電容量が大きく、優れた充放電サイクル特性を有している。 Further, the surface of the positive electrode active material is coated with a polyvalent organic metal salt containing fluorine: LiSO 3 CF 2 CF 2 CF 2 SO 3 Li, and an amorphous carbon material and a carbon nanotube are used as a conductive auxiliary for the positive electrode. The battery of Example 1 using the carbon material mixture in which Example 2 and Example 3 were not used in combination with an amorphous carbon material and fibrous carbon or carbon nanotubes as a conductive additive for the positive electrode, Compared with each battery of Example 4 using LiCO 2 CH 2 CH 2 CH 2 CO 2 Li that does not contain fluorine as a polyvalent organometallic salt, the 1C discharge capacity after 20 cycles of charge and discharge is large, and excellent charge It has discharge cycle characteristics.

なお、充放電サイクル特性評価後の実施例1の非水二次電池を分解して正極を取り出し、その表面について、X線光電子分光分析装置(XPS)を用いて、組成分析および化学状態分析を行ったところ、表面層からFおよびSが検出され、各々、C−F結合およびS−O結合として存在することが判明した。この結果から、LiSOCFCFCFSOLi由来の被膜が正極表面に形成されていることが確認された。 In addition, the nonaqueous secondary battery of Example 1 after charge / discharge cycle characteristics evaluation was disassembled, the positive electrode was taken out, and the surface was subjected to composition analysis and chemical state analysis using an X-ray photoelectron spectrometer (XPS). As a result, F and S were detected from the surface layer and were found to exist as C—F bonds and S—O bonds, respectively. From this result, it was confirmed that a film derived from LiSO 3 CF 2 CF 2 CF 2 SO 3 Li was formed on the surface of the positive electrode.

Claims (7)

リチウム含有複合酸化物を活物質として含有する合剤層を有する正極、負極、セパレータおよび非水電解質を備えた非水二次電池であって、
前記活物質の表面が、多価の有機金属塩で被覆されたことを特徴とする非水二次電池。
A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte having a mixture layer containing a lithium-containing composite oxide as an active material,
A non-aqueous secondary battery, wherein the surface of the active material is coated with a polyvalent organometallic salt.
リチウム含有複合酸化物を活物質として含有する合剤層を有する正極、負極、セパレータおよび非水電解液を備えた非水二次電池であって、
前記合剤層の表面が、多価の有機金属塩で被覆されたことを特徴とする非水二次電池。
A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte having a mixture layer containing a lithium-containing composite oxide as an active material,
A nonaqueous secondary battery, wherein the surface of the mixture layer is coated with a polyvalent organic metal salt.
正極合剤層の表面部における多価の有機金属塩の含有割合が、正極合剤層の内部における多価の有機金属塩の含有割合よりも多い請求項1に記載の非水二次電池。   The nonaqueous secondary battery according to claim 1, wherein a content ratio of the polyvalent organic metal salt in the surface portion of the positive electrode mixture layer is larger than a content ratio of the polyvalent organic metal salt in the positive electrode mixture layer. 多価の有機金属塩が、多価のフッ素含有有機リチウム塩である請求項1〜3のいずれかに記載の非水二次電池。   The nonaqueous secondary battery according to claim 1, wherein the polyvalent organic metal salt is a polyvalent fluorine-containing organic lithium salt. 正極合剤層が、非晶質炭素材料と繊維状炭素材料またはカーボンナノチューブとを含有している請求項1〜4のいずれかに記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 1 to 4, wherein the positive electrode mixture layer contains an amorphous carbon material and a fibrous carbon material or a carbon nanotube. リチウム含有複合酸化物が、リチウム基準で4.4V以上の電圧に充電して使用し得るものである請求項1〜5のいずれかに記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 1 to 5, wherein the lithium-containing composite oxide can be used by being charged to a voltage of 4.4 V or higher on the basis of lithium. リチウム含有複合酸化物が、一般式LiNiMn2−x−y(ただし、Mは、Ni、MnおよびLi以外の少なくとも1種の金属元素で、0.4≦x≦0.6、0≦y≦0.1である)で表される複合酸化物である請求項1〜6のいずれかに記載の非水二次電池。
Lithium-containing composite oxide is represented by the general formula LiNi x M y Mn 2-x -y O 4 ( provided that, M is, Ni, at least one metal element other than Mn and Li, 0.4 ≦ x ≦ 0. The non-aqueous secondary battery according to claim 1, wherein the composite oxide is represented by: 6, 0 ≦ y ≦ 0.1.
JP2011115348A 2011-05-24 2011-05-24 Non-aqueous secondary battery Expired - Fee Related JP5629645B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011115348A JP5629645B2 (en) 2011-05-24 2011-05-24 Non-aqueous secondary battery
US13/478,506 US20120301784A1 (en) 2011-05-24 2012-05-23 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115348A JP5629645B2 (en) 2011-05-24 2011-05-24 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2012243696A true JP2012243696A (en) 2012-12-10
JP5629645B2 JP5629645B2 (en) 2014-11-26

