JP7318344B2 - NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME - Google Patents

NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP7318344B2
JP7318344B2 JP2019114141A JP2019114141A JP7318344B2 JP 7318344 B2 JP7318344 B2 JP 7318344B2 JP 2019114141 A JP2019114141 A JP 2019114141A JP 2019114141 A JP2019114141 A JP 2019114141A JP 7318344 B2 JP7318344 B2 JP 7318344B2
Authority
JP
Japan
Prior art keywords
positive electrode
potential
charging
active material
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019114141A
Other languages
Japanese (ja)
Other versions
JP2021002432A (en
JP2021002432A5 (en
Inventor
直樹 井上
慎之介 市川
平祐 西川
昭人 田野井
修弘 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2019114141A priority Critical patent/JP7318344B2/en
Publication of JP2021002432A publication Critical patent/JP2021002432A/en
Publication of JP2021002432A5 publication Critical patent/JP2021002432A5/ja
Application granted granted Critical
Publication of JP7318344B2 publication Critical patent/JP7318344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水電解質蓄電素子、その使用方法及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte storage element, a method for using the same, and a method for manufacturing the same.

リチウム二次電池に代表される非水電解質蓄電素子は、近年ますます用途が拡大され、より大容量の正極材料の開発が求められている。従来、非水電解質蓄電素子用の正極活物質として、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されている。リチウム遷移金属複合酸化物を構成する遷移金属(Me)として、地球資源として豊富なマンガンを用い、リチウム遷移金属複合酸化物を構成する遷移金属に対するリチウムのモル比(Li/Me)がほぼ1であり、遷移金属中のマンガンのモル比(Mn/Me)が0.5以下である、いわゆるLiMeO型活物質を用いた非水電解質二次電池も実用化されている。 Non-aqueous electrolyte power storage devices represented by lithium secondary batteries have been increasingly used in recent years, and there is a demand for the development of higher capacity positive electrode materials. Conventionally, a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure has been studied as a positive electrode active material for a nonaqueous electrolyte storage element, and a nonaqueous electrolyte secondary battery using LiCoO 2 has been widely put into practical use. there is Manganese, which is abundant as an earth resource, is used as the transition metal (Me) that constitutes the lithium-transition metal composite oxide, and the molar ratio (Li/Me) of lithium to the transition metal that constitutes the lithium-transition metal composite oxide is approximately 1. A non-aqueous electrolyte secondary battery using a so-called LiMeO 2 type active material, in which the molar ratio (Mn/Me) of manganese in the transition metal is 0.5 or less, has also been put into practical use.

一方、近年、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の中でも、遷移金属に対するリチウムのモル比(Li/Me)が1を超える、いわゆるリチウム過剰型活物質が知られている(特許文献1、2)。この活物質は、電池を組み立てて、最初に行う充電過程において、4.5V vs.Li/Li以上5.0V vs.Li/Li以下の電位範囲内に、充電電気量に対して電位変化が比較的緩やかな領域が観察されるという特徴がある。このようなリチウム過剰型活物質を用いた非水電解質蓄電素子は、電位変化が比較的緩やかな領域が観察される充電過程が終了するまで初期に充電を行うことにより、以降の充電電位をそれほど高くしなくても、LiMeO型活物質に比べて大きい放電容量を有することから、注目されている。 On the other hand, in recent years, among lithium-transition metal composite oxides having an α-NaFeO 2 type crystal structure, so-called lithium-excess type active materials in which the molar ratio of lithium to the transition metal (Li/Me) exceeds 1 are known. (Patent Documents 1 and 2). This active material is 4.5V vs. Li/Li + or more 5.0V vs. A feature is that a region in which the potential change is relatively gentle with respect to the amount of charged electricity is observed within the potential range of Li/Li + or lower. In the non-aqueous electrolyte storage element using such a lithium-excess type active material, charging is performed at an early stage until the end of the charging process in which a region where the potential change is relatively gradual is observed, so that the charging potential after that is not much. It is attracting attention because it has a higher discharge capacity than the LiMeO 2 -type active material, even if it is not expensive.

リチウム過剰型活物質を正極に用いた従来の非水電解質蓄電素子においては、上記のような効果を発揮させるため、一般的に正極電位が4.6V vs.Li/Li以上に至るまでの初期充放電を経て製造される。特許文献1では、リチウム過剰型活物質を正極に用い、ケイ素と炭素とを負極に用いた非水電解質二次電池の初期充放電の際に、正極電位が4.60V vs.Li/Liに至るまで充電が行われている。特許文献2では、リチウム過剰型活物質を正極に用い、黒鉛を負極に用いた非水電解質二次電池の初期充放電の際に、電圧が4.7Vに至るまで、すなわち正極電位が4.8V vs.Li/Liに至るまで充電が行われている。 In a conventional non-aqueous electrolyte storage element using a lithium-excess active material for the positive electrode, the positive electrode potential is generally 4.6 V vs. It is manufactured through initial charge/discharge up to Li/Li + or more. In Patent Document 1, during the initial charge/discharge of a non-aqueous electrolyte secondary battery in which a lithium-excess active material is used for the positive electrode and silicon and carbon are used for the negative electrode, the positive electrode potential is 4.60 V vs. Charging is carried out up to Li/Li + . In Patent Document 2, during the initial charge/discharge of a non-aqueous electrolyte secondary battery using a lithium-excess type active material for the positive electrode and graphite for the negative electrode, the voltage reaches 4.7 V, that is, the positive electrode potential is 4.7V. 8V vs. Charging is carried out up to Li/Li + .

特開2012-104335号公報JP 2012-104335 A 特開2013-191390号公報JP 2013-191390 A

上述のようなリチウム過剰型活物質を正極に用いた非水電解質蓄電素子は、充放電サイクルにおける容量維持率が低いという不都合を有する。 A non-aqueous electrolyte storage element using the lithium-excess type active material as described above for the positive electrode has the disadvantage that the capacity retention rate is low in charging/discharging cycles.

本発明の目的は、リチウム過剰型活物質を正極に用いた非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い非水電解質蓄電素子、並びにこのような非水電解質蓄電素子の使用方法及び製造方法を提供することである。 An object of the present invention is to provide a non-aqueous electrolyte storage element using a lithium-excess type active material for the positive electrode, the non-aqueous electrolyte storage element having a high capacity retention rate in charge/discharge cycles, and such a non-aqueous electrolyte storage element. It is to provide a method of use and a method of manufacture.

本発明の一態様に係る非水電解質蓄電素子は、正極活物質を含む正極合剤を有する正極を備え、上記正極活物質が、α-NaFeO構造を有し、かつLi1+αMe1-α(0<α<1;MeはNi及びMnを含む遷移金属である。)で表されるリチウム遷移金属複合酸化物を含み、上記正極に対して、上記正極合剤の質量あたり9mA/gの電流密度により、電位が2.00V vs.Li/Liに至るまでの放電を行った後、上記電流密度により、電位が4.80V vs.Li/Liに至るまでの充電と電位が2.00V vs.Li/Liに至るまでの放電とからなる充放電を2サイクル行ったときの充電電気量が、下記式(1)を満たす、非水電解質蓄電素子である。
(C2A/C2B)×100-(C1A/C1B)×100≧1.0 ・・・(1)
(式(1)中、C1Aは、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量である。C1Bは、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量である。C2Aは、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量である。C2Bは、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量である。)
A non-aqueous electrolyte power storage element according to an aspect of the present invention includes a positive electrode having a positive electrode mixture containing a positive electrode active material, the positive electrode active material having an α-NaFeO 2 structure and Li 1+α Me 1-α O 2 (0<α<1; Me is a transition metal including Ni and Mn), and the positive electrode is supplied with 9 mA/mass of the positive electrode mixture. A current density of 2.00 V vs. After discharging up to Li/Li + , the potential is 4.80 V vs. When the charge and potential up to Li/Li + is 2.00 V vs. The non-aqueous electrolyte storage element satisfies the following formula (1) when the charge/discharge is performed for two cycles including discharge to Li/Li + .
(C 2A /C 2B )×100−(C 1A /C 1B )×100≧1.0 (1)
(In formula (1), C 1A is the amount of electricity charged from the start of charging until the potential reaches 4.45 V vs. Li/Li + during the first cycle of charging and discharging. C 1B is the amount of charge from the start of charging until the potential reaches 4.80 V vs. Li/Li + during the charging of the first cycle of the charging and discharging.C 2A is the second cycle of the charging and discharging is the amount of electricity charged from the start of charging until the potential reaches 4.45 V vs. Li/Li + .C 2B is the amount of charge from the start of charging during the second cycle of charging and discharging. It is the amount of electricity charged until the potential reaches 4.80 V vs. Li/Li + .)

本発明の他の一態様に係る非水電解質蓄電素子の使用方法は、正極電位が4.30V vs.Li/Li超4.60V vs.Li/Li未満に至るまで充電することを備える、本発明の一態様の非水電解質蓄電素子の使用方法である。 A method of using a non-aqueous electrolyte storage element according to another aspect of the present invention is such that the positive electrode potential is 4.30 V vs. Li/Li + greater than 4.60V vs. This is a method of using the non-aqueous electrolyte power storage element of one embodiment of the present invention, comprising charging to less than Li/Li + .

本発明の他の一態様に係る非水電解質蓄電素子の製造方法は、上記正極の最大到達電位を4.60V vs.Li/Li未満で初期充放電を行うことを備える、本発明の一態様の非水電解質蓄電素子の製造方法である。 In another aspect of the present invention, there is provided a method for manufacturing a non-aqueous electrolyte storage element, wherein the maximum attainable potential of the positive electrode is 4.60 V vs. A method for manufacturing a non-aqueous electrolyte power storage element according to one embodiment of the present invention, comprising performing initial charge/discharge at less than Li/Li + .

本発明の一態様に係る非水電解質蓄電素子は、リチウム過剰型活物質を正極に用いた非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い。
本発明の他の一態様に係る非水電解質蓄電素子の使用方法によれば、リチウム過剰型活物質を正極に用いた非水電解質蓄電素子を高い容量維持率で使用することができる。
本発明の他の一態様に係る非水電解質蓄電素子の製造方法によれば、リチウム過剰型活物質を正極に用いた非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い非水電解質蓄電素子を製造することができる。
A non-aqueous electrolyte power storage element according to one embodiment of the present invention is a non-aqueous electrolyte power storage element using a lithium-excess active material for a positive electrode, and has a high capacity retention rate in charge-discharge cycles.
According to the method of using the non-aqueous electrolyte storage element according to another aspect of the present invention, the non-aqueous electrolyte storage element using the lithium-excess active material for the positive electrode can be used with a high capacity retention rate.
According to a method for manufacturing a non-aqueous electrolyte energy storage device according to another aspect of the present invention, a non-aqueous electrolyte energy storage device using a lithium-excess type active material for a positive electrode and having a high capacity retention rate in charge-discharge cycles is a non-aqueous electrolyte energy storage device. A water electrolyte storage device can be manufactured.

図1は、実施例1の非水電解質蓄電素子(試験電池)の充放電曲線(充放電電気量に対する電圧の変化を示す図)である。FIG. 1 is a charge/discharge curve (a diagram showing changes in voltage with respect to charge/discharge quantity of electricity) of the non-aqueous electrolyte storage element (test battery) of Example 1. FIG. 図2は、比較例1の非水電解質蓄電素子(試験電池)の充放電曲線(充放電電気量に対する電圧の変化を示す図)である。FIG. 2 is a charge/discharge curve (a diagram showing changes in voltage with respect to charge/discharge quantity of electricity) of the non-aqueous electrolyte storage element (test battery) of Comparative Example 1. FIG. 図3は、本発明の一実施形態に係る非水電解質蓄電素子のリチウム遷移金属複合酸化物の組成に係る三角相図である。FIG. 3 is a triangular phase diagram of the composition of the lithium-transition metal composite oxide of the non-aqueous electrolyte storage element according to one embodiment of the present invention. 図4は、実施例1から5、14から18及び比較例1、4の非水電解質蓄電素子のエネルギー密度を示すグラフである。4 is a graph showing the energy densities of the non-aqueous electrolyte storage elements of Examples 1 to 5 and 14 to 18 and Comparative Examples 1 and 4. FIG. 図5は、本発明の一実施形態に係る非水電解質蓄電素子を示す外観斜視図である。FIG. 5 is an external perspective view showing a non-aqueous electrolyte storage element according to one embodiment of the present invention. 図6は、本発明の一実施形態に係る非水電解質蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。FIG. 6 is a schematic diagram showing a power storage device configured by assembling a plurality of non-aqueous electrolyte power storage elements according to one embodiment of the present invention.

初めに、本明細書によって開示される非水電解質蓄電素子、その使用方法及びその製造方法の概要について説明する。 First, an outline of the non-aqueous electrolyte storage element disclosed by the present specification, its usage method, and its manufacturing method will be described.

本発明の一態様に係る非水電解質蓄電素子は、正極活物質を含む正極合剤を有する正極を備え、上記正極活物質が、α-NaFeO構造を有し、かつLi1+αMe1-α(0<α<1;MeはNi及びMnを含む遷移金属である。)で表されるリチウム遷移金属複合酸化物を含み、上記正極に対して、上記正極合剤の質量あたり9mA/gの電流密度により、電位が2.00V vs.Li/Liに至るまでの放電を行った後、上記電流密度により、電位が4.80V vs.Li/Liに至るまでの充電と電位が2.00V vs.Li/Liに至るまでの放電とからなる充放電を2サイクル行ったときの充電電気量が、下記式(1)を満たす、非水電解質蓄電素子である。
(C2A/C2B)×100-(C1A/C1B)×100≧1.0 ・・・(1)
(式(1)中、C1Aは、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量である。C1Bは、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量である。C2Aは、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量である。C2Bは、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量である。)
A non-aqueous electrolyte power storage element according to an aspect of the present invention includes a positive electrode having a positive electrode mixture containing a positive electrode active material, the positive electrode active material having an α-NaFeO 2 structure and Li 1+α Me 1-α O 2 (0<α<1; Me is a transition metal including Ni and Mn), and the positive electrode is supplied with 9 mA/mass of the positive electrode mixture. A current density of 2.00 V vs. After discharging up to Li/Li + , the potential is 4.80 V vs. When the charge and potential up to Li/Li + is 2.00 V vs. The non-aqueous electrolyte storage element satisfies the following formula (1) when the charge/discharge is performed for two cycles including discharge to Li/Li + .
(C 2A /C 2B )×100−(C 1A /C 1B )×100≧1.0 (1)
(In formula (1), C 1A is the amount of electricity charged from the start of charging until the potential reaches 4.45 V vs. Li/Li + during the first cycle of charging and discharging. C 1B is the amount of charge from the start of charging until the potential reaches 4.80 V vs. Li/Li + during the charging of the first cycle of the charging and discharging.C 2A is the second cycle of the charging and discharging is the amount of electricity charged from the start of charging until the potential reaches 4.45 V vs. Li/Li + .C 2B is the amount of charge from the start of charging during the second cycle of charging and discharging. It is the amount of electricity charged until the potential reaches 4.80 V vs. Li/Li + .)

当該非水電解質蓄電素子は、リチウム過剰型活物質(α-NaFeO構造を有し、かつLi1+αMe1-αで表されるリチウム遷移金属複合酸化物)を正極に用いた非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い。このような効果が生じる理由は定かでは無いが、以下のことが推測される。 The non-aqueous electrolyte power storage element is a non-aqueous electrolyte using a lithium-excess type active material (a lithium transition metal composite oxide having an α-NaFeO 2 structure and represented by Li 1+α Me 1-α O 2 ) for a positive electrode. It is an electrolyte storage device and has a high capacity retention rate in charge/discharge cycles. Although the reason why such an effect occurs is not clear, the following is presumed.

(式(1)の技術的意義)
まず、上記式(1)の技術的意義について、図1、2を参照に説明する。図1は、本発明の実施例1に係る非水電解質蓄電素子(試験電池)に対して、上記2サイクルの充放電を行ったときの充放電曲線である。図2は、本発明の比較例1に係る非水電解質蓄電素子(試験電池)に対して、上記2サイクルの充放電を行ったときの充放電曲線である。なお、図1、2において、横軸は、充電開始から電圧が4.80V(正極電位が4.80V vs.Li/Li)に至るまでの充電における充電電気量(C1B又はC2B)、又は放電開始から電圧が2.00V(正極電位が2.00V vs.Li/Li)に至るまでの放電における放電電気量を基準(100%)とした相対電気量(%)である。また、負極材料が金属リチウムの場合、負極における金属リチウムの溶解・析出反応抵抗が極めて低いことから、充放電中の端子間電圧は、金属リチウムを用いた参照極に対する作用極の電位と等しいとみなすことができる。
(Technical significance of formula (1))
First, the technical significance of the above formula (1) will be described with reference to FIGS. FIG. 1 is a charge/discharge curve when the non-aqueous electrolyte storage element (test battery) according to Example 1 of the present invention is subjected to the above two cycles of charge/discharge. FIG. 2 is a charge/discharge curve when the non-aqueous electrolyte storage element (test battery) according to Comparative Example 1 of the present invention is subjected to the above two cycles of charge/discharge. In FIGS. 1 and 2, the horizontal axis represents the amount of charge (C 1B or C 2B ) in charging from the start of charging until the voltage reaches 4.80 V (positive electrode potential is 4.80 V vs. Li/Li + ). , or the relative amount of electricity (%) with the discharge amount of electricity in the discharge from the start of discharge until the voltage reaches 2.00 V (the positive electrode potential is 2.00 V vs. Li/Li + ) as the reference (100%). In addition, when the negative electrode material is metallic lithium, the dissolution/precipitation reaction resistance of metallic lithium in the negative electrode is extremely low. can be regarded as

比較例1の非水電解質蓄電素子では、上記2サイクルの充放電を行なう前に実施する初期充放電において、正極電位が4.6V vs.Li/Liに至るまでの充電が行われている。上述のように、リチウム過剰型活物質は、初期に正極電位が高い電位に至るまで充電を行うと、4.5V vs.Li/Li以上5.0V vs.Li/Li以下の電位範囲内に、充電電気量に対して電位変化が比較的緩やかな領域が観察されるという特徴がある。そして、この電位変化が比較的緩やかな領域が観察される充電を行った場合は、その後、正極電位が同様の高い電位に至る充電を行っても、この電位変化が比較的緩やかな領域は再び観察されることは、通常無いとされている。また、リチウム過剰型活物質は、LiMeOとLiMnOとの固溶体と考えることができ、LiMnOにおいてはリチウムイオンが遷移金属サイトにも存在していると考えられている。リチウム過剰型活物質においては、このような遷移金属サイトに存在するリチウムイオンが、正極電位が4.6V vs.Li/Liに至るまでの充電により脱離しやすくなるため、その後の充放電において大きい充放電容量が得られるようになる(活性化される)ものと考えられる。以降、「正極電位が4.6V vs.Li/Li以上に至るまでの充電を行い、リチウム過剰型活物質が活性化されること」を高電位化成ともいう。 In the nonaqueous electrolyte storage element of Comparative Example 1, the positive electrode potential was 4.6 V vs. Charging up to Li/Li + is taking place. As described above, when the lithium-excess active material is initially charged until the positive electrode potential reaches a high potential, 4.5 V vs. Li/Li + or more 5.0V vs. A feature is that a region in which the potential change is relatively gentle with respect to the amount of charged electricity is observed within the potential range of Li/Li + or lower. Then, when charging is performed in which a region in which this potential change is relatively gradual is observed, even if charging is performed until the positive electrode potential reaches a similarly high potential, this region in which the potential change is relatively gradual will again appear. Observations are generally considered non-existent. Moreover, the lithium-excess type active material can be considered as a solid solution of LiMeO 2 and Li 2 MnO 3 , and it is believed that lithium ions are also present at transition metal sites in Li 2 MnO 3 . In the lithium-excess type active material, lithium ions present at such transition metal sites have a positive electrode potential of 4.6 V vs. It is considered that since the detachment becomes easier by charging up to Li/Li + , a large charge-discharge capacity can be obtained (activated) in the subsequent charge-discharge. Hereinafter, "charging until the positive electrode potential reaches 4.6 V vs. Li/Li + or more to activate the lithium-excess type active material" is also referred to as high potential formation.

