WO2022009734A1 - Nonaqueous electrolyte power storage element - Google Patents

Nonaqueous electrolyte power storage element Download PDF

Info

Publication number
WO2022009734A1
WO2022009734A1 PCT/JP2021/024557 JP2021024557W WO2022009734A1 WO 2022009734 A1 WO2022009734 A1 WO 2022009734A1 JP 2021024557 W JP2021024557 W JP 2021024557W WO 2022009734 A1 WO2022009734 A1 WO 2022009734A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator layer
negative electrode
active material
aqueous electrolyte
layer
Prior art date
Application number
PCT/JP2021/024557
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 上原
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2022535260A priority Critical patent/JPWO2022009734A1/ja
Publication of WO2022009734A1 publication Critical patent/WO2022009734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte power storage element.
  • Non-aqueous electrolyte secondary batteries represented by lithium-ion non-aqueous electrolyte secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc. due to their high energy density.
  • the non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically separated by a separator, and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to charge and discharge by doing.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as power storage elements other than non-aqueous electrolyte secondary batteries.
  • Patent Document 1 describes a technique for improving the charge acceptability of a lithium ion secondary battery by combining a non-aqueous electrolytic solution containing a specific compound with a negative electrode active material containing a specific lithium storage alloy and an element. Proposed.
  • the non-aqueous electrolyte storage element using acrylic resin as the binder of the negative electrode active material layer containing the negative electrode active material has higher charge acceptance performance than the non-aqueous electrolyte storage element using styrene-butadiene rubber as the binder.
  • the non-aqueous electrolyte power storage element using acrylic resin as the binder of the negative electrode active material layer tends to increase the resistance after the charge / discharge cycle.
  • the present invention has been made based on the above circumstances, and a non-aqueous electrolyte power storage element capable of suppressing an increase in resistance after a charge / discharge cycle even when an acrylic resin is used as a binder for the negative electrode active material layer.
  • the purpose is to provide.
  • the non-aqueous electrolyte power storage element includes a negative electrode having a negative electrode active material layer containing an acrylic resin, a positive electrode, a first separator layer, and a second separator layer.
  • the layer is interposed between the negative electrode and the positive electrode, the second separator layer is interposed between the negative electrode and the first separator layer, and the porosity of the second separator layer is higher than that of the first separator layer.
  • the non-aqueous electrolyte power storage element according to one aspect of the present invention can suppress an increase in resistance after a charge / discharge cycle even when an acrylic resin is used as the binder of the negative electrode active material layer.
  • the non-aqueous electrolyte power storage element includes a negative electrode having a negative electrode active material layer containing an acrylic resin, a positive electrode, a first separator layer, and a second separator layer.
  • the layer is interposed between the negative electrode and the positive electrode, the second separator layer is interposed between the negative electrode and the first separator layer, and the porosity of the second separator layer is higher than that of the first separator layer.
  • the non-aqueous electrolyte power storage element using acrylic resin as the binder of the negative electrode active material layer is superior in charge acceptability as compared with the non-aqueous electrolyte power storage element using styrene-butadiene rubber as the binder, but it is filled.
  • the resistance after the discharge cycle tends to increase.
  • the non-aqueous electrolyte power storage element includes a first separator layer interposed between the negative electrode and the positive electrode, and a second separator layer interposed between the negative electrode and the first separator layer having a higher porosity than the first separator layer. It is possible to suppress an increase in resistance after a charge / discharge cycle. The reason for this is not clear, but it can be thought of as follows.
  • the acrylic resin When acrylic resin is used as the binder for the negative electrode active material layer, the acrylic resin has a high swelling rate with respect to the non-aqueous electrolyte, so that the binder swells due to the non-aqueous electrolyte as the charge / discharge cycle progresses, and the negative electrode active material layer expands. It's easy to do. Therefore, when a separator having a low pore ratio is opposed to the negative electrode active material layer using acrylic resin as the binder, the negative electrode active material layer expands and invades the pores of the separator, and the pores of the separator are clogged. By causing this, it is considered that the resistance of the non-aqueous electrolyte power storage element is significantly increased.
  • the non-aqueous electrolyte power storage element has a second separator layer having a high porosity facing the negative electrode active material layer using an acrylic resin as a binder, so that the pores of the first separator layer having a low porosity can be obtained. It is possible to suppress the invasion of the negative electrode active material layer and prevent the occurrence of clogging of the first separator layer. As a result, it is considered that the effect of suppressing the increase in resistance of the non-aqueous electrolyte power storage element after the charge / discharge cycle is improved. Therefore, the non-aqueous electrolyte power storage element can suppress an increase in resistance after the charge / discharge cycle while taking advantage of the characteristics of the acrylic resin having high charge acceptance performance.
  • the "porosity" is a volume-based value, and is calculated from the mass per unit area, the thickness, and the true density of the constituent materials.
  • the first separator layer contains a synthetic resin as a main component and the second separator layer contains inorganic particles. Since the first separator layer contains a synthetic resin as a main component and the second separator layer contains inorganic particles, the effect of suppressing the invasion of the negative electrode active material layer into the pores of the first separator layer can be enhanced. , The effect of suppressing the increase in resistance of the non-aqueous electrolyte storage element after the charge / discharge cycle can be further improved.
  • the "main component” means the component having the highest content.
  • the second separator layer is further interposed between the positive electrode and the first separator layer. More specifically, at least one second separator layer is interposed between one surface of the negative electrode and the first separator layer, and the other at least one second separator layer is between the other surface of the positive electrode and the first separator layer. It is preferable to intervene in.
  • the second separator layer containing the inorganic particles By providing the second separator layer containing the inorganic particles on the side facing the positive electrode, the oxidation of the synthetic resin due to the direct contact of the first separator layer containing the synthetic resin as a main component with the positive electrode is suppressed.
  • the first separator layer can be protected.
  • the porosity of the second separator layer is 45% by volume or more and 85% by volume or less.
  • the porosity of the second separator layer is 45% by volume or more and 85% by volume or less, it is possible to suppress the occurrence of clogging of the pores of the second separator layer and to activate the negative electrode on the pores of the first separator layer. It is possible to suppress the invasion of the material layer.
  • the non-aqueous electrolyte power storage element includes a negative electrode, a positive electrode, and a non-aqueous electrolyte.
  • the non-aqueous electrolyte secondary battery will be described as an example of the non-aqueous electrolyte power storage element.
  • the positive electrode and the negative electrode form an electrode body that is alternately superimposed by laminating or winding via a first separator layer and a second separator layer.
  • the electrode body is housed in a case, and the case is filled with a non-aqueous electrolyte.
  • the non-aqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • a known metal case, resin case or the like which is usually used as a case of a non-aqueous electrolyte secondary battery can be used.
  • the negative electrode has a negative electrode base material and a negative electrode active material layer.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer is laminated directly or via an intermediate layer along at least one surface of the negative electrode base material.
  • the negative electrode base material is a base material having conductivity.
  • a metal such as copper, nickel, stainless steel, nickel-plated steel or an alloy thereof is used, and copper or a copper alloy is preferable.
  • examples of the form of the negative electrode base material include foil, a vapor-deposited film, a mesh, a porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, a copper foil or a copper alloy foil is preferable as the negative electrode base material.
  • Examples of the copper foil include rolled copper foil and electrolytic copper foil. Whether or not having a "conductive" is the volume resistivity is measured according to JIS-H-0505 (1975 years) is equal to 1 ⁇ 10 7 ⁇ ⁇ cm as a threshold value.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer contains an acrylic resin as a binder.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials.
  • a material capable of occluding and releasing lithium ions is usually used.
  • the negative electrode active material include metal Li; metal or semi-metal such as Si and Sn; metal oxide or semi-metal oxide such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTIO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; non-graphites such as graphite (graphite), non-graphitizable carbon (hard carbon) and easily graphitizable carbon (soft carbon). Examples include carbon materials such as carbon. Among these materials, graphite and non-graphitic carbon are preferable. In the negative electrode active material layer, one of these materials may be used alone, or two or more of them may be mixed and used.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm. Examples of graphite include natural graphite and artificial graphite.
  • Non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less.
  • non-graphitizable carbon examples include non-graphitizable carbon and easily graphitizable carbon.
  • the non-planar carbon examples include a resin-derived material, a petroleum pitch or a petroleum pitch-derived material, a petroleum coke or a petroleum coke-derived material, a plant-derived material, an alcohol-derived material, and the like.
  • the “non-graphitizable carbon” refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less.
  • the “graphitizable carbon” refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
  • the discharged state means a state in which the carbon material, which is the negative electrode active material, is discharged so as to sufficiently release lithium ions that can be occluded and discharged by charging and discharging.
  • the open circuit voltage is 0.7 V or more.
  • the content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, the upper limit of this content is preferably 99% by mass, more preferably 98% by mass.
  • the negative electrode active material layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, etc. It may be contained as a component other than the thickener and the filler.
  • the negative electrode active material is usually particles (powder).
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the negative electrode active material is a carbon material, a titanium-containing oxide or a polyphosphoric acid compound
  • the average particle size thereof may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is Si, Sn, Si oxide, Sn oxide or the like
  • the average particle size thereof may be 1 nm or more and 1 ⁇ m or less.
  • the electron conductivity of the active material layer is improved.
  • a crusher, a classifier, or the like is used to obtain a powder having a predetermined particle size.
  • the negative electrode active material is a metal such as metal Li
  • the negative electrode active material may be in the form of a foil.
  • the negative electrode active material layer contains an acrylic resin as a binder.
  • acrylic resin examples include a polymer of an acrylic acid ester or a methacrylic acid ester, a copolymer containing polyacrylamide, an acrylic acid ester or a methacrylic acid ester, and the like.
  • the content of the acrylic resin in the binder is preferably 99% by mass or more, and may be 100% by mass.
  • the lower limit of the content of the binder in the negative electrode active material layer is preferably 0.2% by mass, more preferably 0.3% by mass, 0.4% by mass, or 0.5% by mass from the viewpoint of ensuring adhesion. In some cases, 0.8% by mass is even more preferable, 0.9% by mass is even more preferable, and 1.0% by mass is particularly preferable. On the other hand, as the upper limit of this content, from the viewpoint of improving output performance, 10% by mass is preferable, 5% by mass is more preferable, 3% by mass, 2% by mass% and 1% by mass are more preferable, and 0.8% by mass. May be particularly preferred.
  • the negative electrode active material layer contains optional components such as a conductive agent, a thickener, and a filler, if necessary.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • the carbon materials such as graphite, graphitizable carbon, and non-graphitizable carbon also have conductivity, but are not included in the conductive agent in the negative electrode active material layer.
  • Examples of the conductive agent other than the carbon material include other carbonaceous materials, metals, conductive ceramics and the like.
  • Examples of other carbonaceous materials include other non-graphitic carbons, graphene-based carbons and the like.
  • Examples of other non-graphular carbons include carbon nanofibers, pitch-based carbon fibers, and carbon black. Examples of carbon black include furnace black, acetylene black, and ketjen black.
  • Examples of graphene-based carbons include graphene, carbon nanotubes (CNTs), fullerenes and the like.
  • Examples of the shape of the conductive agent include powder and fibrous.
  • As the conductive agent one of these materials may be used alone, or two or more of them may be mixed and used. Further, these materials may be combined and used. For example, a material in which carbon black and CNT are combined may be used. Among these, carbon black is preferable from the viewpoint of electron conductivity and coatability, and acetylene black is particularly preferable.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • methyl cellulose examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • the filler is not particularly limited.
  • the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.
  • the lower limit of the average thickness of one side of the negative electrode active material layer is not particularly limited, but may be 30 ⁇ m, preferably 40 ⁇ m, 44 ⁇ m, 49 ⁇ m, 50 ⁇ m, and 55 ⁇ m, 59 ⁇ m, 60 ⁇ m, or 62 ⁇ m. More preferably, 64 ⁇ m is even more preferable.
  • the average thickness of one side of the negative electrode active material layer is at least the above lower limit, the energy density of the non-aqueous electrolyte power storage element can be increased.
  • the upper limit of the average thickness of one side of the negative electrode active material layer is not particularly limited, but may be 90 ⁇ m, preferably 80 ⁇ m, 79 ⁇ m, or 77 ⁇ m, and more preferably 75 ⁇ m, 74 ⁇ m, or 72 ⁇ m. ..
  • the average thickness of one side of the negative electrode active material layer is not more than the above upper limit, the output performance of the non-aqueous electrolyte power storage element can be improved, and the negative electrode active material layer penetrates into the pores of the first separator layer. This can be suppressed, and clogging of the first separator layer can be suppressed with high certainty.
  • the average thickness of one side of the negative electrode active material layer is preferably 50 ⁇ m or more and 90 ⁇ m or less, and more preferably 62 ⁇ m or more and 77 ⁇ m or less.
  • the average thickness of one side of the negative electrode active material layer is preferably 30 ⁇ m or more and 50 ⁇ m or less, preferably 32 ⁇ m, from the viewpoint of improving output performance. More preferably 48 ⁇ m or more.
  • the intermediate layer is a coating layer on the surface of the negative electrode base material, and contains a conductive agent such as carbon particles to reduce the contact resistance between the negative electrode base material and the negative electrode active material layer.
  • the composition of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a binder and a conductive agent.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer is laminated directly or via an intermediate layer along at least one surface of the positive electrode base material.
  • the configuration of the intermediate layer is not particularly limited, and can be selected from, for example, the configurations exemplified by the negative electrode.
  • the positive electrode base material is a base material having conductivity.
  • metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used.
  • aluminum and aluminum alloys are preferable from the viewpoint of the balance between potential resistance, high conductivity and cost.
  • Examples of the form of the positive electrode base material include foil, a vapor-deposited film, a mesh, a porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material.
  • aluminum or aluminum alloy include A1085, A3003, and A1N30 specified in JIS-H4000 (2014) or JIS-H4160 (2006).
  • the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, further preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the positive electrode active material layer contains a positive electrode active material.
  • a positive electrode active material for example, a known positive electrode active material can be appropriately selected.
  • a material capable of occluding and releasing lithium ions is usually used.
  • the positive electrode active material include a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanionic compound, a chalcogen compound, sulfur and the like.
  • lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure examples include Li [Li x Ni (1-x) ] O 2 (0 ⁇ x ⁇ 0.5) and Li [Li x Ni ⁇ Co (0 ⁇ x ⁇ 0.5).
  • Examples of the lithium transition metal composite oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • Examples of the polyanionic compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like.
  • Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements.
  • the lithium transition metal composite oxide is preferable as the positive electrode active material from the viewpoint of increasing energy density, and a nickel cobalt manganese-containing lithium transition metal composite containing nickel, cobalt and manganese as constituent elements in addition to Li is preferable. Oxides are more preferred.
  • the surface of the material listed as the positive electrode active material may be coated with another material.
  • one of these materials may be used alone, or two or more of them may be mixed and used.
  • the content of the positive electrode active material in the positive electrode active material layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 98% by mass is more preferable.
  • the positive electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • Optional components such as a conductive agent, a binder, a thickener, and a filler can be selected from the materials exemplified for the negative electrode.
  • carbon materials such as graphite, graphitizable carbon, and non-graphitizable carbon are also included in the conductive agent.
  • the binder of the positive electrode active material layer is not particularly limited, and is, for example, a fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), a thermoplastic resin such as polyethylene, polypropylene, polyimide; ethylene-propylene-.
  • Elastomers such as diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), and fluororubber; polysaccharide polymers and the like can be mentioned.
  • the non-aqueous electrolyte power storage element includes a first separator layer and a second separator layer.
  • the first separator layer is interposed between the negative electrode and the positive electrode
  • the second separator layer is interposed between the negative electrode and the first separator layer.
  • the first separator layer and the second separator layer are infiltrated with a non-aqueous electrolyte.
  • the first separator layer and the second separator layer separate the positive electrode and the negative electrode, and hold a non-aqueous electrolyte between the positive electrode and the negative electrode.
  • the porosity of the second separator layer is higher than the porosity of the first separator layer.
  • the non-aqueous electrolyte power storage element has a charge / discharge cycle in which a second separator layer having a higher porosity than the first separator layer is arranged facing the negative electrode active material layer using an acrylic resin as a binder. The effect of suppressing the subsequent increase in resistance is improved.
  • the lower limit of the porosity of the first separator layer is preferably 30%, more preferably 31%, 32%, 33%, 34%, or 35%, and 36%, 37%, 38. %, 39%, or 40% may be preferred.
  • the porosity of the first separator layer By setting the porosity of the first separator layer to be equal to or higher than the above lower limit, the permeability of the non-aqueous electrolyte can be improved.
  • the upper limit of the porosity of the first separator layer is preferably 50%, more preferably 49%, 48%, 47%, 46%, or 45%, and 44%, 43%. , 42%, 41%, or 40% is more preferred. By setting the porosity of the first separator layer to the above upper limit or less, the strength of the first separator layer can be improved.
  • the lower limit of the porosity of the second separator layer is preferably 45%, more preferably 46%, 47%, 48%, 49% or 50%.
  • the porosity of the second separator layer By setting the porosity of the second separator layer to be equal to or higher than the above lower limit, the permeability of the non-aqueous electrolyte can be improved.
  • the upper limit of the porosity of the second separator layer may be 90%, preferably 88%, 87%, 86%, or 85%, and 84%, 83%, 82%, 81%, and so on. Or 80% is more preferable. By setting the porosity of the second separator layer to the above upper limit or less, the strength of the second separator layer can be improved.
  • the difference between the porosity of the first separator layer and the porosity of the second separator layer is preferably 5% or more and 55% or less, more preferably 8% or more and 49% or less, and further preferably 9% or more and 48% or less. It is preferable, and 10% or more and 45% or less are particularly preferable.
  • the porosity of the first separator layer and the second separator layer is calculated from the following formula.
  • W is the mass [g / cm 2 ] per unit area of the first separator layer and the second separator layer
  • is the true density [g / cm 2] of the material constituting the first separator layer or the second separator layer. cm 3 ], where t is the thickness [cm] of the first separator layer or the second separator layer.
  • Porosity (%) 100- (W / ( ⁇ ⁇ t)) ⁇ 100
  • the first separator layer preferably contains a synthetic resin as a main component. Since the first separator layer contains a synthetic resin as a main component, the strength is excellent.
  • the synthetic resin as the main component of the first separator layer is not particularly limited, and examples thereof include polyolefins, polyesters, polyimides, polyamides (aromatic polyamides, aliphatic polyamides, etc.) and the like. Polyolefins shall also include copolymers of olefins and other monomers.
  • polystyrene resin examples include polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, chlorinated polyethylene and the like.
  • polyolefin derivative examples include a polyolefin derivative and an ethylene-propylene copolymer.
  • polyolefins polyolefins, polyesters and aliphatic polyamides are preferable, polyolefins are more preferable, and PE and PP are even more preferable. PE and PP can exert a good shutdown function.
  • the structure of the first separator layer for example, a woven fabric, a non-woven fabric, a microporous film, or the like is used.
  • a non-woven fabric and a microporous membrane are preferable, and a microporous membrane is more preferable.
  • the microporous membrane has advantages such as high strength.
  • Nonwoven fabric has advantages such as high liquid retention.
  • the second separator layer preferably contains inorganic particles. Since the second separator layer contains inorganic particles, the effect of suppressing the invasion of the negative electrode active material layer into the pores of the first separator layer can be enhanced, so that the resistance of the non-aqueous electrolyte power storage element increases after the charge / discharge cycle. It is possible to further improve the suppressive effect on.
  • the second separator layer is a porous layer.
  • the second separator layer is usually composed of inorganic particles and a binder, and may contain other components.
  • Examples of the inorganic particles contained in the second separator layer include oxides such as alumina, silica, zirconia, titania, magnesia, ceria, ittria, zinc oxide and iron oxide, nitrides such as silicon nitride, titanium nitride and boron nitride, and silicon.
  • oxides such as alumina, silica, zirconia, titania, magnesia, ceria, ittria, zinc oxide and iron oxide
  • nitrides such as silicon nitride, titanium nitride and boron nitride, and silicon.
  • Carbide calcium silicate, aluminum sulfate, barium sulfate, aluminum hydroxide, potassium titanate, barium titanate, talc, kaolin ray, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, asbestos , Ox
  • binder for the second separator layer include those exemplified as the binder for the positive electrode active material layer described above.
  • the second separator layer may be integrally formed with the first separator layer, or may be in a form independent of the first separator layer. Further, the second separator layer may be provided so as to cover the negative electrode active material layer.
  • the second separator layer is further interposed between the positive electrode and the first separator layer. More specifically, at least one second separator layer is interposed between one surface of the negative electrode and the first separator layer, and the other at least one second separator layer is between the other surface of the positive electrode and the first separator layer. It is preferable to intervene in.
  • the synthetic resin is oxidized by the direct contact of the first separator layer containing the synthetic resin as a main component with the positive electrode. It can be suppressed and the first separator layer can be protected.
  • the lower limit of the average thickness of the first separator layer is preferably 4 ⁇ m, more preferably 8 ⁇ m.
  • the upper limit of this average thickness is preferably 30 ⁇ m, more preferably 20 ⁇ m.
  • the lower limit of the average thickness of the second separator layer is preferably 1 ⁇ m, more preferably 2 ⁇ m.
  • the upper limit of the average thickness of the second separator layer is preferably 10 ⁇ m, more preferably 6 ⁇ m.
  • the ratio of the average thickness of the second separator layer to the average thickness of the first separator layer is preferably less than 0.5, preferably 0.4 or less, and more preferably 0.3 or less.
  • the lower limit of the ratio of the average thickness of the second separator layer to the average thickness of the first separator layer is preferably 0.1 or more, more preferably 0.2 or more.
  • the ratio of the average thickness of the second separator layer to the average thickness of the first separator layer is equal to or higher than the above lower limit, it is possible to prevent the negative electrode active material layer from invading the pores of the first separator layer. It is possible to prevent the separator layer from being clogged with high certainty.
  • the lower limit of the ratio of the average thickness of the first separator layer to the average thickness of the negative electrode active material layer and the total thickness of the second separator layer is, for example, 0.05, and may be 0.10. , 0.15 is preferable, 0.20 is more preferable, and 0.25, 0.30, 0.38 may be preferable.
  • the upper limit of the ratio of the average thickness of the first separator layer to the average thickness of the negative electrode active material layer and the total thickness of the second separator layer is, for example, 1.30, preferably 1.00. , 0.80, 0.75, 0.65 are more preferable, and 0.60, 0.50, 0.45 may be preferable.
  • the energy density of the non-aqueous electrolyte power storage element can be adjusted.
  • the lower limit of the ratio of the average thickness of the first separator layer to the average thickness of the negative electrode active material layer is, for example, 0.04, preferably 0.08, and more preferably 0.11.
  • the upper limit of the ratio of the average thickness of the first separator layer to the average thickness of the negative electrode active material layer is, for example, 1.00, 0.80, 0.70, 0.65, 0.50, 0. It may be .45, and 0.40 or 0.30 may be preferable.
  • the lower limit of the ratio of the average thickness of the second separator layer to the average thickness of the negative electrode active material layer is, for example, 0.01, preferably 0.02, 0.04, 0.06, 0.08. Is more preferable.
  • the upper limit of the ratio of the average thickness of the second separator layer to the average thickness of the negative electrode active material layer is, for example, 0.33, preferably 0.20, 0.17, 0.13, and 0.10. , 0.08.
  • the upper limit charging potential of the positive electrode is 4.15 V vs. from the viewpoint of suppressing the oxidation of the first separator layer. .. Li / Li + or less is preferable, and 4.10 V vs. Li / Li + or less is more preferable.
  • the charge upper limit voltage of the non-aqueous electrolyte power storage element may be controlled by setting a charger or the like, but the charge / discharge reaction potential of LiFePO 4 or the like as the positive electrode active material. Is 4.15V vs. Materials that are Li / Li + or less may be used.
  • Non-water electrolyte As the non-aqueous electrolyte, a known non-aqueous electrolyte can be appropriately selected. As the non-aqueous electrolyte, a non-aqueous electrolyte solution is used. The non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • Non-aqueous solvent a known non-aqueous solvent can be appropriately selected.
  • the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like.
  • a solvent in which some of the hydrogen atoms contained in these compounds are replaced with halogen may be used.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VEC vinylene carbonate
  • VEC vinylethylene carbonate
  • FEC fluoroethylene carbonate
  • difluoroethylene examples thereof include carbonate (DFEC), styrene carbonate, catechol carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate, and among these, EC is preferable.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis (trifluoroethyl) carbonate and the like.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • diphenyl carbonate trifluoroethylmethyl carbonate
  • bis (trifluoroethyl) carbonate bis (trifluoroethyl) carbonate and the like.
  • EMC is preferable.
  • the non-aqueous solvent it is preferable to use cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination.
  • the cyclic carbonate By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved.
  • the chain carbonate By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like. Of these, lithium salts are preferred.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2). C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other halogenated hydrocarbon groups Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
  • the content of the electrolyte salt in the nonaqueous electrolytic solution preferable to be 0.1 mol / dm 3 or more 2.5 mol / dm 3 or less, more preferable to be 0.3 mol / dm 3 or more 2.0 mol / dm 3 or less , more preferable to be 0.5 mol / dm 3 or more 1.7 mol / dm 3 or less, and particularly preferably 0.7 mol / dm 3 or more 1.5 mol / dm 3 or less.
  • the non-aqueous electrolyte solution may contain additives.
  • the additive include aromatic compounds such as biphenyl, alkyl biphenyl, terphenyl, and partially hydrides of turphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluorobiphenyl, o.
  • -Partial halides of the above aromatic compounds such as cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; Halogenated anisole compounds; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride; ethylene sulfone, propylene sulfite, dimethyl sulfite, dimethyl sulfate, ethylene sulfate, Sulfone, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4'-bis (2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl- Examples thereof
  • the content of the additive contained in the non-aqueous electrolytic solution is preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolytic solution. , 0.2% by mass or more and 5% by mass or less is more preferable, and 0.3% by mass or more and 3% by mass or less is particularly preferable.
  • non-aqueous electrolyte a non-aqueous electrolyte solution and a solid electrolyte may be used in combination.
  • the shape of the non-aqueous electrolyte power storage element of the present embodiment is not particularly limited, and examples thereof include a cylindrical battery, a pouch film type battery, a square battery, a flat type battery, a coin type battery, and a button type battery. Be done.
  • FIG. 1 shows a non-aqueous electrolyte power storage element 1 as an example of a square battery.
  • the figure is a perspective view of the inside of the case 3.
  • the electrode body 2 having the positive electrode and the negative electrode wound around the separator is housed in the square case 3.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode current collector 41.
  • the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode current collector 51. Further, a non-aqueous electrolyte is injected into the case 3.
  • the method for manufacturing a non-aqueous electrolyte power storage element includes accommodating the negative electrode, the positive electrode, and the non-aqueous electrolyte in a case.
  • the negative electrode can be obtained by laminating the negative electrode active material layer directly on the negative electrode base material or via an intermediate layer.
  • the laminating of the negative electrode active material layer is performed by applying a negative electrode mixture paste containing a negative electrode active material and an acrylic resin to the negative electrode base material.
  • the positive electrode can be obtained by laminating the positive electrode active material layer directly on the positive electrode base material or via an intermediate layer, similarly to the negative electrode.
  • the laminating of the positive electrode active material layer is performed by applying a positive electrode mixture paste to the positive electrode base material.
  • the negative electrode mixture paste and the positive electrode mixture paste may contain a dispersion solvent.
  • the dispersion solvent for example, an aqueous solvent such as water or a mixed solvent mainly composed of water; an organic solvent such as N-methylpyrrolidone or toluene can be used.
  • the method for manufacturing the non-aqueous electrolyte power storage element includes laminating the negative electrode and the positive electrode via the first separator layer and the second separator layer.
  • the first separator layer is interposed between the negative electrode and the positive electrode
  • the second separator layer is interposed between the negative electrode and the first separator layer.
  • An electrode body is formed by laminating the negative electrode and the positive electrode via the first separator layer and the second separator layer.
  • the method of accommodating the negative electrode, the positive electrode, the non-aqueous electrolyte, etc. in the case can be performed by a known method. After accommodating, a non-aqueous electrolyte power storage element can be obtained by sealing the accommodating port. The details of each element constituting the non-aqueous electrolyte power storage element obtained by the above manufacturing method are as described above.
  • the non-aqueous electrolyte power storage device of the present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique.
  • some of the configurations of certain embodiments can be deleted.
  • a well-known technique can be added to the configuration of a certain embodiment.
  • the non-aqueous electrolyte storage element has been described mainly in the form of a non-aqueous electrolyte secondary battery, but other non-aqueous electrolyte storage elements may be used.
  • examples of other non-aqueous electrolyte storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.
  • Examples of the non-aqueous electrolyte secondary battery include a lithium ion non-aqueous electrolyte secondary battery.
  • the winding type electrode body is used, but the laminated type formed from the laminated body in which a plurality of sheet bodies including the positive electrode, the negative electrode, the first separator layer and the second separator layer are stacked.
  • An electrode body may be provided.
  • the present invention can also be realized as a power storage device including a plurality of the above-mentioned non-aqueous electrolyte electric elements.
  • a power storage unit can be configured by using a single or a plurality of non-aqueous electrolyte power storage elements of the present invention, and a power storage device can be further configured by using the power storage unit.
  • the power storage device can be used as a power source for automobiles such as electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs).
  • the power storage device can be used for various power supply devices such as an engine starting power supply device, an auxiliary power supply device, and an uninterruptible power supply (UPS).
  • UPS uninterruptible power supply
  • FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled. Even if the power storage device 30 includes a bus bar (not shown) for electrically connecting two or more non-aqueous electrolyte power storage elements 1 and a bus bar (not shown) for electrically connecting two or more power storage units 20. good.
  • the power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) for monitoring the state of one or more non-aqueous electrolyte power storage elements.
  • Example 1 and Comparative Example 2 (Negative electrode) A negative electrode mixture paste containing graphite as a negative electrode active material, the binder shown in Table 1, and carboxymethyl cellulose (CMC) as a thickener, and using water as a dispersion solvent was prepared. The mixing ratio of the negative electrode active material, the binder and the thickener was 98: 1: 1 in mass ratio. The negative electrode mixture paste is applied to one side of a copper foil having a thickness of 10 ⁇ m as a negative electrode base material, dried and pressed to form a negative electrode active material layer having an average thickness of 67 ⁇ m, and the negative electrodes of Examples and Comparative Examples are formed.
  • CMC carboxymethyl cellulose
  • a positive electrode mixture paste containing the above positive electrode active material, polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive agent and using N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was prepared. ..
  • the mixing ratio of the positive electrode active material, the binder and the conductive agent was 94: 3: 3 in mass ratio.
  • the positive electrode mixture paste was applied to one side of the positive electrode base material, dried and pressed to form a positive electrode active material layer.
  • An aluminum foil having a thickness of 15 ⁇ m was used as the positive electrode base material.
  • the separator has a porous layer containing inorganic particles and a binder (average thickness 4 ⁇ m, porosity 48%) on one side of a microporous substrate made of polyolefin (average thickness 20 ⁇ m, porosity 37%).
  • a microporous substrate made of polyolefin average thickness 20 ⁇ m, porosity 37%).
  • the microporous substrate made of polyolefin corresponds to the first separator layer
  • the porous layer corresponds to the second separator layer.
  • a non-aqueous electrolyte power storage element using the positive electrode and the negative electrode was assembled.
  • the positive electrode active material layer and the negative electrode active material layer face each other with the first separator layer and the second separator layer interposed therebetween, the first separator layer is interposed between the negative electrode and the positive electrode, and the second separator layer is the negative electrode.
  • the positive electrode, the first separator layer, the second separator layer and the negative electrode were laminated so as to be interposed between the first separator layers, and the non-aqueous electrolyte was used as the non-aqueous electrolyte.
  • Example 2 and Comparative Example 3 As a separator, a porous layer containing inorganic particles and a binder on both sides of a microporous base material made of polyolefin (average thickness 14 ⁇ m, porosity 45%) (average thickness 3 ⁇ m, porosity: 58%). We used the laminated ones.
  • the microporous base material made of polyolefin corresponds to the first separator layer
  • the porous layer corresponds to the second separator layer.
  • the positive electrode, the first separator layer, the second separator layer and the negative electrode are laminated so that one second separator layer is interposed between the negative electrode and the first separator layer and the other second separator layer is interposed between the positive electrode and the first separator layer.
  • the non-aqueous electrolyte power storage elements of Example 2 and Comparative Example 3 were obtained in the same manner as in Example 1 and Comparative Example 2 except for the above.
  • Comparative Example 1 and Comparative Example 4 As a separator, a porous layer containing inorganic particles and a binder (average thickness 4 ⁇ m, porosity: 75%) on one side of a microporous base material made of polyolefin (average thickness 14 ⁇ m, porosity 44%). was used.
  • the microporous base material made of polyolefin corresponds to the first separator layer
  • the porous layer corresponds to the second separator layer.
  • the positive electrode, the first separator layer, the second separator layer and the negative electrode are laminated so that the second separator layer is interposed between the positive electrode active material and the first separator layer. Then, the non-aqueous electrolyte power storage elements of Comparative Example 1 and Comparative Example 4 were obtained.
  • each of the obtained non-aqueous electrolyte power storage elements was subjected to constant current charging at 25 ° C. with a charging current of 1.0 C to set the SOC (State of Charge) to 50%. It was charged at 25 ° C. with a charging current of 0.2C, 0.5C, or 1.0C for 30 seconds. After each charge was completed, constant current discharge was performed with a discharge current of 1.0 C to set the SOC to 50%. The relationship between the current at each charging current and the voltage 10 seconds after the start of charging was plotted, and the DC input resistance (initial DC input resistance) was obtained from the slope of a straight line obtained from the three plots.
  • the negative electrode active material layer contains an acrylic resin as a binder, and the second separator layer having a higher porosity than the first separator layer is not arranged facing the negative electrode.
  • Comparative Examples 2 to 3 in which the negative electrode active material layer contains styrene-butadiene rubber as a binder, the second separator layer is arranged facing the negative electrode even if the second separator is arranged facing the negative electrode. It can be seen that the DC input resistance increase rate after the charge / discharge cycle is not sufficiently reduced as compared with Comparative Example 4 which has not been used.
  • the non-aqueous electrolyte power storage element is excellent in the effect of suppressing the increase in resistance after the charge / discharge cycle.
  • the present invention is suitably used as a non-aqueous electrolyte power storage element such as a non-aqueous electrolyte secondary battery used as a power source for personal computers, electronic devices such as communication terminals, automobiles, and the like.
  • Non-aqueous electrolyte power storage element 1
  • Electrode body 3 Case 4
  • Positive electrode terminal 5
  • Negative electrode terminal 20
  • Power storage unit 30
  • Power storage device 41
  • Positive electrode current collector 51 Negative electrode current collector

Abstract

A nonaqueous electrolyte power storage element according to an aspect of the present invention comprises a negative electrode having a negative electrode active material layer containing an acrylic resin, a positive electrode, a first separator layer, and a second separator layer. The first separator layer is interposed between the negative electrode and the positive electrode. The second separator layer is interposed between the negative electrode and the first separator layer. The porosity of the second separator layer is higher than that of the first separator layer.

Description

非水電解質蓄電素子Non-aqueous electrolyte power storage element
 本発明は、非水電解質蓄電素子に関する。 The present invention relates to a non-aqueous electrolyte power storage element.
 リチウムイオン非水電解質二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解質を備え、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。 Non-aqueous electrolyte secondary batteries represented by lithium-ion non-aqueous electrolyte secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc. due to their high energy density. The non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically separated by a separator, and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to charge and discharge by doing. In addition, capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as power storage elements other than non-aqueous electrolyte secondary batteries.
 上記自動車等のエネルギー源としては燃費向上の観点から、大電流で充電可能な充電受入性能が高い非水電解質二次電池が求められている。例えば特許文献1には、特定化合物を含有する非水電解液と、特定のリチウム吸蔵合金及び元素を含む負極活物質とを組み合わせることで、リチウムイオン二次電池の充電受入性を向上する技術が提案されている。 From the viewpoint of improving fuel efficiency, a non-aqueous electrolyte secondary battery that can be charged with a large current and has high charge acceptance performance is required as an energy source for the above-mentioned automobiles and the like. For example, Patent Document 1 describes a technique for improving the charge acceptability of a lithium ion secondary battery by combining a non-aqueous electrolytic solution containing a specific compound with a negative electrode active material containing a specific lithium storage alloy and an element. Proposed.
特開2007-188871号公報Japanese Unexamined Patent Publication No. 2007-188871
 負極活物質を含有する負極活物質層のバインダーにアクリル樹脂を用いた非水電解質蓄電素子は、バインダーにスチレンブタジエンゴムを用いた非水電解質蓄電素子と比較して充電受入性能が高い。しかしながら、負極活物質層のバインダーにアクリル樹脂を用いた非水電解質蓄電素子は、充放電サイクル後の抵抗が増大しやすい傾向がある。 The non-aqueous electrolyte storage element using acrylic resin as the binder of the negative electrode active material layer containing the negative electrode active material has higher charge acceptance performance than the non-aqueous electrolyte storage element using styrene-butadiene rubber as the binder. However, the non-aqueous electrolyte power storage element using acrylic resin as the binder of the negative electrode active material layer tends to increase the resistance after the charge / discharge cycle.
 本発明は、以上のような事情に基づいてなされたものであり、負極活物質層のバインダーにアクリル樹脂を用いた場合においても、充放電サイクル後の抵抗増大を抑制できる非水電解質蓄電素子を提供することを目的とする。 The present invention has been made based on the above circumstances, and a non-aqueous electrolyte power storage element capable of suppressing an increase in resistance after a charge / discharge cycle even when an acrylic resin is used as a binder for the negative electrode active material layer. The purpose is to provide.
 本発明の一側面に係る非水電解質蓄電素子は、アクリル樹脂を含む負極活物質層を有する負極と、正極と、第一セパレータ層と、第二セパレータ層とを備えており、上記第一セパレータ層は上記負極及び上記正極間に介在し、上記第二セパレータ層は上記負極及び上記第一セパレータ層間に介在し、上記第二セパレータ層の空孔率が上記第一セパレータ層よりも高い。 The non-aqueous electrolyte power storage element according to one aspect of the present invention includes a negative electrode having a negative electrode active material layer containing an acrylic resin, a positive electrode, a first separator layer, and a second separator layer. The layer is interposed between the negative electrode and the positive electrode, the second separator layer is interposed between the negative electrode and the first separator layer, and the porosity of the second separator layer is higher than that of the first separator layer.
 本発明の一側面に係る非水電解質蓄電素子は、負極活物質層のバインダーにアクリル樹脂を用いた場合においても、充放電サイクル後の抵抗増大を抑制できる。 The non-aqueous electrolyte power storage element according to one aspect of the present invention can suppress an increase in resistance after a charge / discharge cycle even when an acrylic resin is used as the binder of the negative electrode active material layer.
本発明の一実施形態に係る非水電解質蓄電素子を示す外観斜視図である。It is an external perspective view which shows the non-aqueous electrolyte power storage element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る非水電解質蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。It is a schematic diagram which shows the power storage device which was configured by gathering a plurality of non-aqueous electrolyte power storage elements which concerns on one Embodiment of this invention.
 本発明の一側面に係る非水電解質蓄電素子は、アクリル樹脂を含む負極活物質層を有する負極と、正極と、第一セパレータ層と、第二セパレータ層とを備えており、上記第一セパレータ層は上記負極及び上記正極間に介在し、上記第二セパレータ層は上記負極及び上記第一セパレータ層間に介在し、上記第二セパレータ層の空孔率が上記第一セパレータ層よりも高い。 The non-aqueous electrolyte power storage element according to one aspect of the present invention includes a negative electrode having a negative electrode active material layer containing an acrylic resin, a positive electrode, a first separator layer, and a second separator layer. The layer is interposed between the negative electrode and the positive electrode, the second separator layer is interposed between the negative electrode and the first separator layer, and the porosity of the second separator layer is higher than that of the first separator layer.
 上述したように、負極活物質層のバインダーにアクリル樹脂を用いた非水電解質蓄電素子は、上記バインダーにスチレンブタジエンゴムを用いた非水電解質蓄電素子とくらべて、充電受入性に優れるが、充放電サイクル後の抵抗が増大しやすい傾向がある。しかしながら、当該非水電解質蓄電素子は、負極及び正極間に介在する第一セパレータ層と、空孔率が上記第一セパレータ層よりも高く、負極及び第一セパレータ層間に介在する第二セパレータ層とを備えることで充放電サイクル後の抵抗増大を抑制することができる。この理由は定かではないが、次のように考えられる。負極活物質層のバインダーにアクリル樹脂を用いた場合、アクリル樹脂は非水電解質に対する膨潤率が高いために充放電サイクルの進行に伴ってバインダーが非水電解質によって膨潤し、負極活物質層が膨張しやすい。従って、バインダーにアクリル樹脂を用いた負極活物質層に空孔率が低いセパレータを対向させた場合、負極活物質層が膨張してセパレータの空孔に侵入し、セパレータの空孔の目詰まりを引き起こすことで、非水電解質蓄電素子の抵抗が顕著に増大すると考えられる。当該非水電解質蓄電素子は、バインダーにアクリル樹脂を用いた負極活物質層に対して空孔率が高い第二セパレータ層が対向することで、空孔率が低い第一セパレータ層の空孔へ負極活物質層が侵入することを抑制し、第一セパレータ層の目詰まりの発生を生じにくくすることができる。その結果、当該非水電解質蓄電素子の充放電サイクル後の抵抗増大に対する抑制効果が向上すると考えられる。従って、当該非水電解質蓄電素子は、充電受入性能が高いアクリル樹脂の特性を活かしつつ、充放電サイクル後の抵抗増大を抑制できる。なお、「空孔率」とは、体積基準の値であり、単位面積あたりの質量、厚さ、及び構成材料の真密度から算出する。 As described above, the non-aqueous electrolyte power storage element using acrylic resin as the binder of the negative electrode active material layer is superior in charge acceptability as compared with the non-aqueous electrolyte power storage element using styrene-butadiene rubber as the binder, but it is filled. The resistance after the discharge cycle tends to increase. However, the non-aqueous electrolyte power storage element includes a first separator layer interposed between the negative electrode and the positive electrode, and a second separator layer interposed between the negative electrode and the first separator layer having a higher porosity than the first separator layer. It is possible to suppress an increase in resistance after a charge / discharge cycle. The reason for this is not clear, but it can be thought of as follows. When acrylic resin is used as the binder for the negative electrode active material layer, the acrylic resin has a high swelling rate with respect to the non-aqueous electrolyte, so that the binder swells due to the non-aqueous electrolyte as the charge / discharge cycle progresses, and the negative electrode active material layer expands. It's easy to do. Therefore, when a separator having a low pore ratio is opposed to the negative electrode active material layer using acrylic resin as the binder, the negative electrode active material layer expands and invades the pores of the separator, and the pores of the separator are clogged. By causing this, it is considered that the resistance of the non-aqueous electrolyte power storage element is significantly increased. The non-aqueous electrolyte power storage element has a second separator layer having a high porosity facing the negative electrode active material layer using an acrylic resin as a binder, so that the pores of the first separator layer having a low porosity can be obtained. It is possible to suppress the invasion of the negative electrode active material layer and prevent the occurrence of clogging of the first separator layer. As a result, it is considered that the effect of suppressing the increase in resistance of the non-aqueous electrolyte power storage element after the charge / discharge cycle is improved. Therefore, the non-aqueous electrolyte power storage element can suppress an increase in resistance after the charge / discharge cycle while taking advantage of the characteristics of the acrylic resin having high charge acceptance performance. The "porosity" is a volume-based value, and is calculated from the mass per unit area, the thickness, and the true density of the constituent materials.
 上記第一セパレータ層が合成樹脂を主成分とし、上記第二セパレータ層が無機粒子を含むことが好ましい。上記第一セパレータ層が合成樹脂を主成分とし、上記第二セパレータ層が無機粒子を含むことで、第一セパレータ層の空孔への負極活物質層の侵入に対する抑制効果を高めることができるので、非水電解質蓄電素子の充放電サイクル後の抵抗増大に対する抑制効果をより向上できる。ここで、「主成分」とは、最も含有量の多い成分を意味する。 It is preferable that the first separator layer contains a synthetic resin as a main component and the second separator layer contains inorganic particles. Since the first separator layer contains a synthetic resin as a main component and the second separator layer contains inorganic particles, the effect of suppressing the invasion of the negative electrode active material layer into the pores of the first separator layer can be enhanced. , The effect of suppressing the increase in resistance of the non-aqueous electrolyte storage element after the charge / discharge cycle can be further improved. Here, the "main component" means the component having the highest content.
 上記第二セパレータ層がさらに上記正極及び上記第一セパレータ層間に介在することが好ましい。より詳細には、少なくとも一の第二セパレータ層が負極及び第一セパレータ層の一方の面間に介在するとともに、他の少なくとも一の第二セパレータ層が正極及び第一セパレータ層の他方の面間に介在することが好ましい。上記無機粒子を含む第二セパレータ層が正極と対向する側にも備えられることで、合成樹脂を主成分とする第一セパレータ層が直接正極と接触することによる上記合成樹脂の酸化を抑制し、第一セパレータ層の保護を図ることができる。 It is preferable that the second separator layer is further interposed between the positive electrode and the first separator layer. More specifically, at least one second separator layer is interposed between one surface of the negative electrode and the first separator layer, and the other at least one second separator layer is between the other surface of the positive electrode and the first separator layer. It is preferable to intervene in. By providing the second separator layer containing the inorganic particles on the side facing the positive electrode, the oxidation of the synthetic resin due to the direct contact of the first separator layer containing the synthetic resin as a main component with the positive electrode is suppressed. The first separator layer can be protected.
 上記第二セパレータ層の空孔率が45体積%以上85体積%以下であることが好ましい。上記第二セパレータ層の空孔率が45体積%以上85体積%以下であることで、第二セパレータ層の空孔の目詰まりの発生を抑制できるとともに、第一セパレータ層の空孔へ負極活物質層が侵入することを抑制できる。 It is preferable that the porosity of the second separator layer is 45% by volume or more and 85% by volume or less. When the porosity of the second separator layer is 45% by volume or more and 85% by volume or less, it is possible to suppress the occurrence of clogging of the pores of the second separator layer and to activate the negative electrode on the pores of the first separator layer. It is possible to suppress the invasion of the material layer.
 以下、本発明の一実施形態に係る非水電解質蓄電素子について詳説する。 Hereinafter, the non-aqueous electrolyte power storage device according to the embodiment of the present invention will be described in detail.
<非水電解質蓄電素子>
 本発明の一実施形態に係る非水電解質蓄電素子は、負極と、正極と、非水電解質とを備える。以下、非水電解質蓄電素子の一例として、非水電解質二次電池について説明する。上記正極及び負極は、第一セパレータ層及び第二セパレータ層を介して積層又は巻回により交互に重畳された電極体を形成する。この電極体はケースに収納され、このケース内に非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。また、上記ケースとしては、非水電解質二次電池のケースとして通常用いられる公知の金属ケース、樹脂ケース等を用いることができる。
<Non-water electrolyte power storage element>
The non-aqueous electrolyte power storage element according to the embodiment of the present invention includes a negative electrode, a positive electrode, and a non-aqueous electrolyte. Hereinafter, the non-aqueous electrolyte secondary battery will be described as an example of the non-aqueous electrolyte power storage element. The positive electrode and the negative electrode form an electrode body that is alternately superimposed by laminating or winding via a first separator layer and a second separator layer. The electrode body is housed in a case, and the case is filled with a non-aqueous electrolyte. The non-aqueous electrolyte is interposed between the positive electrode and the negative electrode. Further, as the above case, a known metal case, resin case or the like which is usually used as a case of a non-aqueous electrolyte secondary battery can be used.
[負極]
 負極は、負極基材と、負極活物質層とを有する。上記負極活物質層は、負極活物質を含有する。上記負極活物質層は、上記負極基材の少なくとも一方の面に沿って直接又は中間層を介して積層される。
[Negative electrode]
The negative electrode has a negative electrode base material and a negative electrode active material layer. The negative electrode active material layer contains a negative electrode active material. The negative electrode active material layer is laminated directly or via an intermediate layer along at least one surface of the negative electrode base material.
(負極基材)
 上記負極基材は、導電性を有する基材である。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。また、負極基材の形態としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの面から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。なお、「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が1×10Ω・cmを閾値として判定する。
(Negative electrode base material)
The negative electrode base material is a base material having conductivity. As the material of the negative electrode base material, a metal such as copper, nickel, stainless steel, nickel-plated steel or an alloy thereof is used, and copper or a copper alloy is preferable. Further, examples of the form of the negative electrode base material include foil, a vapor-deposited film, a mesh, a porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, a copper foil or a copper alloy foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil. Whether or not having a "conductive" is the volume resistivity is measured according to JIS-H-0505 (1975 years) is equal to 1 × 10 7 Ω · cm as a threshold value.
(負極活物質層)
 負極活物質層は、負極活物質を含む。負極活物質層は、バインダーとしてアクリル樹脂を含む。
(Negative electrode active material layer)
The negative electrode active material layer contains a negative electrode active material. The negative electrode active material layer contains an acrylic resin as a binder.
 負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、難黒鉛化性炭素(ハードカーボン)や易黒鉛化性炭素(ソフトカーボン)等の非黒鉛質炭素等の炭素材料などが挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The negative electrode active material can be appropriately selected from known negative electrode active materials. As the negative electrode active material for a lithium ion secondary battery, a material capable of occluding and releasing lithium ions is usually used. Examples of the negative electrode active material include metal Li; metal or semi-metal such as Si and Sn; metal oxide or semi-metal oxide such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTIO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; non-graphites such as graphite (graphite), non-graphitizable carbon (hard carbon) and easily graphitizable carbon (soft carbon). Examples include carbon materials such as carbon. Among these materials, graphite and non-graphitic carbon are preferable. In the negative electrode active material layer, one of these materials may be used alone, or two or more of them may be mixed and used.
 「黒鉛」とは、充放電前又は放電状態において、X線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。
 「非黒鉛質炭素」とは、充放電前又は放電状態においてX線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。
“Graphite” refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm. Examples of graphite include natural graphite and artificial graphite.
"Non-graphitic carbon" refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. Say. Examples of non-graphitizable carbon include non-graphitizable carbon and easily graphitizable carbon. Examples of the non-planar carbon include a resin-derived material, a petroleum pitch or a petroleum pitch-derived material, a petroleum coke or a petroleum coke-derived material, a plant-derived material, an alcohol-derived material, and the like. The “non-graphitizable carbon” refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less. The “graphitizable carbon” refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
 ここで、「放電状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた半電池において、開回路電圧が0.7V以上である状態である。 Here, the "discharged state" means a state in which the carbon material, which is the negative electrode active material, is discharged so as to sufficiently release lithium ions that can be occluded and discharged by charging and discharging. For example, in a half cell in which a negative electrode containing a carbon material as a negative electrode active material is used as a working electrode and metallic Li is used as a counter electrode, the open circuit voltage is 0.7 V or more.
 負極活物質層中の負極活物質の含有量は特に限定されないが、その下限としては、50質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。一方、この含有量の上限としては、99質量%が好ましく、98質量がより好ましい。 The content of the negative electrode active material in the negative electrode active material layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, the upper limit of this content is preferably 99% by mass, more preferably 98% by mass.
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。 The negative electrode active material layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, etc. It may be contained as a component other than the thickener and the filler.
 負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が炭素材料、チタン含有酸化物又はポリリン酸化合物である場合、その平均粒径は、1μm以上100μm以下であってもよい。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒径は、1nm以上1μm以下であってもよい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。負極活物質が金属Li等の金属である場合、負極活物質は、箔状であってもよい。 The negative electrode active material is usually particles (powder). The average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 μm or less. When the negative electrode active material is a carbon material, a titanium-containing oxide or a polyphosphoric acid compound, the average particle size thereof may be 1 μm or more and 100 μm or less. When the negative electrode active material is Si, Sn, Si oxide, Sn oxide or the like, the average particle size thereof may be 1 nm or more and 1 μm or less. By setting the average particle size of the negative electrode active material to be equal to or higher than the above lower limit, the production or handling of the negative electrode active material becomes easy. By setting the average particle size of the negative electrode active material to the above upper limit or less, the electron conductivity of the active material layer is improved. A crusher, a classifier, or the like is used to obtain a powder having a predetermined particle size. When the negative electrode active material is a metal such as metal Li, the negative electrode active material may be in the form of a foil.
負極活物質層は、バインダーとしてアクリル樹脂を含む。「アクリル樹脂」とは、アクリル酸エステル又はメタクリル酸エステルの重合体、ポリアクリルアミド、アクリル酸エステル又はメタクリル酸エステルを含む共重合体などが挙げられる。 The negative electrode active material layer contains an acrylic resin as a binder. Examples of the "acrylic resin" include a polymer of an acrylic acid ester or a methacrylic acid ester, a copolymer containing polyacrylamide, an acrylic acid ester or a methacrylic acid ester, and the like.
 上記バインダーにおけるアクリル樹脂の含有量としては、99質量%以上が好ましく、100質量%であってもよい。 The content of the acrylic resin in the binder is preferably 99% by mass or more, and may be 100% by mass.
 負極活物質層中のバインダーの含有量の下限としては、密着性確保の観点から、0.2質量%が好ましく、0.3質量%、0.4質量%、0.5質量%がより好ましい場合があり、0.8質量%がさらに好ましく、0.9質量%がよりさらに好ましく、1.0質量%が特に好ましい。一方、この含有量の上限としては、出力性能向上の観点から、10質量%が好ましく、5質量%がより好ましく、3質量%、2質量%、1質量%がさらに好ましく、0.8質量%が特に好ましい場合がある。 The lower limit of the content of the binder in the negative electrode active material layer is preferably 0.2% by mass, more preferably 0.3% by mass, 0.4% by mass, or 0.5% by mass from the viewpoint of ensuring adhesion. In some cases, 0.8% by mass is even more preferable, 0.9% by mass is even more preferable, and 1.0% by mass is particularly preferable. On the other hand, as the upper limit of this content, from the viewpoint of improving output performance, 10% by mass is preferable, 5% by mass is more preferable, 3% by mass, 2% by mass% and 1% by mass are more preferable, and 0.8% by mass. May be particularly preferred.
負極活物質層は、必要に応じて導電剤、増粘剤、フィラー等の任意成分を含む。 The negative electrode active material layer contains optional components such as a conductive agent, a thickener, and a filler, if necessary.
 上記導電剤は、導電性を有する材料であれば特に限定されない。上記黒鉛、易黒鉛化性炭素、難黒鉛化性炭素等の炭素材料も導電性を有するが、負極活物質層においては導電剤には含まない。上記炭素材料以外の導電剤としては、例えば、他の炭素質材料、金属、導電性セラミックス等が挙げられる。他の炭素質材料としては、他の非黒鉛質炭素、グラフェン系炭素等が挙げられる。他の非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。 The conductive agent is not particularly limited as long as it is a conductive material. The carbon materials such as graphite, graphitizable carbon, and non-graphitizable carbon also have conductivity, but are not included in the conductive agent in the negative electrode active material layer. Examples of the conductive agent other than the carbon material include other carbonaceous materials, metals, conductive ceramics and the like. Examples of other carbonaceous materials include other non-graphitic carbons, graphene-based carbons and the like. Examples of other non-graphular carbons include carbon nanofibers, pitch-based carbon fibers, and carbon black. Examples of carbon black include furnace black, acetylene black, and ketjen black. Examples of graphene-based carbons include graphene, carbon nanotubes (CNTs), fullerenes and the like. Examples of the shape of the conductive agent include powder and fibrous. As the conductive agent, one of these materials may be used alone, or two or more of them may be mixed and used. Further, these materials may be combined and used. For example, a material in which carbon black and CNT are combined may be used. Among these, carbon black is preferable from the viewpoint of electron conductivity and coatability, and acetylene black is particularly preferable.
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。 Examples of the thickener include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose. When the thickener has a functional group that reacts with lithium, it is preferable to inactivate this functional group by methylation or the like in advance.
 上記フィラーとしては、特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス等が挙げられる。 The filler is not particularly limited. Examples of the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.
 上記負極活物質層の片面の平均厚さの下限としては、特に限定されないが、30μmであってもよく、40μm、44μm、49μm、50μmが好ましいこともあり、55μm、59μm、60μm、又は62μmがより好ましく、64μmがさらに好ましい。負極活物質層の片面の平均厚さが上記下限以上であることによって、非水電解質蓄電素子のエネルギー密度を高くできる。上記負極活物質層の片面の平均厚さの上限としては、特に限定されないが、90μmであってもよく、80μm、79μm、77μmが好ましいこともあり、75μm、74μm、72μmがより好ましいこともある。負極活物質層の片面の平均厚さが上記上限以下であることによって、非水電解質蓄電素子の出力性能を優れたものにできるとともに、第一セパレータ層の空孔へ負極活物質層が侵入することを抑制し、第一セパレータ層が目詰まりすることを確実性高く抑制することができる。
 電気自動車(EV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、及び補機用電源装置、無停電電源装置(UPS)等の電源装置として非水電解質蓄電素子を用いる場合は、エネルギー密度を高くする観点から、負極活物質層の片面の平均厚さとしては、50μm以上90μm以下が好ましく、62μm以上77μm以下がより好ましい。ハイブリッド自動車(HEV)等の自動車用電源として非水電解質蓄電素子を用いる場合は、出力性能を高くする観点から、負極活物質層の片面の平均厚さとしては、30μm以上50μm以下が好ましく、32μm以上48μm以上がより好ましい。
The lower limit of the average thickness of one side of the negative electrode active material layer is not particularly limited, but may be 30 μm, preferably 40 μm, 44 μm, 49 μm, 50 μm, and 55 μm, 59 μm, 60 μm, or 62 μm. More preferably, 64 μm is even more preferable. When the average thickness of one side of the negative electrode active material layer is at least the above lower limit, the energy density of the non-aqueous electrolyte power storage element can be increased. The upper limit of the average thickness of one side of the negative electrode active material layer is not particularly limited, but may be 90 μm, preferably 80 μm, 79 μm, or 77 μm, and more preferably 75 μm, 74 μm, or 72 μm. .. When the average thickness of one side of the negative electrode active material layer is not more than the above upper limit, the output performance of the non-aqueous electrolyte power storage element can be improved, and the negative electrode active material layer penetrates into the pores of the first separator layer. This can be suppressed, and clogging of the first separator layer can be suppressed with high certainty.
Energy density when a non-aqueous electrolyte power storage element is used as a power supply for automobiles such as electric vehicles (EV) and plug-in hybrid vehicles (PHEV), and as a power supply device for auxiliary power supply devices and uninterruptible power supply devices (UPS). The average thickness of one side of the negative electrode active material layer is preferably 50 μm or more and 90 μm or less, and more preferably 62 μm or more and 77 μm or less. When a non-aqueous electrolyte power storage element is used as a power source for an automobile such as a hybrid electric vehicle (HEV), the average thickness of one side of the negative electrode active material layer is preferably 30 μm or more and 50 μm or less, preferably 32 μm, from the viewpoint of improving output performance. More preferably 48 μm or more.
(中間層)
 上記中間層は、負極基材の表面の被覆層であり、炭素粒子等の導電剤を含むことで負極基材と負極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えばバインダー及び導電剤を含有する組成物により形成できる。
(Middle layer)
The intermediate layer is a coating layer on the surface of the negative electrode base material, and contains a conductive agent such as carbon particles to reduce the contact resistance between the negative electrode base material and the negative electrode active material layer. The composition of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a binder and a conductive agent.
[正極]
 正極は、正極基材と、正極活物質層とを有する。上記正極活物質層は、正極活物質を含有する。上記正極活物質層は、上記正極基材の少なくとも一方の面に沿って直接又は中間層を介して積層される。中間層の構成は特に限定されず、例えば上記負極で例示した構成から選択することができる。
[Positive electrode]
The positive electrode has a positive electrode base material and a positive electrode active material layer. The positive electrode active material layer contains a positive electrode active material. The positive electrode active material layer is laminated directly or via an intermediate layer along at least one surface of the positive electrode base material. The configuration of the intermediate layer is not particularly limited, and can be selected from, for example, the configurations exemplified by the negative electrode.
(正極基材)
 上記正極基材は、導電性を有する基材である。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形態としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの面から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H4000(2014)又はJIS-H4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
(Positive electrode base material)
The positive electrode base material is a base material having conductivity. As the material of the positive electrode base material, metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the viewpoint of the balance between potential resistance, high conductivity and cost. Examples of the form of the positive electrode base material include foil, a vapor-deposited film, a mesh, a porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085, A3003, and A1N30 specified in JIS-H4000 (2014) or JIS-H4160 (2006).
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。 The average thickness of the positive electrode substrate is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, further preferably 8 μm or more and 30 μm or less, and particularly preferably 10 μm or more and 25 μm or less. By setting the average thickness of the positive electrode base material in the above range, it is possible to increase the energy density per volume of the secondary battery while increasing the strength of the positive electrode base material.
(正極活物質層)
 正極活物質層は正極活物質を含む。上記正極活物質としては、例えば、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi(1-x)]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiCo(1-x)]O(0≦x<0.5)、Li[LiNiγMn(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LiNiγCoβAl(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LiMn,LiNiγMn(2-γ)等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。上記正極活物質としては、これらの中でも、高エネルギー密度化の観点から上記リチウム遷移金属複合酸化物が好ましく、Li以外に、ニッケル、コバルト及びマンガンを構成元素として含むニッケルコバルトマンガン含有リチウム遷移金属複合酸化物がより好ましい。
(Positive electrode active material layer)
The positive electrode active material layer contains a positive electrode active material. As the positive electrode active material, for example, a known positive electrode active material can be appropriately selected. As the positive electrode active material for a lithium ion secondary battery, a material capable of occluding and releasing lithium ions is usually used. Examples of the positive electrode active material include a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanionic compound, a chalcogen compound, sulfur and the like. Examples of the lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure include Li [Li x Ni (1-x) ] O 2 (0 ≦ x <0.5) and Li [Li x Ni γ Co (0 ≦ x <0.5). 1-x-γ)] O 2 (0 ≦ x <0.5,0 <γ <1), Li [Li x Co (1-x)] O 2 (0 ≦ x <0.5), Li [ Li x Ni γ Mn (1-x-γ) ] O 2 (0 ≦ x <0.5, 0 <γ <1), Li [Li x Ni γ Mn β Co (1-x-γ-β) ] O 2 (0≤x <0.5, 0 <γ, 0 <β, 0.5 <γ + β <1), Li [Li x Ni γ Co β Al (1-x-γ-β) ] O 2 ( Examples thereof include 0 ≦ x <0.5, 0 <γ, 0 <β, 0.5 <γ + β <1). Examples of the lithium transition metal composite oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni γ Mn (2-γ) O 4 . Examples of the polyanionic compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like. Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements. Among these, the lithium transition metal composite oxide is preferable as the positive electrode active material from the viewpoint of increasing energy density, and a nickel cobalt manganese-containing lithium transition metal composite containing nickel, cobalt and manganese as constituent elements in addition to Li is preferable. Oxides are more preferred.
 上記正極活物質として挙げられた材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The surface of the material listed as the positive electrode active material may be coated with another material. In the positive electrode active material layer, one of these materials may be used alone, or two or more of them may be mixed and used.
 正極活物質層中の正極活物質の含有量は特に限定されないが、その下限としては、50質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。一方、この含有量の上限としては、99質量%が好ましく、98質量%がより好ましい。 The content of the positive electrode active material in the positive electrode active material layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 98% by mass is more preferable.
 正極活物質層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、上記負極で例示した材料から選択できる。なお、正極活物質層においては、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素等の炭素材料も導電剤に含む。 The positive electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary. Optional components such as a conductive agent, a binder, a thickener, and a filler can be selected from the materials exemplified for the negative electrode. In the positive electrode active material layer, carbon materials such as graphite, graphitizable carbon, and non-graphitizable carbon are also included in the conductive agent.
 正極活物質層のバインダーとしては、特に限定されず、例えばフッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子などが挙げられる。 The binder of the positive electrode active material layer is not particularly limited, and is, for example, a fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), a thermoplastic resin such as polyethylene, polypropylene, polyimide; ethylene-propylene-. Elastomers such as diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), and fluororubber; polysaccharide polymers and the like can be mentioned.
[セパレータ]
 当該非水電解質蓄電素子は、第一セパレータ層及び第二セパレータ層を備える。第一セパレータ層は、上記負極及び上記正極間に介在し、第二セパレータ層は、上記負極及び上記第一セパレータ層間に介在する。第一セパレータ層及び第二セパレータ層には、非水電解質が浸潤する。第一セパレータ層及び第二セパレータ層は、正極と負極とを隔離すると共に、正極と負極との間に非水電解質を保持する。
[Separator]
The non-aqueous electrolyte power storage element includes a first separator layer and a second separator layer. The first separator layer is interposed between the negative electrode and the positive electrode, and the second separator layer is interposed between the negative electrode and the first separator layer. The first separator layer and the second separator layer are infiltrated with a non-aqueous electrolyte. The first separator layer and the second separator layer separate the positive electrode and the negative electrode, and hold a non-aqueous electrolyte between the positive electrode and the negative electrode.
 上記第二セパレータ層の空孔率は、上記第一セパレータ層の空孔率よりも高い。当該非水電解質蓄電素子は、バインダーにアクリル樹脂を用いた負極活物質層に対して空孔率が第一セパレータ層よりも高い第二セパレータ層が対向して配置されることで、充放電サイクル後の抵抗増大に対する抑制効果が向上する。 The porosity of the second separator layer is higher than the porosity of the first separator layer. The non-aqueous electrolyte power storage element has a charge / discharge cycle in which a second separator layer having a higher porosity than the first separator layer is arranged facing the negative electrode active material layer using an acrylic resin as a binder. The effect of suppressing the subsequent increase in resistance is improved.
 第一セパレータ層の空孔率の下限としては、30%であることが好ましく、31%、32%、33%、34%、又は35%であることがより好ましく、36%、37%、38%、39%、又は40%が好ましい場合もある。第一セパレータ層の空孔率を上記下限以上とすることで、非水電解質の透過性を良好にできる。一方、第一セパレータ層の空孔率の上限としては、50%であることが好ましく、49%、48%、47%、46%、又は45%であることがより好ましく、44%、43%、42%、41%、又は40%であることがさらに好ましい。第一セパレータ層の空孔率を上記上限以下とすることで、第一セパレータ層の強度を良好にできる。 The lower limit of the porosity of the first separator layer is preferably 30%, more preferably 31%, 32%, 33%, 34%, or 35%, and 36%, 37%, 38. %, 39%, or 40% may be preferred. By setting the porosity of the first separator layer to be equal to or higher than the above lower limit, the permeability of the non-aqueous electrolyte can be improved. On the other hand, the upper limit of the porosity of the first separator layer is preferably 50%, more preferably 49%, 48%, 47%, 46%, or 45%, and 44%, 43%. , 42%, 41%, or 40% is more preferred. By setting the porosity of the first separator layer to the above upper limit or less, the strength of the first separator layer can be improved.
 第二セパレータ層の空孔率の下限としては、45%であることが好ましく、46%、47%、48%、49%又は50%であることがより好ましい。第二セパレータ層の空孔率を上記下限以上とすることで、非水電解質の透過性を良好にできる。一方、第二セパレータ層の空孔率の上限としては、90%でもよく、88%、87%、86%、又は85%であることが好ましく、84%、83%、82%、81%、又は80%であることがより好ましい。第二セパレータ層の空孔率を上記上限以下とすることで、第二セパレータ層の強度を良好にできる。 The lower limit of the porosity of the second separator layer is preferably 45%, more preferably 46%, 47%, 48%, 49% or 50%. By setting the porosity of the second separator layer to be equal to or higher than the above lower limit, the permeability of the non-aqueous electrolyte can be improved. On the other hand, the upper limit of the porosity of the second separator layer may be 90%, preferably 88%, 87%, 86%, or 85%, and 84%, 83%, 82%, 81%, and so on. Or 80% is more preferable. By setting the porosity of the second separator layer to the above upper limit or less, the strength of the second separator layer can be improved.
 第一セパレータ層の空孔率と、第二セパレータ層の空孔率との差は、5%以上55%以下が好ましく、8%以上49%以下がより好ましく、9%以上48%以下がさらに好ましく、10%以上45%以下が特に好ましい。上記空孔率の差を上記範囲とすることで、第一セパレータ層の空孔へ負極活物質層が侵入することを抑制し、第一セパレータ層が目詰まりすることをより抑制するとともにセパレータの強度と透過性のバランスを良好にできる。 The difference between the porosity of the first separator layer and the porosity of the second separator layer is preferably 5% or more and 55% or less, more preferably 8% or more and 49% or less, and further preferably 9% or more and 48% or less. It is preferable, and 10% or more and 45% or less are particularly preferable. By setting the difference in porosity within the above range, it is possible to suppress the penetration of the negative electrode active material layer into the pores of the first separator layer, further suppress the clogging of the first separator layer, and further suppress the clogging of the separator. A good balance between strength and permeability can be achieved.
 第一セパレータ層及び第二セパレータ層の空孔率は、次の式から算出する。ここで、Wは第一セパレータ層及び第二セパレータ層の単位面積あたりの質量[g/cm]であり、ρは第一セパレータ層又は第二セパレータ層を構成する材料の真密度[g/cm]であり、tは第一セパレータ層又は第二セパレータ層の厚さ[cm]である。
 空孔率(%)=100-(W/(ρ×t))×100
The porosity of the first separator layer and the second separator layer is calculated from the following formula. Here, W is the mass [g / cm 2 ] per unit area of the first separator layer and the second separator layer, and ρ is the true density [g / cm 2] of the material constituting the first separator layer or the second separator layer. cm 3 ], where t is the thickness [cm] of the first separator layer or the second separator layer.
Porosity (%) = 100- (W / (ρ × t)) × 100
 上記第一セパレータ層は、合成樹脂を主成分とすることが好ましい。上記第一セパレータ層が合成樹脂を主成分とすることで、強度が優れる。第一セパレータ層の主成分となる合成樹脂としては、特に限定されないが、ポリオレフィン、ポリエステル、ポリイミド、ポリアミド(芳香族ポリアミド、脂肪族ポリアミド等)等を挙げることができる。ポリオレフィンには、オレフィンと他のモノマーとの共重合体も含まれるものとする。ポリオレフィンとしては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、塩素化ポリエチレン等のポリオレフィン誘導体、エチレン-プロピレン共重合体等を挙げることができる。 The first separator layer preferably contains a synthetic resin as a main component. Since the first separator layer contains a synthetic resin as a main component, the strength is excellent. The synthetic resin as the main component of the first separator layer is not particularly limited, and examples thereof include polyolefins, polyesters, polyimides, polyamides (aromatic polyamides, aliphatic polyamides, etc.) and the like. Polyolefins shall also include copolymers of olefins and other monomers. Examples of the polyolefin include polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, chlorinated polyethylene and the like. Examples thereof include a polyolefin derivative and an ethylene-propylene copolymer.
 これらの樹脂の中でも、ポリオレフィン、ポリエステル及び脂肪族ポリアミドが好ましく、ポリオレフィンがより好ましく、PE及びPPがさらに好ましい。PE及びPPは良好なシャットダウン機能を発揮させることができる。 Among these resins, polyolefins, polyesters and aliphatic polyamides are preferable, polyolefins are more preferable, and PE and PP are even more preferable. PE and PP can exert a good shutdown function.
 上記第一セパレータ層の構造としては、例えば織布、不織布、微多孔質膜等が用いられる。これらの中でも、不織布及び微多孔質膜が好ましく、微多孔質膜がより好ましい。微多孔質膜は、強度が高いなどの利点がある。不織布は、保液性が高いなどの利点がある。 As the structure of the first separator layer, for example, a woven fabric, a non-woven fabric, a microporous film, or the like is used. Among these, a non-woven fabric and a microporous membrane are preferable, and a microporous membrane is more preferable. The microporous membrane has advantages such as high strength. Nonwoven fabric has advantages such as high liquid retention.
 上記第二セパレータ層としては、無機粒子を含むことが好ましい。第二セパレータ層が無機粒子を含むことで、第一セパレータ層の空孔への負極活物質層の侵入に対する抑制効果を高めることができるので、非水電解質蓄電素子の充放電サイクル後の抵抗増大に対する抑制効果をより向上できる。第二セパレータ層は、多孔質の層である。上記第二セパレータ層は、通常、無機粒子及びバインダーで構成され、その他の成分が含有されていてもよい。 The second separator layer preferably contains inorganic particles. Since the second separator layer contains inorganic particles, the effect of suppressing the invasion of the negative electrode active material layer into the pores of the first separator layer can be enhanced, so that the resistance of the non-aqueous electrolyte power storage element increases after the charge / discharge cycle. It is possible to further improve the suppressive effect on. The second separator layer is a porous layer. The second separator layer is usually composed of inorganic particles and a binder, and may contain other components.
 第二セパレータ層が含む無機粒子としては、例えばアルミナ、シリカ、ジルコニア、チタニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、硫酸バリウム、水酸化アルミニウム、チタン酸カリウム、チタン酸バリウム、タルク、カオリンクレイ、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウムなどの粒子が挙げられる。これらの中でも、アルミナ、シリカ、チタニア、又は硫酸バリウムの粒子が好ましい。 Examples of the inorganic particles contained in the second separator layer include oxides such as alumina, silica, zirconia, titania, magnesia, ceria, ittria, zinc oxide and iron oxide, nitrides such as silicon nitride, titanium nitride and boron nitride, and silicon. Carbide, calcium silicate, aluminum sulfate, barium sulfate, aluminum hydroxide, potassium titanate, barium titanate, talc, kaolin ray, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, asbestos , Oxide, calcium silicate, magnesium silicate and the like. Among these, particles of alumina, silica, titania, or barium sulfate are preferable.
 第二セパレータ層のバインダーの具体的種類としては、上述した正極活物質層のバインダーとして例示したものを挙げることができる。 Specific types of the binder for the second separator layer include those exemplified as the binder for the positive electrode active material layer described above.
 上記第二セパレータ層は、上記第一セパレータ層と一体的に形成されていてもよいし、上記第一セパレータ層と独立した形態であってもよい。また、上記第二セパレータ層は、負極活物質層を被覆するように設けられていてもよい。 The second separator layer may be integrally formed with the first separator layer, or may be in a form independent of the first separator layer. Further, the second separator layer may be provided so as to cover the negative electrode active material layer.
 上記第二セパレータ層は、さらに上記正極及び上記第一セパレータ層間に介在することが好ましい。より詳細には、少なくとも一の第二セパレータ層が負極及び第一セパレータ層の一方の面間に介在するとともに、他の少なくとも一の第二セパレータ層が正極及び第一セパレータ層の他方の面間に介在することが好ましい。上記無機粒子を含む第二セパレータ層が正極と対向する側にも備えられることで、合成樹脂を主成分とする第一セパレータ層が直接正極と接触することにより上記合成樹脂が酸化されることを抑制し、第一セパレータ層の保護を図ることができる。 It is preferable that the second separator layer is further interposed between the positive electrode and the first separator layer. More specifically, at least one second separator layer is interposed between one surface of the negative electrode and the first separator layer, and the other at least one second separator layer is between the other surface of the positive electrode and the first separator layer. It is preferable to intervene in. By providing the second separator layer containing the inorganic particles on the side facing the positive electrode, the synthetic resin is oxidized by the direct contact of the first separator layer containing the synthetic resin as a main component with the positive electrode. It can be suppressed and the first separator layer can be protected.
 上記第一セパレータ層の平均厚さの下限としては、4μmが好ましく、8μmがより好ましい。この平均厚さの上限としては、30μmが好ましく、20μmがより好ましい。上記第一セパレータ層の平均厚さを上記下限以上とすることによって、正極と負極との短絡を確実性高く防止することができる。また、上記第一セパレータ層の平均厚さを上記上限以下とすることによって、非水電解質蓄電素子のエネルギー密度を高くすることができる。 The lower limit of the average thickness of the first separator layer is preferably 4 μm, more preferably 8 μm. The upper limit of this average thickness is preferably 30 μm, more preferably 20 μm. By setting the average thickness of the first separator layer to be equal to or greater than the lower limit, it is possible to prevent a short circuit between the positive electrode and the negative electrode with high certainty. Further, by setting the average thickness of the first separator layer to be equal to or less than the upper limit, the energy density of the non-aqueous electrolyte power storage element can be increased.
 上記第二セパレータ層の平均厚さの下限としては、1μmが好ましく、2μmがより好ましい。一方、上記第二セパレータ層の平均厚さの上限としては、10μmが好ましく、6μmがより好ましい。上記第二セパレータ層の平均厚さを上記下限以上とすることによって、第一セパレータ層の空孔へ負極活物質層が侵入することを抑制し、第一セパレータ層が目詰まりすることを確実性高く抑制することができる。上記第二セパレータ層の平均厚さを上記上限以下とすることによって、非水電解質蓄電素子のエネルギー密度を高くすることができる。なお、第二セパレータ層が二以上備えられる場合は、上記第二セパレータ層の平均厚さは各第二セパレータ層の平均厚さの平均値とする。 The lower limit of the average thickness of the second separator layer is preferably 1 μm, more preferably 2 μm. On the other hand, the upper limit of the average thickness of the second separator layer is preferably 10 μm, more preferably 6 μm. By setting the average thickness of the second separator layer to be equal to or greater than the lower limit, it is possible to prevent the negative electrode active material layer from invading the pores of the first separator layer and to ensure that the first separator layer is clogged. It can be suppressed high. By setting the average thickness of the second separator layer to be equal to or less than the upper limit, the energy density of the non-aqueous electrolyte power storage element can be increased. When two or more second separator layers are provided, the average thickness of the second separator layers is the average value of the average thickness of each second separator layer.
 上記第一セパレータ層の平均厚さに対する上記第二セパレータ層の平均厚さの比は、0.5未満であることが好ましく、0.4以下が好ましく、0.3以下がより好ましい。第一セパレータ層の平均厚さに対する第二セパレータ層の平均厚さの比を上記範囲とすることによって、非水電解質蓄電素子のエネルギー密度を高くすることができる。上記第一セパレータ層の平均厚さに対する上記第二セパレータ層の平均厚さの比の下限は、0.1以上が好ましく、0.2以上がより好ましい。第一セパレータ層の平均厚さに対する第二セパレータ層の平均厚さの比を上記下限以上とすることによって、第一セパレータ層の空孔へ負極活物質層が侵入することを抑制し、第一セパレータ層が目詰まりすることを確実性高く抑制することができる。 The ratio of the average thickness of the second separator layer to the average thickness of the first separator layer is preferably less than 0.5, preferably 0.4 or less, and more preferably 0.3 or less. By setting the ratio of the average thickness of the second separator layer to the average thickness of the first separator layer within the above range, the energy density of the non-aqueous electrolyte power storage element can be increased. The lower limit of the ratio of the average thickness of the second separator layer to the average thickness of the first separator layer is preferably 0.1 or more, more preferably 0.2 or more. By setting the ratio of the average thickness of the second separator layer to the average thickness of the first separator layer to be equal to or higher than the above lower limit, it is possible to prevent the negative electrode active material layer from invading the pores of the first separator layer. It is possible to prevent the separator layer from being clogged with high certainty.
 上記負極活物質層の平均厚さに対する上記第一セパレータ層の平均厚さ及び上記第二セパレータ層の平均厚さの合計の比の下限は、例えば、0.05であり、0.10でもよく、0.15が好ましく、0.20がより好ましく、0.25、0.30、0.38が好ましい場合もある。上記負極活物質層の平均厚さに対する上記第一セパレータ層の平均厚さ及び上記第二セパレータ層の平均厚さの合計の比の上限は、例えば、1.30であり、1.00が好ましく、0.80、0.75、0.65がより好ましく、0.60、0.50、0.45が好ましい場合もある。上記負極活物質層の平均厚さに対する上記第一セパレータ層の平均厚さ及び上記第二セパレータ層の平均厚さの合計の比を上記範囲とすることで、非水電解質蓄電素子のエネルギー密度を高くするとともに、第一セパレータ層の空孔へ負極活物質層が侵入することを抑制し、第一セパレータ層が目詰まりすることをより確実に抑制することができる。 The lower limit of the ratio of the average thickness of the first separator layer to the average thickness of the negative electrode active material layer and the total thickness of the second separator layer is, for example, 0.05, and may be 0.10. , 0.15 is preferable, 0.20 is more preferable, and 0.25, 0.30, 0.38 may be preferable. The upper limit of the ratio of the average thickness of the first separator layer to the average thickness of the negative electrode active material layer and the total thickness of the second separator layer is, for example, 1.30, preferably 1.00. , 0.80, 0.75, 0.65 are more preferable, and 0.60, 0.50, 0.45 may be preferable. By setting the ratio of the total of the average thickness of the first separator layer and the average thickness of the second separator layer to the average thickness of the negative electrode active material layer within the above range, the energy density of the non-aqueous electrolyte power storage element can be adjusted. In addition to increasing the height, it is possible to suppress the invasion of the negative electrode active material layer into the pores of the first separator layer and more reliably suppress the clogging of the first separator layer.
 上記負極活物質層の平均厚さに対する上記第一セパレータ層の平均厚さの比の下限は、例えば、0.04であり、0.08が好ましく、0.11がより好ましい。上記負極活物質層の平均厚さに対する上記第一セパレータ層の平均厚さの比の上限は、例えば、1.00であり、0.80、0.70、0.65、0.50、0.45であってもよく、0.40、0.30が好ましい場合もある。上記負極活物質層の平均厚さに対する上記第一セパレータ層の平均厚さの比を上記範囲とすることで、非水電解質蓄電素子のエネルギー密度を高くするとともに、負極活物質層の膨張による反力の増大をセパレータが抑制する効果を高めることができる。 The lower limit of the ratio of the average thickness of the first separator layer to the average thickness of the negative electrode active material layer is, for example, 0.04, preferably 0.08, and more preferably 0.11. The upper limit of the ratio of the average thickness of the first separator layer to the average thickness of the negative electrode active material layer is, for example, 1.00, 0.80, 0.70, 0.65, 0.50, 0. It may be .45, and 0.40 or 0.30 may be preferable. By setting the ratio of the average thickness of the first separator layer to the average thickness of the negative electrode active material layer in the above range, the energy density of the non-aqueous electrolyte power storage element is increased, and the reaction due to the expansion of the negative electrode active material layer is increased. The effect of the separator suppressing the increase in force can be enhanced.
 上記負極活物質層の平均厚さに対する上記第二セパレータ層の平均厚さの比の下限は、例えば、0.01であり、0.02が好ましく、0.04、0.06、0.08がより好ましい。上記負極活物質層の平均厚さに対する上記第二セパレータ層の平均厚さの比の上限は、例えば、0.33であり、0.20、0.17、0.13が好ましく、0.10、0.08であってもよい。上記負極活物質層の平均厚さに対する上記第二セパレータ層の平均厚さの比を上記範囲とすることで、非水電解質蓄電素子のエネルギー密度を高くするとともに、第一セパレータ層の空孔へ負極活物質層が侵入することを抑制し、第一セパレータ層が目詰まりすることをより確実に抑制することができる。 The lower limit of the ratio of the average thickness of the second separator layer to the average thickness of the negative electrode active material layer is, for example, 0.01, preferably 0.02, 0.04, 0.06, 0.08. Is more preferable. The upper limit of the ratio of the average thickness of the second separator layer to the average thickness of the negative electrode active material layer is, for example, 0.33, preferably 0.20, 0.17, 0.13, and 0.10. , 0.08. By setting the ratio of the average thickness of the second separator layer to the average thickness of the negative electrode active material layer within the above range, the energy density of the non-aqueous electrolyte power storage element can be increased and the pores of the first separator layer can be increased. It is possible to suppress the invasion of the negative electrode active material layer and more reliably suppress the clogging of the first separator layer.
 第一セパレータ層が合成樹脂を主成分とし、正極活物質層と第一セパレータ層とが直接接触する場合、第一セパレータ層の酸化を抑制する観点から、正極の充電上限電位は4.15V vs.Li/Li以下が好ましく、4.10V vs.Li/Li以下がより好ましい。正極の充電上限電位を上記範囲とするためには、非水電解質蓄電素子の充電上限電圧を充電器等の設定により制御してもよいが、正極活物質としてLiFePO等の、充放電反応電位が4.15V vs.Li/Li以下である材料を用いてもよい。 When the first separator layer contains a synthetic resin as a main component and the positive electrode active material layer and the first separator layer come into direct contact with each other, the upper limit charging potential of the positive electrode is 4.15 V vs. from the viewpoint of suppressing the oxidation of the first separator layer. .. Li / Li + or less is preferable, and 4.10 V vs. Li / Li + or less is more preferable. In order to set the charge upper limit potential of the positive electrode within the above range, the charge upper limit voltage of the non-aqueous electrolyte power storage element may be controlled by setting a charger or the like, but the charge / discharge reaction potential of LiFePO 4 or the like as the positive electrode active material. Is 4.15V vs. Materials that are Li / Li + or less may be used.
[非水電解質]
 非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質としては、非水電解液が用いられる。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
[Non-water electrolyte]
As the non-aqueous electrolyte, a known non-aqueous electrolyte can be appropriately selected. As the non-aqueous electrolyte, a non-aqueous electrolyte solution is used. The non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
(非水溶媒)
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
(Non-aqueous solvent)
As the non-aqueous solvent, a known non-aqueous solvent can be appropriately selected. Examples of the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like. As the non-aqueous solvent, a solvent in which some of the hydrogen atoms contained in these compounds are replaced with halogen may be used.
 上記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、カテコールカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等を挙げることができ、これらの中でもECが好ましい。 Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene. Examples thereof include carbonate (DFEC), styrene carbonate, catechol carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate, and among these, EC is preferable.
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。 Examples of the chain carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis (trifluoroethyl) carbonate and the like. Among these, EMC is preferable.
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。 As the non-aqueous solvent, it is preferable to use cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination. By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved. By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low. When the cyclic carbonate and the chain carbonate are used in combination, the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate: chain carbonate) is preferably in the range of, for example, 5:95 to 50:50.
(電解質塩)
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。
(Electrolyte salt)
The electrolyte salt can be appropriately selected from known electrolyte salts. Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like. Of these, lithium salts are preferred.
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。 Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2). C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other halogenated hydrocarbon groups Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
 非水電解液における電解質塩の含有量は、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。 The content of the electrolyte salt in the nonaqueous electrolytic solution, preferable to be 0.1 mol / dm 3 or more 2.5 mol / dm 3 or less, more preferable to be 0.3 mol / dm 3 or more 2.0 mol / dm 3 or less , more preferable to be 0.5 mol / dm 3 or more 1.7 mol / dm 3 or less, and particularly preferably 0.7 mol / dm 3 or more 1.5 mol / dm 3 or less. By setting the content of the electrolyte salt in the above range, the ionic conductivity of the non-aqueous electrolyte solution can be increased.
(添加剤)
 非水電解液は、添加剤を含んでもよい。添加剤としては、例えばビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(Additive)
The non-aqueous electrolyte solution may contain additives. Examples of the additive include aromatic compounds such as biphenyl, alkyl biphenyl, terphenyl, and partially hydrides of turphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluorobiphenyl, o. -Partial halides of the above aromatic compounds such as cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; Halogenated anisole compounds; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride; ethylene sulfone, propylene sulfite, dimethyl sulfite, dimethyl sulfate, ethylene sulfate, Sulfone, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4'-bis (2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl- Examples thereof include 2,2-dioxo-1,3,2-dioxathiolane, thioanisole, diphenyldisulfide, dipyridinium disulfide, perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanate and the like. These additives may be used alone or in combination of two or more.
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下が好ましく、0.1質量%以上7質量%以下がより好ましく、0.2質量%以上5質量%以下がさらに好ましく、0.3質量%以上3質量%以下が特に好ましい。添加剤の含有量を上記の範囲とすることで、非水電解質蓄電素子の高温保存後の容量維持性能又は充放電サイクル性能を向上させたり、安全性をより向上させたりすることができる。 The content of the additive contained in the non-aqueous electrolytic solution is preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolytic solution. , 0.2% by mass or more and 5% by mass or less is more preferable, and 0.3% by mass or more and 3% by mass or less is particularly preferable. By setting the content of the additive in the above range, it is possible to improve the capacity maintenance performance or charge / discharge cycle performance of the non-aqueous electrolyte power storage element after high temperature storage, and further improve the safety.
 非水電解質には、非水電解液と固体電解質とを併用してもよい。 As the non-aqueous electrolyte, a non-aqueous electrolyte solution and a solid electrolyte may be used in combination.
[非水電解質蓄電素子の具体的構成]
 本実施形態の非水電解質蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、パウチフィルム型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
[Specific configuration of non-aqueous electrolyte power storage element]
The shape of the non-aqueous electrolyte power storage element of the present embodiment is not particularly limited, and examples thereof include a cylindrical battery, a pouch film type battery, a square battery, a flat type battery, a coin type battery, and a button type battery. Be done.
 図1に角型電池の一例としての非水電解質蓄電素子1を示す。なお、同図は、ケース3内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型のケース3に収納される。正極は正極集電体41を介して正極端子4と電気的に接続されている。負極は負極集電体51を介して負極端子5と電気的に接続されている。また、ケース3には、非水電解質が注入されている。 FIG. 1 shows a non-aqueous electrolyte power storage element 1 as an example of a square battery. The figure is a perspective view of the inside of the case 3. The electrode body 2 having the positive electrode and the negative electrode wound around the separator is housed in the square case 3. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode current collector 41. The negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode current collector 51. Further, a non-aqueous electrolyte is injected into the case 3.
[非水電解質蓄電素子の製造方法]
 本発明の一実施形態に係る非水電解質蓄電素子の製造方法は、上記負極と、正極と、非水電解質とをケースに収容することを備える。上記負極は、負極基材に直接又は中間層を介して上記負極活物質層を積層することにより得ることができる。上記負極活物質層の積層は、負極基材に、負極活物質及びアクリル樹脂を含む負極合剤ペーストを塗工することにより行う。また、上記正極は、上記負極と同様、正極基材に直接又は中間層を介して上記正極活物質層を積層することにより得ることができる。上記正極活物質層の積層は、正極基材に、正極合剤ペーストを塗工することにより行う。上記負極合剤ペースト及び正極合剤ペーストは、分散溶媒を含んでいてもよい。この分散溶媒としては、例えば、水、水を主体とする混合溶媒等の水系溶媒;N-メチルピロリドン、トルエン等の有機系溶媒を用いることができる。
[Manufacturing method of non-aqueous electrolyte power storage element]
The method for manufacturing a non-aqueous electrolyte power storage element according to an embodiment of the present invention includes accommodating the negative electrode, the positive electrode, and the non-aqueous electrolyte in a case. The negative electrode can be obtained by laminating the negative electrode active material layer directly on the negative electrode base material or via an intermediate layer. The laminating of the negative electrode active material layer is performed by applying a negative electrode mixture paste containing a negative electrode active material and an acrylic resin to the negative electrode base material. Further, the positive electrode can be obtained by laminating the positive electrode active material layer directly on the positive electrode base material or via an intermediate layer, similarly to the negative electrode. The laminating of the positive electrode active material layer is performed by applying a positive electrode mixture paste to the positive electrode base material. The negative electrode mixture paste and the positive electrode mixture paste may contain a dispersion solvent. As the dispersion solvent, for example, an aqueous solvent such as water or a mixed solvent mainly composed of water; an organic solvent such as N-methylpyrrolidone or toluene can be used.
 また、上記非水電解質蓄電素子の製造方法は、上述したように、第一セパレータ層及び第二セパレータ層を介して上記負極及び上記正極を積層することを備える。第一セパレータ層は、上記負極及び上記正極間に介在し、第二セパレータ層は、上記負極及び上記第一セパレータ層間に介在する。第一セパレータ層及び第二セパレータ層を介して上記負極及び上記正極を積層することにより、電極体が形成される。 Further, as described above, the method for manufacturing the non-aqueous electrolyte power storage element includes laminating the negative electrode and the positive electrode via the first separator layer and the second separator layer. The first separator layer is interposed between the negative electrode and the positive electrode, and the second separator layer is interposed between the negative electrode and the first separator layer. An electrode body is formed by laminating the negative electrode and the positive electrode via the first separator layer and the second separator layer.
 上記負極、正極、非水電解質等をケースに収容する方法は、公知の方法により行うことができる。収容後、収容口を封止することにより非水電解質蓄電素子を得ることができる。上記製造方法によって得られる非水電解質蓄電素子を構成する各要素についての詳細は上述したとおりである。 The method of accommodating the negative electrode, the positive electrode, the non-aqueous electrolyte, etc. in the case can be performed by a known method. After accommodating, a non-aqueous electrolyte power storage element can be obtained by sealing the accommodating port. The details of each element constituting the non-aqueous electrolyte power storage element obtained by the above manufacturing method are as described above.
[その他の実施形態]
 なお、本発明の非水電解質蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
[Other embodiments]
The non-aqueous electrolyte power storage device of the present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique. In addition, some of the configurations of certain embodiments can be deleted. Further, a well-known technique can be added to the configuration of a certain embodiment.
 上記実施の形態においては、非水電解質蓄電素子が非水電解質二次電池である形態を中心に説明したが、その他の非水電解質蓄電素子であってもよい。その他の非水電解質蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。非水電解質二次電池としては、リチウムイオン非水電解質二次電池が挙げられる。 In the above embodiment, the non-aqueous electrolyte storage element has been described mainly in the form of a non-aqueous electrolyte secondary battery, but other non-aqueous electrolyte storage elements may be used. Examples of other non-aqueous electrolyte storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like. Examples of the non-aqueous electrolyte secondary battery include a lithium ion non-aqueous electrolyte secondary battery.
 また、上記実施の形態においては巻回型の電極体を用いていたが、正極、負極、第一セパレータ層及び第二セパレータ層を備える複数のシート体を重ねた積層体から形成される積層型電極体を備えてもよい。 Further, in the above embodiment, the winding type electrode body is used, but the laminated type formed from the laminated body in which a plurality of sheet bodies including the positive electrode, the negative electrode, the first separator layer and the second separator layer are stacked. An electrode body may be provided.
 本発明は、上記の非水電解質電素子を複数備える蓄電装置としても実現することができる。また、本発明の非水電解質蓄電素子を単数又は複数個用いることにより蓄電ユニットを構成することができ、さらにこの蓄電ユニットを用いて蓄電装置を構成することができる。上記蓄電装置は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として用いることができる。さらに、上記蓄電装置は、エンジン始動用電源装置、補機用電源装置、無停電電源装置(UPS)等の種々の電源装置に用いることができる。 The present invention can also be realized as a power storage device including a plurality of the above-mentioned non-aqueous electrolyte electric elements. Further, a power storage unit can be configured by using a single or a plurality of non-aqueous electrolyte power storage elements of the present invention, and a power storage device can be further configured by using the power storage unit. The power storage device can be used as a power source for automobiles such as electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). Further, the power storage device can be used for various power supply devices such as an engine starting power supply device, an auxiliary power supply device, and an uninterruptible power supply (UPS).
 図2に、電気的に接続された二以上の非水電解質蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の非水電解質蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の非水電解質蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。 FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled. Even if the power storage device 30 includes a bus bar (not shown) for electrically connecting two or more non-aqueous electrolyte power storage elements 1 and a bus bar (not shown) for electrically connecting two or more power storage units 20. good. The power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) for monitoring the state of one or more non-aqueous electrolyte power storage elements.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples.
[実施例1及び比較例2]
(負極)
 負極活物質としてのグラファイト(黒鉛)と、表1に記載のバインダーと、増粘剤であるカルボキシメチルセルロース(CMC)とを含有し、水を分散溶媒とする負極合剤ペーストを調製した。負極活物質、バインダー及び増粘剤の混合比率は、質量比で98:1:1とした。負極合剤ペーストを負極基材としての厚さ10μmの銅箔の片面に塗工し、乾燥し、プレスして、平均厚さ67μmの負極活物質層を形成し、実施例及び比較例の負極を得た。
(非水電解質)
 エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、及びエチルメチルカーボネート(EMC)を体積比30:35:35で混合した非水溶媒に、LiPFを1.0mol/dm溶解させて非水電解質を得た。
(正極)
 α―NaFeO型結晶構造を有するNCM(LiNi0.6Co0.2Mn0.2)を正極活物質として含有する正極を作製した。上記正極活物質と、バインダーとしてのポリフッ化ビニリデン(PVDF)と、導電剤としてのアセチレンブラックとを含有し、N-メチル-2-ピロリドン(NMP)を分散溶媒とする正極合剤ペーストを調製した。正極活物質、バインダー及び導電剤の混合比率は、質量比で94:3:3とした。正極合剤ペーストを正極基材の片面に塗工し、乾燥し、プレスして、正極活物質層を形成した。正極基材には、厚さ15μmのアルミニウム箔を使用した。
(セパレータ)
 セパレータは、ポリオレフィン製の微多孔質基材(平均厚さ20μm、空孔率37%)の片面に、無機粒子及びバインダーを含有する多孔質層(平均厚さ4μm、空孔率48%)が積層されたものを用意した。ここで、ポリオレフィン製の微多孔質基材は第一セパレータ層に相当し、多孔質層は第二セパレータ層に相当する。
[Example 1 and Comparative Example 2]
(Negative electrode)
A negative electrode mixture paste containing graphite as a negative electrode active material, the binder shown in Table 1, and carboxymethyl cellulose (CMC) as a thickener, and using water as a dispersion solvent was prepared. The mixing ratio of the negative electrode active material, the binder and the thickener was 98: 1: 1 in mass ratio. The negative electrode mixture paste is applied to one side of a copper foil having a thickness of 10 μm as a negative electrode base material, dried and pressed to form a negative electrode active material layer having an average thickness of 67 μm, and the negative electrodes of Examples and Comparative Examples are formed. Got
(Non-water electrolyte)
A non-aqueous electrolyte in which LiPF 6 is dissolved in 1.0 mol / dm 3 in a non-aqueous solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 30:35:35. Got
(Positive electrode)
A positive electrode containing NCM (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ) having an α-NaFeO type 2 crystal structure as a positive electrode active material was prepared. A positive electrode mixture paste containing the above positive electrode active material, polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive agent and using N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was prepared. .. The mixing ratio of the positive electrode active material, the binder and the conductive agent was 94: 3: 3 in mass ratio. The positive electrode mixture paste was applied to one side of the positive electrode base material, dried and pressed to form a positive electrode active material layer. An aluminum foil having a thickness of 15 μm was used as the positive electrode base material.
(Separator)
The separator has a porous layer containing inorganic particles and a binder (average thickness 4 μm, porosity 48%) on one side of a microporous substrate made of polyolefin (average thickness 20 μm, porosity 37%). I prepared a laminated one. Here, the microporous substrate made of polyolefin corresponds to the first separator layer, and the porous layer corresponds to the second separator layer.
(セパレータの空孔率)
 第一セパレータ層及び第二セパレータ層の空孔率[%]は、下記の式から算出した。
 空孔率(%)=100-(W/(ρ×t))×100
 W:単位面積あたりの質量[g・cm-2
 ρ:構成する材料の真密度[g・cm-3
 t:厚さ[cm]
 第一セパレータ層及び第二セパレータ層の空孔率を表1に示す。
(Porosity of separator)
The porosity [%] of the first separator layer and the second separator layer was calculated from the following formula.
Porosity (%) = 100- (W / (ρ × t)) × 100
W: Mass per unit area [g · cm- 2 ]
ρ: True density of constituent materials [g · cm -3 ]
t: Thickness [cm]
Table 1 shows the porosities of the first separator layer and the second separator layer.
(非水電解質蓄電素子の作製)
 上記正極及び上記負極を用いた非水電解質蓄電素子を組み立てた。なお、正極活物質層及び負極活物質層が第一セパレータ層及び第二セパレータ層を介在して対向し、第一セパレータ層は上記負極及び上記正極間に介在し、第二セパレータ層は上記負極及び上記第一セパレータ層間に介在するように、正極、第一セパレータ層、第二セパレータ層及び負極を積層させ、非水電解質には上記非水電解質を用いた。
(Manufacturing of non-aqueous electrolyte power storage element)
A non-aqueous electrolyte power storage element using the positive electrode and the negative electrode was assembled. The positive electrode active material layer and the negative electrode active material layer face each other with the first separator layer and the second separator layer interposed therebetween, the first separator layer is interposed between the negative electrode and the positive electrode, and the second separator layer is the negative electrode. The positive electrode, the first separator layer, the second separator layer and the negative electrode were laminated so as to be interposed between the first separator layers, and the non-aqueous electrolyte was used as the non-aqueous electrolyte.
[実施例2及び比較例3]
 セパレータとして、ポリオレフィン製の微多孔質基材(平均厚さ14μm、空孔率45%)の両面に、無機粒子及びバインダーを含有する多孔質層(平均厚さ3μm、空孔率:58%)がそれぞれ積層されたものを用いた。ここで、ポリオレフィン製の微多孔質基材が第一セパレータ層に、多孔質層が第二セパレータ層に相当する。一方の第二セパレータ層を上記負極及び第一セパレータ層間、他方の第二セパレータ層を上記正極及び第一セパレータ層間に介在するように、正極、第一セパレータ層、第二セパレータ層及び負極を積層させたこと以外は実施例1及び比較例2と同様にして、実施例2及び比較例3の非水電解質蓄電素子を得た。
[Example 2 and Comparative Example 3]
As a separator, a porous layer containing inorganic particles and a binder on both sides of a microporous base material made of polyolefin (average thickness 14 μm, porosity 45%) (average thickness 3 μm, porosity: 58%). We used the laminated ones. Here, the microporous base material made of polyolefin corresponds to the first separator layer, and the porous layer corresponds to the second separator layer. The positive electrode, the first separator layer, the second separator layer and the negative electrode are laminated so that one second separator layer is interposed between the negative electrode and the first separator layer and the other second separator layer is interposed between the positive electrode and the first separator layer. The non-aqueous electrolyte power storage elements of Example 2 and Comparative Example 3 were obtained in the same manner as in Example 1 and Comparative Example 2 except for the above.
[比較例1及び比較例4]
 セパレータとして、ポリオレフィン製の微多孔質基材(平均厚さ14μm、空孔率44%)の片面に、無機粒子及びバインダーを含有する多孔質層(平均厚さ4μm、空孔率:75%)が積層されたものを用いた。ここで、ポリオレフィン製の微多孔質基材が第一セパレータ層に、多孔質層が第二セパレータ層に相当する。第二セパレータ層を上記正極活物質及び第一セパレータ層間に介在するように、正極、第一セパレータ層、第二セパレータ層及び負極を積層させたこと以外は実施例1及び比較例2と同様にして、比較例1及び比較例4の非水電解質蓄電素子を得た。
[Comparative Example 1 and Comparative Example 4]
As a separator, a porous layer containing inorganic particles and a binder (average thickness 4 μm, porosity: 75%) on one side of a microporous base material made of polyolefin (average thickness 14 μm, porosity 44%). Was used. Here, the microporous base material made of polyolefin corresponds to the first separator layer, and the porous layer corresponds to the second separator layer. Same as in Example 1 and Comparative Example 2 except that the positive electrode, the first separator layer, the second separator layer and the negative electrode are laminated so that the second separator layer is interposed between the positive electrode active material and the first separator layer. Then, the non-aqueous electrolyte power storage elements of Comparative Example 1 and Comparative Example 4 were obtained.
[評価]
(初期の性能評価)
 得られた各非水電解質蓄電素子について、25℃の温度環境下、充電電流0.2Cで4.25Vまで定電流充電を行った後、4.25Vで定電圧充電をおこなった。充電の終了条件は、充電時間が7時間となるまでとした。10分間の休止を設けた後、放電電流0.2Cで2.75Vまで定電流放電をおこない、10分間の休止を設けた。次に、25℃の温度環境下、充電電流1.0Cで4.25Vまで定電流充電を行った後、4.25Vで定電圧充電をおこなった。充電の終了条件は、充電時間が3時間となるまでとした。10分間の休止を設けた後、放電電流1.0Cで2.75Vまで定電流放電をおこなった。この放電電流1.0Cでの放電容量を「初期放電容量」とした。
 また、得られた各非水電解質蓄電素子について、25℃にて、充電電流1.0Cで定電流充電を行い、SOC(State of Charge)を50%にした。25℃にて、充電電流0.2C、0.5C、又は1.0Cで、30秒間充電した。各充電終了後には、放電電流1.0Cで定電流放電を行い、SOCを50%にした。各充電電流における電流と充電開始後10秒目の電圧との関係をプロットし、3点のプロットから得られた直線の傾きから直流入力抵抗(初期の直流入力抵抗)を求めた。
[evaluation]
(Initial performance evaluation)
Each of the obtained non-aqueous electrolyte power storage elements was subjected to constant current charging up to 4.25 V at a charging current of 0.2 C under a temperature environment of 25 ° C., and then constant voltage charged at 4.25 V. The charging end condition was set to be until the charging time reached 7 hours. After a 10-minute pause, a constant current discharge was performed at a discharge current of 0.2 C to 2.75 V, and a 10-minute pause was provided. Next, under a temperature environment of 25 ° C., constant current charging was performed up to 4.25 V at a charging current of 1.0 C, and then constant voltage charging was performed at 4.25 V. The charging end condition was until the charging time reached 3 hours. After a 10-minute pause, constant current discharge was performed at a discharge current of 1.0 C to 2.75 V. The discharge capacity at this discharge current of 1.0 C was defined as the "initial discharge capacity".
Further, each of the obtained non-aqueous electrolyte power storage elements was subjected to constant current charging at 25 ° C. with a charging current of 1.0 C to set the SOC (State of Charge) to 50%. It was charged at 25 ° C. with a charging current of 0.2C, 0.5C, or 1.0C for 30 seconds. After each charge was completed, constant current discharge was performed with a discharge current of 1.0 C to set the SOC to 50%. The relationship between the current at each charging current and the voltage 10 seconds after the start of charging was plotted, and the DC input resistance (initial DC input resistance) was obtained from the slope of a straight line obtained from the three plots.
(充放電サイクル試験)
 上記初期の性能評価後の各非水電解質蓄電素子について、以下の条件にて充放電サイクル試験を行った。45℃の恒温槽内に3時間保管した後、それぞれSOC(State of Charge)100%となる電圧まで充電電流1.0Cで定電流充電した。充電後に10分間の休止時間を設けた。その後、SOC0%となる電圧まで放電電流1.0Cで定電流放電を行った後、10分間の休止時間を設けた。これら充電及び放電の工程を1サイクルとして、このサイクルを100サイクル繰り返した。充電、放電及び休止ともに、45℃の恒温槽内で行った。
(Charge / discharge cycle test)
Each non-aqueous electrolyte power storage element after the above initial performance evaluation was subjected to a charge / discharge cycle test under the following conditions. After storing in a constant temperature bath at 45 ° C. for 3 hours, the cells were constantly charged with a charging current of 1.0 C to a voltage of 100% SOC (State of Charge). A 10-minute rest period was provided after charging. Then, a constant current discharge was performed with a discharge current of 1.0 C to a voltage of SOC 0%, and then a rest period of 10 minutes was provided. These charging and discharging steps were regarded as one cycle, and this cycle was repeated 100 cycles. Charging, discharging and pausing were performed in a constant temperature bath at 45 ° C.
(充放電サイクル後の直流入力抵抗増加率)
 上記充放電サイクル試験後、上記「初期の性能評価」と同様の方法にて、各非水電解質蓄電素子の直流入力抵抗(充放電サイクル後の直流入力抵抗)を求めた。初期の直流入力抵抗に対する充放電サイクル後の直流入力抵抗の増加率(%)を求めた。
 そして、比較例1に対する実施例1及び実施例2の直流入力抵抗増加率の比、及び比較例4に対する比較例2及び比較例3の直流入力抵抗増加率の比を求めた。結果を下記表1に示す。
(DC input resistance increase rate after charge / discharge cycle)
After the charge / discharge cycle test, the DC input resistance (DC input resistance after the charge / discharge cycle) of each non-aqueous electrolyte storage element was determined by the same method as in the above "initial performance evaluation". The rate of increase (%) of the DC input resistance after the charge / discharge cycle with respect to the initial DC input resistance was calculated.
Then, the ratio of the DC input resistance increase rate of Example 1 and Example 2 to Comparative Example 1 and the ratio of the DC input resistance increase rate of Comparative Example 2 and Comparative Example 3 to Comparative Example 4 were obtained. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、負極活物質層がバインダーとしてアクリル樹脂を含み、第一セパレータ層よりも空孔率が高い第二セパレータ層が負極に対向して配置されていない比較例1における充放電サイクル後の直流入力抵抗増加率に対して、負極活物質層がバインダーとしてアクリル樹脂を含み、上記第二セパレータ層が負極に対向して配置されている実施例1及び実施例2における充放電サイクル後の直流入力抵抗増加率は、大きく低減されることがわかる。また、上記第二セパレータ層が負極及び正極に対向して配置されている実施例2における充放電サイクル後の直流入力抵抗増加率は、特に大きく低減されることがわかる。 As shown in Table 1, the negative electrode active material layer contains an acrylic resin as a binder, and the second separator layer having a higher porosity than the first separator layer is not arranged facing the negative electrode. Charging / discharging in Examples 1 and 2 in which the negative electrode active material layer contains an acrylic resin as a binder and the second separator layer is arranged facing the negative electrode with respect to the DC input resistance increase rate after the discharge cycle. It can be seen that the rate of increase in DC input resistance after the cycle is greatly reduced. Further, it can be seen that the DC input resistance increase rate after the charge / discharge cycle in Example 2 in which the second separator layer is arranged facing the negative electrode and the positive electrode is particularly greatly reduced.
 一方、負極活物質層がバインダーとしてスチレンブタジエンゴムを含む比較例2から比較例3は、上記第二セパレータを負極に対向して配置させても、第二セパレータ層が負極に対向して配置されていない比較例4に対して、充放電サイクル後の直流入力抵抗増加率が十分に低減されないことがわかる。 On the other hand, in Comparative Examples 2 to 3 in which the negative electrode active material layer contains styrene-butadiene rubber as a binder, the second separator layer is arranged facing the negative electrode even if the second separator is arranged facing the negative electrode. It can be seen that the DC input resistance increase rate after the charge / discharge cycle is not sufficiently reduced as compared with Comparative Example 4 which has not been used.
 以上のように、当該非水電解質蓄電素子は、充放電サイクル後の抵抗増大に対する抑制効果に優れることが示された。 As described above, it was shown that the non-aqueous electrolyte power storage element is excellent in the effect of suppressing the increase in resistance after the charge / discharge cycle.
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質二次電池をはじめとした非水電解質蓄電素子として好適に用いられる。 The present invention is suitably used as a non-aqueous electrolyte power storage element such as a non-aqueous electrolyte secondary battery used as a power source for personal computers, electronic devices such as communication terminals, automobiles, and the like.
1  非水電解質蓄電素子
2  電極体
3  ケース
4  正極端子
5  負極端子
20 蓄電ユニット
30 蓄電装置
41 正極集電体
51 負極集電体
1 Non-aqueous electrolyte power storage element 2 Electrode body 3 Case 4 Positive electrode terminal 5 Negative electrode terminal 20 Power storage unit 30 Power storage device 41 Positive electrode current collector 51 Negative electrode current collector

Claims (4)

  1.  アクリル樹脂を含む負極活物質層を有する負極と、
     正極と、
     第一セパレータ層と、
     第二セパレータ層と
     を備えており、
     上記第一セパレータ層は上記負極及び上記正極間に介在し、
     上記第二セパレータ層は上記負極及び上記第一セパレータ層間に介在し、
     上記第二セパレータ層の空孔率が上記第一セパレータ層よりも高い非水電解質蓄電素子。
    A negative electrode having a negative electrode active material layer containing an acrylic resin, and a negative electrode
    With the positive electrode
    With the first separator layer,
    It has a second separator layer and
    The first separator layer is interposed between the negative electrode and the positive electrode,
    The second separator layer is interposed between the negative electrode and the first separator layer,
    A non-aqueous electrolyte power storage element having a higher porosity of the second separator layer than that of the first separator layer.
  2.  上記第一セパレータ層が合成樹脂を主成分とし、上記第二セパレータ層が無機粒子を含む請求項1の非水電解質蓄電素子。 The non-aqueous electrolyte power storage element according to claim 1, wherein the first separator layer contains a synthetic resin as a main component and the second separator layer contains inorganic particles.
  3.  上記第二セパレータ層がさらに上記正極及び上記第一セパレータ層間に介在する請求項2の非水電解質蓄電素子。 The non-aqueous electrolyte power storage element according to claim 2, wherein the second separator layer is further interposed between the positive electrode and the first separator layer.
  4.  上記第二セパレータ層の空孔率が45体積%以上85体積%以下である請求項1、請求項2又は請求項3の非水電解質蓄電素子。 The non-aqueous electrolyte power storage element according to claim 1, claim 2 or claim 3, wherein the porosity of the second separator layer is 45% by volume or more and 85% by volume or less.
PCT/JP2021/024557 2020-07-06 2021-06-29 Nonaqueous electrolyte power storage element WO2022009734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022535260A JPWO2022009734A1 (en) 2020-07-06 2021-06-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020116663 2020-07-06
JP2020-116663 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022009734A1 true WO2022009734A1 (en) 2022-01-13

Family

ID=79553085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024557 WO2022009734A1 (en) 2020-07-06 2021-06-29 Nonaqueous electrolyte power storage element

Country Status (2)

Country Link
JP (1) JPWO2022009734A1 (en)
WO (1) WO2022009734A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011043A1 (en) * 2003-07-29 2005-02-03 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2007018861A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Separator for battery and battery using this
WO2012014255A1 (en) * 2010-07-29 2012-02-02 三菱重工業株式会社 Lithium ion secondary battery
WO2016194589A1 (en) * 2015-05-29 2016-12-08 日立マクセル株式会社 Lithium ion secondary battery
JP2017111894A (en) * 2015-12-15 2017-06-22 株式会社豊田自動織機 Lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011043A1 (en) * 2003-07-29 2005-02-03 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2007018861A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Separator for battery and battery using this
WO2012014255A1 (en) * 2010-07-29 2012-02-02 三菱重工業株式会社 Lithium ion secondary battery
WO2016194589A1 (en) * 2015-05-29 2016-12-08 日立マクセル株式会社 Lithium ion secondary battery
JP2017111894A (en) * 2015-12-15 2017-06-22 株式会社豊田自動織機 Lithium ion secondary battery

Also Published As

Publication number Publication date
JPWO2022009734A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
US20230102905A1 (en) Nonaqueous electrolyte energy storage device
JP2018049821A (en) Nonaqueous electrolyte for power storage element, nonaqueous electrolyte power storage element, and method for manufacturing nonaqueous electrolyte power storage element
JP7409132B2 (en) Nonaqueous electrolyte storage element
WO2021246186A1 (en) Positive electrode and power storage element
US20230006188A1 (en) Energy storage device
JP7411161B2 (en) Energy storage element
WO2022009734A1 (en) Nonaqueous electrolyte power storage element
CN115516660A (en) Positive electrode for electricity storage element and electricity storage element
JP2022091637A (en) Negative electrode for nonaqueous electrolyte electricity-storage device, nonaqueous electrolyte electricity-storage device, and manufacturing method of them
JP2021190184A (en) Non-aqueous electrolyte power storage element
JP2021170485A (en) Negative electrode active material for power storage element, negative electrode for power storage element, and power storage element
JP2020173998A (en) Non-aqueous electrolyte storage element and manufacturing method thereof
WO2023224071A1 (en) Nonaqueous electrolyte power storage element
WO2022138452A1 (en) Nonaqueous electrolyte power storage element, electronic device, and automobile
WO2023171796A1 (en) Negative electrode, power storage element, and power storage device
WO2021141074A1 (en) Non-aqueous electrolyte power storage element and method for manufacturing same
JP7371571B2 (en) Non-aqueous electrolyte storage device and method for manufacturing the same
WO2023224070A1 (en) Non-aqueous electrolyte power storage element
WO2023190422A1 (en) Positive electrode for non-aqueous electrolyte power storage element, and non-aqueous electrolyte power storage element comprising same
WO2022239861A1 (en) Electric power storage element
WO2021100858A1 (en) Electricity storage element and electricity storage device
WO2022097612A1 (en) Positive electrode for non-aqueous electrolyte power storage element, non-aqueous electrolyte power storage element, and power storage device
WO2023195434A1 (en) Power storage element and power storage device
WO2023248769A1 (en) Active material particles, electrode, power storage element and power storage device
US20220336860A1 (en) Nonaqueous electrolyte energy storage device and energy storage apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837721

Country of ref document: EP

Kind code of ref document: A1