Family

ID=47219423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115348A Expired - Fee Related JP5629645B2 (en) 2011-05-24 2011-05-24 Non-aqueous secondary battery

Country Status (2)

Country Link
US (1) US20120301784A1 (en)
JP (1) JP5629645B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168821A1 (en) * 2012-05-11 2013-11-14 宇部興産株式会社 Non-aqueous electrolyte and power storage device using same
JP2015018707A (en) * 2013-07-11 2015-01-29 日本電気株式会社 Charging method for lithium secondary battery
JP2015095423A (en) * 2013-11-14 2015-05-18 Fdk株式会社 Electrode material for lithium secondary battery and lithium secondary battery
WO2016063813A1 (en) * 2014-10-21 2016-04-28 日本電気株式会社 Electrode for secondary cell, and secondary cell in which same is used
JP2016081692A (en) * 2014-10-16 2016-05-16 株式会社日立製作所 Additive agent for electrolytic solution of lithium secondary battery, electrolytic solution for lithium secondary battery arranged by use thereof, and lithium secondary battery
WO2017056932A1 (en) * 2015-09-30 2017-04-06 信越化学工業株式会社 Method for using nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte secondary batteries
JP2017073281A (en) * 2015-10-07 2017-04-13 日産自動車株式会社 Positive electrode material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery using the same, and nonaqueous electrolyte secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452029B1 (en) * 2011-09-20 2014-10-23 주식회사 엘지화학 Cathode active material with high capacity and lithium secondary battery comprising thereof
KR102277906B1 (en) 2013-11-28 2021-07-15 삼성전자주식회사 Cathode active material, secondary battery comprising the same, and preparation method thereof
JP2017507460A (en) * 2014-03-05 2017-03-16 エー123 システムズ エルエルシーA123 Systems LLC Multivalent metal salts for lithium ion batteries having oxygen-containing electrode active materials
JP6361599B2 (en) * 2015-07-07 2018-07-25 株式会社豊田中央研究所 Power storage device
US10637074B2 (en) * 2017-07-19 2020-04-28 Microsoft Technology Licensing, Llc Flexible battery with liquid metal electrode
KR102322714B1 (en) 2019-02-01 2021-11-08 주식회사 엘지에너지솔루션 Stack type-Electrode Assembly Comprising Electrode with Insulation Layer and Lithium Secondary Battery Comprising the Same
KR102390657B1 (en) * 2019-02-01 2022-04-26 주식회사 엘지에너지솔루션 Electrode with Insulation Film, Manufacturing Method thereof, and Lithium Secondary Battery Comprising the Same
CN113839092B (en) * 2021-08-30 2024-06-18 上海大学 Doped positive metal salt-lithium salt composite additive and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714582A (en) * 1993-06-24 1995-01-17 Nec Corp Electrode black mix and nonaqueous electrolytic battery
JPH09213375A (en) * 1996-02-05 1997-08-15 Sony Corp Non-aqueous electrolyte secondary battery
JP2004259680A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous lithium secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691084A (en) * 1994-03-19 1997-11-25 Hitachi Maxell, Ltd Organic electrolytic solution secondary cell
CA2320661A1 (en) * 2000-09-26 2002-03-26 Hydro-Quebec New process for synthesizing limpo4 materials with olivine structure
KR100437339B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 A method of preparing active material for battery and active material prepared therefrom
US7316862B2 (en) * 2002-11-21 2008-01-08 Hitachi Maxell, Ltd. Active material for electrode and non-aqueous secondary battery using the same
KR20060091486A (en) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 Cathode active material, method of preparing the same, and cathode and lithium battery containing the material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714582A (en) * 1993-06-24 1995-01-17 Nec Corp Electrode black mix and nonaqueous electrolytic battery
JPH09213375A (en) * 1996-02-05 1997-08-15 Sony Corp Non-aqueous electrolyte secondary battery
