WO2021141074A1 - Non-aqueous electrolyte power storage element and method for manufacturing same - Google Patents

Non-aqueous electrolyte power storage element and method for manufacturing same Download PDF

Info

Publication number
WO2021141074A1
WO2021141074A1 PCT/JP2021/000276 JP2021000276W WO2021141074A1 WO 2021141074 A1 WO2021141074 A1 WO 2021141074A1 JP 2021000276 W JP2021000276 W JP 2021000276W WO 2021141074 A1 WO2021141074 A1 WO 2021141074A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
negative electrode
power storage
active material
lithium
Prior art date
Application number
PCT/JP2021/000276
Other languages
French (fr)
Japanese (ja)
Inventor
宇史 岡島
崇司 奥坊
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2021570079A priority Critical patent/JPWO2021141074A1/ja
Publication of WO2021141074A1 publication Critical patent/WO2021141074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte power storage device and a method for manufacturing the same.
  • Non-aqueous electrolyte secondary batteries represented by lithium-ion non-aqueous electrolyte secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density.
  • the non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically separated by a separator, and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to charge and discharge by doing so.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as power storage elements other than non-aqueous electrolyte secondary batteries.
  • a lithium ion non-aqueous electrolyte secondary battery having a quick charging performance As an energy source for the above-mentioned automobiles and the like, a lithium ion non-aqueous electrolyte secondary battery having a quick charging performance is required.
  • a manganese-containing oxide having a specific composition and a spinel structure and a nickel-containing oxide having a specific composition and a layered structure are used as the positive electrode active material.
  • a technology that enables quick charging has been proposed.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte power storage element having excellent quick charging characteristics and a method for manufacturing the same.
  • the non-aqueous electrolyte power storage element includes a negative electrode, a positive electrode, and a non-aqueous electrolyte solution, and the negative electrode has a negative electrode active material layer containing graphite and an acrylic resin, and the non-aqueous electrolysis
  • the solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate.
  • the method for manufacturing a non-aqueous electrolyte power storage element includes accommodating a negative electrode, a positive electrode, and a non-aqueous electrolyte solution in a case, and the negative electrode includes a negative electrode active material layer containing graphite and an acrylic resin.
  • the non-aqueous electrolyte solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate.
  • the non-aqueous electrolyte power storage element according to one aspect of the present invention is excellent in quick charging characteristics.
  • the method for manufacturing a non-aqueous electrolyte power storage element according to one aspect of the present invention can manufacture a non-aqueous electrolyte power storage element having excellent quick charging characteristics.
  • FIG. 1 is an external perspective view showing a non-aqueous electrolyte power storage element according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of non-aqueous electrolyte power storage elements according to an embodiment of the present invention.
  • the non-aqueous electrolyte power storage element includes a negative electrode, a positive electrode, and a non-aqueous electrolyte solution, and the negative electrode has a negative electrode active material layer containing graphite and an acrylic resin, and the non-aqueous electrolysis
  • the solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate.
  • the negative electrode active material layer of the non-aqueous electrolyte storage element contains graphite as the negative electrode active material and the acrylic resin as the binder, and the non-aqueous electrolyte solution is lithium difluorooxalatoborate and lithium difluoro.
  • the quick charging performance of the non-aqueous electrolyte power storage element is excellent by containing at least one of the phosphates.
  • the reason for this is not clear, but it can be considered as follows.
  • styrene-butadiene rubber is contained as the binder for the negative electrode, it is relatively abundantly distributed on the edge surface of graphite, which is the negative electrode active material.
  • an acrylic resin is contained as the binder for the negative electrode, it is uniformly distributed around the graphite.
  • the content ratio of lithium difluorooxalatoborate or lithium difluorophosphate in the non-aqueous electrolytic solution is preferably 0.2% by mass or more and 2.0% by mass or less.
  • the content ratio of lithium difluorooxalatoborate or lithium difluorophosphate is in the above range, the quick charging performance of the non-aqueous electrolyte power storage element can be further improved.
  • the positive electrode contains a positive electrode active material containing nickel, cobalt and manganese.
  • the positive electrode contains a positive electrode active material containing nickel, cobalt and manganese, the energy density of the non-aqueous electrolyte power storage element can be improved.
  • the non-aqueous electrolyte power storage element includes a negative electrode, a positive electrode, and a non-aqueous electrolyte solution.
  • a non-aqueous electrolyte secondary battery will be described as an example of the non-aqueous electrolyte power storage element.
  • the positive electrode and the negative electrode usually form electrode bodies that are alternately superposed by stacking or winding through a separator.
  • the electrode body is housed in a case, and the case is filled with a non-aqueous electrolyte.
  • the non-aqueous electrolyte is interposed between the positive electrode and the negative electrode. Further, as the above case, a known metal case, resin case or the like which is usually used as a case of a non-aqueous electrolyte secondary battery can be used.
  • the negative electrode has a negative electrode base material and a negative electrode active material layer.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer is laminated directly or via an intermediate layer along at least one surface of the negative electrode base material.
  • the negative electrode base material is a base material having conductivity.
  • metals such as copper, nickel, stainless steel and nickel-plated steel or alloys thereof are used, and copper or a copper alloy is preferable.
  • examples of the form of the negative electrode base material include foils and thin-film deposition films, and foils are preferable from the viewpoint of cost. That is, a copper foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • conductive means that the volume resistivity is measured according to JIS-H-0505 (1975 years) is not more than 1 ⁇ 10 7 ⁇ ⁇ cm, "non-conductive "means that the volume resistivity is 1 ⁇ 10 7 ⁇ ⁇ cm greater.
  • the negative electrode active material layer is laminated directly along at least one surface of the negative electrode base material or via an intermediate layer.
  • the negative electrode active material layer is formed from a so-called negative electrode mixture containing a negative electrode active material.
  • the negative electrode active material layer contains graphite and an acrylic resin.
  • the non-aqueous electrolyte power storage element contains graphite as a negative electrode active material.
  • graphite include natural graphite and artificial graphite.
  • the negative electrode active material layer may include other negative electrode active materials such as other carbon materials such as non-graphitizable carbon (hard carbon) and easily graphitizable carbon (soft carbon), semi-metals such as Si, Sn and the like.
  • the metal, these semi-metals or oxides of the metal, or a composite of these semi-metals or metals and a carbon material may be contained. These materials may be used alone or in combination of two or more. Among these, it is preferable to contain non-graphitizable carbon. By containing non-graphitizable carbon, the expansion of the negative electrode during charging can be suppressed to a small value. In addition, the shape of the negative electrode active material layer can be better and more stably maintained for a long period of time.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm.
  • Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material having stable physical properties can be obtained.
  • Non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffractometry before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less.
  • Examples of non-graphitizable carbon include non-graphitizable carbon and easily graphitizable carbon.
  • the non-graphitic carbon include a resin-derived material, a petroleum pitch or a petroleum pitch-derived material, a petroleum coke or a petroleum coke-derived material, a plant-derived material, an alcohol-derived material, and the like.
  • non-graphitizable carbon refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less.
  • graphitizable carbon refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
  • the "discharged state” means a state in which the open circuit voltage is 0.7 V or more in a unipolar battery using a negative electrode containing a carbon material as a negative electrode active material as a working electrode and metal Li as a counter electrode. Since the potential of the metal Li counter electrode in the open circuit state is substantially equal to the oxidation-reduction potential of Li, the open circuit voltage in the single-pole battery is substantially equal to the potential of the negative electrode containing the carbon material with respect to the oxidation-reduction potential of Li. .. That is, the fact that the open circuit voltage in the single-pole battery is 0.7 V or more means that lithium ions that can be occluded and discharged are sufficiently released from the carbon material that is the negative electrode active material during charging and discharging. ..
  • the lower limit of the graphite content in the negative electrode active material is preferably 60% by mass, more preferably 70% by mass, and even more preferably 80% by mass.
  • the upper limit of this content 99% by mass is preferable, and 95% by mass is more preferable.
  • the content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 98% by mass is more preferable.
  • the negative electrode mixture of the non-aqueous electrolyte power storage element contains an acrylic resin as a binder.
  • the "acrylic resin” refers to a resin formed from a monomer containing acrylic acid or methacrylic acid, or a derivative thereof as a main component.
  • Main component means that the content ratio of the structural unit derived from acrylic acid or methacrylic acid or a derivative thereof in the acrylic resin is 50% by mass or more.
  • the lower limit of the content ratio of the structural unit derived from acrylic acid or methacrylic acid or a derivative thereof in the acrylic resin is 50% by mass, preferably 60% by mass, more preferably 70% by mass, still more preferably 75% by mass.
  • acrylic resin examples include polyacrylic acid, methyl polyacrylate, polyacrylamide, a copolymer containing acrylic acid, and an alkali metal salt of polyacrylic acid, and examples thereof include polyacrylic acid, methyl polyacrylate, and polyacrylamide.
  • the alkali metal salt of polyacrylic acid is preferable, and polyacrylic acid is more preferable.
  • the copolymer containing polyacrylonitrile and acrylonitrile shall not be contained in the acrylic resin.
  • the negative electrode mixture can be used as another binder, for example, a fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), a thermoplastic resin such as polyethylene, polypropylene, polyacrylic acid, or polyimide; Elastomers such as propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), and fluororubber; and thermoplastic polymers may be contained.
  • a fluororesin polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • a thermoplastic resin such as polyethylene, polypropylene, polyacrylic acid, or polyimide
  • Elastomers such as propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), and fluororubber
  • thermoplastic polymers may
  • the binder preferably has a low content of a resin having a structural unit derived from butadiene, such as styrene-butadiene rubber (SBR), and substantially a resin having a structural unit derived from butadiene. It is more preferable not to include it.
  • SBR styrene-butadiene rubber
  • the upper limit of the mass ratio of the styrene-butadiene rubber (SBR) to the acrylic resin 2.3 is preferable, 1.5 is more preferable, 1.0 is further preferable, and 0.5 is particularly preferable. preferable.
  • the content ratio of the structural unit derived from butadiene is small.
  • the upper limit of the content ratio of the structural unit derived from butadiene in the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from butadiene is preferably, for example, 50% by mass, more preferably 40% by mass. 30% by mass is even more preferable, and 25% by mass is even more preferable.
  • the acrylic resin does not have to contain a structural unit derived from butadiene from the viewpoint of improving output performance, and may contain a structural unit derived from butadiene from the viewpoint of adhesion of the negative electrode active material layer.
  • the lower limit of the content ratio of the structural unit derived from butadiene in the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from butadiene may be, for example, 1% by mass, 2% by mass, 5% by mass, or In some cases, 10% by mass is preferable.
  • the content of the acrylic resin in the binder is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, further preferably 90% by mass or more, and particularly preferably 99% by mass or more. Preferably, it may be 100% by mass.
  • the lower limit of the content of the binder in the negative electrode active material layer 0.2% by mass is preferable, 0.5% by mass is more preferable, and 1% by mass is further preferable.
  • the upper limit of this content is preferably 10% by mass, more preferably 5% by mass.
  • the content of the binder in the negative electrode active material layer is preferably 0.2% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 5% by mass or less.
  • the negative electrode mixture contains optional components such as a conductive agent, a thickener, and a filler, if necessary.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • a conductive agent include carbonaceous materials, metals, conductive ceramics and the like.
  • the carbonaceous material include graphitized carbon, non-graphitized carbon, graphene-based carbon and the like.
  • non-graphitized carbon include carbon nanofibers, pitch-based carbon fibers, and carbon black.
  • carbon black include furnace black, acetylene black, and ketjen black.
  • Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerenes.
  • the shape of the conductive agent include powder and fibrous.
  • the conductive agent one of these materials may be used alone, or two or more of these materials may be mixed and used. Further, these materials may be used in combination.
  • a material in which carbon black and CNT are composited may be used.
  • carbon black is preferable from the viewpoint of electron conductivity and coatability
  • acetylene black is particularly preferable.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • methyl cellulose examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • the filler is not particularly limited.
  • the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.
  • the intermediate layer is a coating layer on the surface of the negative electrode base material, and contains conductive particles such as carbon particles to reduce the contact resistance between the negative electrode base material and the negative electrode active material layer.
  • the structure of the intermediate layer is not particularly limited and can be formed by, for example, a composition containing a resin binder and conductive particles.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer is laminated directly or via an intermediate layer along at least one surface of the positive electrode base material.
  • the positive electrode base material is a base material having conductivity.
  • metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used.
  • aluminum and aluminum alloys are preferable from the viewpoint of balance of potential resistance, high conductivity and cost.
  • examples of the form of the positive electrode base material include foil, a vapor-deposited film, and the like, and foil is preferable from the viewpoint of cost. That is, aluminum foil is preferable as the positive electrode base material.
  • Examples of aluminum or aluminum alloy include A1085 and A3003 specified in JIS-H4000 (2014).
  • the positive electrode active material layer is formed from a so-called positive electrode mixture containing a positive electrode active material.
  • a positive electrode active material for example, a known positive electrode active material can be appropriately selected.
  • a material capable of occluding and releasing lithium ions is usually used.
  • the positive electrode active material include a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure, a lithium transition metal oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, sulfur and the like.
  • lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure examples include Li [Li x Ni 1-x ] O 2 (0 ⁇ x ⁇ 0.5) and Li [Li x Ni ⁇ Co (1-). x- ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ ⁇ 1), Li [Li x Co (1-x) ] O 2 (0 ⁇ x ⁇ 0.5), Li [Li x Ni ⁇ Mn (1-x- ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ ⁇ 1), Li [Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) O 2 ( 0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ ⁇ 1), Li [Li x Ni ⁇ Co ⁇ Al (1-x- ⁇ - ⁇ ) ] O 2 (0 ⁇ x Examples thereof include ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ +
  • Examples of the lithium transition metal oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like.
  • the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements.
  • the lithium transition metal composite oxide is preferable as the positive electrode active material from the viewpoint of increasing energy density, and a nickel cobalt manganese-containing lithium transition metal composite containing nickel, cobalt and manganese as constituent elements in addition to Li is preferable. Oxides are more preferred.
  • the surface of the material listed as the positive electrode active material may be coated with another material.
  • one of these materials may be used alone, or two or more of these materials may be mixed and used.
  • the content of the positive electrode active material in the positive electrode active material layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 98% by mass is more preferable.
  • the positive electrode mixture contains optional components such as a binder, a conductive agent, a thickener, and a filler, if necessary.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacrylic acid, and polyimide; ethylene-propylene-diene rubber (EPDM), Elastomers such as sulfonated EPDM, styrene-butadiene rubber (SBR), fluororubber; and thermoplastic polymers can be mentioned.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, polyacrylic acid, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene-butadiene rubber
  • fluororubber examples of the binder can be mentioned.
  • Optional components such as conductive agent, thickener, filler, etc. can be selected from the materials exemplified in the above negative electrode.
  • the intermediate layer is a coating layer on the surface of the positive electrode base material, and contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode active material layer.
  • the composition of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a resin binder and conductive particles.
  • Non-aqueous electrolyte usually contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate as additives.
  • Non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • the non-aqueous solvent include cyclic carbonate, chain carbonate, carboxylic acid ester, phosphoric acid ester, sulfonic acid ester, ether, amide, nitrile and the like.
  • the non-aqueous solvent those in which some of the hydrogen atoms contained in these compounds are replaced with halogen may be used.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), difluoroethylene carbonate (DFEC), and styrene carbonate. , 1-Phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like. Of these, EC is preferable.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate, trifluoroethyl methyl carbonate, and bis (trifluoroethyl) carbonate.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • diphenyl carbonate trifluoroethyl methyl carbonate
  • bis (trifluoroethyl) carbonate bis (trifluoroethyl) carbonate.
  • EMC is preferable.
  • the non-aqueous solvent it is preferable to use cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination.
  • the cyclic carbonate By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved.
  • the chain carbonate By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • electrolyte salt As the electrolyte salt, a known electrolyte salt usually used as an electrolyte salt of a general non-aqueous electrolyte for a power storage element can be used. Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like, but lithium salt is preferable.
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiSO 3 CF 3 , LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3, etc.
  • inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiSO 3 CF 3 , LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3, etc.
  • examples thereof include a lithium salt having a hydrocarbon group in which hydrogen is substituted with fluorine.
  • an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
  • the lower limit of the content of the electrolyte salt in the non-aqueous solution 0.1 mol / dm 3 is preferable, 0.3 mol / dm 3 is more preferable, 0.5 mol / dm 3 is further preferable, and 0.7 mol / dm 3 is preferable.
  • the upper limit is not particularly limited, but is preferably 2.5 mol / dm 3, more preferably 2 mol / dm 3, more preferably 1.5 mol / dm 3.
  • the non-aqueous solution means a state in which an electrolyte salt is dissolved in a non-aqueous solvent, and means a state before an additive such as a boron-containing oxalate complex salt is dissolved.
  • the non-aqueous electrolyte contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate.
  • the non-aqueous electrolyte power storage element is excellent in quick charging characteristics.
  • the lower limit of the content of lithium difluorooxalatoborate or lithium difluorophosphate in the non-aqueous electrolyte is preferably 0.05% by mass, more preferably 0.2% by mass, further preferably 0.3% by mass, and 0. 5% by mass is even more preferable.
  • the upper limit of this content is preferably 2.0% by mass, more preferably 1.5% by mass.
  • the content of lithium difluorooxalatoborate or lithium difluorophosphate is in the above range, the effect of suppressing the increase in internal resistance after the charge / discharge cycle can be further improved.
  • the content of lithium difluorooxalatoborate or lithium difluorophosphate means the mass of lithium difluorooxalatoborate or lithium difluorophosphate with respect to the mass of the non-aqueous solution.
  • the non-aqueous electrolyte may contain both lithium difluorooxalatoborate and lithium difluorophosphate.
  • the lower limit of the sum of the contents of lithium difluorooxalatoborate and lithium difluorophosphate is preferably 0.05% by mass, preferably 0. .2% by mass is more preferable, 0.3% by mass is further preferable, and 0.4% by mass is further preferable.
  • the upper limit of this content 4.0% by mass is preferable, 3.0% by mass is more preferable, 2.0% by mass is more preferable, and 1.5% by mass is preferable in some cases.
  • the sum of the contents of lithium difluorooxalatoborate and lithium difluorophosphate is in the above range, the effect of suppressing the increase in internal resistance after the charge / discharge cycle can be further improved.
  • the sum of the contents of lithium difluorooxalatoborate and lithium difluorophosphate means the sum of the masses of lithium difluorooxalatoborate and lithium difluorophosphate with respect to the mass of the non-aqueous solution.
  • lithium difluorooxalatoborate and lithium difluorophosphate may be added to the non-aqueous electrolyte.
  • the other additives include lithium bis (fluorosulfonyl) imide (LiFSI), lithium fluorosulfonate, lithium tetrafluorooxalatrate, and the like.
  • the non-aqueous electrolyte can be obtained by dissolving at least one of the electrolyte salt, lithium difluorooxalatoborate and lithium difluorophosphate in the non-aqueous solvent.
  • separator for example, a woven fabric, a non-woven fabric, a porous resin film, or the like is used. Among these, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of strength, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance. Moreover, you may combine these resins.
  • An inorganic layer may be arranged between the separator and the electrode (usually the positive electrode).
  • This inorganic layer is a porous layer also called a heat-resistant layer or the like.
  • a separator having an inorganic layer formed on one surface of the porous resin film can also be used.
  • the inorganic layer is usually composed of inorganic particles and a binder, and may contain other components.
  • FIG. 1 shows a schematic view of a rectangular non-aqueous electrolyte storage element 1 (non-aqueous electrolyte secondary battery) which is an embodiment of the non-aqueous electrolyte storage element according to the present invention.
  • the figure is a perspective view of the inside of the case.
  • the electrode body 2 is housed in the case 3.
  • the electrode body 2 is formed by winding a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer around the separator.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode current collector 4', and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode current collector 5'. Further, a non-aqueous electrolyte is injected into the case 3.
  • the configuration of the non-aqueous electrolyte power storage element according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), and a flat battery.
  • the negative electrode, the positive electrode, and the non-aqueous electrolyte containing at least one of the above-mentioned lithium difluorooxalatoborate and lithium difluorophosphate are contained in a case.
  • the positive electrode can be obtained by laminating the positive electrode active material layer directly on the positive electrode base material or via an intermediate layer.
  • the positive electrode active material layer is laminated by applying a positive electrode mixture paste to the positive electrode base material.
  • the negative electrode can be obtained by laminating the negative electrode active material layer directly on the negative electrode base material or via an intermediate layer, similarly to the positive electrode.
  • the negative electrode active material layer is laminated by applying a negative electrode mixture paste containing graphite and an acrylic resin to the negative electrode base material.
  • the positive electrode mixture paste and the negative electrode mixture paste may contain a dispersion medium.
  • the dispersion medium for example, an aqueous solvent such as water or a mixed solvent mainly composed of water; or an organic solvent such as N-methylpyrrolidone or toluene can be used.
  • the method for manufacturing the non-aqueous electrolyte power storage element includes, for example, laminating the negative electrode and the positive electrode via a separator as another step.
  • An electrode body is formed by laminating the negative electrode and the positive electrode via a separator.
  • the method of accommodating the negative electrode, the positive electrode, the non-aqueous electrolyte, etc. in the case can be performed by a known method. After accommodating, a non-aqueous electrolyte power storage element can be obtained by sealing the accommodating port. Details of each element constituting the non-aqueous electrolyte power storage element obtained by the above manufacturing method are as described above.
  • the non-aqueous electrolyte power storage device of the present invention is not limited to the above embodiment.
  • non-aqueous electrolyte power storage element is a non-aqueous electrolyte secondary battery
  • other non-aqueous electrolyte power storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.
  • non-aqueous electrolyte secondary battery include a lithium ion non-aqueous electrolyte secondary battery.
  • a laminated electrode body formed from a laminated body obtained by stacking a plurality of sheet bodies including a positive electrode, a negative electrode and a separator may be provided.
  • the present invention can also be realized as a power storage device including the plurality of non-aqueous electrolyte power storage elements.
  • the technique of the present invention may be applied to at least one non-aqueous electrolyte power storage element included in the power storage device.
  • an assembled battery can be constructed by using one or a plurality of non-aqueous electrolyte power storage elements (cells) of the present invention, and a power storage device can be further configured by using the assembled battery.
  • the power storage device can be used as a power source for automobiles such as electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid vehicles (PHEV). Further, the power storage device can be used for various power supply devices such as an engine starting power supply device, an auxiliary power supply device, and an uninterruptible power supply (UPS).
  • UPS uninterruptible power supply
  • FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled. Even if the power storage device 30 includes a bus bar (not shown) that electrically connects two or more non-aqueous electrolyte power storage elements 1 and a bus bar (not shown) that electrically connects two or more power storage units 20. Good.
  • the power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) that monitors the state of one or more power storage elements.
  • Example 1 to 2 and Comparative Examples 1 to 8 (Negative electrode) A coating liquid (negative electrode mixture paste) containing graphite and non-graphitizable carbon as a negative electrode active material, the binder shown in Table 1, and carboxymethyl cellulose (CMC) as a thickener, and using water as a dispersion medium. ) was prepared.
  • the mass ratio of graphite and non-graphitizable carbon in the negative electrode active material was 85:15.
  • the mixing ratio of the negative electrode active material, the binder, and the thickener was 96: 2: 2 in terms of mass ratio.
  • Non-aqueous electrolyte The content shown in Table 1 is obtained by dissolving 1.4 mol / dm 3 of LiPF 6 in a non-aqueous solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 30:70 as a non-aqueous solution.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a non-aqueous electrolyte was obtained by dissolving the additive (content ratio when the non-aqueous solution was 100% by mass).
  • lithium difluorooxalatoborate LiFOB
  • lithium difluorophosphate LiDFP
  • vinylene carbonate VC
  • lithium difluorobisoxalate phosphate LiFOP
  • lithium bisoxalatoborate LiBOB
  • the positive electrode contains the above-mentioned positive electrode active material, polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive agent, and uses N-methyl-2-pyrrolidone (NMP) as a dispersion medium.
  • Positive electrode mixture paste was prepared.
  • the mixing ratio of the positive electrode active material, the binder, and the conductive agent was 93: 4: 3 in terms of mass ratio.
  • the coating liquid was applied to both sides of the positive electrode base material, dried, and pressed to form a positive electrode active material layer.
  • An aluminum foil having a thickness of 15 ⁇ m was used as the positive electrode base material.
  • the positive electrode and the negative electrode were laminated via a separator made of a polyethylene base material and an inorganic layer formed on the polyethylene base material to prepare an electrode body.
  • This electrode body was housed in a square electric tank can made of aluminum, and a positive electrode terminal and a negative electrode terminal were attached.
  • the non-aqueous electrolyte was sealed, and the non-aqueous electrolyte power storage elements of Examples and Comparative Examples were obtained.
  • Examples 1 and Example contain an acrylic resin as a binder in the negative electrode active material layer and at least one of lithium difluorooxalatoborate and lithium difluorophosphate as an additive in the non-aqueous electrolyte solution. No. 2 had good quick charging performance.
  • Comparative Example 1 and Comparative Example 2 in which the non-aqueous electrolyte solution did not contain an additive, the quick charging performance was improved as compared with the examples regardless of whether the binder was an acrylic resin or a styrene-butadiene copolymer. It was inferior. Further, even if the non-aqueous electrolytic solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate as an additive, Comparative Example 3 and Comparative Example 4 in which the binder is a styrene-butadiene copolymer have quick charging characteristics. The improvement effect of was not obtained.
  • Comparative Examples 5 to 7 in which the non-aqueous electrolyte solution contains any one of vinylene carbonate (VC), lithium difluorobisoxalate phosphate (LiFOP), and lithium bisoxalate borate (LiBOB) as an additive are binders. Although it is an acrylic resin, the effect of improving the quick charging characteristics could not be obtained.
  • the non-aqueous electrolyte power storage element is excellent in quick charging characteristics.
  • the present invention is suitably used as a non-aqueous electrolyte power storage element such as a non-aqueous electrolyte secondary battery used as a power source for personal computers, electronic devices such as communication terminals, automobiles, and the like.
  • Non-aqueous electrolyte power storage element 1
  • Electrode body 3 Case 4 Positive terminal 4'Positive current collector 5 Negative terminal 5'Negative negative current collector 20
  • Power storage unit 30 Power storage device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)

Abstract

The non-aqueous electrolyte power storage element according to one aspect of the present invention is provided with a negative electrode, a positive electrode, and a non-aqueous electrolyte, the negative electrode comprises a negative electrode active material layer that includes graphite and an acrylic resin, and the non-aqueous electrolyte contains at least lithium difluorooxalatoborate or lithium difluorophosphate.

Description

非水電解質蓄電素子及びその製造方法Non-aqueous electrolyte power storage element and its manufacturing method
 本発明は、非水電解質蓄電素子及びその製造方法に関する。 The present invention relates to a non-aqueous electrolyte power storage device and a method for manufacturing the same.
 リチウムイオン非水電解質二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解質を備え、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。 Non-aqueous electrolyte secondary batteries represented by lithium-ion non-aqueous electrolyte secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density. The non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically separated by a separator, and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to charge and discharge by doing so. In addition, capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as power storage elements other than non-aqueous electrolyte secondary batteries.
 上記自動車等のエネルギー源としては、急速充電性能を有するリチウムイオン非水電解質二次電池が求められている。例えば特許文献1には、正極活物質として特定の組成を有しスピネル構造を有するマンガン含有酸化物と、特定の組成を有し、層状構造を有するニッケル含有酸化物を有するものを用いることで、急速充電を可能とする技術が提案されている。 As an energy source for the above-mentioned automobiles and the like, a lithium ion non-aqueous electrolyte secondary battery having a quick charging performance is required. For example, in Patent Document 1, a manganese-containing oxide having a specific composition and a spinel structure and a nickel-containing oxide having a specific composition and a layered structure are used as the positive electrode active material. A technology that enables quick charging has been proposed.
特開2011-076997号公報Japanese Unexamined Patent Publication No. 2011-076997
 しかしながら、近年のエネルギー源としてのリチウムイオン二次電池に対する需要も急増して状況においては、急速充電性能のさらなる向上が求められている。 However, in recent years, the demand for lithium-ion secondary batteries as an energy source has increased rapidly, and in the situation, further improvement of quick charging performance is required.
 本発明は、以上のような事情に基づいてなされたものであり、急速充電特性に優れる非水電解質蓄電素子及びその製造方法を提供することを目的とする。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte power storage element having excellent quick charging characteristics and a method for manufacturing the same.
 本発明の一側面に係る非水電解質蓄電素子は、負極と、正極と、非水電解液とを備え、上記負極が黒鉛及びアクリル系樹脂を含む負極活物質層を有し、上記非水電解液がリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有する。 The non-aqueous electrolyte power storage element according to one aspect of the present invention includes a negative electrode, a positive electrode, and a non-aqueous electrolyte solution, and the negative electrode has a negative electrode active material layer containing graphite and an acrylic resin, and the non-aqueous electrolysis The solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate.
 本発明の一側面に係る非水電解質蓄電素子の製造方法は、負極、正極及び非水電解液をケースに収容することを備え、上記負極は、黒鉛及びアクリル系樹脂を含む負極活物質層を有し、上記非水電解液は、リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有する。 The method for manufacturing a non-aqueous electrolyte power storage element according to one aspect of the present invention includes accommodating a negative electrode, a positive electrode, and a non-aqueous electrolyte solution in a case, and the negative electrode includes a negative electrode active material layer containing graphite and an acrylic resin. The non-aqueous electrolyte solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate.
 本発明の一側面に係る非水電解質蓄電素子は、急速充電特性に優れる。 The non-aqueous electrolyte power storage element according to one aspect of the present invention is excellent in quick charging characteristics.
 本発明の一側面に係る非水電解質蓄電素子の製造方法は、急速充電特性に優れる非水電解質蓄電素子を製造できる。 The method for manufacturing a non-aqueous electrolyte power storage element according to one aspect of the present invention can manufacture a non-aqueous electrolyte power storage element having excellent quick charging characteristics.
図1は、本発明の一実施形態に係る非水電解質蓄電素子を示す外観斜視図である。FIG. 1 is an external perspective view showing a non-aqueous electrolyte power storage element according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る非水電解質蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of non-aqueous electrolyte power storage elements according to an embodiment of the present invention.
 本発明の一側面に係る非水電解質蓄電素子は、負極と、正極と、非水電解液とを備え、上記負極が黒鉛及びアクリル系樹脂を含む負極活物質層を有し、上記非水電解液がリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有する。 The non-aqueous electrolyte power storage element according to one aspect of the present invention includes a negative electrode, a positive electrode, and a non-aqueous electrolyte solution, and the negative electrode has a negative electrode active material layer containing graphite and an acrylic resin, and the non-aqueous electrolysis The solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate.
 非水電解質蓄電素子に用いられる負極材料としては、リチウムに近い卑な電位で単位質量あたりの充放電容量の大きい黒鉛が広く用いられ、負極用バインダーとしては、比較的少ない添加量で利用可能なスチレンブタジエンゴムが広く用いられている。一方、本発明者らは、非水電解質蓄電素子の負極活物質層が負極活物質としての黒鉛と、バインダーとしてのアクリル系樹脂とを含み、非水電解液がリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有することで、非水電解質蓄電素子の急速充電性能が優れることを知見した。この理由は定かではないが、次のように考えられる。負極用バインダーとしてスチレンブタジエンゴムが含まれる場合、負極活物質である黒鉛のエッジ面に比較的多く分布する。これに対し、負極用バインダーとしてアクリル系樹脂が含まれる場合、上記黒鉛の周囲に均一に分布する。また、非水電解液にリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方が含有されると、リチウムジフルオロオキサラトボレートやリチウムジフルオロホスフェートによる良質な被膜が、上記黒鉛のエッジ面に多く形成される。その結果、非水電解質蓄電素子の急速充電性能が向上したと考えられる。 As a negative electrode material used for a non-aqueous electrolyte power storage element, graphite having a low potential close to lithium and a large charge / discharge capacity per unit mass is widely used, and as a binder for a negative electrode, it can be used with a relatively small amount of addition. Styrene-butadiene rubber is widely used. On the other hand, the present inventors have described that the negative electrode active material layer of the non-aqueous electrolyte storage element contains graphite as the negative electrode active material and the acrylic resin as the binder, and the non-aqueous electrolyte solution is lithium difluorooxalatoborate and lithium difluoro. It was found that the quick charging performance of the non-aqueous electrolyte power storage element is excellent by containing at least one of the phosphates. The reason for this is not clear, but it can be considered as follows. When styrene-butadiene rubber is contained as the binder for the negative electrode, it is relatively abundantly distributed on the edge surface of graphite, which is the negative electrode active material. On the other hand, when an acrylic resin is contained as the binder for the negative electrode, it is uniformly distributed around the graphite. Further, when at least one of lithium difluorooxalatoborate and lithium difluorophosphate is contained in the non-aqueous electrolytic solution, a large amount of a high-quality film formed by lithium difluorooxalatoborate or lithium difluorophosphate is formed on the edge surface of the graphite. .. As a result, it is considered that the quick charging performance of the non-aqueous electrolyte power storage element is improved.
 上記非水電解液におけるリチウムジフルオロオキサラトボレート又はリチウムジフルオロホスフェートの含有割合が0.2質量%以上2.0質量%以下であることが好ましい。リチウムジフルオロオキサラトボレート又はリチウムジフルオロホスフェートの含有割合が上記範囲であることで、非水電解質蓄電素子の急速充電性能をより向上できる。 The content ratio of lithium difluorooxalatoborate or lithium difluorophosphate in the non-aqueous electrolytic solution is preferably 0.2% by mass or more and 2.0% by mass or less. When the content ratio of lithium difluorooxalatoborate or lithium difluorophosphate is in the above range, the quick charging performance of the non-aqueous electrolyte power storage element can be further improved.
 上記正極が、ニッケル、コバルト及びマンガンを含む正極活物質を含むことが好ましい。上記正極が、ニッケル、コバルト及びマンガンを含む正極活物質を含むことで、当該非水電解質蓄電素子のエネルギー密度を向上できる。 It is preferable that the positive electrode contains a positive electrode active material containing nickel, cobalt and manganese. When the positive electrode contains a positive electrode active material containing nickel, cobalt and manganese, the energy density of the non-aqueous electrolyte power storage element can be improved.
 以下、本発明の一実施形態に係る非水電解質蓄電素子について詳説する。
<非水電解質蓄電素子>
 本発明の一実施形態に係る非水電解質蓄電素子は、負極と、正極と、非水電解液とを備える。以下、非水電解質蓄電素子の一例として、非水電解質二次電池について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体はケースに収納され、このケース内に非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。また、上記ケースとしては、非水電解質二次電池のケースとして通常用いられる公知の金属ケース、樹脂ケース等を用いることができる。
Hereinafter, the non-aqueous electrolyte power storage device according to the embodiment of the present invention will be described in detail.
<Non-aqueous electrolyte power storage element>
The non-aqueous electrolyte power storage element according to one embodiment of the present invention includes a negative electrode, a positive electrode, and a non-aqueous electrolyte solution. Hereinafter, a non-aqueous electrolyte secondary battery will be described as an example of the non-aqueous electrolyte power storage element. The positive electrode and the negative electrode usually form electrode bodies that are alternately superposed by stacking or winding through a separator. The electrode body is housed in a case, and the case is filled with a non-aqueous electrolyte. The non-aqueous electrolyte is interposed between the positive electrode and the negative electrode. Further, as the above case, a known metal case, resin case or the like which is usually used as a case of a non-aqueous electrolyte secondary battery can be used.
[負極]
 負極は、負極基材と、負極活物質層とを有する。上記負極活物質層は、負極活物質を含有する。上記負極活物質層は、上記負極基材の少なくとも一方の面に沿って直接又は中間層を介して積層される。
[Negative electrode]
The negative electrode has a negative electrode base material and a negative electrode active material layer. The negative electrode active material layer contains a negative electrode active material. The negative electrode active material layer is laminated directly or via an intermediate layer along at least one surface of the negative electrode base material.
(負極基材)
 上記負極基材は、導電性を有する基材である。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。また、負極基材の形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。なお、「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が1×10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が1×10Ω・cm超であることを意味する。
(Negative electrode base material)
The negative electrode base material is a base material having conductivity. As the material of the negative electrode base material, metals such as copper, nickel, stainless steel and nickel-plated steel or alloys thereof are used, and copper or a copper alloy is preferable. Further, examples of the form of the negative electrode base material include foils and thin-film deposition films, and foils are preferable from the viewpoint of cost. That is, a copper foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil. Note that has a "conductive" means that the volume resistivity is measured according to JIS-H-0505 (1975 years) is not more than 1 × 10 7 Ω · cm, "non-conductive "means that the volume resistivity is 1 × 10 7 Ω · cm greater.
(負極活物質層)
 負極活物質層は、負極基材の少なくとも一方の面に沿って直接又は中間層を介して積層される。負極活物質層は、負極活物質を含むいわゆる負極合剤から形成される。負極活物質層は、黒鉛及びアクリル系樹脂を含む。
(Negative electrode active material layer)
The negative electrode active material layer is laminated directly along at least one surface of the negative electrode base material or via an intermediate layer. The negative electrode active material layer is formed from a so-called negative electrode mixture containing a negative electrode active material. The negative electrode active material layer contains graphite and an acrylic resin.
 負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材質が用いられる。当該非水電解質蓄電素子は、負極活物質として黒鉛(グラファイト)を含む。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。 As the negative electrode active material, a material capable of occluding and releasing lithium ions is usually used. The non-aqueous electrolyte power storage element contains graphite as a negative electrode active material. Examples of graphite include natural graphite and artificial graphite.
 上記負極活物質層は、その他の負極活物質として、例えば、難黒鉛化性炭素(ハードカーボン)や易黒鉛化性炭素(ソフトカーボン)等のその他の炭素材料、Si等の半金属、Sn等の金属、これら半金属又は金属の酸化物、又は、これら半金属又は金属と炭素材料との複合体等が含まれていてもよい。これらの材料は1種を単独で、または2種以上を適宜組みあわせて用いることができる。これらの中でも難黒鉛化性炭素を含むことが好ましい。難黒鉛化性炭素を含むことで、充電時の負極の膨張を小さく抑えることができる。また、負極活物質層の形状を長期にわたってより良く安定的に維持することができる。 The negative electrode active material layer may include other negative electrode active materials such as other carbon materials such as non-graphitizable carbon (hard carbon) and easily graphitizable carbon (soft carbon), semi-metals such as Si, Sn and the like. The metal, these semi-metals or oxides of the metal, or a composite of these semi-metals or metals and a carbon material may be contained. These materials may be used alone or in combination of two or more. Among these, it is preferable to contain non-graphitizable carbon. By containing non-graphitizable carbon, the expansion of the negative electrode during charging can be suppressed to a small value. In addition, the shape of the negative electrode active material layer can be better and more stably maintained for a long period of time.
 「黒鉛」とは、充放電前又は放電状態において、X線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。 “Graphite” refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm. Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material having stable physical properties can be obtained.
 「非黒鉛質炭素」とは、充放電前又は放電状態においてX線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。 “Non-graphitic carbon” refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffractometry before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. Say. Examples of non-graphitizable carbon include non-graphitizable carbon and easily graphitizable carbon. Examples of the non-graphitic carbon include a resin-derived material, a petroleum pitch or a petroleum pitch-derived material, a petroleum coke or a petroleum coke-derived material, a plant-derived material, an alcohol-derived material, and the like. The “non-graphitizable carbon” refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less. The “graphitizable carbon” refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
 ここで、「放電状態」とは、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた単極電池において、開回路電圧が0.7V以上である状態をいう。開回路状態での金属Li対極の電位は、Liの酸化還元電位とほぼ等しいため、上記単極電池における開回路電圧は、Liの酸化還元電位に対する炭素材料を含む負極の電位とほぼ同等である。つまり、上記単極電池における開回路電圧が0.7V以上であることは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されていることを意味する。 Here, the "discharged state" means a state in which the open circuit voltage is 0.7 V or more in a unipolar battery using a negative electrode containing a carbon material as a negative electrode active material as a working electrode and metal Li as a counter electrode. Since the potential of the metal Li counter electrode in the open circuit state is substantially equal to the oxidation-reduction potential of Li, the open circuit voltage in the single-pole battery is substantially equal to the potential of the negative electrode containing the carbon material with respect to the oxidation-reduction potential of Li. .. That is, the fact that the open circuit voltage in the single-pole battery is 0.7 V or more means that lithium ions that can be occluded and discharged are sufficiently released from the carbon material that is the negative electrode active material during charging and discharging. ..
 負極活物質中の黒鉛の含有量の下限としては、60質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。一方、この含有量の上限としては、99質量%が好ましく、95質量%がより好ましい。 The lower limit of the graphite content in the negative electrode active material is preferably 60% by mass, more preferably 70% by mass, and even more preferably 80% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 95% by mass is more preferable.
 負極活物質層中の負極活物質の含有量は特に限定されないが、その下限としては、50質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。一方、この含有量の上限としては、99質量%が好ましく、98質量がより好ましい。 The content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 98% by mass is more preferable.
(バインダー)
 当該非水電解質蓄電素子の負極合剤は、バインダーとしてアクリル系樹脂を含む。「アクリル系樹脂」とは、アクリル酸若しくはメタクリル酸、又はこれらの誘導体を主成分とするモノマーから形成された樹脂をいう。「主成分とする」とは、アクリル系樹脂におけるアクリル酸若しくはメタクリル酸、又はこれらの誘導体由来の構造単位の含有割合が、50質量%以上であることを意味する。アクリル系樹脂におけるアクリル酸若しくはメタクリル酸、又はこれらの誘導体由来の構造単位の含有割合の下限は50質量%であり、60質量%が好ましく、70質量%がより好ましく、75質量%がさらに好ましい。上記アクリル系樹脂としては、例えばポリアクリル酸、ポリアクリル酸メチル、ポリアクリルアミド、アクリル酸を含む共重合体、ポリアクリル酸のアルカリ金属塩が挙げられ、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリルアミド、ポリアクリル酸のアルカリ金属塩が好ましく、ポリアクリル酸がより好ましい。なお、ポリアクリロニトリル及びアクリロニトリルを含む共重合体は、アクリル系樹脂に含まれないものとする。
(binder)
The negative electrode mixture of the non-aqueous electrolyte power storage element contains an acrylic resin as a binder. The "acrylic resin" refers to a resin formed from a monomer containing acrylic acid or methacrylic acid, or a derivative thereof as a main component. "Main component" means that the content ratio of the structural unit derived from acrylic acid or methacrylic acid or a derivative thereof in the acrylic resin is 50% by mass or more. The lower limit of the content ratio of the structural unit derived from acrylic acid or methacrylic acid or a derivative thereof in the acrylic resin is 50% by mass, preferably 60% by mass, more preferably 70% by mass, still more preferably 75% by mass. Examples of the acrylic resin include polyacrylic acid, methyl polyacrylate, polyacrylamide, a copolymer containing acrylic acid, and an alkali metal salt of polyacrylic acid, and examples thereof include polyacrylic acid, methyl polyacrylate, and polyacrylamide. , The alkali metal salt of polyacrylic acid is preferable, and polyacrylic acid is more preferable. The copolymer containing polyacrylonitrile and acrylonitrile shall not be contained in the acrylic resin.
 上記負極合剤は、その他のバインダーとして、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル酸、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレン-ブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が含まれていてもよい。なお、入力特性の観点から、上記バインダーは、スチレン-ブタジエンゴム(SBR)のように、ブタジエン由来の構造単位を有する樹脂の含有量が少ないことが好ましく、ブタジエン由来の構造単位を有する樹脂を実質的に含まないことがより好ましい。具体的には、アクリル系樹脂に対する上記スチレン-ブタジエンゴム(SBR)の質量比の上限としては、2.3が好ましく、1.5がより好ましく、1.0がさらに好ましく、0.5が特に好ましい。また、アクリル酸由来の構造単位とブタジエン由来の構造単位との共重合体においても同様に、ブタジエン由来の構造単位の含有割合が少ないことが好ましい。具体的には、アクリル酸由来の構造単位とブタジエン由来の構造単位を含む共重合体におけるブタジエン由来の構造単位の含有割合の上限は、例えば、50質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましく、25質量%がよりさらに好ましい。上記アクリル系樹脂は、出力性能を向上させる観点から、ブタジエン由来の構造単位を含まなくてもよく、負極活物質層の密着性の観点から、ブタジエン由来の構造単位を含んでいてもよい。アクリル酸由来の構造単位とブタジエン由来の構造単位を含む共重合体におけるブタジエン由来の構造単位の含有割合の下限は、例えば、1質量%であってもよく、2質量%、5質量%、又は10質量%が好ましい場合もある。 The negative electrode mixture can be used as another binder, for example, a fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), a thermoplastic resin such as polyethylene, polypropylene, polyacrylic acid, or polyimide; Elastomers such as propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), and fluororubber; and thermoplastic polymers may be contained. From the viewpoint of input characteristics, the binder preferably has a low content of a resin having a structural unit derived from butadiene, such as styrene-butadiene rubber (SBR), and substantially a resin having a structural unit derived from butadiene. It is more preferable not to include it. Specifically, as the upper limit of the mass ratio of the styrene-butadiene rubber (SBR) to the acrylic resin, 2.3 is preferable, 1.5 is more preferable, 1.0 is further preferable, and 0.5 is particularly preferable. preferable. Similarly, in the copolymer of the structural unit derived from acrylic acid and the structural unit derived from butadiene, it is preferable that the content ratio of the structural unit derived from butadiene is small. Specifically, the upper limit of the content ratio of the structural unit derived from butadiene in the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from butadiene is preferably, for example, 50% by mass, more preferably 40% by mass. 30% by mass is even more preferable, and 25% by mass is even more preferable. The acrylic resin does not have to contain a structural unit derived from butadiene from the viewpoint of improving output performance, and may contain a structural unit derived from butadiene from the viewpoint of adhesion of the negative electrode active material layer. The lower limit of the content ratio of the structural unit derived from butadiene in the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from butadiene may be, for example, 1% by mass, 2% by mass, 5% by mass, or In some cases, 10% by mass is preferable.
 上記バインダーにおけるアクリル系樹脂の含有量としては、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がよりさらに好ましく、99質量%以上が特に好ましく、100質量%であってもよい。 The content of the acrylic resin in the binder is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, further preferably 90% by mass or more, and particularly preferably 99% by mass or more. Preferably, it may be 100% by mass.
 負極活物質層中のバインダーの含有量の下限としては、0.2質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。一方、この含有量の上限としては、10質量%が好ましく、5質量がより好ましい。 As the lower limit of the content of the binder in the negative electrode active material layer, 0.2% by mass is preferable, 0.5% by mass is more preferable, and 1% by mass is further preferable. On the other hand, the upper limit of this content is preferably 10% by mass, more preferably 5% by mass.
 負極活物質層におけるバインダーの含有量は、0.2質量%以上10質量%以下が好ましく、0.5質量%以上5質量%以下がより好ましい。バインダーの含有量を上記の範囲とすることで、活物質を安定して保持することができる。 The content of the binder in the negative electrode active material layer is preferably 0.2% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 5% by mass or less. By setting the content of the binder in the above range, the active material can be stably retained.
(その他の任意成分)
 負極合剤は、必要に応じて導電剤、増粘剤、フィラー等の任意成分を含む。
(Other optional ingredients)
The negative electrode mixture contains optional components such as a conductive agent, a thickener, and a filler, if necessary.
 上記導電剤としては、導電性材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛化炭素、非黒鉛化炭素、グラフェン系炭素等が挙げられる。非黒鉛化炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。 The conductive agent is not particularly limited as long as it is a conductive material. Examples of such a conductive agent include carbonaceous materials, metals, conductive ceramics and the like. Examples of the carbonaceous material include graphitized carbon, non-graphitized carbon, graphene-based carbon and the like. Examples of non-graphitized carbon include carbon nanofibers, pitch-based carbon fibers, and carbon black. Examples of carbon black include furnace black, acetylene black, and ketjen black. Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerenes. Examples of the shape of the conductive agent include powder and fibrous. As the conductive agent, one of these materials may be used alone, or two or more of these materials may be mixed and used. Further, these materials may be used in combination. For example, a material in which carbon black and CNT are composited may be used. Among these, carbon black is preferable from the viewpoint of electron conductivity and coatability, and acetylene black is particularly preferable.
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。 Examples of the thickener include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose. When the thickener has a functional group that reacts with lithium, it is preferable to deactivate the functional group by methylation or the like in advance.
 上記フィラーとしては、特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス等が挙げられる。 The filler is not particularly limited. Examples of the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.
(中間層)
 上記中間層は、負極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで負極基材と負極活物質層との接触抵抗を低減する。上記正極と同様、中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。
(Middle class)
The intermediate layer is a coating layer on the surface of the negative electrode base material, and contains conductive particles such as carbon particles to reduce the contact resistance between the negative electrode base material and the negative electrode active material layer. Similar to the above positive electrode, the structure of the intermediate layer is not particularly limited and can be formed by, for example, a composition containing a resin binder and conductive particles.
[正極]
 正極は、正極基材と、正極活物質層とを有する。上記正極活物質層は、正極活物質を含有する。上記正極活物質層は、上記正極基材の少なくとも一方の面に沿って直接又は中間層を介して積層される。
[Positive electrode]
The positive electrode has a positive electrode base material and a positive electrode active material layer. The positive electrode active material layer contains a positive electrode active material. The positive electrode active material layer is laminated directly or via an intermediate layer along at least one surface of the positive electrode base material.
(正極基材)
 上記正極基材は、導電性を有する基材である。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H4000(2014)に規定されるA1085、A3003等が例示できる。
(Positive electrode base material)
The positive electrode base material is a base material having conductivity. As the material of the positive electrode base material, metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the viewpoint of balance of potential resistance, high conductivity and cost. Further, examples of the form of the positive electrode base material include foil, a vapor-deposited film, and the like, and foil is preferable from the viewpoint of cost. That is, aluminum foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085 and A3003 specified in JIS-H4000 (2014).
(正極活物質層)
 正極活物質層は、正極活物質を含むいわゆる正極合剤から形成される。上記正極活物質としては、例えば、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi1-x]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiCo(1-x)]O(0≦x<0.5)、Li[LiNiγMn(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo(1-x-γ-β)(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LiNiγCoβAl(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属酸化物として、LiMn,LiNiγMn(2-γ)等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。上記正極活物質としては、これらの中でも、高エネルギー密度化の観点から上記リチウム遷移金属複合酸化物が好ましく、Li以外に、ニッケル、コバルト及びマンガンを構成元素として含むニッケルコバルトマンガン含有リチウム遷移金属複合酸化物がより好ましい。
(Positive electrode active material layer)
The positive electrode active material layer is formed from a so-called positive electrode mixture containing a positive electrode active material. As the positive electrode active material, for example, a known positive electrode active material can be appropriately selected. As the positive electrode active material for a lithium ion secondary battery, a material capable of occluding and releasing lithium ions is usually used. Examples of the positive electrode active material include a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure, a lithium transition metal oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, sulfur and the like. Examples of the lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure include Li [Li x Ni 1-x ] O 2 (0 ≦ x <0.5) and Li [Li x Ni γ Co (1-). x-γ) ] O 2 (0 ≦ x <0.5, 0 <γ <1), Li [Li x Co (1-x) ] O 2 (0 ≦ x <0.5), Li [Li x Ni γ Mn (1-x-γ) ] O 2 (0 ≦ x <0.5, 0 <γ <1), Li [Li x Ni γ Mn β Co (1-x-γ-β) O 2 ( 0 ≦ x <0.5, 0 <γ, 0 <β, 0.5 <γ + β <1), Li [Li x Ni γ Co β Al (1-x-γ-β) ] O 2 (0 ≦ x Examples thereof include <0.5, 0 <γ, 0 <β, 0.5 <γ + β <1). Examples of the lithium transition metal oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni γ Mn (2-γ) O 4 . Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like. Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements. Among these, the lithium transition metal composite oxide is preferable as the positive electrode active material from the viewpoint of increasing energy density, and a nickel cobalt manganese-containing lithium transition metal composite containing nickel, cobalt and manganese as constituent elements in addition to Li is preferable. Oxides are more preferred.
 上記正極活物質として挙げられた材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The surface of the material listed as the positive electrode active material may be coated with another material. In the positive electrode active material layer, one of these materials may be used alone, or two or more of these materials may be mixed and used.
 正極活物質層中の正極活物質の含有量は特に限定されないが、その下限としては、50質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。一方、この含有量の上限としては、99質量%が好ましく、98質量%がより好ましい。 The content of the positive electrode active material in the positive electrode active material layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 98% by mass is more preferable.
(その他の任意成分)
 正極合剤は、必要に応じてバインダー、導電剤、増粘剤、フィラー等の任意成分を含む。
(Other optional ingredients)
The positive electrode mixture contains optional components such as a binder, a conductive agent, a thickener, and a filler, if necessary.
 バインダーとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル酸、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレン-ブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。 Examples of the binder include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacrylic acid, and polyimide; ethylene-propylene-diene rubber (EPDM), Elastomers such as sulfonated EPDM, styrene-butadiene rubber (SBR), fluororubber; and thermoplastic polymers can be mentioned.
 導電剤、増粘剤、フィラー等の任意成分は、上記負極で例示した材料から選択できる。 Optional components such as conductive agent, thickener, filler, etc. can be selected from the materials exemplified in the above negative electrode.
(中間層)
 上記中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。
(Middle layer)
The intermediate layer is a coating layer on the surface of the positive electrode base material, and contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode active material layer. The composition of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a resin binder and conductive particles.
[非水電解質]
 上記非水電解質は、通常、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。本実施形態に係る非水電解質蓄電素子では、非水電解液が添加剤としてリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有する。
[Non-aqueous electrolyte]
The non-aqueous electrolyte usually contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. In the non-aqueous electrolyte power storage device according to the present embodiment, the non-aqueous electrolyte solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate as additives.
(非水溶媒)
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
(Non-aqueous solvent)
The non-aqueous solvent can be appropriately selected from known non-aqueous solvents. Examples of the non-aqueous solvent include cyclic carbonate, chain carbonate, carboxylic acid ester, phosphoric acid ester, sulfonic acid ester, ether, amide, nitrile and the like. As the non-aqueous solvent, those in which some of the hydrogen atoms contained in these compounds are replaced with halogen may be used.
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。 Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), difluoroethylene carbonate (DFEC), and styrene carbonate. , 1-Phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like. Of these, EC is preferable.
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。 Examples of the chain carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate, trifluoroethyl methyl carbonate, and bis (trifluoroethyl) carbonate. Of these, EMC is preferable.
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。 As the non-aqueous solvent, it is preferable to use cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination. By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved. By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low. When the cyclic carbonate and the chain carbonate are used in combination, the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate: chain carbonate) is preferably in the range of, for example, 5:95 to 50:50.
(電解質塩)
 上記電解質塩としては、一般的な蓄電素子用非水電解質の電解質塩として通常用いられる公知の電解質塩を用いることができる。上記電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を挙げることができるが、リチウム塩が好ましい。
(Electrolyte salt)
As the electrolyte salt, a known electrolyte salt usually used as an electrolyte salt of a general non-aqueous electrolyte for a power storage element can be used. Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like, but lithium salt is preferable.
 上記リチウム塩としては、LiPF、LiPO、LiBF、LiClO等の無機リチウム塩、LiSOCF、LiC(SOCF、LiC(SO等の水素がフッ素で置換された炭化水素基を有するリチウム塩などを挙げることができる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。 Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiSO 3 CF 3 , LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3, etc. Examples thereof include a lithium salt having a hydrocarbon group in which hydrogen is substituted with fluorine. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
 上記電解質塩の非水溶液における含有量の下限としては、0.1mol/dmが好ましく、0.3mol/dmがより好ましく、0.5mol/dmがさらに好ましく、0.7mol/dmが特に好ましい。一方、この上限としては、特に限定されないが、2.5mol/dmが好ましく、2mol/dmがより好ましく、1.5mol/dmがさらに好ましい。非水溶液とは、非水溶媒に電解質塩を溶解させた状態のものを意味し、ホウ素含有オキサラト錯塩等の添加剤を溶解させる前の状態を意味する。 As the lower limit of the content of the electrolyte salt in the non-aqueous solution, 0.1 mol / dm 3 is preferable, 0.3 mol / dm 3 is more preferable, 0.5 mol / dm 3 is further preferable, and 0.7 mol / dm 3 is preferable. Especially preferable. On the other hand, the upper limit is not particularly limited, but is preferably 2.5 mol / dm 3, more preferably 2 mol / dm 3, more preferably 1.5 mol / dm 3. The non-aqueous solution means a state in which an electrolyte salt is dissolved in a non-aqueous solvent, and means a state before an additive such as a boron-containing oxalate complex salt is dissolved.
(添加剤)
 上記非水電解質は、リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有する。上記非水電解質がリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有することで、当該非水電解質蓄電素子は急速充電特性に優れる。
(Additive)
The non-aqueous electrolyte contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate. When the non-aqueous electrolyte contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate, the non-aqueous electrolyte power storage element is excellent in quick charging characteristics.
 上記非水電解質におけるリチウムジフルオロオキサラトボレート又はリチウムジフルオロホスフェートの含有量の下限としては、0.05質量%が好ましく、0.2質量%がより好ましく、0.3質量%がさらに好ましく、0.5質量%がよりさらに好ましい。一方、この含有量の上限としては、2.0質量%が好ましく、1.5質量%がさらに好ましい。リチウムジフルオロオキサラトボレート又はリチウムジフルオロホスフェートの含有量が上記範囲であることで、充放電サイクル後の内部抵抗の増加に対する抑制効果をより向上できる。ここで、リチウムジフルオロオキサラトボレート又はリチウムジフルオロホスフェートの含有量とは、非水溶液の質量に対するリチウムジフルオロオキサラトボレート又はリチウムジフルオロホスフェートの質量を意味する。 The lower limit of the content of lithium difluorooxalatoborate or lithium difluorophosphate in the non-aqueous electrolyte is preferably 0.05% by mass, more preferably 0.2% by mass, further preferably 0.3% by mass, and 0. 5% by mass is even more preferable. On the other hand, the upper limit of this content is preferably 2.0% by mass, more preferably 1.5% by mass. When the content of lithium difluorooxalatoborate or lithium difluorophosphate is in the above range, the effect of suppressing the increase in internal resistance after the charge / discharge cycle can be further improved. Here, the content of lithium difluorooxalatoborate or lithium difluorophosphate means the mass of lithium difluorooxalatoborate or lithium difluorophosphate with respect to the mass of the non-aqueous solution.
 上記非水電解質は、リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの両方を含有してもよい。
 上記非水電解質が、リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの両方を含有する場合、リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの含有量の和の下限としては、0.05質量%が好ましく、0.2質量%がより好ましく、0.3質量%がさらに好ましく、0.4質量%がよりさらに好ましい。一方、この含有量の上限としては、4.0質量%が好ましく、3.0質量%がさらに好ましく、2.0質量%がよりさらに好ましく、1.5質量%が好ましい場合もある。リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの含有量の和が上記範囲であることで、充放電サイクル後の内部抵抗の増加に対する抑制効果をより向上できる。ここで、リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの含有量の和とは、非水溶液の質量に対するリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの質量の和を意味する。
The non-aqueous electrolyte may contain both lithium difluorooxalatoborate and lithium difluorophosphate.
When the non-aqueous electrolyte contains both lithium difluorooxalatoborate and lithium difluorophosphate, the lower limit of the sum of the contents of lithium difluorooxalatoborate and lithium difluorophosphate is preferably 0.05% by mass, preferably 0. .2% by mass is more preferable, 0.3% by mass is further preferable, and 0.4% by mass is further preferable. On the other hand, as the upper limit of this content, 4.0% by mass is preferable, 3.0% by mass is more preferable, 2.0% by mass is more preferable, and 1.5% by mass is preferable in some cases. When the sum of the contents of lithium difluorooxalatoborate and lithium difluorophosphate is in the above range, the effect of suppressing the increase in internal resistance after the charge / discharge cycle can be further improved. Here, the sum of the contents of lithium difluorooxalatoborate and lithium difluorophosphate means the sum of the masses of lithium difluorooxalatoborate and lithium difluorophosphate with respect to the mass of the non-aqueous solution.
 上記非水電解質には、リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェート以外のその他の添加剤が添加されていてもよい。上記その他の添加剤としては、例えばリチウムビス(フルオロスルホニル)イミド(LiFSI)、フルオロスルホン酸リチウム、テトラフルオロオキサラトリン酸リチウム等が挙げられる。 Other additives other than lithium difluorooxalatoborate and lithium difluorophosphate may be added to the non-aqueous electrolyte. Examples of the other additives include lithium bis (fluorosulfonyl) imide (LiFSI), lithium fluorosulfonate, lithium tetrafluorooxalatrate, and the like.
 上記非水電解質は、上記非水溶媒に上記電解質塩、リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を溶解させることにより得ることができる。 The non-aqueous electrolyte can be obtained by dissolving at least one of the electrolyte salt, lithium difluorooxalatoborate and lithium difluorophosphate in the non-aqueous solvent.
[セパレータ]
 上記セパレータとしては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。上記セパレータの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。また、これらの樹脂を複合してもよい。
[Separator]
As the separator, for example, a woven fabric, a non-woven fabric, a porous resin film, or the like is used. Among these, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte. As the main component of the separator, polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of strength, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance. Moreover, you may combine these resins.
 なお、セパレータと電極(通常、正極)との間に、無機層が配設されていてもよい。この無機層は、耐熱層等とも呼ばれる多孔質の層である。また、多孔質樹脂フィルムの一方の面に無機層が形成されたセパレータを用いることもできる。上記無機層は、通常、無機粒子及びバインダーとで構成され、その他の成分が含有されていてもよい。 An inorganic layer may be arranged between the separator and the electrode (usually the positive electrode). This inorganic layer is a porous layer also called a heat-resistant layer or the like. Further, a separator having an inorganic layer formed on one surface of the porous resin film can also be used. The inorganic layer is usually composed of inorganic particles and a binder, and may contain other components.
[蓄電素子の具体的構成]
 図1に、本発明に係る非水電解質蓄電素子の一実施形態である矩形状の非水電解質蓄電素子1(非水電解質二次電池)の概略図を示す。なお、同図は、ケース内部を透視した図としている。図1に示す非水電解質蓄電素子1は、電極体2がケース3に収納されている。電極体2は、正極活物質層を備える正極と、負極活物質層を備える負極とが、セパレータを介して巻回されることにより形成されている。正極は、正極集電体4’を介して正極端子4と電気的に接続され、負極は、負極集電体5’を介して負極端子5と電気的に接続されている。また、ケース3には、非水電解質が注入されている。
[Specific configuration of power storage element]
FIG. 1 shows a schematic view of a rectangular non-aqueous electrolyte storage element 1 (non-aqueous electrolyte secondary battery) which is an embodiment of the non-aqueous electrolyte storage element according to the present invention. The figure is a perspective view of the inside of the case. In the non-aqueous electrolyte power storage element 1 shown in FIG. 1, the electrode body 2 is housed in the case 3. The electrode body 2 is formed by winding a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer around the separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode current collector 4', and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode current collector 5'. Further, a non-aqueous electrolyte is injected into the case 3.
 本発明に係る非水電解質蓄電素子の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。 The configuration of the non-aqueous electrolyte power storage element according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), and a flat battery.
[非水電解質蓄電素子の製造方法]
 本発明の一実施形態に係る非水電解質蓄電素子の製造方法は、上記負極と、正極と、上述のリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有する非水電解質とをケースに収容することを備える。上記正極は、正極基材に直接又は中間層を介して上記正極活物質層を積層することにより得ることができる。上記正極活物質層の積層は、正極基材に、正極合剤ペーストを塗工することにより行う。また、上記負極は、上記正極と同様、負極基材に直接又は中間層を介して上記負極活物質層を積層することにより得ることができる。上記負極活物質層の積層は、負極基材に、黒鉛及びアクリル系樹脂を含む負極合剤ペーストを塗工することにより行う。上記正極合剤ペースト及び負極合剤ペーストは、分散媒を含んでいてもよい。この分散媒としては、例えば、水、水を主体とする混合溶媒等の水系溶媒;N-メチルピロリドン、トルエン等の有機系溶媒を用いることができる。
[Manufacturing method of non-aqueous electrolyte power storage element]
In the method for manufacturing a non-aqueous electrolyte power storage element according to an embodiment of the present invention, the negative electrode, the positive electrode, and the non-aqueous electrolyte containing at least one of the above-mentioned lithium difluorooxalatoborate and lithium difluorophosphate are contained in a case. Be prepared to do. The positive electrode can be obtained by laminating the positive electrode active material layer directly on the positive electrode base material or via an intermediate layer. The positive electrode active material layer is laminated by applying a positive electrode mixture paste to the positive electrode base material. Further, the negative electrode can be obtained by laminating the negative electrode active material layer directly on the negative electrode base material or via an intermediate layer, similarly to the positive electrode. The negative electrode active material layer is laminated by applying a negative electrode mixture paste containing graphite and an acrylic resin to the negative electrode base material. The positive electrode mixture paste and the negative electrode mixture paste may contain a dispersion medium. As the dispersion medium, for example, an aqueous solvent such as water or a mixed solvent mainly composed of water; or an organic solvent such as N-methylpyrrolidone or toluene can be used.
 また、上記非水電解質蓄電素子の製造方法は、その他の工程として、例えば、セパレータを介して上記負極及び上記正極を積層することを備える。セパレータを介して上記負極及び上記正極を積層することにより、電極体が形成される。 Further, the method for manufacturing the non-aqueous electrolyte power storage element includes, for example, laminating the negative electrode and the positive electrode via a separator as another step. An electrode body is formed by laminating the negative electrode and the positive electrode via a separator.
 上記負極、正極、非水電解質等をケースに収容する方法は、公知の方法により行うことができる。収容後、収容口を封止することにより非水電解質蓄電素子を得ることができる。上記製造方法によって得られる非水電解質蓄電素子を構成する各要素についての詳細は上述したとおりである。 The method of accommodating the negative electrode, the positive electrode, the non-aqueous electrolyte, etc. in the case can be performed by a known method. After accommodating, a non-aqueous electrolyte power storage element can be obtained by sealing the accommodating port. Details of each element constituting the non-aqueous electrolyte power storage element obtained by the above manufacturing method are as described above.
[その他の実施形態]
 本発明の非水電解質蓄電素子は、上記実施形態に限定されるものではない。
[Other Embodiments]
The non-aqueous electrolyte power storage device of the present invention is not limited to the above embodiment.
 また、上記実施形態においては、非水電解質蓄電素子が非水電解質二次電池である形態を中心に説明したが、その他の非水電解質蓄電素子であってもよい。その他の非水電解質蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。非水電解質二次電池としては、リチウムイオン非水電解質二次電池が挙げられる。 Further, in the above embodiment, the embodiment in which the non-aqueous electrolyte power storage element is a non-aqueous electrolyte secondary battery has been mainly described, but other non-aqueous electrolyte power storage elements may be used. Examples of other non-aqueous electrolyte storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like. Examples of the non-aqueous electrolyte secondary battery include a lithium ion non-aqueous electrolyte secondary battery.
 また、上記実施形態においては巻回型の電極体を用いていたが、正極、負極及びセパレータを備える複数のシート体を重ねた積層体から形成される積層型電極体を備えてもよい。 Further, although the winding type electrode body is used in the above embodiment, a laminated electrode body formed from a laminated body obtained by stacking a plurality of sheet bodies including a positive electrode, a negative electrode and a separator may be provided.
 本発明は、複数の上記非水電解質蓄電素子を備える蓄電装置としても実現することができる。この場合、蓄電装置に含まれる少なくとも一つの非水電解質蓄電素子に対して、本発明の技術が適用されていればよい。また、単数又は複数個の本発明の非水電解質蓄電素子(セル)を用いることにより組電池を構成することができ、さらにこの組電池を用いて蓄電装置を構成することができる。上記蓄電装置は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として用いることができる。さらに、上記蓄電装置は、エンジン始動用電源装置、補機用電源装置、無停電電源装置(UPS)等の種々の電源装置に用いることができる。 The present invention can also be realized as a power storage device including the plurality of non-aqueous electrolyte power storage elements. In this case, the technique of the present invention may be applied to at least one non-aqueous electrolyte power storage element included in the power storage device. Further, an assembled battery can be constructed by using one or a plurality of non-aqueous electrolyte power storage elements (cells) of the present invention, and a power storage device can be further configured by using the assembled battery. The power storage device can be used as a power source for automobiles such as electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid vehicles (PHEV). Further, the power storage device can be used for various power supply devices such as an engine starting power supply device, an auxiliary power supply device, and an uninterruptible power supply (UPS).
 図2に、電気的に接続された二以上の非水電解質蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の非水電解質蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。 FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled. Even if the power storage device 30 includes a bus bar (not shown) that electrically connects two or more non-aqueous electrolyte power storage elements 1 and a bus bar (not shown) that electrically connects two or more power storage units 20. Good. The power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) that monitors the state of one or more power storage elements.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[実施例1から実施例2及び比較例1から比較例8]
(負極)
 負極活物質としての黒鉛及び難黒鉛化性炭素と、表1に記載のバインダーと、増粘剤としてのカルボキシメチルセルロース(CMC)を含有し、水を分散媒とする塗工液(負極合剤ペースト)を調製した。上記負極活物質における黒鉛及び難黒鉛化性炭素の質量比は、85:15とした。負極活物質、バインダー、増粘剤の混合比率は、質量比で96:2:2とした。塗工液を厚さ10μmの銅箔基材の両面に塗工し、乾燥して、負極活物質層を形成し、実施例及び比較例の負極を得た。
(非水電解質)
 エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)を体積比30:70で混合した非水溶媒に、LiPFを1.4mol/dm溶解させたものを非水溶液として、表1に示す含有量(非水溶液を100質量%としたときの含有割合)の添加剤を溶解させて非水電解質を得た。添加剤には、リチウムジフルオロオキサラトボレート(LiFOB)、リチウムジフルオロホスフェート(LiDFP)、ビニレンカーボネート(VC)、リチウムジフルオロビスオキサラトホスフェート(LiFOP)、リチウムビスオキサラトボレート(LiBOB)を用いた。なお、表1において、「-」は各成分を用いなかった場合を示す。
(正極)
 α―NaFeO型結晶構造を有するNCM(LiNi0.5Mn0.3Co0.2)を正極活物質として含有する正極を作製した。正極は、上記正極活物質と、バインダーとしてのポリフッ化ビニリデン(PVDF)と、導電剤としてのアセチレンブラックとを含有し、N-メチル-2-ピロリドン(NMP)を分散媒とする塗工液(正極合剤ペースト)を調製した。正極活物質、バインダー、導電剤の混合比率は、質量比で、93:4:3とした。塗工液を正極基材の両面に塗工し、乾燥し、プレスして、正極活物質層を形成した。正極基材には、厚さ15μmのアルミニウム箔を使用した。
[Examples 1 to 2 and Comparative Examples 1 to 8]
(Negative electrode)
A coating liquid (negative electrode mixture paste) containing graphite and non-graphitizable carbon as a negative electrode active material, the binder shown in Table 1, and carboxymethyl cellulose (CMC) as a thickener, and using water as a dispersion medium. ) Was prepared. The mass ratio of graphite and non-graphitizable carbon in the negative electrode active material was 85:15. The mixing ratio of the negative electrode active material, the binder, and the thickener was 96: 2: 2 in terms of mass ratio. The coating liquid was applied to both sides of a copper foil base material having a thickness of 10 μm and dried to form a negative electrode active material layer to obtain negative electrodes of Examples and Comparative Examples.
(Non-aqueous electrolyte)
The content shown in Table 1 is obtained by dissolving 1.4 mol / dm 3 of LiPF 6 in a non-aqueous solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 30:70 as a non-aqueous solution. A non-aqueous electrolyte was obtained by dissolving the additive (content ratio when the non-aqueous solution was 100% by mass). As the additive, lithium difluorooxalatoborate (LiFOB), lithium difluorophosphate (LiDFP), vinylene carbonate (VC), lithium difluorobisoxalate phosphate (LiFOP), and lithium bisoxalatoborate (LiBOB) were used. In Table 1, "-" indicates the case where each component was not used.
(Positive electrode)
A positive electrode containing NCM (LiNi 0.5 Mn 0.3 Co 0.2 O 2 ) having an α-NaFeO type 2 crystal structure as a positive electrode active material was prepared. The positive electrode contains the above-mentioned positive electrode active material, polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive agent, and uses N-methyl-2-pyrrolidone (NMP) as a dispersion medium. Positive electrode mixture paste) was prepared. The mixing ratio of the positive electrode active material, the binder, and the conductive agent was 93: 4: 3 in terms of mass ratio. The coating liquid was applied to both sides of the positive electrode base material, dried, and pressed to form a positive electrode active material layer. An aluminum foil having a thickness of 15 μm was used as the positive electrode base material.
(非水電解質蓄電素子の作製)
 次に、ポリエチレン基材及び上記ポリエチレン基材上に形成された無機層からなるセパレータを介して、上記正極と上記負極とを積層し、電極体を作製した。この電極体をアルミニウム製の角形電槽缶に収納し、正極端子及び負極端子を取り付けた。このケース(角形電槽缶)内部に上記非水電解質を注入した後、封口し、実施例及び比較例の非水電解質蓄電素子を得た。
(Manufacturing of non-aqueous electrolyte power storage element)
Next, the positive electrode and the negative electrode were laminated via a separator made of a polyethylene base material and an inorganic layer formed on the polyethylene base material to prepare an electrode body. This electrode body was housed in a square electric tank can made of aluminum, and a positive electrode terminal and a negative electrode terminal were attached. After injecting the non-aqueous electrolyte into the case (square electric tank can), the non-aqueous electrolyte was sealed, and the non-aqueous electrolyte power storage elements of Examples and Comparative Examples were obtained.
[評価]
(初期放電容量の測定)
 得られた各非水電解質蓄電素子について、充電終止電圧を4.25Vとして、25℃の温度環境下、0.18Aで7時間の定電流定電圧充電をおこなった。充電の終了後、放電終止電圧を2.75Vとして、0.18Aの電流値で定電流放電をおこない、10分間の休止を設けた後、充電終止電圧を4.25Vとして、25℃の温度環境下、0.9Aで3時間の定電流定電圧充電をおこなった。10分間の休止を設けた後、0.9Aの電流値で定電流放電をおこなった。この放電容量を「初期放電容量」とした。
[Evaluation]
(Measurement of initial discharge capacity)
Each of the obtained non-aqueous electrolyte power storage elements was charged with a constant current and constant voltage at 0.18 A for 7 hours under a temperature environment of 25 ° C. with a charge termination voltage of 4.25 V. After the end of charging, the discharge end voltage is 2.75 V, constant current discharge is performed at a current value of 0.18 A, and after a 10-minute pause, the charge end voltage is 4.25 V, and the temperature environment is 25 ° C. Below, constant current and constant voltage charging was performed at 0.9 A for 3 hours. After a 10-minute pause, constant current discharge was performed at a current value of 0.9 A. This discharge capacity was defined as the "initial discharge capacity".
(急速充電性能)
 上記初期放電容量の測定後の各非水電解質蓄電素子について、以下の条件にて急速充電性能の評価を行った。
 25℃において、4.25Vまで充電電流2.2Aの定電流にて充電したのち、4.25Vの定電圧にて充電した。充電の終了条件は、充電時間が3時間とした。その後、10分間の休止時間を設けた。その後、2.75Vまで2.2Aの定電流放電を行い、その後、10分間の休止時間を設けた。この充放電を10サイクル実施した。
 得られた値は、10サイクル後に低下した容量を示し、値が小さいほど急速充電性能が良好である。結果を下記表1に示す。
(Fast charging performance)
The quick charging performance of each non-aqueous electrolyte power storage element after the measurement of the initial discharge capacity was evaluated under the following conditions.
At 25 ° C., the battery was charged to 4.25 V with a constant current of 2.2 A, and then charged with a constant voltage of 4.25 V. The charging end condition was set to a charging time of 3 hours. After that, a rest period of 10 minutes was provided. Then, a constant current discharge of 2.2 A was performed up to 2.75 V, and then a rest period of 10 minutes was provided. This charge / discharge was carried out for 10 cycles.
The obtained value shows the reduced capacity after 10 cycles, and the smaller the value, the better the quick charging performance. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、負極活物質層がバインダーとしてアクリル系樹脂を含み、非水電解液が添加剤としてリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有する実施例1及び実施例2は、急速充電性能が良好であった。 As shown in Table 1, Examples 1 and Example contain an acrylic resin as a binder in the negative electrode active material layer and at least one of lithium difluorooxalatoborate and lithium difluorophosphate as an additive in the non-aqueous electrolyte solution. No. 2 had good quick charging performance.
 非水電解液が添加剤を含まない比較例1及び比較例2は、バインダーがアクリル系樹脂であるか、スチレンブタジエン共重合体であるかに係わらず、実施例と比較して急速充電性能が劣っていた。また、非水電解液が添加剤としてリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有していても、バインダーがスチレンブタジエン共重合体である比較例3及び比較例4は、急速充電特性の向上効果が得られなかった。さらに、非水電解液が添加剤としてビニレンカーボネート(VC)、リチウムジフルオロビスオキサラトホスフェート(LiFOP)、リチウムビスオキサラトボレート(LiBOB)のいずれかを含有する比較例5から比較例7は、バインダーがアクリル系樹脂であるにも係わらず、急速充電特性の向上効果が得られなかった。 In Comparative Example 1 and Comparative Example 2 in which the non-aqueous electrolyte solution did not contain an additive, the quick charging performance was improved as compared with the examples regardless of whether the binder was an acrylic resin or a styrene-butadiene copolymer. It was inferior. Further, even if the non-aqueous electrolytic solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate as an additive, Comparative Example 3 and Comparative Example 4 in which the binder is a styrene-butadiene copolymer have quick charging characteristics. The improvement effect of was not obtained. Further, Comparative Examples 5 to 7 in which the non-aqueous electrolyte solution contains any one of vinylene carbonate (VC), lithium difluorobisoxalate phosphate (LiFOP), and lithium bisoxalate borate (LiBOB) as an additive are binders. Although it is an acrylic resin, the effect of improving the quick charging characteristics could not be obtained.
 一方、比較例1及び比較例8の結果から、バインダーとしてアクリル系樹脂がブタジエンのモノマーユニットを含む場合、急速充電性能が低下することがわかる。 On the other hand, from the results of Comparative Example 1 and Comparative Example 8, it can be seen that when the acrylic resin contains a butadiene monomer unit as the binder, the quick charging performance is lowered.
 以上のように、当該非水電解質蓄電素子は、急速充電特性に優れることが示された。 As described above, it was shown that the non-aqueous electrolyte power storage element is excellent in quick charging characteristics.
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質二次電池をはじめとした非水電解質蓄電素子として好適に用いられる。 The present invention is suitably used as a non-aqueous electrolyte power storage element such as a non-aqueous electrolyte secondary battery used as a power source for personal computers, electronic devices such as communication terminals, automobiles, and the like.
1       非水電解質蓄電素子
2       電極体
3       ケース
4       正極端子
4’      正極集電体
5       負極端子
5’      負極集電体
20      蓄電ユニット
30      蓄電装置
1 Non-aqueous electrolyte power storage element 2 Electrode body 3 Case 4 Positive terminal 4'Positive current collector 5 Negative terminal 5'Negative negative current collector 20 Power storage unit 30 Power storage device

Claims (4)

  1.  負極と、正極と、非水電解液とを備え、
     上記負極が黒鉛及びアクリル系樹脂を含む負極活物質層を有し、
     上記非水電解液がリチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有する非水電解質蓄電素子。
    A negative electrode, a positive electrode, and a non-aqueous electrolyte solution are provided.
    The negative electrode has a negative electrode active material layer containing graphite and an acrylic resin, and has a negative electrode active material layer.
    A non-aqueous electrolyte power storage device in which the non-aqueous electrolyte solution contains at least one of lithium difluorooxalatoborate and lithium difluorophosphate.
  2.  上記非水電解液におけるリチウムジフルオロオキサラトボレート又はリチウムジフルオロホスフェートの含有割合が0.2質量%以上2.0質量%以下である請求項1に記載の非水電解質蓄電素子。 The non-aqueous electrolyte storage element according to claim 1, wherein the content ratio of lithium difluorooxalatoborate or lithium difluorophosphate in the non-aqueous electrolyte solution is 0.2% by mass or more and 2.0% by mass or less.
  3.  上記正極が、ニッケル、コバルト及びマンガンを含む正極活物質を含む請求項1又は請求項2に記載の非水電解質蓄電素子。 The non-aqueous electrolyte power storage element according to claim 1 or 2, wherein the positive electrode contains a positive electrode active material containing nickel, cobalt and manganese.
  4.  負極、正極、及び非水電解液をケースに収容することを備え、
     上記負極は、黒鉛及びアクリル系樹脂を含む負極活物質層を有し、
     上記非水電解液は、リチウムジフルオロオキサラトボレート及びリチウムジフルオロホスフェートの少なくとも一方を含有する非水電解質蓄電素子の製造方法。
    A case is provided with a negative electrode, a positive electrode, and a non-aqueous electrolyte solution.
    The negative electrode has a negative electrode active material layer containing graphite and an acrylic resin, and has a negative electrode active material layer.
    The non-aqueous electrolyte solution is a method for producing a non-aqueous electrolyte power storage element containing at least one of lithium difluorooxalatoborate and lithium difluorophosphate.
PCT/JP2021/000276 2020-01-08 2021-01-07 Non-aqueous electrolyte power storage element and method for manufacturing same WO2021141074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021570079A JPWO2021141074A1 (en) 2020-01-08 2021-01-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-001435 2020-01-08
JP2020001435 2020-01-08

Publications (1)

Publication Number Publication Date
WO2021141074A1 true WO2021141074A1 (en) 2021-07-15

Family

ID=76788013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000276 WO2021141074A1 (en) 2020-01-08 2021-01-07 Non-aqueous electrolyte power storage element and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2021141074A1 (en)
WO (1) WO2021141074A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129363A (en) * 2008-11-27 2010-06-10 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013118138A (en) * 2011-12-05 2013-06-13 Denso Corp Negative electrode carbon material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of manufacturing its negative electrode carbon material
JP2013157339A (en) * 2013-05-23 2013-08-15 Jfe Chemical Corp Negative electrode mixture for lithium ion secondary battery
JP2014029833A (en) * 2012-07-03 2014-02-13 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
WO2014034043A1 (en) * 2012-08-27 2014-03-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2016091987A (en) * 2014-11-06 2016-05-23 東莞新能源科技有限公司Dongguan Amperex Technology Limited Negative electrode film and lithium ion battery as application thereof
WO2018083937A1 (en) * 2016-11-02 2018-05-11 日本電気株式会社 Graphite material for lithium ion secondary batteries, method for producing same, negative electrode and lithium ion secondary battery
JP2018125198A (en) * 2017-02-01 2018-08-09 トヨタ自動車株式会社 Non-aqueous electrolyte and method for manufacturing non-aqueous electrolyte secondary battery
JP2019096629A (en) * 2019-03-26 2019-06-20 三菱ケミカル株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129363A (en) * 2008-11-27 2010-06-10 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013118138A (en) * 2011-12-05 2013-06-13 Denso Corp Negative electrode carbon material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of manufacturing its negative electrode carbon material
JP2014029833A (en) * 2012-07-03 2014-02-13 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
WO2014034043A1 (en) * 2012-08-27 2014-03-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2013157339A (en) * 2013-05-23 2013-08-15 Jfe Chemical Corp Negative electrode mixture for lithium ion secondary battery
JP2016091987A (en) * 2014-11-06 2016-05-23 東莞新能源科技有限公司Dongguan Amperex Technology Limited Negative electrode film and lithium ion battery as application thereof
WO2018083937A1 (en) * 2016-11-02 2018-05-11 日本電気株式会社 Graphite material for lithium ion secondary batteries, method for producing same, negative electrode and lithium ion secondary battery
JP2018125198A (en) * 2017-02-01 2018-08-09 トヨタ自動車株式会社 Non-aqueous electrolyte and method for manufacturing non-aqueous electrolyte secondary battery
JP2019096629A (en) * 2019-03-26 2019-06-20 三菱ケミカル株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using the same

Also Published As

Publication number Publication date
JPWO2021141074A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP2016085838A (en) Lithium ion secondary battery
JP6911655B2 (en) A method for manufacturing a non-aqueous electrolyte for a power storage element, a non-aqueous electrolyte power storage element, and a non-aqueous electrolyte power storage element.
JP7455498B2 (en) Non-aqueous electrolyte, non-aqueous electrolyte storage element, and method for manufacturing a non-aqueous electrolyte storage element
US11349125B2 (en) Spacer included electrodes structure and its application for high energy density and fast chargeable lithium ion batteries
WO2020017580A1 (en) Power storage element
JP7103344B2 (en) Non-aqueous electrolyte power storage element
JP7137757B2 (en) Non-aqueous electrolyte storage element
US11682766B2 (en) Silicone ball containing electrode and lithium ion battery including the same
JP7409132B2 (en) Nonaqueous electrolyte storage element
WO2021125148A1 (en) Power storage device
JP7501110B2 (en) Non-aqueous electrolyte storage element
JP7318344B2 (en) NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
WO2021141074A1 (en) Non-aqueous electrolyte power storage element and method for manufacturing same
JP7062976B2 (en) Non-water electrolyte and non-water electrolyte storage element
US20210296645A1 (en) Nonaqueous electrolyte energy storage device and energy storage apparatus
JP2020173998A (en) Non-aqueous electrolyte storage element and manufacturing method thereof
WO2022009734A1 (en) Nonaqueous electrolyte power storage element
WO2023224071A1 (en) Nonaqueous electrolyte power storage element
WO2023171796A1 (en) Negative electrode, power storage element, and power storage device
WO2021049178A1 (en) Non-aqueous electrolyte power storage element and power storage device
JP7484884B2 (en) Nonaqueous electrolyte storage element and storage device
WO2023224070A1 (en) Non-aqueous electrolyte power storage element
WO2023199942A1 (en) Non-aqueous electrolyte storage element
WO2023190422A1 (en) Positive electrode for non-aqueous electrolyte power storage element, and non-aqueous electrolyte power storage element comprising same
JP2021163707A (en) Nonaqueous electrolyte power storage element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570079

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738042

Country of ref document: EP

Kind code of ref document: A1