初期充放電において高電位化成がなされている比較例1の非水電解質蓄電素子においては、上記2サイクルの充放電において電圧が4.80V(正極電位が4.80V vs.Li/Li)に至るまでの充電を行っても、4.5V vs.Li/Li以上4.8V vs.Li/Li以下の電位範囲内に、充電電気量に対して電位変化が比較的緩やかな領域が観察されない。このため、1サイクル目の充電曲線と2サイクル目の充電曲線との差異がほとんど無い。 In the non-aqueous electrolyte storage element of Comparative Example 1 in which high potential formation is performed in the initial charge and discharge, the voltage in the two cycles of charge and discharge is 4.80 V (positive electrode potential is 4.80 V vs. Li/Li + ). 4.5V vs. Li/Li + or more 4.8V vs. Within the potential range of Li/Li + or less, no region in which the potential change is relatively gentle with respect to the charge quantity of electricity is observed. Therefore, there is almost no difference between the charging curve of the first cycle and the charging curve of the second cycle.

これに対し、実施例1の非水電解質蓄電素子においては、初期充放電も含め、上記2サイクルの充放電を行なう前に、正極電位が4.6V vs.Li/Liに至るまでの充電が行われていない。従って、上記2サイクルの充放電のうちの1サイクル目ではじめて高電位化成がなされることとなり、1サイクル目の充電において4.5V vs.Li/Li以上4.8V vs.Li/Li以下の電位範囲内に、充電電気量に対して電位変化が比較的緩やかな領域が観察されている。また、この電位変化が比較的緩やかな領域は、2サイクル目には観察されない。 On the other hand, in the non-aqueous electrolyte storage element of Example 1, the positive electrode potential was 4.6 V vs. Charging to Li/Li + has not occurred. Therefore, high potential formation is performed only in the first cycle of the above two charging/discharging cycles, and 4.5 V vs. Li/Li + or more 4.8V vs. Within the potential range of Li/Li + or less, a region in which the potential change is relatively gentle with respect to the amount of charged electricity is observed. Also, the region where the potential change is relatively gentle is not observed in the second cycle.

このため実施例1においては、1サイクル目における充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量に対する、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量(C1A/C1B)は比較的小さいのに対し、2サイクル目における充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量に対する、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量(C2A/C2B)は大きくなる。すなわち実施例1の場合、C1A/C1BとC2A/C2Bとの差が大きい。これに対し比較例1の場合は、1サイクル目と2サイクル目とがほぼ同じ挙動を示すため、C1A/C1BとC2A/C2Bとの差がほとんどない。このように、式(1)を満たすということは、リチウム過剰型活物質に対して十分な高電位化成がなされていないことを意味する。 For this reason, in Example 1, the potential was 4.80 V vs. from the start of charging in the first cycle. From the start of charging, the potential is 4.45 V vs. the amount of charged electricity up to Li/Li + . The amount of charged electricity (C 1A /C 1B ) until reaching Li/Li + is relatively small, while the potential from the start of charging in the second cycle is 4.80 V vs. From the start of charging, the potential is 4.45 V vs. the amount of charged electricity up to Li/Li + . The amount of charged electricity (C 2A /C 2B ) up to Li/Li + increases. That is, in the case of Example 1, the difference between C 1A /C 1B and C 2A /C 2B is large. On the other hand, in the case of Comparative Example 1, almost the same behavior is exhibited in the first cycle and the second cycle, so there is almost no difference between C 1A /C 1B and C 2A /C 2B . Thus, satisfying formula (1) means that the lithium-excess type active material is not sufficiently high-potentially formed.

(効果が生じる理由の推察)
一方、非水電解質蓄電素子においては、充放電の際の副反応により、充放電に寄与するリチウムイオンを負極が消費することが、容量維持率が低下する原因の一つと推測される。ここで、十分な高電位化成がなされていないリチウム過剰型活物質を有する非水電解質蓄電素子においては、使用時の充放電の繰り返しに伴い、徐々にリチウム過剰型活物質が活性化され、充放電の際にリチウム過剰型活物質から脱離するリチウムイオンが徐々に増加することができると推測される。以降、「使用時の充放電の繰り返し等に伴い、徐々にリチウム過剰型活物質が活性化されること」を経時化成ともいう。このため、本発明の一態様に係る非水電解質蓄電素子によれば、充放電サイクルにおける負極によるリチウムイオンの消費を、正極のリチウム過剰型活物質からの補充により補うことができるため、容量維持率が高いと推測される。また、当該非水電解質蓄電素子においては、例えば充電状態で放置しておいた場合も、経時化成が進行し得る。従って、当該非水電解質蓄電素子によれば、放置後の容量維持率の低下も抑制することができる。
(Guess why the effect occurs)
On the other hand, in the non-aqueous electrolyte storage element, it is speculated that one of the causes of the decrease in the capacity retention rate is that the negative electrode consumes lithium ions that contribute to charging and discharging due to side reactions during charging and discharging. Here, in a non-aqueous electrolyte storage element having a lithium-excess type active material that has not been sufficiently high-potentially formed, the lithium-excess type active material is gradually activated and charged with repeated charging and discharging during use. It is presumed that the lithium ions desorbed from the lithium-rich active material during discharge can gradually increase. Hereinafter, "the gradual activation of the lithium-excess active material due to repeated charging and discharging during use" is also referred to as time-dependent formation. Therefore, according to the non-aqueous electrolyte power storage device according to one aspect of the present invention, the consumption of lithium ions by the negative electrode in the charge-discharge cycle can be supplemented by replenishment from the lithium-excess type active material of the positive electrode, so that the capacity can be maintained. presumed to be high. Also, in the non-aqueous electrolyte storage element, even if it is left in a charged state for example, the anodization may progress over time. Therefore, according to the non-aqueous electrolyte power storage device, it is possible to suppress a decrease in the capacity retention rate after standing.

なお、上記正極に対して、上記式(1)の値を求める際、以下の手順を採用する。まず、非水電解質蓄電素子を放電状態とし、非水電解質蓄電素子を解体して正極を取り出す。取り出した正極を作用極、金属リチウム電極を対極とした試験電池(単極電池)を組み立てる。なお、非水電解質蓄電素子の解体から試験電池の組み立てまでの作業は露点-60℃以下のアルゴン雰囲気中で行う。組み立てた上記試験電池に対し、上記電位が2.00V vs.Li/Liに至るまでの放電、及び上記式(1)の値を求めるための2サイクルの充放電を行う。上記式(1)の値を求めるための2サイクルの充放電は、25℃の環境下で行い、充電と放電との間は、それぞれ30分間の休止期間を設けて行う。 The following procedure is used to obtain the value of the above formula (1) for the positive electrode. First, the non-aqueous electrolyte storage element is brought into a discharged state, the non-aqueous electrolyte storage element is disassembled, and the positive electrode is taken out. A test battery (single-electrode battery) is assembled using the removed positive electrode as the working electrode and the metallic lithium electrode as the counter electrode. The operations from dismantling the non-aqueous electrolyte storage element to assembling the test battery are performed in an argon atmosphere with a dew point of -60°C or less. For the assembled test cell, the potential was 2.00 V vs. Two cycles of charging and discharging are performed to obtain the value of the above formula (1) and to discharge until Li/Li 2 + . Two cycles of charging and discharging for obtaining the value of the above formula (1) are performed in an environment of 25° C., with a rest period of 30 minutes between charging and discharging.

また、上記リチウム遷移金属複合酸化物の組成は、上記正極に対して、上記正極合剤の質量あたり9mA/gの電流密度により、電位が2.00V vs.Li/Liに至るまでの放電を行った状態で解体して分析された組成とする。 In addition, the composition of the lithium-transition metal composite oxide has a potential of 2.00 V vs. The composition is analyzed by dismantling in a state in which discharge to Li/Li + is performed.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるMnのモル比(Mn/Me)と、遷移金属(Me)に占めるNiのモル比(Ni/Me)との差(Mn/Me-Ni/Me)が、0.02以上0.2以下であることが好ましい。 The difference (Mn/Me- Ni/Me) is preferably 0.02 or more and 0.2 or less.

リチウム遷移金属複合酸化物において、上記モル比の差(Mn/Me-Ni/Me)が0.2以下であることにより、特に、比較的低い充電上限電位で使用する場合(通常使用時の充電終止電圧における正極電位が比較的低い場合)において、大きな放電容量を有し、エネルギー密度が高い非水電解質蓄電素子となる。一方、上記モル比の差(Mn/Me-Ni/Me)が0.02以上であることにより、経時化成の作用が高まり、容量維持率がより高まる。このような効果が生じる理由は定かでは無いが、以下のことが推測される。上述のように、リチウム過剰型活物質は、LiMnOとLiMeOとの固溶体と考えることができる。ここでさらに、LiMeOをLiNi0.5Mn0.5とLiCoOとの固溶体とみなせば、リチウム過剰型活物質は、LiMnOとLiNi0.5Mn0.5とLiCoOとの固溶体とみなすことができ、その組成は図3に示す三角相図で表すことができる。図3の三角相図において、0.02≦(Mn/Me-Ni/Me)≦0.2を満たすリチウム遷移金属複合酸化物(リチウム過剰型活物質)は、斜線の領域の組成のものとなる。ここで、LiMnOの比率が高い組成のリチウム遷移金属複合酸化物においては、リチウムイオンのうちLiMnOの遷移金属サイトに存在するリチウムイオンが相対的に多い。本発明の一態様に係る非水電解質蓄電素子においては、十分な高電位化成がなされておらず、比較的低い充電上限電位で使用する場合、遷移金属サイトに存在するリチウムイオンは脱離し難い。このため、LiMnOの比率が高い組成のリチウム遷移金属複合酸化物は、放電容量が大きくならない。これに対し、(Mn/Me-Ni/Me)≦0.2を満たすリチウム遷移金属複合酸化物は、LiMnOの比率が低く、LiMeOを主とする固溶体とみなすことができ、リチウムイオンのうちリチウムサイトに存在するリチウムイオンが多くを占める。リチウムサイトに存在するリチウムイオンは、高電位化成されなくとも、比較的低い充電上限電位で使用する場合も脱離しやすい。このため、リチウム遷移金属複合酸化物が(Mn/Me-Ni/Me)≦0.2を満たす場合、放電容量が大きく、エネルギー密度も高くなると推測される。一方、LiMnOの比率が高い組成のリチウム遷移金属複合酸化物においては、経時化成によって徐々に脱離可能な、遷移金属サイトに存在するリチウムイオンが十分に存在することとなる。このため、リチウム遷移金属複合酸化物が0.02≦(Mn/Me-Ni/Me)を満たす場合、経時化成の作用が十分に生じ、容量維持率がより高まると推測される。なお、「比較的低い充電上限電位」としては、充電上限電位が例えば4.50V vs.Li/Li以下であってよく、4.45V vs.Li/Li以下であってもよい。 In the lithium-transition metal composite oxide, the molar ratio difference (Mn/Me-Ni/Me) is 0.2 or less, so that when used at a relatively low charge upper limit potential (charging during normal use When the positive electrode potential at the final voltage is relatively low), the non-aqueous electrolyte storage element has a large discharge capacity and a high energy density. On the other hand, when the molar ratio difference (Mn/Me—Ni/Me) is 0.02 or more, the action of chemical formation over time is enhanced, and the capacity retention rate is further enhanced. Although the reason why such an effect occurs is not clear, the following is presumed. As described above, the lithium-rich active material can be considered as a solid solution of Li2MnO3 and LiMeO2 . Further, if LiMeO 2 is regarded as a solid solution of LiNi 0.5 Mn 0.5 O 2 and LiCoO 2 , the lithium-excess type active material is Li 2 MnO 3 and LiNi 0.5 Mn 0.5 O 2 . It can be regarded as a solid solution with LiCoO 2 and its composition can be represented by the triangular phase diagram shown in FIG. In the triangular phase diagram of FIG. 3, the lithium-transition metal composite oxide (lithium-excess active material) satisfying 0.02≦(Mn/Me—Ni/Me)≦0.2 has the composition in the shaded area. Become. Here, in the lithium-transition metal composite oxide having a composition with a high proportion of Li 2 MnO 3 , relatively many lithium ions exist at the transition metal sites of Li 2 MnO 3 among the lithium ions. In the non-aqueous electrolyte energy storage device according to one aspect of the present invention, formation of a sufficiently high potential is not performed, and when used at a relatively low charge upper limit potential, lithium ions present at transition metal sites are difficult to desorb. Therefore, a lithium-transition metal composite oxide having a composition with a high proportion of Li 2 MnO 3 does not have a large discharge capacity. On the other hand, lithium transition metal composite oxides satisfying (Mn/Me—Ni/Me)≦0.2 have a low ratio of Li 2 MnO 3 and can be regarded as a solid solution mainly composed of LiMeO 2 . Most of the ions are lithium ions existing at lithium sites. Lithium ions present at lithium sites are likely to be desorbed even when used at a relatively low charge upper limit potential, even if they are not converted to a high potential. Therefore, when the lithium-transition metal composite oxide satisfies (Mn/Me—Ni/Me)≦0.2, it is presumed that the discharge capacity is large and the energy density is also high. On the other hand, in a lithium-transition metal composite oxide having a composition with a high proportion of Li 2 MnO 3 , there are sufficient lithium ions present at the transition metal sites that can be gradually eliminated by chemical formation over time. Therefore, when the lithium-transition metal composite oxide satisfies 0.02≦(Mn/Me—Ni/Me), it is presumed that the action of chemical formation over time occurs sufficiently, and the capacity retention rate increases further. Note that the "relatively low charge upper limit potential" is, for example, a charge upper limit potential of 4.50 V vs. Li/Li + or less, 4.45V vs. It may be Li/Li + or less.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるMnのモル比(Mn/Me)が0.5以下であることが好ましい。リチウム遷移金属複合酸化物におけるMn/Meを0.5以下にすることにより、特に、比較的低い充電上限電位で使用する場合(通常使用時の充電終止電圧における正極電位が比較的低い場合)において、大きな放電容量を有し、エネルギー密度が高い非水電解質蓄電素子となる。このような効果が生じる理由は定かでは無いが、図3の三角相図に示されるように、Mn/Me≦0.5を満たすものも、上述の(Mn/Me-Ni/Me)≦0.2を満たすものと同様に、LiMeOの割合が高い固溶体とみなせる。これにより、(Mn/Me-Ni/Me)≦0.2を満たすものと同様に、放電容量が大きくなり、エネルギー密度を高くすることなどができると推測される。 The molar ratio (Mn/Me) of Mn to the transition metal (Me) in the lithium-transition metal composite oxide is preferably 0.5 or less. By setting the Mn/Me ratio in the lithium-transition metal composite oxide to 0.5 or less, particularly when used at a relatively low charge upper limit potential (when the positive electrode potential at the end of charge voltage during normal use is relatively low) , the non-aqueous electrolyte storage element has a large discharge capacity and a high energy density. Although the reason why such an effect occurs is not clear, as shown in the triangular phase diagram of FIG. .2 can be regarded as a solid solution with a high proportion of LiMeO 2 . As a result, it is presumed that the discharge capacity can be increased and the energy density can be increased in the same manner as when (Mn/Me--Ni/Me).ltoreq.0.2 is satisfied.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるMnのモル比(Mn/Me)が0.36超であることが好ましい。リチウム遷移金属複合酸化物におけるMn/Meを0.36超にすることにより、容量維持率がより高まる。このような効果が生じる理由は、Mnの比率を比較的高めることで遷移金属サイトに十分な量のリチウムイオンを存在させることができ、経時化成の作用が高まるためといったことが推測される。 The molar ratio (Mn/Me) of Mn to the transition metal (Me) in the lithium-transition metal composite oxide is preferably greater than 0.36. By setting the Mn/Me ratio in the lithium-transition metal composite oxide to more than 0.36, the capacity retention rate is further increased. It is presumed that the reason why such an effect occurs is that a relatively high proportion of Mn allows a sufficient amount of lithium ions to exist at the transition metal site, thereby enhancing the action of chemical formation over time.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるMnのモル比(Mn/Me)が0.36超0.5以下であることが好ましい。リチウム遷移金属複合酸化物におけるMn/Meを0.36超0.5以下にすることにより、非水電解質蓄電素子の高い容量維持率とエネルギー密度等との好適なバランスを図ることなどができる。 The molar ratio (Mn/Me) of Mn to the transition metal (Me) in the lithium-transition metal composite oxide is preferably more than 0.36 and 0.5 or less. By setting Mn/Me in the lithium-transition metal composite oxide to more than 0.36 and not more than 0.5, it is possible to achieve a suitable balance between a high capacity retention rate and energy density of the non-aqueous electrolyte storage element.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるCoのモル比(Co/Me)が0.45未満であることが好ましい。Coのモル比率を0.45未満とすることで、十分な容量維持率を発揮しつつ、高価なCoの使用を抑え、コスト削減を図ることができる。 The molar ratio (Co/Me) of Co to the transition metal (Me) in the lithium-transition metal composite oxide is preferably less than 0.45. By setting the molar ratio of Co to less than 0.45, it is possible to suppress the use of expensive Co and reduce costs while exhibiting a sufficient capacity retention rate.

上記正極活物質に占める上記リチウム遷移金属複合酸化物の含有量が70質量%超であることが好ましい。このように、正極活物質に占めるリチウム遷移金属複合酸化物、すなわち高電位化成されていないリチウム過剰型活物質の含有割合を高めることで、十分な経時化成の効果が発揮され、容量維持率をより高めることができる。 The content of the lithium-transition metal composite oxide in the positive electrode active material is preferably more than 70% by mass. In this way, by increasing the content ratio of the lithium transition metal composite oxide, that is, the lithium-excess type active material that has not been subjected to high-potential chemical conversion, in the positive electrode active material, a sufficient effect of chemical conversion over time is exhibited, and the capacity retention rate is improved. can be higher.

本発明の一態様に係る非水電解質蓄電素子においては、通常使用時の充電終止電圧における正極電位が4.60V vs.Li/Li未満であることが好ましい。通常使用時の充電終止電圧における正極電位が4.60V vs.Li/Li未満であることにより、多数回の充放電の繰り返しに伴って、経時化成が徐々に進行するため、容量維持率を高めることができる。 In the non-aqueous electrolyte power storage device according to one aspect of the present invention, the positive electrode potential at the end-of-charge voltage during normal use is 4.60 V vs. It is preferably less than Li/Li + . The positive electrode potential at the charging end voltage during normal use is 4.60 V vs. When the ratio is less than Li/Li + , chemical formation over time progresses gradually as charging and discharging are repeated many times, so the capacity retention rate can be increased.

なお、「通常使用時」とは、当該非水電解質蓄電素子について推奨され、又は指定される充電条件を採用して当該非水電解質蓄電素子を使用する場合をいう。例えば、当該非水電解質蓄電素子のための充電器が用意されている場合は、その充電器を適用して当該非水電解質蓄電素子を使用する場合をいう。 Note that "during normal use" refers to a case where the non-aqueous electrolyte storage element is used under charging conditions recommended or specified for the non-aqueous electrolyte storage element. For example, when a charger for the non-aqueous electrolyte storage element is prepared, it means that the non-aqueous electrolyte storage element is used by applying the charger.

本発明の一態様に係る非水電解質蓄電素子においては、通常使用時の充電終止電圧における正極電位が4.30V vs.Li/Li超であることが好ましい。通常使用時の充電終止電圧における正極電位が4.30V vs.Li/Li超であることにより、通常使用時の充電の際に十分に経時化成が進行するため、容量維持率を高めることができる。 In the non-aqueous electrolyte power storage device according to one aspect of the present invention, the positive electrode potential at the end-of-charge voltage during normal use is 4.30 V vs. It is preferably greater than Li/Li + . The positive electrode potential at the charging end voltage during normal use is 4.30 V vs. When the Li/Li 2 + ratio is greater than that, chemical formation over time sufficiently progresses during charging during normal use, so that the capacity retention rate can be increased.

本発明の一態様に係る非水電解質蓄電素子においては、通常使用時の充電終止電圧における正極電位が4.30V vs.Li/Li超4.60V vs.Li/Li未満であることが好ましい。通常使用時の充電終止電圧における正極電位を上記範囲内とすることで、使用時の充電に伴う化成(リチウム過剰型活物質の活性化)の進行度合いが好適化され、負極によるリチウムの消費速度と、リチウム遷移金属複合酸化物からのリチウムの補充速度とのバランスがとれるため、容量維持率がより高まる。 In the non-aqueous electrolyte power storage device according to one aspect of the present invention, the positive electrode potential at the end-of-charge voltage during normal use is 4.30 V vs. Li/Li + greater than 4.60V vs. It is preferably less than Li/Li + . By setting the positive electrode potential at the charge cutoff voltage during normal use within the above range, the degree of progress of chemical formation (activation of the lithium-excess active material) accompanying charging during use is optimized, and the consumption rate of lithium by the negative electrode. and the replenishment rate of lithium from the lithium-transition metal composite oxide are balanced, so the capacity retention rate is further increased.

本発明の他の一態様に係る非水電解質蓄電素子の使用方法は、正極電位が4.30V vs.Li/Li超4.60V vs.Li/Li未満に至るまで充電することを備える、本発明の一態様の非水電解質蓄電素子の使用方法である。 A method of using a non-aqueous electrolyte storage element according to another aspect of the present invention is such that the positive electrode potential is 4.30 V vs. Li/Li + greater than 4.60V vs. This is a method of using the non-aqueous electrolyte power storage element of one embodiment of the present invention, comprising charging to less than Li/Li + .

当該使用方法によれば、使用時の充電に伴って徐々に経時化成がなされるため、リチウム過剰型活物質(α-NaFeO構造を有し、かつLi1+αMe1-αで表されるリチウム遷移金属複合酸化物)を正極に用いた非水電解質蓄電素子を高い容量維持率で使用することができる。 According to this method of use, since chemical formation is gradually performed over time as the battery is charged during use, the lithium-excess type active material (having an α-NaFeO 2 structure and represented by Li 1+α Me 1-α O 2 A non-aqueous electrolyte storage element using a lithium transition metal composite oxide (lithium transition metal composite oxide) for the positive electrode can be used with a high capacity retention rate.

本発明の他の一態様に係る非水電解質蓄電素子の製造方法は、上記正極の最大到達電位を4.60V vs.Li/Li未満で初期充放電を行うことを備える、本発明の一態様の非水電解質蓄電素子の製造方法である。 In another aspect of the present invention, there is provided a method for manufacturing a non-aqueous electrolyte storage element, wherein the maximum attainable potential of the positive electrode is 4.60 V vs. A method for manufacturing a non-aqueous electrolyte power storage element according to one embodiment of the present invention, comprising performing initial charge/discharge at less than Li/Li + .

当該製造方法によれば、初期充放電において高電位化成がなされないため、リチウム過剰型活物質(α-NaFeO構造を有し、かつLi1+αMe1-αで表されるリチウム遷移金属複合酸化物)を正極に用いた非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い非水電解質蓄電素子を製造することができる。 According to the production method, since high potential formation is not performed in the initial charge and discharge, the lithium-excess type active material (a lithium transition metal having an α-NaFeO 2 structure and represented by Li 1+α Me 1-α O 2 It is possible to manufacture a non-aqueous electrolyte storage element using a composite oxide) as a positive electrode and having a high capacity retention rate in charge-discharge cycles.

以下、本発明の一実施形態に係る非水電解質蓄電素子、その使用方法及びその製造方法について詳説する。 Hereinafter, a non-aqueous electrolyte storage element, a method for using the same, and a method for manufacturing the same according to one embodiment of the present invention will be described in detail.

<非水電解質蓄電素子>
本発明の一実施形態に係る非水電解質蓄電素子は、正極、負極及び非水電解質を有する。正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体は容器に収納され、この容器内に非水電解質が充填される。非水電解質は、正極と負極との間に介在する。また、容器としては、通常用いられる公知の金属容器、樹脂容器等を用いることができる。以下、非水電解質蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。
<Non-aqueous electrolyte storage element>
A non-aqueous electrolyte storage element according to one embodiment of the present invention has a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode and the negative electrode normally form an electrode assembly alternately stacked or wound with a separator interposed therebetween. This electrode assembly is housed in a container, and the container is filled with a non-aqueous electrolyte. A non-aqueous electrolyte is interposed between the positive electrode and the negative electrode. Moreover, as a container, a known metal container, a resin container, or the like that is commonly used can be used. Hereinafter, a non-aqueous electrolyte secondary battery (hereinafter also simply referred to as a "secondary battery") will be described as an example of a non-aqueous electrolyte storage element.

(正極)
正極は、正極基材、及びこの正極基材に直接又は中間層を介して配される正極活物質層を有する。
(positive electrode)
The positive electrode has a positive electrode base material and a positive electrode active material layer disposed directly on the positive electrode base material or via an intermediate layer.

正極基材は、導電性を有する。「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が10Ω・cm超であることを意味する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085、A3003等が例示できる。 A positive electrode base material has electroconductivity. Having “conductivity” means having a volume resistivity of 10 7 Ω·cm or less as measured in accordance with JIS-H-0505 (1975), and “non-conductivity” It means that the volume resistivity is more than 10 7 Ω·cm. As the material for the positive electrode substrate, metals such as aluminum, titanium, tantalum and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost. Examples of positive electrode substrates include foils and deposited films, and foils are preferred from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode substrate. Examples of aluminum or aluminum alloy include A1085 and A3003 defined in JIS-H-4000 (2014).

正極基材の平均厚さの下限としては、5μmが好ましく、10μmがより好ましい。正極基材の平均厚さの上限としては、50μmが好ましく、40μmがより好ましい。正極基材の平均厚さを上記下限以上とすることで、正極基材の強度を高めることができる。正極基材の平均厚さが上記上限以下とすることで、二次電池の体積当たりのエネルギー密度を高めることができる。また、これらの理由から、正極基材の平均厚さは上記いずれかの下限以上かつ上記いずれかの上限以下とすることが好ましい。「平均厚さ」とは、所定の面積の基材を打ち抜いた際の打ち抜き質量を、基材の真密度及び打ち抜き面積で除した値をいう。他の部材等に対して「平均厚さ」を用いる場合にも同様に定義される。 The lower limit of the average thickness of the positive electrode substrate is preferably 5 μm, more preferably 10 μm. The upper limit of the average thickness of the positive electrode substrate is preferably 50 μm, more preferably 40 μm. By setting the average thickness of the positive electrode substrate to the above lower limit or more, the strength of the positive electrode substrate can be increased. By making the average thickness of the positive electrode substrate equal to or less than the above upper limit, the energy density per volume of the secondary battery can be increased. For these reasons, it is preferable that the average thickness of the positive electrode substrate be at least one of the above lower limits and not more than any of the above upper limits. "Average thickness" refers to a value obtained by dividing the punched mass when a substrate having a predetermined area is punched out by the true density and the punched area of the substrate. The same definition applies when using the "average thickness" for other members or the like.

中間層は、正極基材と正極活物質層との間に配される層である。中間層の構成は特に限定されず、例えば、樹脂バインダ及び導電性を有する粒子を含む。中間層は、例えば、炭素粒子等の導電性を有する粒子を含むことで正極基材と正極活物質層との接触抵抗を低減する。 The intermediate layer is a layer arranged between the positive electrode substrate and the positive electrode active material layer. The structure of the intermediate layer is not particularly limited, and includes, for example, a resin binder and conductive particles. The intermediate layer reduces the contact resistance between the positive electrode substrate and the positive electrode active material layer, for example, by containing conductive particles such as carbon particles.

正極活物質層は、正極活物質を含む正極合剤の層である。正極活物質層(正極合剤)は、正極活物質の他、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含んでいてよい。 The positive electrode active material layer is a layer of a positive electrode mixture containing a positive electrode active material. The positive electrode active material layer (positive electrode mixture) may contain optional components such as a conductive agent, a binder, a thickener, a filler, and the like, if necessary, in addition to the positive electrode active material.

正極活物質は、α-NaFeO構造を有し、かつLi1+αMe1-α(0<α<1;MeはNi及びMnを含む遷移金属である。)で表されるリチウム遷移金属複合酸化物を含む。このリチウム遷移金属複合酸化物は、いわゆるリチウム過剰型活物質である。 The positive electrode active material has an α-NaFeO 2 structure and is a lithium transition metal represented by Li 1+α Me 1-α O 2 (0<α<1; Me is a transition metal including Ni and Mn). Contains complex oxides. This lithium-transition metal composite oxide is a so-called lithium-excess active material.

上記リチウム遷移金属複合酸化物に含まれる遷移金属(Me)は、Ni及びMnを含む。この遷移金属は、さらにCoを含むことが好ましい。この遷移金属は、実質的にNi及びMnからなるか、実質的にNi、Mn及びCoからなることが好ましい。リチウム遷移金属複合酸化物は、Li1+α(NiβCoγMnδ1-α(0<α<1、0<β<1、0≦γ<1、0<δ<1、β+γ+δ=1)で表されるものであってよい。 The transition metal (Me) contained in the lithium-transition metal composite oxide includes Ni and Mn. This transition metal preferably further contains Co. Preferably, the transition metal consists essentially of Ni and Mn, or consists essentially of Ni, Mn and Co. The lithium transition metal composite oxide is Li 1+α (Ni β Co γ Mn δ ) 1-α O 2 (0<α<1, 0<β<1, 0≤γ<1, 0<δ<1, β+γ+δ= 1) may be represented.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に対するリチウム(Li)のモル比、すなわち(1+α)/(1-α)は、1.1以上1.4以下が好ましく、1.15以上1.25以下がより好ましい。(1+α)/(1-α)を上記下限以上とすることで、十分な経時化成が生じやすくなり、容量維持率をより高めることができる。また、(1+α)/(1-α)を上記上限以下とすることで、比較的低い充電上限電位で使用する場合であっても、十分な放電容量を有し、エネルギー密度が高い二次電池となる。なお、リチウム遷移金属複合酸化物における各元素のモル比(物質量比)は、原子数比に等しい。 The molar ratio of lithium (Li) to the transition metal (Me) in the lithium-transition metal composite oxide, that is, (1+α)/(1−α) is preferably 1.1 or more and 1.4 or less, and 1.15 or more and 1 0.25 or less is more preferred. By making (1+α)/(1−α) equal to or higher than the above lower limit, sufficient chemical formation over time can easily occur, and the capacity retention rate can be further increased. In addition, by setting (1+α)/(1−α) to the above upper limit or less, the secondary battery has sufficient discharge capacity and high energy density even when used at a relatively low charge upper limit potential. becomes. The molar ratio (mass ratio) of each element in the lithium-transition metal composite oxide is equal to the atomic number ratio.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるNiのモル比(Ni/Me)、すなわちβは、例えば0.1以上0.7以下であってもよいが、0.2以上0.6以下が好ましく、0.3以上0.5以下がより好ましい。Ni/Meを上記下限以上とすることで、特に、比較的低い充電上限電位で使用する場合において、放電容量を大きくし、エネルギー密度を高めることができる。Ni/Meを上記上限以下とすることで、容量維持率等をより高めることができる。 The molar ratio of Ni to the transition metal (Me) in the lithium-transition metal composite oxide (Ni/Me), that is, β may be, for example, 0.1 or more and 0.7 or less, but may be 0.2 or more and 0.2 or more. 0.6 or less is preferable, and 0.3 or more and 0.5 or less is more preferable. By making the ratio of Ni/Me equal to or higher than the above lower limit, the discharge capacity can be increased and the energy density can be increased particularly when the battery is used at a relatively low charge upper limit potential. By making the ratio of Ni/Me equal to or less than the above upper limit, the capacity retention rate and the like can be further increased.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるCoのモル比(Co/Me)、すなわちγは、例えば0以上0.6以下であってもよいが、0.05以上0.45未満が好ましく、0.1以上0.3以下がより好ましい。Co/Meを上記下限以上とすることで、二次電池の放電容量を大きくし、エネルギー密度が高まる場合もある。一方、Co/Meを上記上限以下とすることで、十分な容量維持率を発揮しつつ、原料コストを抑えることなどができる。 The molar ratio (Co/Me) of Co to the transition metal (Me) in the lithium-transition metal composite oxide, that is, γ may be, for example, 0 or more and 0.6 or less, but may be 0.05 or more and 0.45. Less than is preferable, and 0.1 or more and 0.3 or less is more preferable. By setting the ratio of Co/Me to the above lower limit or more, the discharge capacity of the secondary battery may be increased and the energy density may be increased. On the other hand, by making Co/Me equal to or less than the above upper limit, raw material costs can be suppressed while exhibiting a sufficient capacity retention rate.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるMnのモル比(Mn/Me)、すなわちδは、例えば0.3以上0.7以下であってもよいが、0.36超0.5以下が好ましく、0.4以上0.5未満がより好ましい。Mn/Meを上記下限以上とすることで、経時化成の作用が高まり、容量維持率を高めることができる。Mn/Meを上記上限以下とすることで、特に、比較的低い充電上限電位で使用する場合において、放電容量を大きくし、エネルギー密度を高めることができる。 The molar ratio (Mn/Me) of Mn to the transition metal (Me) in the lithium-transition metal composite oxide, that is, δ may be, for example, 0.3 or more and 0.7 or less, but more than 0.36 and 0 0.5 or less is preferable, and 0.4 or more and less than 0.5 is more preferable. When the Mn/Me ratio is equal to or higher than the above lower limit, the effect of chemical conversion over time is enhanced, and the capacity retention rate can be enhanced. By making Mn/Me equal to or less than the above upper limit, it is possible to increase the discharge capacity and increase the energy density particularly when used at a relatively low charge upper limit potential.

上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるMnのモル比(Mn/Me)と、遷移金属(Me)に占めるNiのモル比(Ni/Me)との差(Mn/Me-Ni/Me)は、例えば0超0.5以下であってもよいが、0.02以上0.2以下が好ましく、0.03以上0.10以下がより好ましい。Mn/Me-Ni/Meを上記上限以下とすることで、特に、比較的低い充電上限電位で使用する場合において、放電容量を大きくし、エネルギー密度を高めることができる。Mn/Me-Ni/Meを上記下限以上とすることで、経時化成の作用が高まり、容量維持率がより高まる。 The difference (Mn/Me- Ni/Me) may be, for example, more than 0 and 0.5 or less, preferably 0.02 or more and 0.2 or less, and more preferably 0.03 or more and 0.10 or less. By setting the Mn/Me—Ni/Me to the above upper limit or less, it is possible to increase the discharge capacity and increase the energy density, particularly when used at a relatively low upper limit charge potential. By setting the Mn/Me—Ni/Me to the above lower limit or more, the effect of chemical conversion over time is increased, and the capacity retention rate is further increased.

上記リチウム遷移金属複合酸化物は、本発明の効果が奏される範囲で他の遷移金属等が含まれていてもよく、不純物として他の遷移金属等が混入していてもよい。また、上記リチウム遷移金属複合酸化物は、他の金属酸化物(例えば、アルミナ等)等で被覆されていてもよい。 The lithium-transition metal composite oxide may contain other transition metals or the like within the range in which the effects of the present invention are exhibited, or may be mixed with other transition metals or the like as impurities. In addition, the lithium-transition metal composite oxide may be coated with other metal oxide (for example, alumina or the like) or the like.

上記リチウム遷移金属複合酸化物は、従来公知の方法により製造することができる。例えば、上記リチウム遷移金属複合酸化物は、この目的とする複合酸化物を構成する金属元素(Li、Ni、Mn等)を目的とする複合酸化物の組成通りに含有する原料を調製し、これを焼成することなどに得ることができる。 The above lithium-transition metal composite oxide can be produced by a conventionally known method. For example, the lithium-transition metal composite oxide is prepared by preparing a raw material containing metal elements (Li, Ni, Mn, etc.) constituting the intended composite oxide according to the composition of the intended composite oxide, and can be obtained by firing the

正極活物質には、上記リチウム遷移金属複合酸化物以外の他の正極活物質が含まれていてもよい。上記正極活物質に占める上記リチウム遷移金属複合酸化物の含有量は例えば50質量%以上であってよいが、70質量%超が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、99質量%以上がよりさらに好ましく、実質的に100質量%であってもよい。正極活物質に占める上記リチウム遷移金属複合酸化物の含有割合を高めることで、容量維持率をより高めることができる。 The positive electrode active material may contain a positive electrode active material other than the lithium-transition metal composite oxide. The content of the lithium transition metal composite oxide in the positive electrode active material may be, for example, 50% by mass or more, preferably more than 70% by mass, more preferably 80% by mass or more, and even more preferably 90% by mass or more. , more preferably 99% by mass or more, and may be substantially 100% by mass. By increasing the content of the lithium-transition metal composite oxide in the positive electrode active material, the capacity retention rate can be further increased.

上記リチウム遷移金属複合酸化物以外の他の正極活物質としては、リチウムイオン二次電池等に通常用いられる公知の正極活物質の中から適宜選択できる。上記正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。例えば、上述したLiMeO型活物質、スピネル型結晶構造を有するリチウム遷移金属酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。 The positive electrode active material other than the lithium-transition metal composite oxide can be appropriately selected from known positive electrode active materials commonly used in lithium ion secondary batteries and the like. A material capable of intercalating and deintercalating lithium ions is usually used as the positive electrode active material. Examples thereof include the above-described LiMeO 2 type active material, lithium transition metal oxide having a spinel crystal structure, polyanion compound, chalcogen compound, sulfur, and the like.

正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層の電子伝導性が向上する。ここで、「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。 The average particle size of the positive electrode active material is preferably, for example, 0.1 μm or more and 20 μm or less. By making the average particle size of the positive electrode active material equal to or more than the above lower limit, manufacturing or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode active material layer is improved. Here, the "average particle size" is based on the particle size distribution measured by a laser diffraction/scattering method for a diluted solution in which the particles are diluted with a solvent in accordance with JIS-Z-8825 (2013). Z-8819-2 (2001) means the value at which the volume-based integrated distribution calculated according to 50%.

正極活物質等の粒子を所定の形状で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。 A pulverizer, a classifier, or the like is used to obtain particles of a positive electrode active material or the like in a predetermined shape. Pulverization methods include, for example, methods using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used. As a classification method, a sieve, an air classifier, or the like is used as necessary, both dry and wet.

正極活物質層(正極合剤)における正極活物質の含有量の下限としては、70質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。正極活物質の含有量の上限としては、98質量%が好ましく、96質量%がより好ましい。正極活物質の含有量を上記範囲とすることで、二次電池の電気容量をより大きくすることができる。正極活物質層における正極活物質の含有量は、上記いずれかの下限以上かつ上記いずれかの上限以下とすることができる。 The lower limit of the content of the positive electrode active material in the positive electrode active material layer (positive electrode mixture) is preferably 70% by mass, more preferably 80% by mass, and even more preferably 90% by mass. The upper limit of the content of the positive electrode active material is preferably 98% by mass, more preferably 96% by mass. By setting the content of the positive electrode active material within the above range, the electric capacity of the secondary battery can be increased. The content of the positive electrode active material in the positive electrode active material layer can be at least one of the above lower limits and not more than any of the above upper limits.

また、正極活物質層(正極合剤)における正極活物質の含有量が上記範囲(例えば70質量%以上)であれば、正極合剤における正極活物質の含有量は、上記正極に対して正極合剤の質量あたり9mA/gの電流密度により行う2サイクルの充放電に基づく測定値((C2A/C2B)×100-(C1A/C1B)×100)に実質的に影響を与えない。 Further, when the content of the positive electrode active material in the positive electrode active material layer (positive electrode mixture) is within the above range (for example, 70% by mass or more), the content of the positive electrode active material in the positive electrode mixture is It does not substantially affect the measured value ((C 2A /C 2B ) × 100-(C 1A /C 1B ) × 100) based on two cycles of charging and discharging performed at a current density of 9 mA / g per mass of the mixture. do not have.

導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、黒鉛;ファーネスブラック、アセチレンブラック等のカーボンブラック;金属;導電性セラミックス等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。これらの中でも、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。 The conductive agent is not particularly limited as long as it is a conductive material. Examples of such conductive agents include graphite; carbon blacks such as furnace black and acetylene black; metals; and conductive ceramics. The shape of the conductive agent may be powdery, fibrous, or the like. Among these, acetylene black is preferable from the viewpoint of electronic conductivity and coatability.

正極活物質層(正極合剤)における導電剤の含有量の下限としては、1質量%が好ましく、2質量%がより好ましい。導電剤の含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。導電剤の含有量を上記範囲とすることで、二次電池の電気容量を高めることができる。また、これらの理由から、導電剤の含有量は上記いずれかの下限以上かつ上記いずれかの上限以下とすることが好ましい。 The lower limit of the content of the conductive agent in the positive electrode active material layer (positive electrode mixture) is preferably 1% by mass, more preferably 2% by mass. The upper limit of the content of the conductive agent is preferably 10% by mass, more preferably 5% by mass. By setting the content of the conductive agent within the above range, the electric capacity of the secondary battery can be increased. For these reasons, the content of the conductive agent is preferably at least one of the above lower limits and not more than any of the above upper limits.

バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。 Examples of binders include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, Elastomers such as styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers;

正極活物質層(正極合剤)におけるバインダの含有量の下限としては、1質量%が好ましく、2質量%がより好ましい。バインダの含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。バインダの含有量を上記範囲とすることで、活物質を安定して保持することができる。また、これらの理由から、バインダの含有量は上記いずれかの下限以上かつ上記いずれかの上限以下とすることが好ましい。 The lower limit of the binder content in the positive electrode active material layer (positive electrode mixture) is preferably 1% by mass, more preferably 2% by mass. The upper limit of the binder content is preferably 10% by mass, more preferably 5% by mass. By setting the content of the binder within the above range, the active material can be stably retained. For these reasons, the content of the binder is preferably at least one of the above lower limits and not more than any of the above upper limits.

増粘剤としては、例えばカルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。 Examples of thickeners include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose. When the thickener has a functional group that reacts with lithium or the like, the functional group may be previously deactivated by methylation or the like.

フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス、アルミナシリケイト等が挙げられる。 A filler is not specifically limited. Examples of fillers include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, glass, and alumina silicate.

正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。 The positive electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like. typical metal elements, transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W are used as positive electrode active materials, conductive agents, binders, thickeners, fillers It may be contained as a component other than

(正極の充電電気量)
上記正極に対して、上記正極合剤の質量あたり9mA/gの電流密度により、電位が2.00V vs.Li/Liに至るまでの放電を行った後、上記電流密度により、電位が4.80V vs.Li/Liに至るまでの充電と電位が2.00V vs.Li/Liに至るまでの放電とからなる充放電を2サイクル行ったときの充電電気量は、下記式(1)を満たす。
(C2A/C2B)×100-(C1A/C1B)×100≧1.0 ・・・(1)
式(1)中、C1Aは、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量である。C1Bは、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量である。C2Aは、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量である。C2Bは、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量である。
(charged electricity amount of positive electrode)
With respect to the positive electrode, a current density of 9 mA/g per mass of the positive electrode mixture causes a potential of 2.00 V vs. After discharging up to Li/Li + , the potential is 4.80 V vs. When the charge and potential up to Li/Li + is 2.00 V vs. The amount of charged electricity when performing two cycles of charging and discharging until reaching Li/Li + satisfies the following formula (1).
(C 2A /C 2B )×100−(C 1A /C 1B )×100≧1.0 (1)
In the formula (1), C 1A has a potential of 4.45 V vs. 4.45 V vs. It is the charge amount of electricity up to Li/Li + . C 1B has a potential of 4.80 V vs. It is the charge amount of electricity up to Li/Li + . C 2A has a potential of 4.45 V vs. It is the charge amount of electricity up to Li/Li + . C 2B has a potential of 4.80 V vs. It is the charge amount of electricity up to Li/Li + .

上記式(1)の左辺、すなわち「(C2A/C2B)×100-(C1A/C1B)×100」の下限は、1.5が好ましく、2.0、3.0、4.0又は5.0がより好ましいこともある。「(C2A/C2B)×100-(C1A/C1B)×100」は、上述のように、十分な高電位化成がなされていない程度を示す。従って、「(C2A/C2B)×100-(C1A/C1B)×100」が上記下限以上である場合、経時化成がより生じやすくなり、容量維持率がより高まる傾向にある。一方、「(C2A/C2B)×100-(C1A/C1B)×100」の上限は、例えば20であり、10が好ましく、5.0であってもよい。 The lower limit of the left side of the above formula (1), that is, "(C 2A /C 2B )×100−(C 1A /C 1B )×100" is preferably 1.5, 2.0, 3.0, 4.0. 0 or 5.0 may be more preferred. “(C 2A /C 2B )×100−(C 1A /C 1B )×100” indicates the degree of insufficient high potential formation as described above. Therefore, when "(C 2A /C 2B )×100−(C 1A /C 1B )×100" is equal to or greater than the above lower limit, formation over time tends to occur more easily, and the capacity retention rate tends to increase. On the other hand, the upper limit of "(C 2A /C 2B )×100−(C 1A /C 1B )×100" is, for example, 20, preferably 10, and may be 5.0.

(負極)
負極は、負極基材、及びこの負極基材に直接又は中間層を介して配される負極活物質層を有する。負極の中間層の構成は特に限定されず、正極の中間層と同様の構成とすることができる。
(negative electrode)
The negative electrode has a negative electrode substrate and a negative electrode active material layer disposed directly on the negative electrode substrate or via an intermediate layer. The structure of the intermediate layer of the negative electrode is not particularly limited, and may have the same structure as that of the intermediate layer of the positive electrode.

負極基材は、導電性を有する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。 A negative electrode base material has electroconductivity. As the material of the negative electrode base material, metals such as copper, nickel, stainless steel, nickel-plated steel, and aluminum, or alloys thereof are used. Among these, copper or a copper alloy is preferred. Examples of negative electrode substrates include foils and vapor deposition films, and foils are preferred from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate. Examples of copper foil include rolled copper foil and electrolytic copper foil.

負極基材の平均厚さの下限としては、3μmが好ましく、5μmがより好ましい。負極基材の平均厚さの上限としては、30μmが好ましく、20μmがより好ましい。負極基材の平均厚さを上記下限以上とすることで、負極基材の強度を高めることができる。負極基材の平均厚さを上記上限以下とすることで、二次電池の体積当たりのエネルギー密度を高めることができる。また、これらの理由から、負極基材の平均厚さは、上記いずれかの下限以上かつ上記いずれかの上限以下とすることが好ましい。 The lower limit of the average thickness of the negative electrode substrate is preferably 3 μm, more preferably 5 μm. The upper limit of the average thickness of the negative electrode substrate is preferably 30 μm, more preferably 20 μm. By making the average thickness of the negative electrode base material equal to or greater than the above lower limit, the strength of the negative electrode base material can be increased. The energy density per volume of the secondary battery can be increased by setting the average thickness of the negative electrode substrate to the above upper limit or less. For these reasons, the average thickness of the negative electrode substrate is preferably at least any one of the above lower limits and not more than any of the above upper limits.

負極活物質層は、負極活物質を含む負極合剤の層である。負極活物質層(負極合剤)は、負極活物質の他、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含んでいてよい。導電剤、バインダ、増粘剤、フィラー等の任意成分は、正極活物質層と同様のものを用いることができる。負極活物質層におけるこれらの各任意成分の含有量は、正極活物質層におけるこれらの含有量として記載した範囲とすることができる。 The negative electrode active material layer is a layer of a negative electrode mixture containing a negative electrode active material. The negative electrode active material layer (negative electrode mixture) may contain arbitrary components such as a conductive agent, a binder, a thickener, a filler, and the like, in addition to the negative electrode active material, if necessary. Optional components such as a conductive agent, a binder, a thickener, and a filler may be the same as those used for the positive electrode active material layer. The content of each of these optional components in the negative electrode active material layer can be within the range described as the content of these in the positive electrode active material layer.

負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The negative electrode active material can be appropriately selected from known negative electrode active materials. Materials capable of intercalating and deintercalating lithium ions are usually used as negative electrode active materials for lithium ion secondary batteries. Examples of the negative electrode active material include metal Li; metals or metalloids such as Si and Sn; metal oxides and metalloid oxides such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon) be done. In the negative electrode active material layer, one type of these materials may be used alone, or two or more types may be mixed and used.

「黒鉛」とは、充放電前又は放電状態において、X線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。 “Graphite” refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging/discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm. Graphite includes natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material with stable physical properties can be obtained.

「非黒鉛質炭素」とは、充放電前又は放電状態においてX線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。 “Non-graphitic carbon” means a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging/discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. say. Non-graphitizable carbon includes non-graphitizable carbon and graphitizable carbon. Examples of non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, and alcohol-derived materials.

ここで、黒鉛及び非黒鉛質炭素を定義する「放電状態」とは、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた単極電池において、開回路電圧が0.7V以上である状態をいう。開回路状態での金属Li対極の電位は、Liの酸化還元電位とほぼ等しいため、上記単極電池における開回路電圧は、Liの酸化還元電位に対する炭素材料を含む負極の電位とほぼ同等である。つまり、上記単極電池における開回路電圧が0.7V以上であることは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されていることを意味する。 Here, the “discharged state” that defines graphite and non-graphitic carbon refers to a single electrode battery using a negative electrode containing a carbon material as a negative electrode active material as a working electrode and metal Li as a counter electrode. .7V or higher. Since the potential of the metal Li counter electrode in the open circuit state is approximately equal to the oxidation-reduction potential of Li, the open-circuit voltage in the above monopolar battery is approximately the same as the potential of the negative electrode containing the carbon material with respect to the oxidation-reduction potential of Li. . In other words, the open circuit voltage of 0.7 V or higher in the above monopolar battery means that lithium ions that can be inserted and extracted are sufficiently released from the carbon material that is the negative electrode active material during charging and discharging. .

「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。 The term “non-graphitizable carbon” refers to a carbon material having a d 002 of 0.36 nm or more and 0.42 nm or less.

「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。 “Graphitizable carbon” refers to a carbon material having a d 002 of 0.34 nm or more and less than 0.36 nm.

より容量維持率の高い二次電池とするためなどには、負極活物質としては、炭素材料が好ましく、黒鉛がより好ましい。負極活物質として炭素材料を用いる場合、全負極活物質に占める炭素材料の含有量としては、50質量%以上であってよく、70質量%以上であってもよく、90質量%以上であってもよく、実質的に100質量%であってよい。 In order to obtain a secondary battery with a higher capacity retention rate, the negative electrode active material is preferably a carbon material, and more preferably graphite. When a carbon material is used as the negative electrode active material, the content of the carbon material in the total negative electrode active material may be 50% by mass or more, 70% by mass or more, or 90% by mass or more. may be substantially 100% by mass.

一方、Si、Sn及びこれらの酸化物等、リチウムの消費が特に大きい負極活物質が用いられている場合は、経時化成により正極からリチウムを補充できるという本発明の利点をより十分に享受できる。但し、通常、どのような負極活物質を用いた二次電池も、少なからずリチウムは消費されるため、負極活物質の種類によらず本発明を適用することができる。また、Si、Sn及びこれらの酸化物等を負極活物質として用いることで、放電容量を大きくすることなどもできる。Si、Sn及びこれらの酸化物は、炭素材料と併用してもよい。全負極活物質に占めるSi、Sn及びこれらの酸化物の含有割合としては、例えば1質量%以上90質量%以下であってよく、5質量%以上70質量%以下であってよい。 On the other hand, when a negative electrode active material such as Si, Sn, or oxides thereof that consumes a particularly large amount of lithium is used, the advantage of the present invention that lithium can be replenished from the positive electrode by chemical formation over time can be fully enjoyed. However, since a secondary battery using any negative electrode active material generally consumes lithium to some extent, the present invention can be applied regardless of the type of negative electrode active material. Moreover, by using Si, Sn, oxides thereof, or the like as the negative electrode active material, the discharge capacity can be increased. Si, Sn and oxides thereof may be used together with the carbon material. The content of Si, Sn, and their oxides in the total negative electrode active material may be, for example, 1% by mass or more and 90% by mass or less, or 5% by mass or more and 70% by mass or less.

負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び粉級方法は、例えば、上記正極で例示した方法から選択できる。 The negative electrode active material is usually particles (powder). The average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 μm or less. By making the average particle size of the negative electrode active material equal to or greater than the above lower limit, the production or handling of the negative electrode active material is facilitated. By setting the average particle size of the negative electrode active material to the above upper limit or less, the electron conductivity of the active material layer is improved. A pulverizer, a classifier, or the like is used to obtain powder having a predetermined particle size. The pulverization method and the powder class method can be selected from, for example, the methods exemplified for the positive electrode.

負極活物質層(負極合剤)における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。 The content of the negative electrode active material in the negative electrode active material layer (negative electrode mixture) is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less. By setting the content of the negative electrode active material within the above range, it is possible to achieve both high energy density and manufacturability of the negative electrode active material layer.

負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。 The negative electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like. and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W are used as negative electrode active materials, conductive agents, binders, and thickeners. You may contain as a component other than a sticky agent and a filler.

(セパレータ)
セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の材質としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの材質の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
(separator)
The separator can be appropriately selected from known separators. As the separator, for example, a separator consisting of only a substrate layer, a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one or both surfaces of a substrate layer, or the like can be used. Examples of the material of the base material layer of the separator include woven fabric, nonwoven fabric, and porous resin film. Among these materials, a porous resin film is preferred from the viewpoint of strength, and a non-woven fabric is preferred from the viewpoint of retention of the non-aqueous electrolyte. As the material for the base layer of the separator, polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide, aramid, and the like are preferable from the viewpoint of oxidative decomposition resistance. A material obtained by combining these resins may be used as the base material layer of the separator.

耐熱層に含まれる耐熱粒子は、大気下で500℃にて質量減少が5%以下であるものが好ましく、大気下で800℃にて質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、チタン酸バリウム、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、二次電池の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。 The heat-resistant particles contained in the heat-resistant layer preferably have a mass reduction of 5% or less at 500° C. in air, more preferably 5% or less at 800° C. in air. An inorganic compound can be mentioned as a material whose mass reduction is less than or equal to a predetermined value. Inorganic compounds such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, barium titanate, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, oxides such as aluminosilicate; magnesium hydroxide, water Hydroxides such as calcium oxide and aluminum hydroxide; Nitrides such as aluminum nitride and silicon nitride; Carbonates such as calcium carbonate; Sulfates such as barium sulfate; Poorly soluble ion crystals such as calcium fluoride and barium fluoride covalent crystals such as silicon and diamond; mineral resource-derived substances such as talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica; . As the inorganic compound, a single substance or a composite of these substances may be used alone, or two or more of them may be mixed and used. Among these inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of secondary batteries.

セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。 The porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance. Here, the "porosity" is a volume-based value and means a value measured with a mercury porosimeter.

セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。 A polymer gel composed of a polymer and a non-aqueous electrolyte may be used as the separator. Examples of polymers include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, and the like. The use of polymer gel has the effect of suppressing liquid leakage. As the separator, a polymer gel may be used in combination with the porous resin film or non-woven fabric as described above.

(非水電解質)
非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
(Non-aqueous electrolyte)
The non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes. A non-aqueous electrolyte may be used as the non-aqueous electrolyte. The non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in this non-aqueous solvent.

非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。例えば、フッ素化された化合物(フッ素化環状カーボネート、フッ素化鎖状カーボネート等)を用いることで、正極電位が高電位に至る使用条件下でも十分に使用できる。 The non-aqueous solvent can be appropriately selected from known non-aqueous solvents. Non-aqueous solvents include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like. As the non-aqueous solvent, those in which some of the hydrogen atoms contained in these compounds are substituted with halogens may be used. For example, by using a fluorinated compound (fluorinated cyclic carbonate, fluorinated chain carbonate, etc.), it can be sufficiently used even under conditions where the positive electrode potential reaches a high potential.

環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもEC、PC及びFECが好ましい。 Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like. Among these, EC, PC and FEC are preferred.

鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、メチルトリフルオロエチルカーボネート(MFEC)、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMC及びMFECが好ましい。 Chain carbonates include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate, methyltrifluoroethyl carbonate (MFEC), bis(trifluoroethyl) carbonate and the like. Among these, EMC and MFEC are preferred.

非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。 As the non-aqueous solvent, it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a combination of a cyclic carbonate and a chain carbonate. By using a cyclic carbonate, it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte. By using a chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low. When a cyclic carbonate and a chain carbonate are used together, the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate:chain carbonate) is preferably in the range of, for example, 5:95 to 50:50.

電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。 The electrolyte salt can be appropriately selected from known electrolyte salts. Examples of electrolyte salts include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts and the like. Among these, lithium salts are preferred.

リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。 Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 and LiN(SO 2 F) 2 , LiSO 3 CF 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C2F5 ) 2 , LiN( SO2CF3 ) ( SO2C4F9 ) , LiC( SO2CF3 ) 3 , LiC ( SO2C2F5 ) 3 and other halogenated hydrocarbon groups and lithium salts having Among these, inorganic lithium salts are preferred, and LiPF6 is more preferred.

非水電解液における電解質塩の含有量は、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。 The content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/dm 3 or more and 2.5 mol/dm 3 or less, more preferably 0.3 mol/dm 3 or more and 2.0 mol/dm 3 or less. , more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, and particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less. By setting the content of the electrolyte salt within the above range, the ionic conductivity of the non-aqueous electrolyte can be increased.

非水電解液は、添加剤を含んでもよい。添加剤としては、例えばビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The non-aqueous electrolyte may contain additives. Examples of additives include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; -Partial halides of the above aromatic compounds such as cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; Halogenated anisole compounds; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride; ethylene sulfite, propylene sulfite, dimethyl sulfite, dimethyl sulfate, ethylene sulfate, sulfolane, dimethylsulfone, diethylsulfone, dimethylsulfoxide, diethylsulfoxide, tetramethylenesulfoxide, diphenylsulfide, 4,4′-bis(2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl- 2,2-dioxo-1,3,2-dioxathiolane, thioanisole, diphenyl disulfide, dipyridinium disulfide, perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanate and the like. These additives may be used singly or in combination of two or more.

非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。 The content of the additive contained in the nonaqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more and 7% by mass or less with respect to the total mass of the nonaqueous electrolyte. More preferably, it is 0.2% by mass or more and 5% by mass or less, and particularly preferably 0.3% by mass or more and 3% by mass or less. By setting the content of the additive within the above range, it is possible to improve capacity retention performance or cycle performance after high-temperature storage, or to further improve safety.

非水電解質には、固体電解質を用いてもよく、非水電解液と固体電解質とを併用してもよい。 A solid electrolyte may be used as the non-aqueous electrolyte, or a non-aqueous electrolyte and a solid electrolyte may be used in combination.

固体電解質としては、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温(例えば15℃以上25℃以下)において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、及び酸窒化物固体電解質、ポリマー固体電解質等が挙げられる。 The solid electrolyte can be selected from any materials such as lithium, sodium, calcium, etc., which have ion conductivity and are solid at room temperature (for example, 15° C. or higher and 25° C. or lower). Examples of solid electrolytes include sulfide solid electrolytes, oxide solid electrolytes, oxynitride solid electrolytes, and polymer solid electrolytes.

硫化物固体電解質としては、リチウムイオン二次電池の場合、例えば、LiS-P系等が挙げられる。硫化物固体電解質としては、例えば、LiS-P、LiI-LiS-P、Li10Ge-P12等が挙げられる。 Examples of sulfide solid electrolytes for lithium ion secondary batteries include Li 2 SP 2 S 5 system and the like. Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , LiI—Li 2 SP 2 S 5 , Li 10 Ge—P 2 S 12 and the like.

(通常使用時の充電終止電圧における正極電位)
当該二次電池(非水電解質蓄電素子)においては、通常使用時の充電終止電圧における正極電位が4.60V vs.Li/Li未満であることが好ましく、4.55V vs.Li/Li以下がより好ましく、4.50V vs.Li/Li又は4.45V vs.Li/Li以下がさらに好ましいこともある。通常使用時の充電終止電圧における正極電位を上記上限以下とすることで、多数回の充放電の繰り返しに伴って、経時化成が徐々に進行するため、容量維持率を高めることができる。
(Positive potential at the end of charge voltage during normal use)
In the secondary battery (non-aqueous electrolyte storage element), the positive electrode potential at the charging end voltage during normal use is 4.60 V vs. Li/Li + is preferably less than 4.55V vs. Li/Li + or less is more preferable, and 4.50 V vs. Li/Li + or 4.45V vs. Li/Li + or less may be even more preferred. By setting the positive electrode potential at the end-of-charge voltage during normal use to the above upper limit or less, formation over time gradually progresses with repeated charging and discharging many times, so that the capacity retention rate can be increased.

当該二次電池においては、通常使用時の充電終止電圧における正極電位が4.30V vs.Li/Li超であることが好ましく、4.35V vs.Li/Li以上がより好ましく、4.40V vs.Li/Li以上がさらに好ましい場合もある。通常使用時の充電終止電圧における正極電位を上記下限以上とすることで、通常の充電の際に十分に経時化成が進行するため、容量維持率を高めることができる。また、充電上限電位を高めることで、放電容量を大きくし、エネルギー密度を高めることができる。 In the secondary battery, the positive electrode potential at the charging end voltage during normal use is 4.30 V vs. Li/Li + is preferred, 4.35 V vs. Li/Li + or more is more preferable, and 4.40 V vs. Li/Li + or higher may be even more preferable in some cases. By setting the positive electrode potential at the end-of-charge voltage during normal use to the above lower limit or higher, formation over time proceeds sufficiently during normal charging, so that the capacity retention rate can be increased. Further, by increasing the charge upper limit potential, the discharge capacity can be increased and the energy density can be increased.

当該二次電池における通常使用時の充電終止電圧における正極電位は、上記したいずれかの上限と上記したいずれかの下限との範囲内としてよい。 The positive electrode potential at the end-of-charge voltage during normal use of the secondary battery may be within the range between any of the above upper limits and any of the above lower limits.

(用途)
当該二次電池の用途は特に限定されず、従来公知の二次電池と同様の用途に用いることができる。当該二次電池は、経時化成が生じることにより容量維持率を高めることができていると推測されるため、充電するときは、通常所定の充電終止電圧(所定の充電終止電位)に至るまで充電される、すなわちSOC(充電状態)が100%になるまで充電される用途に当該二次電池を特に好適に適用することができる。このような用途としては、例えば携帯用電子機器(携帯電話、ノート型パソコン、タブレット端末等)、電気玩具、電気シェーバー、電気自動車(EV)、プラグインハイブリッドカー(PHEV)等の電源用途を挙げることができる。
(Application)
The application of the secondary battery is not particularly limited, and it can be used for the same applications as conventionally known secondary batteries. Since it is presumed that the secondary battery is able to increase the capacity retention rate due to the occurrence of chemical formation over time, when charging, it is usually charged to a predetermined end-of-charge voltage (predetermined end-of-charge potential). The secondary battery can be particularly preferably applied to applications where the battery is charged until the SOC (state of charge) reaches 100%. Examples of such applications include power supply applications such as portable electronic devices (mobile phones, laptop computers, tablet terminals, etc.), electric toys, electric shavers, electric vehicles (EV), and plug-in hybrid vehicles (PHEV). be able to.

<非水電解質蓄電素子の使用方法>
本発明の一実施形態に係る非水電解質蓄電素子の使用方法は、当該非水電解質蓄電素子を、正極電位が4.30V vs.Li/Li超4.60V vs.Li/Li未満に至るまで充電することを備える。このように使用すること、すなわちこのような電位まで繰り返し充電することで、充電に伴って徐々に経時化成がなされるため、リチウム過剰型活物質を正極に用いた非水電解質蓄電素子を高い容量維持率で使用することができる。
<How to use the non-aqueous electrolyte storage element>
A method of using the non-aqueous electrolyte storage element according to one embodiment of the present invention is to set the non-aqueous electrolyte storage element to a positive electrode potential of 4.30 V vs. Li/Li + greater than 4.60V vs. Charging to less than Li/Li + is provided. By using it in this way, that is, by repeatedly charging it to such a potential, chemical formation occurs gradually with the passage of time. Can be used at maintenance rate.

この充電における正極電位(充電上限電位)の上限は、4.55V vs.Li/Li以下であってもよく、4.50V vs.Li/Li又は4.45V vs.Li/Liであってもよい。また、この充電における正極電位(充電上限電位)の下限は、4.35V vs.Li/Liであってもよく、4.40V vs.Li/Liであってもよい。 The upper limit of the positive electrode potential (charge upper limit potential) in this charging is 4.55 V vs. Li/Li + or less, 4.50V vs. Li/Li + or 4.45V vs. It may be Li/Li + . Further, the lower limit of the positive electrode potential (upper limit charging potential) in this charging is 4.35 V vs. Li/Li + , 4.40V vs. It may be Li/Li + .

この使用方法は、充電における正極電位(充電上限電位)を上記範囲内とすること以外は、従来公知の非水電解質蓄電素子の使用方法と同様であってよい。 This method of use may be the same as the method of use of conventionally known non-aqueous electrolyte storage elements, except that the positive electrode potential (upper limit charge potential) in charging is set within the above range.

<非水電解質蓄電素子の製造方法>
本発明の一実施形態に係る非水電解質蓄電素子は、正極と負極と非水電解質とを備える未充放電非水電解質蓄電素子を組み立てること、及びこの未充放電非水電解質蓄電素子を初期充放電することを備える。この初期充放電において、正極の最大到達電位が4.60V vs.Li/Li未満となるように初期の充電を行う。このような製造方法によれば、初期充放電において高電位化成がなされないため、リチウム過剰型活物質を正極に用いた非水電解質蓄電素子であって、充放電サイクルにおける容量維持率が高い非水電解質蓄電素子を製造することができる。
<Method for producing non-aqueous electrolyte storage element>
A non-aqueous electrolyte storage element according to an embodiment of the present invention is produced by assembling an uncharged/discharged non-aqueous electrolyte storage element including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and initially charging the un-charged/discharged non-aqueous electrolyte storage element. Prepare to discharge. In this initial charge/discharge, the maximum potential of the positive electrode was 4.60 V vs. Initial charging is performed to be less than Li/Li + . According to such a production method, since high potential formation is not performed in the initial charge and discharge, the non-aqueous electrolyte storage element using the lithium-excess type active material for the positive electrode has a high capacity retention rate in charge and discharge cycles. A water electrolyte storage device can be manufactured.

なお、当該製造方法において、初期充放電は積極的にリチウム過剰型活物質の活性化を行わせるものではなく、例えば容量の確認等のためになされるものであってよい。すなわち、初期充放電とは、単に、非水電解質蓄電素子(未充放電非水電解質蓄電素子)を組み立てた後に初めて行われる充放電である。初期充放電における充放電の回数は1回又は2回であってもよく、3回以上であってもよい。 In the production method, the initial charge/discharge may not actively activate the lithium-excess type active material, but may be performed, for example, to confirm the capacity. That is, the initial charge/discharge is charge/discharge performed only after the non-aqueous electrolyte storage element (uncharged/discharged non-aqueous electrolyte storage element) is assembled. The number of times of charge/discharge in the initial charge/discharge may be one or two, or may be three or more.

初期充放電における正極の最大到達電位は、4.55V vs.Li/Li以下であってよく、4.50V vs.Li/Li又は4.45V vs.Li/Li以下であってもよい。一方、初期充放電における正極の最大到達電位の下限は特に限定されず、例えば4.30V vs.Li/Li超であってよく、4.35V vs.Li/Li以上又は4.40V vs.Li/Li以上であってもよい。 The maximum potential of the positive electrode in the initial charge/discharge was 4.55 V vs. Li/Li + or less, 4.50V vs. Li/Li + or 4.45V vs. It may be Li/Li + or less. On the other hand, the lower limit of the maximum potential of the positive electrode in the initial charge/discharge is not particularly limited, and is, for example, 4.30 V vs. Li/Li + may be greater than 4.35V vs. Li/Li + or more or 4.40 V vs. It may be Li/Li + or more.

正極と負極と非水電解質とを備える未充放電非水電解質蓄電素子を組み立てることは、例えば、電極体を準備することと、非水電解質を準備することと、電極体及び非水電解質を容器に収容することとを備える。電極体を準備することは、正極を準備することと、負極を準備することと、正極及び負極を、セパレータを介して積層又は巻回することにより電極体を形成することとを備える。 Assembling an uncharged/discharged non-aqueous electrolyte storage element including a positive electrode, a negative electrode, and a non-aqueous electrolyte includes, for example, preparing an electrode body, preparing a non-aqueous electrolyte, and storing the electrode body and the non-aqueous electrolyte in a container. a. Preparing the electrode body includes preparing a positive electrode, preparing a negative electrode, and forming an electrode body by laminating or winding the positive electrode and the negative electrode with a separator interposed therebetween.

正極を準備することは、正極基材に直接又は中間層を介して、正極合剤ペーストを塗布し、乾燥させることにより行うことができる。上記正極合剤ペーストには、正極活物質等、正極活物質層(正極合剤)を構成する各成分、及び分散媒が含まれる。正極活物質には、上記リチウム遷移金属複合酸化物(リチウム過剰型活物質)が含まれる。同様に負極を準備することは、例えば負極基材に直接又は中間層を介して、負極合剤ペーストを塗布し、乾燥させることにより行うことができる。上記負極合剤ペーストには、負極活物質等、負極活物質層(負極合剤)を構成する各成分、及び分散媒が含まれる。 Preparing the positive electrode can be performed by applying the positive electrode material mixture paste directly or via an intermediate layer to the positive electrode base material and drying the paste. The positive electrode mixture paste contains components such as a positive electrode active material, components constituting a positive electrode active material layer (positive electrode mixture), and a dispersion medium. The positive electrode active material includes the lithium-transition metal composite oxide (lithium-excess active material). Similarly, a negative electrode can be prepared by, for example, applying a negative electrode material mixture paste directly or via an intermediate layer to a negative electrode substrate, and drying the paste. The negative electrode mixture paste contains each component constituting the negative electrode active material layer (negative electrode mixture) such as the negative electrode active material, and a dispersion medium.

<その他の実施形態>
本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
<Other embodiments>
The electric storage device of the present invention is not limited to the above embodiments, and various modifications may be made without departing from the scope of the present invention. For example, the configuration of another embodiment can be added to the configuration of one embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique. Furthermore, some of the configurations of certain embodiments can be deleted. Also, well-known techniques can be added to the configuration of a certain embodiment.

また、上記実施の形態においては、非水電解質蓄電素子が非水電解質二次電池である形態を中心に説明したが、その他の非水電解質蓄電素子であってもよい。その他の非水電解質蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。 Further, in the above embodiments, the non-aqueous electrolyte storage element is mainly a non-aqueous electrolyte secondary battery, but other non-aqueous electrolyte storage elements may be used. Other non-aqueous electrolyte storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.

図5に、本発明に係る非水電解質蓄電素子の一実施形態である矩形状の非水電解質蓄電素子1(非水電解質二次電池)の概略図を示す。なお、同図は、容器内部を透視した図としている。図5に示す非水電解質蓄電素子1は、電極体2が容器3に収納されている。電極体2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して巻回されることにより形成されている。正極は、正極リード41を介して正極端子4と電気的に接続され、負極は、負極リード51を介して負極端子5と電気的に接続されている。 FIG. 5 shows a schematic diagram of a rectangular non-aqueous electrolyte storage element 1 (non-aqueous electrolyte secondary battery), which is one embodiment of the non-aqueous electrolyte storage element according to the present invention. In addition, the same figure is taken as the figure which saw through the inside of a container. In the non-aqueous electrolyte storage element 1 shown in FIG. 5, the electrode body 2 is accommodated in the container 3 . The electrode body 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material with a separator interposed therebetween. The positive electrode is electrically connected to the positive terminal 4 via the positive lead 41 , and the negative electrode is electrically connected to the negative terminal 5 via the negative lead 51 .

本発明に係る非水電解質蓄電素子の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の非水電解質蓄電素子を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図6に示す。図6において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質蓄電素子1を備えている。上記蓄電装置30は、電気自動車(EV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。 The configuration of the non-aqueous electrolyte storage element according to the present invention is not particularly limited, and examples thereof include cylindrical batteries, prismatic batteries (rectangular batteries), flat batteries, and the like. The present invention can also be implemented as a power storage device including a plurality of non-aqueous electrolyte power storage elements described above. One embodiment of a power storage device is shown in FIG. In FIG. 6 , the power storage device 30 includes a plurality of power storage units 20 . Each power storage unit 20 includes a plurality of nonaqueous electrolyte power storage elements 1 . The power storage device 30 can be mounted as a power supply for automobiles such as electric vehicles (EV) and plug-in hybrid vehicles (PHEV).

以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples.

[実施例1]正極A(リチウム過剰型活物質)を有する試験電池(非水電解質蓄電素子)の作製
(正極Aの作製)
正極活物質として、α-NaFeO構造を有し、かつLi1.08(Ni0.39Co0.15Mn0.460.92で表されるリチウム遷移金属複合酸化物(正極活物質A)を準備した。
質量比で、正極活物質A:アセチレンブラック(AB):ポリフッ化ビニリデン(PVDF)=90:5:5の割合(固形物換算)で含み、N-メチルピロリドン(NMP)を分散媒とする正極合剤ペーストを作製した。この正極合剤ペーストを正極基材としてのアルミニウム箔(厚み15μm)に塗布し、乾燥させて、正極Aを得た。
[Example 1] Preparation of test battery (non-aqueous electrolyte storage element) having positive electrode A (excessive lithium active material) (preparation of positive electrode A)
As a positive electrode active material , a lithium transition metal composite oxide ( positive electrode An active material A) was prepared.
Positive electrode active material A: acetylene black (AB): polyvinylidene fluoride (PVDF) = 90:5:5 in terms of mass ratio (in terms of solid matter), and using N-methylpyrrolidone (NMP) as a dispersion medium. A mixture paste was prepared. This positive electrode mixture paste was applied to an aluminum foil (thickness: 15 μm) as a positive electrode base material and dried to obtain a positive electrode A.

(試験電池の組み立て)
上記正極Aを作用極、金属リチウムを対極とした試験電池(非水電解質蓄電素子)を組み立てた。なお、非水電解質として、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)とを体積比30:70で混合した非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF)が1.0mol/dmの含有量となるように溶解させた溶液を用い、セパレータとしてポリオレフィン製微多孔膜を用いた。
(Assembly of test battery)
A test battery (non-aqueous electrolyte storage element) was assembled using the positive electrode A as a working electrode and metal lithium as a counter electrode. As a non-aqueous electrolyte, 1.0 mol of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was added to a non-aqueous solvent obtained by mixing EC (ethylene carbonate) and EMC (ethyl methyl carbonate) at a volume ratio of 30:70. A polyolefin microporous membrane was used as a separator.

(初期充放電)
得られた初期充放電前の試験電池(未充放電非水電解質蓄電素子)に対して、25℃にて、以下の要領にて5サイクルの初期充放電を行い、非水電解質蓄電素子を得た。ここで、全ての充電後及び放電後にはそれぞれ10分間の休止期間を設けた。下記の初期充放電における2サイクル目の放電電気量を放電容量とした。以下の試験では、作用極と対極との間で電圧制御を行ったが、対極における金属リチウムの溶解・析出反応抵抗が極めて低いことから、充放電中の端子間電圧は、金属リチウムを用いた参照極に対する作用極の電位と等しいとみなすことができる。
(1サイクル目)
充電電流0.1C(正極活物質の質量あたり18mA/g)、充電終止電圧4.35V(正極電位4.35V vs.Li/Li)、トータル充電時間15時間で定電流定電圧充電を行った。その後、放電電流0.2C、放電終止電圧2.5Vで定電流放電を行った。
(2から5サイクル目)
充電電流0.2C(正極活物質の質量あたり36mA/g)、充電終止電圧4.35V(正極電位4.35V vs.Li/Li)、トータル充電時間8時間で定電流定電圧充電を行った。その後、放電電流0.2C、放電終止電圧2.5Vで定電流放電を行った。
(initial charge/discharge)
The resulting test battery (uncharged/discharged nonaqueous electrolyte storage element) before initial charge/discharge was subjected to 5 cycles of initial charge/discharge at 25° C. in the following manner to obtain a nonaqueous electrolyte storage element. rice field. Here, a rest period of 10 minutes was provided after all charging and after discharging. The amount of discharged electricity in the second cycle of the following initial charge/discharge was taken as the discharge capacity. In the following tests, voltage control was performed between the working electrode and the counter electrode, but since the dissolution/precipitation reaction resistance of metallic lithium in the counter electrode is extremely low, the voltage between the terminals during charging and discharging was determined using metallic lithium. It can be considered equal to the potential of the working electrode with respect to the reference electrode.
(first cycle)
Constant-current constant-voltage charging was performed at a charging current of 0.1 C (18 mA/g per mass of the positive electrode active material), a charge cut-off voltage of 4.35 V (positive electrode potential of 4.35 V vs. Li/Li + ), and a total charging time of 15 hours. rice field. After that, constant current discharge was performed at a discharge current of 0.2C and a discharge final voltage of 2.5V.
(2nd to 5th cycle)
Constant-current constant-voltage charging was performed at a charging current of 0.2 C (36 mA/g per mass of the positive electrode active material), a charge cut-off voltage of 4.35 V (positive electrode potential of 4.35 V vs. Li/Li + ), and a total charging time of 8 hours. rice field. After that, constant current discharge was performed at a discharge current of 0.2C and a discharge final voltage of 2.5V.

(上記式(1)の値を求めるための2サイクルの充放電)
初期充放電を終えた試験電池について、25℃の下、以下の要領で、上記式(1)の値を求めるための2サイクルの充放電を行った。なお、ここでは、金属リチウム電極を対極とした試験電池であることがわかっているので、正極を取り出して試験電池を組み立て直す操作は行わなかった。
まず、正極合剤の質量あたり9mA/gの電流密度で、端子間電圧が2.00V(正極電位2.00V vs.Li/Li)に至るまで定電流放電を行った。
次に、正極合剤の質量あたり9mA/gの電流密度、充電終止電圧4.80V(正極電位4.80V vs.Li/Li)で定電流充電を行った。その後、正極合剤の質量あたり9mA/gの電流密度、放電終止電圧2.00V(正極電位2.00V vs.Li/Li)で定電流放電を行った。この充放電を2サイクル行った。また、充電後及び放電後にはそれぞれ30分間の休止期間を設けた。
(Two cycles of charging and discharging for obtaining the value of the above formula (1))
Two cycles of charging and discharging were performed at 25° C. in the following manner to determine the value of the above formula (1) for the test battery that had completed the initial charging and discharging. Here, since it is known that the test battery has a metallic lithium electrode as the counter electrode, the operation of removing the positive electrode and reassembling the test battery was not performed.
First, constant current discharge was performed at a current density of 9 mA/g per mass of the positive electrode mixture until the terminal voltage reached 2.00 V (positive electrode potential 2.00 V vs. Li/Li + ).
Next, constant-current charging was performed at a current density of 9 mA/g per mass of the positive electrode mixture and a charge termination voltage of 4.80 V (positive electrode potential 4.80 V vs. Li/Li + ). Thereafter, constant current discharge was performed at a current density of 9 mA/g per mass of the positive electrode mixture and a discharge final voltage of 2.00 V (positive electrode potential 2.00 V vs. Li/Li + ). Two cycles of this charging and discharging were performed. In addition, a rest period of 30 minutes was provided after charging and after discharging.

(充電曲線の評価)
上記2サイクルの充放電サイクル試験から、
1サイクル目の充電において、充電開始から電圧が4.80V(正極電位が4.80V vs.Li/Li)に至るまでの充電電気量(C1B)に対する充電開始から電圧が4.45V(正極電位が4.45V vs.Li/Li)に至るまでの充電電気量(C1A)の比の百分率((C1A/C1B)×100)、
2サイクル目の充電において、充電開始から電圧が4.80V(正極電位が4.80V vs.Li/Li)に至るまでの充電電気量(C2B)に対する充電開始から電圧が4.45V(正極電位が4.45V vs.Li/Li)に至るまでの充電電気量(C2A)の比の百分率((C2A/C2B)×100)、及び
これらの差((C2A/C2B)×100-(C1A/C1B)×100)を求めた。これらの値を表1に示す。
(Evaluation of charging curve)
From the above two-cycle charge-discharge cycle test,
In the first cycle charging, the voltage from the start of charging to 4.80 V (the positive electrode potential is 4.80 V vs. Li/Li + ) for the amount of charge (C 1B ) from the start of charging to the voltage of 4.45 V ( The percentage of the charged quantity of electricity (C 1A ) until the positive electrode potential reaches 4.45 V vs. Li/Li + ((C 1A /C 1B )×100),
In the second cycle charging, the voltage from the start of charging to 4.80 V (the positive electrode potential is 4.80 V vs. Li/Li + ) for the amount of charge electricity (C 2B ) from the start of charging to 4.45 V ( The percentage of the charged quantity of electricity (C 2A ) until the positive electrode potential reaches 4.45 V vs. Li/Li + ) ((C 2A /C 2B ) × 100), and the difference between them ((C 2A /C 2B )×100−(C 1A /C 1B )×100) was obtained. These values are shown in Table 1.

[実施例2から5、比較例1]
実施例1の「初期充放電」における1から3サイクル目の充電終止電圧(充電終止時の正極電位)を表1に示す通りとしたこと以外は、実施例1と同様の操作をし、充放電試験及び充電曲線の評価を行った。求めた値を表1に示す。
[Examples 2 to 5, Comparative Example 1]
The same operation as in Example 1 was performed except that the charge end voltage (positive electrode potential at the end of charge) in the 1st to 3rd cycles in the “initial charge and discharge” of Example 1 was as shown in Table 1. A discharge test and charge curve were evaluated. Table 1 shows the obtained values.

また、上記2サイクルの充放電試験における充放電曲線について、実施例1の充放電曲線を図1に、比較例1の充放電曲線を図2に示す。 As for the charge/discharge curves in the two-cycle charge/discharge test, the charge/discharge curve of Example 1 is shown in FIG. 1, and the charge/discharge curve of Comparative Example 1 is shown in FIG.

Figure 0007318344000001
Figure 0007318344000001

表1に示されるように、初期充放電の際の充電終止電圧が4.6V未満であり、正極の最大到達電位(充電終止電圧における正極電位)が4.6V vs.Li/Li未満である実施例1から5においては、(C2A/C2B)×100-(C1A/C1B)×100の値が1.0以上である。すなわちこれらは、高電位化成が不十分であり、経時化成できる十分な能力を有していると評価できる。なお、正極電位が低いほどこの傾向は高まっている。これに対し、初期充放電の際の充電終止電圧が4.6Vであり、正極の最大到達電位が4.6V vs.Li/Liである比較例1においては、(C2A/C2B)×100-(C1A/C1B)×100の値が0.7である。すなわち比較例1は、十分な高電位化成がなされ、経時化成できる十分な能力を有していないと評価できる。 As shown in Table 1, the end-of-charge voltage during the initial charge and discharge was less than 4.6 V, and the maximum potential of the positive electrode (positive electrode potential at the end-of-charge voltage) was 4.6 V vs. In Examples 1 to 5, which are less than Li/Li + , the value of (C 2A /C 2B )×100−(C 1A /C 1B )×100 is 1.0 or more. That is, it can be evaluated that they are insufficient in high-potential formation and have sufficient ability to undergo aging formation. This tendency increases as the positive electrode potential decreases. On the other hand, the end-of-charge voltage in the initial charge/discharge was 4.6 V, and the maximum potential of the positive electrode was 4.6 V vs. In Comparative Example 1 with Li/Li + , the value of (C 2A /C 2B )×100−(C 1A /C 1B )×100 is 0.7. In other words, it can be evaluated that Comparative Example 1 is sufficiently high-potential formation and does not have sufficient ability to undergo aging formation.

また、図1に示されるように、実施例1においては、1サイクル目に4.5V以上4.8V以下の電圧範囲内(4.5V vs.Li/Li以上5.0V vs.Li/Li以下の正極電位範囲内)に、充電電気量に対して電圧変化が比較的緩やかな領域が観察される。なお、2サイクル目にはこの電圧変化が比較的穏やかな領域は観察されない。一方、図2に示されるように、比較例1においては、いずれのサイクルにおいてもこの電圧変化が比較的穏やかな領域が観察されない。これらの充放電曲線からも、比較例1では、初期充放電の際に既に十分な高電位化成がなされているのに対し、実施例1では、高電位化成が十分にはなされておらず、経時化成できる十分な能力を有しているといえる。 Further, as shown in FIG. 1, in Example 1, in the first cycle, the voltage range of 4.5 V or more and 4.8 V or less (4.5 V vs. Li/Li + or more and 5.0 V vs. Li/ A region where the voltage change is relatively gentle with respect to the amount of charged electricity is observed within the range of positive electrode potential below Li + . In the second cycle, no region where the voltage change is relatively gentle is observed. On the other hand, as shown in FIG. 2, in Comparative Example 1, no region in which the voltage change is relatively moderate is observed in any cycle. These charge-discharge curves also show that in Comparative Example 1, a sufficient high-potential formation has already occurred during the initial charge-discharge, whereas in Example 1, high-potential formation has not been sufficiently performed. It can be said that it has sufficient ability to be chemically formed over time.

[実施例6]正極A(リチウム過剰型活物質)及び負極A(SiO-Gr)を有する非水電解質蓄電素子の作製
(正極Aの作製)
実施例1と同様の手順で、正極Aを得た。
[Example 6] Fabrication of non-aqueous electrolyte storage element having positive electrode A (excessive lithium active material) and negative electrode A (SiO—Gr) (preparation of positive electrode A)
A positive electrode A was obtained in the same manner as in Example 1.

(負極Aの作製)
負極活物質として、非黒鉛質炭素が被覆された酸化ケイ素(SiO)と黒鉛(Gr)とを2:8(質量比)で混合した負極活物質Aを用いた。
質量比で、負極活物質A:スチレンブタジエンゴム(SBR):カルボキシメチルセルロース(CMC)=94.8:4.0:1.2の割合(固形分換算)で含み、水を分散媒とする負極合剤ペーストを作製した。この負極合剤ペーストを負極基材としての帯状の銅箔(厚み20μm)に塗布し、乾燥させて、負極Aを得た。
(Preparation of negative electrode A)
As a negative electrode active material, a negative electrode active material A was used in which silicon oxide (SiO) coated with non-graphitic carbon and graphite (Gr) were mixed at a ratio of 2:8 (mass ratio).
Negative electrode containing negative electrode active material A: styrene-butadiene rubber (SBR): carboxymethyl cellulose (CMC) at a mass ratio of 94.8: 4.0: 1.2 (in terms of solid content) and using water as a dispersion medium A mixture paste was prepared. This negative electrode mixture paste was applied to a strip-shaped copper foil (thickness: 20 μm) as a negative electrode substrate and dried to obtain a negative electrode A.

(非水電解質Aの調製)
EC(エチレンカーボネート)とPC(プロピレンカーボネート)とEMC(エチルメチルカーボネート)とを体積比25:5:70で混合した非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF)が1.0mol/dmの含有量となるように溶解させた溶液を調製し、非水電解質Aとした。
(Preparation of non-aqueous electrolyte A)
1. Lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was added to a non-aqueous solvent in which EC (ethylene carbonate), PC (propylene carbonate), and EMC (ethyl methyl carbonate) were mixed at a volume ratio of 25:5:70. A non-aqueous electrolyte A was prepared by dissolving so as to have a content of 0 mol/dm 3 .

(非水電解質蓄電素子の組み立て)
セパレータとして、耐熱層が塗工されたポリオレフィン製微多孔膜を用意した。このセパレータを介して、上記正極Aと上記負極Aとを積層することにより電極体を作製した。この電極体を金属樹脂複合フィルム製の容器に収納し、内部に上記非水電解質Aを注入した後、熱溶着により封口した。
(Assembly of non-aqueous electrolyte storage element)
A polyolefin microporous film coated with a heat-resistant layer was prepared as a separator. An electrode body was produced by laminating the positive electrode A and the negative electrode A with the separator interposed therebetween. This electrode body was placed in a container made of a metal-resin composite film, and after the non-aqueous electrolyte A was injected therein, the container was sealed by heat welding.

(初期充放電)
得られた初期充放電前の非水電解質蓄電素子(未充放電非水電解質蓄電素子)に対して、25℃の下、以下の要領にて初期充放電を行った。上記非水電解質蓄電素子の設計定格容量を基準として、充電電流0.1C、トータル充電時間3時間で定電流充電を行い、その後、12時間の休止期間を設けた。その後、充電電流0.1C、充電終止電圧4.15V(正極電位4.25V vs.Li/Li)、トータル充電時間13時間で定電流定電圧充電を行い、その後10分間の休止期間を設けた。その後、放電電流0.2C、放電終止電圧2.5Vで定電流放電を行った。以上の手順により、非水電解質蓄電素子を完成した。
(initial charge/discharge)
The obtained non-aqueous electrolyte storage element before initial charge/discharge (uncharged/discharged non-aqueous electrolyte storage element) was subjected to initial charge/discharge at 25° C. in the following manner. Based on the design rated capacity of the non-aqueous electrolyte storage element, constant current charging was performed with a charging current of 0.1 C and a total charging time of 3 hours, followed by a rest period of 12 hours. After that, constant-current and constant-voltage charging was performed with a charging current of 0.1 C, a charging cut-off voltage of 4.15 V (positive electrode potential of 4.25 V vs. Li/Li + ), and a total charging time of 13 hours, followed by a rest period of 10 minutes. rice field. After that, constant current discharge was performed at a discharge current of 0.2C and a discharge final voltage of 2.5V. A non-aqueous electrolyte storage device was completed through the above procedure.

(初期の放電容量の測定)
次いで、完成した非水電解質蓄電素子に対して、25℃の下、以下の要領にて初期の放電容量を確認した。
(1サイクル目)
充電電流0.2C、充電終止電圧4.15V(正極電位4.25V vs.Li/Li)、トータル充電時間8時間で定電流定電圧充電を行った。その後、放電電流0.2C、放電終止電圧2.5Vで定電流放電を行った。
(2サイクル目)
その後、充電電流0.2C、充電終止電圧4.15V(正極電位4.25V vs.Li/Li)、トータル充電時間8時間で定電流定電圧充電を行った。その後、放電電流1.0C、放電終止電圧2.5Vで定電流放電を行った。その後、残放電として、放電電流0.2C、放電終止電圧2.5Vで定電流放電を行った。
充電後及び放電後にはそれぞれ10分間の休止期間を設けた。1サイクル目の放電(放電電流0.2Cでの放電)における放電電気量を初期の放電容量とした。
(Measurement of initial discharge capacity)
Next, the initial discharge capacity of the completed non-aqueous electrolyte storage element was confirmed at 25° C. in the following manner.
(first cycle)
Constant-current and constant-voltage charging was performed at a charging current of 0.2 C, a charging cut-off voltage of 4.15 V (positive electrode potential of 4.25 V vs. Li/Li + ), and a total charging time of 8 hours. After that, constant current discharge was performed at a discharge current of 0.2C and a discharge final voltage of 2.5V.
(second cycle)
After that, constant-current and constant-voltage charging was performed with a charging current of 0.2 C, a charge termination voltage of 4.15 V (positive electrode potential of 4.25 V vs. Li/Li + ), and a total charging time of 8 hours. After that, constant current discharge was performed at a discharge current of 1.0C and a discharge final voltage of 2.5V. Thereafter, constant current discharge was performed at a discharge current of 0.2 C and a discharge final voltage of 2.5 V as residual discharge.
A rest period of 10 minutes was provided after charging and after discharging. The amount of electricity discharged in the first cycle of discharge (discharge at a discharge current of 0.2 C) was taken as the initial discharge capacity.

(充放電サイクル試験)
初期の放電容量を確認した非水電解質蓄電素子について、45℃の下、以下の要領で充放電サイクル試験を行った。充電電流1.0C、充電終止電圧4.15V(正極電位4.25V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流1.0C、放電終止電圧をSOC10%に対応する電圧値とした定電流放電を行った。充電後及び放電後にはそれぞれ10分間の休止期間を設けた。この充放電を100サイクル実施した。
(Charge-discharge cycle test)
A charge/discharge cycle test was performed at 45° C. in the following manner for the non-aqueous electrolyte storage element for which the initial discharge capacity was confirmed. Constant-current and constant-voltage charging was performed at a charging current of 1.0 C and a charge termination voltage of 4.15 V (positive electrode potential of 4.25 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. After that, constant current discharge was performed with a discharge current of 1.0 C and a discharge final voltage corresponding to an SOC of 10%. A rest period of 10 minutes was provided after charging and after discharging. This charging/discharging was performed 100 cycles.

(充放電サイクル試験後の放電容量の測定)
充放電サイクル試験後、25℃の下、残放電として、放電電流0.2C、放電終止電圧2.5Vで定電流放電を行った。その後、「初期の放電容量の測定」と同じ手順にて、充放電サイクル試験後の放電容量を測定した。初期の放電容量に対する充放電サイクル試験後の放電容量を容量維持率として求めた。得られた容量維持率を表2に示す。
(Measurement of discharge capacity after charge-discharge cycle test)
After the charge-discharge cycle test, constant current discharge was performed at 25° C. with a discharge current of 0.2 C and a discharge final voltage of 2.5 V as residual discharge. After that, the discharge capacity after the charge-discharge cycle test was measured in the same procedure as "measurement of initial discharge capacity". The discharge capacity after the charge/discharge cycle test relative to the initial discharge capacity was obtained as the capacity retention rate. Table 2 shows the obtained capacity retention ratios.

[実施例7から10]
実施例6の「初期充放電」、「初期の放電容量の測定」、「充放電サイクル試験」及び「充放電サイクル試験後の放電容量の測定」における全ての充電終止電圧を表2に示す値としたこと以外は実施例6と同様の操作を行い、各非水電解質蓄電素子を得て、容量維持率を測定した。得られた容量維持率を表2に示す。
[Examples 7 to 10]
All charge end voltages in "Initial charge/discharge", "Measurement of initial discharge capacity", "Charge/discharge cycle test" and "Measurement of discharge capacity after charge/discharge cycle test" in Example 6 are shown in Table 2. Each non-aqueous electrolyte storage element was obtained by performing the same operation as in Example 6 except for the above, and the capacity retention rate was measured. Table 2 shows the obtained capacity retention ratios.

[実施例11から13、比較例3]
実施例6の非水電解質Aに代えて、以下の要領で調製した非水電解質Bを用いたこと、並びに「初期充放電」、「初期の放電容量の測定」、「充放電サイクル試験」及び「充放電サイクル試験後の放電容量の測定」における全ての充電終止電圧を表2に示す値としたこと以外は実施例6と同様の操作を行い、各非水電解質蓄電素子を得て、容量維持率を測定した。得られた容量維持率を表2に示す。
[Examples 11 to 13, Comparative Example 3]
Instead of non-aqueous electrolyte A in Example 6, non-aqueous electrolyte B prepared in the following manner was used, and "initial charge and discharge", "measurement of initial discharge capacity", "charge-discharge cycle test" and The same operation as in Example 6 was performed except that all the charge end voltages in "Measurement of discharge capacity after charge-discharge cycle test" were set to the values shown in Table 2, and each non-aqueous electrolyte storage element was obtained. Retention rate was measured. Table 2 shows the obtained capacity retention ratios.

(非水電解質Bの調製)
FEC(フルオロエチレンカーボネート)とMFEC(メチルトリフルオロエチルカーボネート)とを体積比30:70で混合した非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF)が1.0mol/dmの含有量となるように溶解させた溶液を調製し、非水電解質Bとした。
(Preparation of non-aqueous electrolyte B)
1.0 mol/dm 3 of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was added to a non-aqueous solvent obtained by mixing FEC (fluoroethylene carbonate) and MFEC (methyltrifluoroethyl carbonate) at a volume ratio of 30:70. A non-aqueous electrolyte B was prepared by dissolving so as to obtain the content.

[比較例2]正極X(LiMeO型活物質)及び負極A(SiO-Gr)を有する非水電解質蓄電素子の作製
実施例6の正極Aに代えて、以下の要領で作製した正極Xを用いたこと、並びに「初期充放電」、「初期の放電容量の測定」、「充放電サイクル試験」及び「充放電サイクル試験後の放電容量の測定」における全ての充電終止電圧を表2に示す値としたこと以外は実施例6と同様の操作を行い、各非水電解質蓄電素子を得て、容量維持率を測定した。得られた容量維持率を表2に示す。
[Comparative Example 2] Fabrication of non-aqueous electrolyte storage element having positive electrode X (LiMeO 2 type active material) and negative electrode A (SiO—Gr) Table 2 shows all the end-of-charge voltages in "initial charge/discharge", "initial charge/discharge capacity measurement", "charge/discharge cycle test", and "discharge capacity measurement after charge/discharge cycle test". Each non-aqueous electrolyte storage element was obtained by performing the same operation as in Example 6 except that the value was changed, and the capacity retention rate was measured. Table 2 shows the obtained capacity retention ratios.

(正極Xの作製)
正極活物質として、α-NaFeO構造を有し、かつLi1.0Ni0.5Co0.2Mn0.3で表されるリチウム遷移金属複合酸化物(正極活物質X)を準備した。
質量比で、正極活物質X:アセチレンブラック(AB):ポリフッ化ビニリデン(PVDF)=93:4:3の割合(固形物換算)で含み、N-メチルピロリドン(NMP)を分散媒とする正極合剤ペーストを作製した。この正極合剤ペーストを正極基材としてのアルミニウム箔(厚み15μm)に塗布し、乾燥させて、正極Xを得た。
(Preparation of positive electrode X)
As a positive electrode active material, a lithium transition metal composite oxide (positive electrode active material X) having an α-NaFeO 2 structure and represented by Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 is used. Got ready.
Positive electrode active material X: acetylene black (AB): polyvinylidene fluoride (PVDF) at a mass ratio of 93:4:3 (in terms of solid matter), and using N-methylpyrrolidone (NMP) as a dispersion medium. A mixture paste was prepared. This positive electrode mixture paste was applied to an aluminum foil (thickness: 15 μm) as a positive electrode base material and dried to obtain a positive electrode X.

Figure 0007318344000002
Figure 0007318344000002

表2に示されるように、リチウム過剰型活物質(正極活物質A)を用い、初期充放電から使用時(充放電サイクル試験時)において、充電終止電圧が4.50V未満であり、充電終止電圧における正極電位が4.60V vs.Li/Li未満である実施例6から13の非水電解質蓄電素子は、容量維持率が97.0%以上であり、優れた容量維持率を有する。中でも、充電終止電圧が4.20V超4.50V未満であり、充電終止電圧における正極電位が4.30V vs.Li/Li超4.60V vs.Li/Li未満の範囲で使用した実施例8から13は、容量維持率が98.0%以上であり、容量維持率が特に優れている。正極を所定の範囲の電位まで充電して使用することで、経時化成が進行し、容量維持率が高まっているものと推測される。 As shown in Table 2, the lithium-excess type active material (positive electrode active material A) was used, and the end-of-charge voltage was less than 4.50 V from the initial charge/discharge to use (during the charge-discharge cycle test). The positive electrode potential in the voltage is 4.60 V vs. The non-aqueous electrolyte storage elements of Examples 6 to 13, in which the Li/Li + ratio is less than 97.0%, have excellent capacity retention rates of 97.0% or more. Among them, the end-of-charge voltage is more than 4.20 V and less than 4.50 V, and the positive electrode potential at the end-of-charge voltage is 4.30 V vs. Li/Li + greater than 4.60V vs. Examples 8 to 13, which were used in the range of less than Li/Li + , had a capacity retention rate of 98.0% or more, and were particularly excellent in capacity retention rate. It is presumed that by using the positive electrode after charging it to a potential within a predetermined range, chemical formation over time progresses and the capacity retention rate increases.

[実施例14]正極B(リチウム過剰型活物質)を有する単極電池(試験電池)の作製
実施例1の正極活物質Aに代えて、α-NaFeO構造を有し、かつLi1.14(Ni0.33Mn0.670.86で表されるリチウム遷移金属複合酸化物(正極活物質B)を用いたこと、質量比で、正極活物質B:アセチレンブラック(AB):ポリフッ化ビニリデン(PVDF)=94:4.5:1.5の割合(固形物換算)で含む正極合剤ペーストを用いたこと以外は実施例1と同様にして、正極Bを得た。また、実施例1の正極Aに代えて、正極Bを用いたこと以外は実施例1と同様にして、上記「試験電池の組み立て」及び「初期充放電」を行った。
[Example 14] Production of a single electrode battery (test battery) having a positive electrode B (excessive lithium type active material) Instead of the positive electrode active material A in Example 1, a battery having an α-NaFeO 2 structure and Li1. 14 (Ni 0.33 Mn 0.67 ) 0.86 O 2 Lithium transition metal composite oxide (positive electrode active material B) was used, and the mass ratio of positive electrode active material B: acetylene black (AB ): Polyvinylidene fluoride (PVDF) = 94: 4.5: 1.5 (converted to solid matter) A positive electrode B was obtained in the same manner as in Example 1, except that a positive electrode mixture paste was used. . Further, in the same manner as in Example 1 except that the positive electrode B was used in place of the positive electrode A in Example 1, the "assembly of the test battery" and the "initial charge/discharge" were performed.

[実施例15から18、比較例4]
実施例1の「初期充放電」における1から3サイクル目の充電終止電圧(充電終止時の正極電位)を表3に示す通りとしたこと以外は、実施例14と同様の操作をした。
[Examples 15 to 18, Comparative Example 4]
The same operation as in Example 14 was performed except that the end-of-charge voltage (positive electrode potential at the end of charge) of the first to third cycles in the "initial charge-discharge" of Example 1 was set as shown in Table 3.

実施例1から5、14から18及び比較例1、4の「初期充放電」における2サイクル目の放電に基づき、放電容量、平均放電電位及びエネルギー密度を求めた。結果を表3に示す。また、実施例1から5、14から18及び比較例1、4のエネルギー密度を表すグラフを図4に示す。 The discharge capacity, average discharge potential and energy density were obtained based on the second cycle discharge in the "initial charge/discharge" of Examples 1 to 5 and 14 to 18 and Comparative Examples 1 and 4. Table 3 shows the results. Graphs representing the energy densities of Examples 1 to 5 and 14 to 18 and Comparative Examples 1 and 4 are shown in FIG.

Figure 0007318344000003
Figure 0007318344000003

表3及び図4に示されるように、0.02≦(Mn/Me-Ni/Me)≦0.2を満たす正極活物質Aを用いた実施例1から5の非水電解質蓄電素子においては、特に充電上限電位(充電終止電圧における正極電位)が比較的低い場合であっても、十分な放電容量を有し、エネルギー密度が高いことがわかる。 As shown in Table 3 and FIG. 4, in the non-aqueous electrolyte storage elements of Examples 1 to 5 using the positive electrode active material A satisfying 0.02≦(Mn/Me—Ni/Me)≦0.2, In particular, even when the charge upper limit potential (the positive electrode potential at the end of charge voltage) is relatively low, it can be seen that the battery has a sufficient discharge capacity and a high energy density.

(放置試験)
[実施例19]正極A(リチウム過剰型活物質)及び負極A(SiO-Gr)を有する非水電解質蓄電素子の作製
実施例6と同様の手順で、正極活物質A(Li1.08(Ni0.39Coγ0.15Mn0.460.92)及び負極活物質A(SiO-Gr)を用いた未充放電非水電解質蓄電素子を組み立てた。その後、充電終止電圧を4.25V(正極電位4.35V vs.Li/Li)としたこと以外は、実施例6と同様に「初期充放電」及び「初期の放電容量の測定」を行った。
(Standing test)
[Example 19] Fabrication of non-aqueous electrolyte storage element having positive electrode A (excessive lithium active material) and negative electrode A (SiO-Gr) In the same procedure as in Example 6, the positive electrode active material A ( Li An uncharged/discharged non-aqueous electrolyte storage element using Ni 0.39 Co γ0.15 Mn 0.46 ) 0.92 O 2 ) and negative electrode active material A (SiO—Gr) was assembled. After that, "initial charge/discharge" and "measurement of initial discharge capacity" were performed in the same manner as in Example 6 except that the charge end voltage was 4.25 V (positive electrode potential 4.35 V vs. Li/Li + ). rice field.

[比較例5]正極X(LiMeO型活物質)及び負極A(SiO-Gr)を有する非水電解質蓄電素子の作製
比較例2と同様の手順で、正極活物質X(Li1.0Ni0.5Co0.2Mn0.3)及び負極活物質A(SiO-Gr)を用いた未充放電非水電解質蓄電素子を組み立てたこと以外は、実施例19と同様の操作を行った。
[Comparative Example 5] Fabrication of non-aqueous electrolyte storage element having positive electrode X (LiMeO 2 type active material) and negative electrode A ( SiO —Gr) 0.5 Co 0.2 Mn 0.3 O 2 ) and negative electrode active material A (SiO—Gr), except for assembling an uncharged/discharged non-aqueous electrolyte storage element. gone.

実施例19及び比較例5で得られた各非水電解質蓄電素子について、充電電流0.2C、充電終止電圧4.25V(正極電位4.35V vs.Li/Li)、トータル充電時間8時間の定電流定電圧充電を行った。このようにして充電状態とした非水電解質蓄電素子を45℃の恒温槽内に15日及び33日放置した。その後、25℃にて、残放電として、放電電流0.2C、放電終止電圧2.5Vで定電流放電を行った。続いて、上記実施例6の「初期の放電容量の測定」と同じ手順にて、放置後の放電容量を測定した。初期の放電容量に対する放置後の放電容量を容量維持率として求めた。得られた結果(容量維持率)を表4に示す。 For each of the non-aqueous electrolyte storage elements obtained in Example 19 and Comparative Example 5, the charging current was 0.2 C, the charging end voltage was 4.25 V (positive electrode potential 4.35 V vs. Li/Li + ), and the total charging time was 8 hours. constant-current and constant-voltage charging was performed. The non-aqueous electrolyte storage element thus charged was left in a constant temperature bath at 45° C. for 15 days and 33 days. Thereafter, constant current discharge was performed at 25° C. with a discharge current of 0.2 C and a discharge final voltage of 2.5 V as residual discharge. Subsequently, the discharge capacity after standing was measured in the same procedure as "measurement of initial discharge capacity" in Example 6 above. The discharge capacity after standing relative to the initial discharge capacity was obtained as the capacity retention rate. Table 4 shows the obtained results (capacity retention rate).

Figure 0007318344000004
Figure 0007318344000004

表4に示されるように、リチウム過剰型活物質(正極活物質A)を用い、初期充放電において十分な高電位化成がなされていない実施例19の非水電解質蓄電素子は、LiMeO型活物質(正極活物質X)を用いた比較例5の非水電解質蓄電素子と比べて高温放置後の容量維持率が高い。これは、実施例19の非水電解質蓄電素子においては、充電状態で高温下に放置されることによって経時化成が徐々に進行したことによると推測される。 As shown in Table 4, the non-aqueous electrolyte storage element of Example 19, in which the lithium-excess type active material (positive electrode active material A) was used and the high potential formation was not sufficiently performed in the initial charge/discharge, the LiMeO 2 type active material Compared to the non-aqueous electrolyte storage element of Comparative Example 5 using the material (positive electrode active material X), the capacity retention rate after being left at high temperature is high. This is presumably because the non-aqueous electrolyte storage element of Example 19 was left at a high temperature in a charged state, thereby gradually undergoing chemical formation over time.

[実施例20]正極A(リチウム過剰型活物質)及び負極B(Gr)を有する非水電解質蓄電素子の作製
(正極Aの作製)
実施例1と同様の手順で、正極Aを得た。
[Example 20] Production of non-aqueous electrolyte storage element having positive electrode A (excessive lithium active material) and negative electrode B (Gr) (production of positive electrode A)
A positive electrode A was obtained in the same manner as in Example 1.

(負極Bの作製)
負極活物質として、黒鉛(Gr:負極活物質B)を用いた。質量比で、負極活物質B:スチレンブタジエンゴム(SBR):カルボキシメチルセルロース(CMC)=97.3:1.5:1.2の割合(固形分換算)で含み、水を分散媒とする負極合剤ペーストを作製した。この負極合剤ペーストを負極基材としての帯状の銅箔(厚み10μm)に塗布し、乾燥させて、負極Bを得た。
(Preparation of negative electrode B)
Graphite (Gr: negative electrode active material B) was used as the negative electrode active material. A negative electrode containing a negative electrode active material B: styrene-butadiene rubber (SBR): carboxymethyl cellulose (CMC) at a mass ratio of 97.3: 1.5: 1.2 (in terms of solid content) and using water as a dispersion medium. A mixture paste was prepared. This negative electrode mixture paste was applied to a strip-shaped copper foil (thickness: 10 μm) as a negative electrode base material and dried to obtain a negative electrode B.

(非水電解質Cの調製)
FECとEMCとを体積比5:95で混合した非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF)が1.0mol/dmの含有量となるように溶解させた溶液を調製し、非水電解質Cとした。
(Preparation of non-aqueous electrolyte C)
A solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which FEC and EMC were mixed at a volume ratio of 5:95 so that the content was 1.0 mol/dm 3 . and non-aqueous electrolyte C was obtained.

(非水電解質蓄電素子の組み立て)
セパレータとして、耐熱層が塗工されたポリオレフィン製微多孔膜を用意した。このセパレータを介して、上記正極Aと上記負極Bとを巻回することにより電極体を作製した。この電極体を金属樹脂複合フィルム製の容器に収納し、内部に上記非水電解質Cを注入した後、熱溶着により封口した。
(Assembly of non-aqueous electrolyte storage element)
A polyolefin microporous film coated with a heat-resistant layer was prepared as a separator. An electrode assembly was produced by winding the positive electrode A and the negative electrode B with the separator interposed therebetween. This electrode body was placed in a container made of a metal-resin composite film, and after the non-aqueous electrolyte C was injected therein, the container was sealed by heat welding.

(初期充放電)
得られた初期充放電前の非水電解質蓄電素子(未充放電非水電解質蓄電素子)に対して、25℃の下、以下の要領にて初期充放電を行った。充電電流0.1C、充電終止電圧4.25V(正極電位4.35V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流0.1C、放電終止電圧2.5Vとした定電流放電を行った。
(initial charge/discharge)
The obtained non-aqueous electrolyte storage element before initial charge/discharge (uncharged/discharged non-aqueous electrolyte storage element) was subjected to initial charge/discharge at 25° C. in the following manner. Constant-current and constant-voltage charging was performed at a charging current of 0.1 C and a charge termination voltage of 4.25 V (positive electrode potential of 4.35 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. Thereafter, constant current discharge was performed with a discharge current of 0.1C and a discharge final voltage of 2.5V.

(放電容量の測定)
次いで、25℃の下、以下の3サイクルの充放電を行い、初期の放電容量を確認した。2サイクル目の放電電気量を初期の放電容量とした。
(1サイクル目)
充電電流0.1C、充電終止電圧4.25V(正極電位4.35V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流0.1C、放電終止電圧2.5Vとした定電流放電を行った。
(2サイクル目)
充電電流0.2C、充電終止電圧4.25V(正極電位4.35V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流0.2C、放電終止電圧2.5Vとした定電流放電を行った。
(3サイクル目)
充電電流1.0C、充電終止電圧4.25V(正極電位4.35V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流1.0C、放電終止電圧2.5Vとした定電流放電を行った。
(Measurement of discharge capacity)
Then, the following three cycles of charging and discharging were performed at 25° C., and the initial discharge capacity was confirmed. The amount of discharged electricity in the second cycle was taken as the initial discharge capacity.
(first cycle)
Constant-current and constant-voltage charging was performed at a charging current of 0.1 C and a charge termination voltage of 4.25 V (positive electrode potential of 4.35 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. Thereafter, constant current discharge was performed with a discharge current of 0.1C and a discharge final voltage of 2.5V.
(second cycle)
Constant-current and constant-voltage charging was performed at a charging current of 0.2 C and a charge termination voltage of 4.25 V (positive electrode potential of 4.35 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. After that, constant current discharge was performed with a discharge current of 0.2C and a discharge final voltage of 2.5V.
(3rd cycle)
Constant current and constant voltage charging was performed at a charging current of 1.0 C and a charge termination voltage of 4.25 V (positive electrode potential of 4.35 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. After that, constant current discharge was performed with a discharge current of 1.0 C and a discharge final voltage of 2.5 V.

(充放電サイクル試験)
初期の放電容量を確認した非水電解質蓄電素子について、45℃の下、以下の要領で充放電サイクル試験を行った。充電電流1.0C、充電終止電圧4.25V(正極電位4.35V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流1.0C、放電終止電圧2.5Vとした定電流放電を行った。充電後及び放電後にはそれぞれ10分間の休止期間を設けた。この充放電を700サイクル実施した。
(Charge-discharge cycle test)
A charge/discharge cycle test was performed at 45° C. in the following manner for the non-aqueous electrolyte storage element for which the initial discharge capacity was confirmed. Constant current and constant voltage charging was performed at a charging current of 1.0 C and a charge termination voltage of 4.25 V (positive electrode potential of 4.35 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. After that, constant current discharge was performed with a discharge current of 1.0 C and a discharge final voltage of 2.5 V. A rest period of 10 minutes was provided after charging and after discharging. This charging/discharging was carried out for 700 cycles.

(充放電サイクル試験後の放電容量の測定)
充放電サイクル試験における400サイクル後、600サイクル後及び700サイクル後のそれぞれの非水電解質蓄電素子において、上記「放電容量の測定」と同様の3サイクルの充放電を行い、放電容量を確認した。2サイクル目の放電電気量をそれぞれのサイクル後の放電容量とした。初期の放電容量に対する各サイクル後の放電容量を容量維持率として求めた。得られた容量維持率を表5に示す。
(Measurement of discharge capacity after charge-discharge cycle test)
After 400 cycles, 600 cycles, and 700 cycles in the charge/discharge cycle test, the non-aqueous electrolyte storage elements were subjected to 3 cycles of charge/discharge in the same manner as in the above "measurement of discharge capacity" to confirm the discharge capacity. The amount of discharged electricity in the second cycle was defined as the discharge capacity after each cycle. The discharge capacity after each cycle relative to the initial discharge capacity was obtained as the capacity retention rate. Table 5 shows the obtained capacity retention ratios.

[実施例21]
実施例20の「初期充放電」、「放電容量の測定」、及び「充放電サイクル試験」における充電終止電圧を4.30V(正極電位4.40V vs.Li/Li)としたこと以外は実施例20と同様の操作を行い、非水電解質蓄電素子を得て、容量維持率を測定した。得られた容量維持率を表5に示す。
[Example 21]
Except that the end-of-charge voltage in the “initial charge/discharge”, “measurement of discharge capacity”, and “charge/discharge cycle test” in Example 20 was set to 4.30 V (positive electrode potential 4.40 V vs. Li/Li + ) A non-aqueous electrolyte storage element was obtained by performing the same operation as in Example 20, and the capacity retention rate was measured. Table 5 shows the obtained capacity retention ratios.

[比較例6]正極X(LiMeO型活物質)及び負極B(Gr)を有する非水電解質蓄電素子の作製
実施例20の正極Aに代えて、正極Xを用いたこと以外は実施例20と同様の操作を行い、非水電解質蓄電素子を得て、容量維持率を測定した。得られた容量維持率を表5に示す。
[Comparative Example 6] Fabrication of non-aqueous electrolyte storage element having positive electrode X (L iMeO 2 type active material) and negative electrode B (Gr) Example 20 except that positive electrode X was used instead of positive electrode A A non-aqueous electrolyte storage element was obtained by performing the same operation as in Example 20, and the capacity retention rate was measured. Table 5 shows the obtained capacity retention ratios.

[比較例7]正極A(リチウム過剰型活物質)及び負極B(Gr)を有する非水電解質蓄電素子の作製
実施例20の「初期充放電」における充電終止電圧を4.50V(正極電位4.60V vs.Li/Li)とし、「放電容量の測定」及び「充放電サイクル試験」における充電終止電圧を4.35V(正極電位4.45V vs.Li/Li)としたこと以外は実施例20と同様の操作を行い、非水電解質蓄電素子を得て、容量維持率を測定した。得られた容量維持率を表5に示す。
[Comparative Example 7] Fabrication of non-aqueous electrolyte storage element having positive electrode A (excessive lithium active material) and negative electrode B (Gr) .60 V vs. Li/Li + ), and the end-of-charge voltage in the “measurement of discharge capacity” and the “charge-discharge cycle test” was set to 4.35 V (positive electrode potential 4.45 V vs. Li / Li + ) A non-aqueous electrolyte storage element was obtained by performing the same operation as in Example 20, and the capacity retention rate was measured. Table 5 shows the obtained capacity retention ratios.

Figure 0007318344000005
Figure 0007318344000005

表5に示されるように、正極活物質にリチウム過剰型活物質(正極活物質A)、負極活物質に黒鉛(負極活物質B)を用い、初期充放電から使用時(充放電サイクル試験時)において、充電終止電圧が4.50V未満であり、充電終止電圧における正極電位が4.60V vs.Li/Li未満である実施例20、21の非水電解質蓄電素子は、長期に亘る充放電サイクルにおいても高い容量維持率を有することがわかる。 As shown in Table 5, the lithium-excess type active material (positive electrode active material A) was used as the positive electrode active material, and graphite (negative electrode active material B) was used as the negative electrode active material. ), the end-of-charge voltage is less than 4.50 V, and the positive electrode potential at the end-of-charge voltage is 4.60 V vs. It can be seen that the non-aqueous electrolyte storage elements of Examples 20 and 21, in which the ratio is less than Li/Li + , have high capacity retention rates even after long-term charge-discharge cycles.

[実施例22]正極B(リチウム過剰型活物質)及び負極B(Gr)を有する非水電解質蓄電素子の作製
(正極Bの作製)
実施例14と同様の手順で、正極Bを得た。
[Example 22] Production of non-aqueous electrolyte storage element having positive electrode B (excessive lithium active material) and negative electrode B (Gr) (production of positive electrode B)
A positive electrode B was obtained in the same manner as in Example 14.

(負極Bの作製)
実施例20と同様の手順で、負極Bを得た。
(Preparation of negative electrode B)
A negative electrode B was obtained in the same manner as in Example 20.

(非水電解質Dの調製)
ECとEMCとを体積比30:70で混合した非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF)が1.0mol/dmの含有量となるように溶解させた溶液を調製し、非水電解質Dとした。
(Preparation of non-aqueous electrolyte D)
A solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which EC and EMC were mixed at a volume ratio of 30:70 so as to have a content of 1.0 mol/dm 3 . and a non-aqueous electrolyte D was obtained.

(非水電解質蓄電素子の組み立て)
セパレータとして、耐熱層が塗工されたポリオレフィン製微多孔膜を用意した。このセパレータを介して、上記正極Bと上記負極Bとを巻回することにより電極体を作製した。この電極体を金属製の容器に収納し、内部に上記非水電解質Dを注入した後、封口した。
(Assembly of non-aqueous electrolyte storage element)
A polyolefin microporous film coated with a heat-resistant layer was prepared as a separator. An electrode assembly was produced by winding the positive electrode B and the negative electrode B with the separator interposed therebetween. This electrode assembly was placed in a metal container, and the non-aqueous electrolyte D was injected thereinto, followed by sealing.

(初期充放電)
得られた初期充放電前の非水電解質蓄電素子(未充放電非水電解質蓄電素子)に対して、25℃の下、以下の要領にて初期充放電を行った。充電電流0.1C、充電終止電圧4.45V(正極電位4.55V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流0.1C、放電終止電圧2.0Vとした定電流放電を行った。
(initial charge/discharge)
The obtained non-aqueous electrolyte storage element before initial charge/discharge (uncharged/discharged non-aqueous electrolyte storage element) was subjected to initial charge/discharge at 25° C. in the following manner. Constant-current and constant-voltage charging was performed at a charging current of 0.1 C and a charge termination voltage of 4.45 V (positive electrode potential of 4.55 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. After that, constant current discharge was performed with a discharge current of 0.1 C and a discharge final voltage of 2.0 V.

(放電容量の測定)
次いで、25℃の下、以下の3サイクルの充放電を行い、初期の放電容量を確認した。2サイクル目の放電電気量を初期の放電容量とした。
(1サイクル目)
充電電流0.1C、充電終止電圧4.45V(正極電位4.55V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流0.1C、放電終止電圧2.0Vとした定電流放電を行った。
(2サイクル目)
充電電流0.2C、充電終止電圧4.45V(正極電位4.55V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流0.2C、放電終止電圧2.0Vとした定電流放電を行った。
(3サイクル目)
充電電流1.0C、充電終止電圧4.45V(正極電位4.55V vs.Li/Li)で定電流定電圧充電を行った。充電終止条件は、電流値が0.05Cに減衰した時点とした。その後、放電電流1.0C、放電終止電圧2.0Vとした定電流放電を行った。
(Measurement of discharge capacity)
Then, the following three cycles of charging and discharging were performed at 25° C., and the initial discharge capacity was confirmed. The amount of discharged electricity in the second cycle was taken as the initial discharge capacity.
(first cycle)
Constant current and constant voltage charging was performed at a charging current of 0.1 C and a charge termination voltage of 4.45 V (positive electrode potential of 4.55 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. After that, constant current discharge was performed with a discharge current of 0.1 C and a discharge final voltage of 2.0 V.
(second cycle)
Constant-current and constant-voltage charging was performed at a charging current of 0.2 C and a charge termination voltage of 4.45 V (positive electrode potential of 4.55 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. After that, constant current discharge was performed with a discharge current of 0.2C and a discharge final voltage of 2.0V.
(3rd cycle)
Constant current and constant voltage charging was performed at a charging current of 1.0 C and a charge termination voltage of 4.45 V (positive electrode potential of 4.55 V vs. Li/Li + ). The charging termination condition was the time when the current value attenuated to 0.05C. After that, constant current discharge was performed with a discharge current of 1.0 C and a discharge final voltage of 2.0 V.

(充放電サイクル試験)
初期の放電容量を確認した非水電解質蓄電素子について、45℃の下、以下の要領で充放電サイクル試験を行った。充電電流1.0C、充電終止電圧4.45V(正極電位4.55V vs.Li/Li)で定電流充電を行った。その後、放電電流1.0C、放電終止電圧2.0Vとした定電流放電を行った。充電後及び放電後にはそれぞれ10分間の休止期間を設けた。この充放電を400サイクル実施した。
(Charge-discharge cycle test)
A charge/discharge cycle test was performed at 45° C. in the following manner for the non-aqueous electrolyte storage element for which the initial discharge capacity was confirmed. Constant-current charging was performed at a charging current of 1.0 C and a charging end voltage of 4.45 V (positive electrode potential of 4.55 V vs. Li/Li + ). After that, constant current discharge was performed with a discharge current of 1.0 C and a discharge final voltage of 2.0 V. A rest period of 10 minutes was provided after charging and after discharging. This charging/discharging was performed for 400 cycles.

(充放電サイクル試験後の放電容量の測定)
充放電サイクル試験における400サイクル後の非水電解質蓄電素子において、上記「放電容量の測定」と同様の3サイクルの充放電を行い、放電容量を確認した。2サイクル目の放電電気量をそれぞれのサイクル後の放電容量とした。初期の放電容量に対する各サイクル後の放電容量を容量維持率として求めた。得られた容量維持率を表6に示す。
(Measurement of discharge capacity after charge-discharge cycle test)
After 400 cycles in the charge-discharge cycle test, the non-aqueous electrolyte storage element was subjected to 3 cycles of charge-discharge in the same manner as in the above "measurement of discharge capacity", and the discharge capacity was confirmed. The amount of discharged electricity in the second cycle was defined as the discharge capacity after each cycle. The discharge capacity after each cycle relative to the initial discharge capacity was obtained as the capacity retention rate. Table 6 shows the obtained capacity retention ratios.

[比較例8]
実施例22の「初期充放電」、「放電容量の測定」、及び「充放電サイクル試験」における充電終止電圧を4.50V(正極電位4.60V vs.Li/Li)としたこと以外は実施例22と同様の操作を行い、非水電解質蓄電素子を得て、容量維持率を測定した。得られた容量維持率を表6に示す。
[Comparative Example 8]
Except that the end-of-charge voltage in the “initial charge/discharge”, “measurement of discharge capacity”, and “charge/discharge cycle test” in Example 22 was set to 4.50 V (positive electrode potential 4.60 V vs. Li/Li + ) A non-aqueous electrolyte storage element was obtained by performing the same operation as in Example 22, and the capacity retention rate was measured. Table 6 shows the obtained capacity retention ratios.

Figure 0007318344000006
Figure 0007318344000006

表6に示されるように、正極活物質にリチウム過剰型活物質(正極活物質B)、負極活物質に黒鉛(負極活物質B)を用い、初期充放電から使用時(充放電サイクル試験時)において充電終止電圧が4.50V未満であり、充電終止電圧における正極電位が4.60V vs.Li/Li未満である実施例22の非水電解質蓄電素子も、充放電サイクルにおいて高い容量維持率を有することがわかる。 As shown in Table 6, the lithium-excess type active material (positive electrode active material B) was used as the positive electrode active material, and graphite (negative electrode active material B) was used as the negative electrode active material. ), the end-of-charge voltage is less than 4.50 V, and the positive electrode potential at the end-of-charge voltage is 4.60 V vs. It can be seen that the non-aqueous electrolyte storage element of Example 22, which has a ratio of less than Li/Li + , also has a high capacity retention rate in charge-discharge cycles.

本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車、産業用等の電源として使用される非水電解質蓄電素子等に適用できる。 INDUSTRIAL APPLICABILITY The present invention can be applied to electronic devices such as personal computers and communication terminals, automobiles, non-aqueous electrolyte storage elements used as power sources for industrial use, and the like.

1 非水電解質蓄電素子
2 電極体
3 容器
4 正極端子
41 正極リード
5 負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置
1 Nonaqueous electrolyte storage element 2 Electrode body 3 Container 4 Positive electrode terminal 41 Positive electrode lead 5 Negative electrode terminal 51 Negative electrode lead 20 Storage unit 30 Storage device

Claims (5)

正極活物質を含む正極合剤を有する正極を備え、
上記正極活物質が、α-NaFeO構造を有し、かつLi1+αMe1-α(0<α<1;MeはNi及びMnを含む遷移金属である。)で表されるリチウム遷移金属複合酸化物を含み、
上記リチウム遷移金属複合酸化物における遷移金属(Me)に占めるMnのモル比(Mn/Me)と、遷移金属(Me)に占めるNiのモル比(Ni/Me)との差(Mn/Me-Ni/Me)が0超0.10以下であり、
上記正極に対して、上記正極合剤の質量あたり9mA/gの電流密度により、電位が2.00V vs.Li/Liに至るまでの放電を行った後、上記電流密度により、電位が4.80V vs.Li/Liに至るまでの充電と電位が2.00V vs.Li/Liに至るまでの放電とからなる充放電を2サイクル行ったときの充電電気量が、下記式(1)を満たす、非水電解質蓄電素子。
(C2A/C2B)×100-(C1A/C1B)×100≧1.0 ・・・(1)
(式(1)中、C1Aは、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量である。C1Bは、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量である。C2Aは、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Liに至るまでの充電電気量である。C2Bは、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Liに至るまでの充電電気量である。)
A positive electrode having a positive electrode mixture containing a positive electrode active material,
The positive electrode active material has an α-NaFeO 2 structure and a lithium transition represented by Li 1+α Me 1-α O 2 (0<α<1; Me is a transition metal including Ni and Mn.) including metal composite oxides,
The difference (Mn/Me- Ni/Me) is more than 0 and 0.10 or less,
With respect to the positive electrode, a current density of 9 mA/g per mass of the positive electrode mixture causes a potential of 2.00 V vs. After discharging up to Li/Li + , the potential is 4.80 V vs. When the charge and potential up to Li/Li + is 2.00 V vs. A non-aqueous electrolyte storage element in which the amount of charged electricity when performing two cycles of charging and discharging until reaching Li/Li + satisfies the following formula (1).
(C 2A /C 2B )×100−(C 1A /C 1B )×100≧1.0 (1)
(In formula (1), C 1A is the amount of electricity charged from the start of charging until the potential reaches 4.45 V vs. Li/Li + during the first cycle of charging and discharging. C 1B is the amount of charge from the start of charging until the potential reaches 4.80 V vs. Li/Li + during the charging of the first cycle of the charging and discharging.C 2A is the second cycle of the charging and discharging is the amount of electricity charged from the start of charging until the potential reaches 4.45 V vs. Li/Li + .C 2B is the amount of charge from the start of charging during the second cycle of charging and discharging. It is the amount of electricity charged until the potential reaches 4.80 V vs. Li/Li + .)
正極活物質を含む正極合剤を有する正極を備え、A positive electrode having a positive electrode mixture containing a positive electrode active material,
上記正極活物質が、α-NaFeOThe positive electrode active material is α-NaFeO 2 構造を有し、かつListructure and Li 1+α1+α MeMe 1-α1-α O. 2 (0<α<1;MeはNi及びMnを含む遷移金属である。)で表されるリチウム遷移金属複合酸化物を含み、(0 < α < 1; Me is a transition metal containing Ni and Mn.) Contains a lithium transition metal composite oxide represented by
上記リチウム遷移金属複合酸化物における遷移金属(Me)に対するリチウム(Li)のモル比((1+α)/(1-α))が1.15以上であり、かつ遷移金属(Me)に占めるMnのモル比(Mn/Me)が0.5以下であり、The molar ratio ((1+α)/(1-α)) of lithium (Li) to the transition metal (Me) in the lithium-transition metal composite oxide is 1.15 or more, and the amount of Mn in the transition metal (Me) The molar ratio (Mn/Me) is 0.5 or less,
上記正極に対して、上記正極合剤の質量あたり9mA/gの電流密度により、電位が2.00V vs.Li/LiWith respect to the positive electrode, a current density of 9 mA/g per mass of the positive electrode mixture causes a potential of 2.00 V vs. Li/Li + に至るまでの放電を行った後、上記電流密度により、電位が4.80V vs.Li/LiAfter discharging up to , the potential is 4.80 V vs. Li/Li + に至るまでの充電と電位が2.00V vs.Li/Liuntil the charge and potential is 2.00 V vs. Li/Li + に至るまでの放電とからなる充放電を2サイクル行ったときの充電電気量が、下記式(1)を満たす、非水電解質蓄電素子。The non-aqueous electrolyte storage element satisfies the following formula (1) when charging and discharging are performed for two cycles.
(C(C 2A2A /C/C 2B2B )×100-(C)×100-(C 1A1A /C/C 1B1B )×100≧1.0 ・・・(1))×100≧1.0 (1)
(式(1)中、C(In formula (1), C 1A1A は、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Li, the potential is 4.45 V vs. Li/Li + に至るまでの充電電気量である。Cis the amount of electricity charged up to C. 1B1B は、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Li, the potential is 4.80 V vs. Li/Li + に至るまでの充電電気量である。Cis the amount of electricity charged up to C. 2A2A は、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Li, the potential is 4.45 V vs. Li/Li + に至るまでの充電電気量である。Cis the amount of electricity charged up to C. 2B2B は、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Li, the potential is 4.80 V vs. Li/Li + に至るまでの充電電気量である。)is the amount of electricity charged up to )
正極活物質を含む正極合剤を有する正極と、負極活物質を含む負極とを備え、A positive electrode having a positive electrode mixture containing a positive electrode active material and a negative electrode containing a negative electrode active material,
上記正極活物質が、α-NaFeOThe positive electrode active material is α-NaFeO 2 構造を有し、かつListructure and Li 1+α1+α MeMe 1-α1-α O. 2 (0<α<1;MeはNi及びMnを含む遷移金属である。)で表されるリチウム遷移金属複合酸化物を含み、(0 < α < 1; Me is a transition metal containing Ni and Mn.) Contains a lithium transition metal composite oxide represented by
上記負極中の全負極活物質に占めるSi、Sn及びこれらの酸化物の含有量が1質量%以上であり、The content of Si, Sn and their oxides in the total negative electrode active material in the negative electrode is 1% by mass or more,
上記正極に対して、上記正極合剤の質量あたり9mA/gの電流密度により、電位が2.00V vs.Li/LiWith respect to the positive electrode, a current density of 9 mA/g per mass of the positive electrode mixture causes a potential of 2.00 V vs. Li/Li + に至るまでの放電を行った後、上記電流密度により、電位が4.80V vs.Li/LiAfter discharging up to , the potential is 4.80 V vs. Li/Li + に至るまでの充電と電位が2.00V vs.Li/Liuntil the charge and potential is 2.00 V vs. Li/Li + に至るまでの放電とからなる充放電を2サイクル行ったときの充電電気量が、下記式(1)を満たす、非水電解質蓄電素子。The non-aqueous electrolyte storage element satisfies the following formula (1) when charging and discharging are performed for two cycles.
(C(C 2A2A /C/C 2B2B )×100-(C)×100-(C 1A1A /C/C 1B1B )×100≧1.0 ・・・(1))×100≧1.0 (1)
(式(1)中、C(In formula (1), C 1A1A は、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Li, the potential is 4.45 V vs. Li/Li + に至るまでの充電電気量である。Cis the amount of electricity charged up to C. 1B1B は、上記充放電の1サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Li, the potential is 4.80 V vs. Li/Li + に至るまでの充電電気量である。Cis the amount of electricity charged up to C. 2A2A は、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.45V vs.Li/Li, the potential is 4.45 V vs. Li/Li + に至るまでの充電電気量である。Cis the amount of electricity charged up to C. 2B2B は、上記充放電の2サイクル目の充電の際に、充電開始から電位が4.80V vs.Li/Li, the potential is 4.80 V vs. Li/Li + に至るまでの充電電気量である。)is the amount of electricity charged up to )
正極電位が4.30V vs.Li/Li超4.60V vs.Li/Li未満に至るまで充電することを備える、請求項1から請求項のいずれかの非水電解質蓄電素子の使用方法。 The positive electrode potential is 4.30 V vs. Li/Li + greater than 4.60V vs. A method of using the non-aqueous electrolyte storage element according to any one of claims 1 to 3 , comprising charging to less than Li/Li + . 上記正極の最大到達電位を4.60V vs.Li/Li未満で初期充放電を行うことを備える、請求項1から請求項のいずれかの非水電解質蓄電素子の製造方法。 The maximum reaching potential of the positive electrode is 4.60 V vs. 4. The method for manufacturing a non-aqueous electrolyte storage element according to claim 1 , comprising performing initial charge/discharge at less than Li/Li + .
JP2019114141A 2019-06-19 2019-06-19 NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME Active JP7318344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019114141A JP7318344B2 (en) 2019-06-19 2019-06-19 NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114141A JP7318344B2 (en) 2019-06-19 2019-06-19 NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME

Publications (3)

Publication Number Publication Date
JP2021002432A JP2021002432A (en) 2021-01-07
JP2021002432A5 JP2021002432A5 (en) 2021-10-28
JP7318344B2 true JP7318344B2 (en) 2023-08-01

Family

ID=73994097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114141A Active JP7318344B2 (en) 2019-06-19 2019-06-19 NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP7318344B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102467486B1 (en) * 2022-06-30 2022-11-17 주식회사 탑머티리얼 Positive active material, method of the same, positive electrode and lithium rechargeable battery comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100947A (en) 2003-08-21 2005-04-14 Mitsubishi Materials Corp Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery
JP2015084303A (en) 2013-10-25 2015-04-30 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Rechargeable lithium ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100947A (en) 2003-08-21 2005-04-14 Mitsubishi Materials Corp Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery
JP2015084303A (en) 2013-10-25 2015-04-30 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Rechargeable lithium ion battery

Also Published As

Publication number Publication date
JP2021002432A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2017061102A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP5464652B2 (en) Non-aqueous secondary battery positive electrode, non-aqueous secondary battery, and device having the non-aqueous secondary battery
JP7318344B2 (en) NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
CN109643828B (en) Nonaqueous electrolyte storage element
WO2021020290A1 (en) Non-aqueous electrolyte power storage element, manufacturing method thereof, and power storage device
JP2022134613A (en) Positive electrode mixture for non-aqueous electrolyte storage element, positive electrode for non-aqueous electrolyte storage element, and non-aqueous electrolyte storage element
JP2022011572A (en) Nonaqueous electrolyte power storage device, and manufacturing method thereof
JP5647069B2 (en) Non-aqueous secondary battery
JP2022528246A (en) Non-aqueous electrolyte solution additive for lithium secondary batteries, non-aqueous electrolyte solution for lithium secondary batteries and lithium secondary batteries containing this
JP2020173998A (en) Non-aqueous electrolyte storage element and manufacturing method thereof
CN113228367A (en) Nonaqueous electrolyte electricity storage element and method for manufacturing nonaqueous electrolyte electricity storage element
WO2023276863A1 (en) Non-aqueous electrolyte power storage element
WO2023224071A1 (en) Nonaqueous electrolyte power storage element
WO2022209815A1 (en) Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device
WO2023032751A1 (en) Positive electrode for nonaqueous electrolyte power storage element, nonaqueous electrolyte power storage element, and power storage device
WO2022249667A1 (en) Nonaqueous electrolyte power storage element and power storage device
WO2023100801A1 (en) Nonaqueous electrolyte power storage element, device, and method for using nonaqueous electrolyte power storage element
JP7272044B2 (en) Non-aqueous electrolyte, non-aqueous electrolyte storage element, water-solubilizing agent for non-aqueous electrolyte, and method for producing non-aqueous electrolyte
WO2022181516A1 (en) Nonaqueous electrolyte power storage element
WO2023281960A1 (en) Positive electrode, power storage element and power storage device
WO2024010016A1 (en) Non-aqueous electrolyte storage element, device, method for using non-aqueous electrolyte storage element, and method for manufacturing non-aqueous electrolyte storage element
WO2021141074A1 (en) Non-aqueous electrolyte power storage element and method for manufacturing same
WO2022054781A1 (en) Method for producing lithium secondary battery, and lithium secondary battery
EP4250419A1 (en) Nonaqueous electrolyte power storage element, electronic device, and automobile
WO2023190422A1 (en) Positive electrode for non-aqueous electrolyte power storage element, and non-aqueous electrolyte power storage element comprising same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7318344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150