JP2004259680A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous lithium secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168821A1 (en) * 2012-05-11 2013-11-14 宇部興産株式会社 Non-aqueous electrolyte and power storage device using same
US9595737B2 (en) 2012-05-11 2017-03-14 Ube Industries, Ltd. Non-aqueous electrolyte and power storage device using same
JP2015018707A (en) * 2013-07-11 2015-01-29 日本電気株式会社 Charging method for lithium secondary battery
JP2015095423A (en) * 2013-11-14 2015-05-18 Fdk株式会社 Electrode material for lithium secondary battery and lithium secondary battery
JP2016081692A (en) * 2014-10-16 2016-05-16 株式会社日立製作所 Additive agent for electrolytic solution of lithium secondary battery, electrolytic solution for lithium secondary battery arranged by use thereof, and lithium secondary battery
WO2016063813A1 (en) * 2014-10-21 2016-04-28 日本電気株式会社 Electrode for secondary cell, and secondary cell in which same is used
JPWO2016063813A1 (en) * 2014-10-21 2017-08-03 日本電気株式会社 Secondary battery electrode and secondary battery using the same
US10320026B2 (en) 2014-10-21 2019-06-11 Nec Corporation Electrode for secondary battery and secondary battery using same
WO2017056932A1 (en) * 2015-09-30 2017-04-06 信越化学工業株式会社 Method for using nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte secondary batteries
JPWO2017056932A1 (en) * 2015-09-30 2017-12-21 信越化学工業株式会社 Method of using non-aqueous electrolyte secondary battery and negative electrode active material for non-aqueous electrolyte secondary battery
JP2017073281A (en) * 2015-10-07 2017-04-13 日産自動車株式会社 Positive electrode material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery using the same, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
US20120301784A1 (en) 2012-11-29
JP5629645B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5629645B2 (en) Non-aqueous secondary battery
JP6511222B2 (en) Lithium battery
JP6396153B2 (en) Lithium secondary battery
JP5582587B2 (en) Lithium ion secondary battery
JP6846652B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary batteries
JP6380377B2 (en) Lithium ion secondary battery
WO2012011507A1 (en) Non-aqueous electrolyte for secondary batteries, and secondary battery
WO2011030832A1 (en) Non-aqueous electrolytic solution for power storage device, and power storage device
JP6304746B2 (en) Lithium ion secondary battery
JP5357517B2 (en) Lithium ion secondary battery
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
JP2019053983A (en) Non-aqueous electrolyte additive, electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell
JP2014029840A (en) Lithium secondary battery
JP2014022328A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6191602B2 (en) Lithium ion secondary battery
JP5421220B2 (en) Secondary battery electrolyte and secondary battery
JP2020187973A (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP5464652B2 (en) Non-aqueous secondary battery positive electrode, non-aqueous secondary battery, and device having the non-aqueous secondary battery
JP2015037068A (en) Positive electrode for lithium ion battery, and lithium ion secondary battery
JP5647069B2 (en) Non-aqueous secondary battery
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP2002216768A (en) Nonaqueous secondary battery
US10511057B2 (en) Non-aqueous electrolyte secondary battery and a method for producing the same
JP7318344B2 (en) NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
JP6258180B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY, ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, LITHIUM SECONDARY BATTERY

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141006

R150 Certificate of patent or registration of utility model

Ref document number: 5629645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees