WO2022054781A1 - Method for producing lithium secondary battery, and lithium secondary battery - Google Patents

Method for producing lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
WO2022054781A1
WO2022054781A1 PCT/JP2021/032784 JP2021032784W WO2022054781A1 WO 2022054781 A1 WO2022054781 A1 WO 2022054781A1 JP 2021032784 W JP2021032784 W JP 2021032784W WO 2022054781 A1 WO2022054781 A1 WO 2022054781A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
secondary battery
lithium secondary
active material
Prior art date
Application number
PCT/JP2021/032784
Other languages
French (fr)
Japanese (ja)
Inventor
克行 ▲高▼橋
祐輝 酒井
貴洋 齊藤
彰文 菊池
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2022547600A priority Critical patent/JPWO2022054781A1/ja
Publication of WO2022054781A1 publication Critical patent/WO2022054781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a lithium secondary battery and a lithium secondary battery.
  • Lithium secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc. due to their high energy density.
  • a lithium secondary battery generally includes an electrode body having a pair of electrodes and a non-aqueous electrolyte interposed between the electrodes, and is configured to be charged and discharged by the movement of lithium ions between the electrodes.
  • Lithium metal has a high capacity per unit volume and unit mass, and has a low operating potential. Therefore, by utilizing the precipitation reaction and the elution reaction of the lithium metal as the charge / discharge reaction of the negative electrode, a lithium secondary battery having a high energy density can be obtained.
  • Patent Document 1 describes a lithium secondary battery comprising a negative electrode made of a lithium metal or a lithium alloy as an active material and a positive electrode made of a metal oxide, a metal sulfide, etc. as an active material via an organic electrolytic solution and a separator.
  • the organic electrolytic solution contains a phosphite diester.
  • an electrolytic solution in which ethylene carbonate (EC), dimethyl carbonate (DME), and diethyl phosphite are mixed in a volume ratio of 60:39: 1 is used.
  • Patent Document 2 describes Li 1.18 Ni 0.10 Co 0.17 Mn 0.55 O 2 , acetylene black, and PVDF 94: 4.5, which are positive electrode active substances, using N-methylpyrodrin as a dispersion medium.
  • An example is described in which 1% by mass of phosphonic acid (H 3 PO 3 ) is added to a mixture mixed at a mass ratio of: 1.5 with respect to the mass of the positive electrode active material to obtain a positive electrode mixture paste.
  • H 3 PO 3 phosphonic acid
  • a non-aqueous electrolyte power storage element in which a positive electrode produced by using the positive electrode mixture paste and a negative electrode containing graphite as an active material are combined is described.
  • lithium ions are inserted into the negative electrode active material during charging, and lithium ions are released from the negative electrode active material during discharging. That is, the lithium metal precipitation reaction and elution reaction are not used as the charge / discharge reaction. Therefore, if such a negative electrode active material is used, the lithium metal does not grow like a dendrite during the precipitation reaction unless charging and discharging are performed under special conditions. On the other hand, in the negative electrode using lithium metal, the precipitation reaction and elution reaction of lithium metal are used for charging and discharging.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a lithium secondary battery capable of suppressing the occurrence of a short circuit, and a method for manufacturing the same.
  • the method for manufacturing a lithium secondary battery according to an embodiment of the present invention is a method for manufacturing a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode is used as an active material in a charged state.
  • the present invention comprises the preparation of a positive electrode mixture paste containing the above-mentioned lithium metal or lithium alloy, the positive electrode active material, and the oxo acid of phosphorus, and the drying of the above-mentioned positive electrode mixture paste.
  • the lithium secondary battery according to another embodiment of the present invention includes a positive electrode having a positive electrode mixture containing a positive electrode active material, a negative electrode containing a lithium metal or a lithium alloy as an active material in a charged state, and a non-aqueous electrolyte.
  • the method for manufacturing a lithium secondary battery of the present invention it is possible to manufacture a lithium secondary battery in which the occurrence of a short circuit is suppressed. According to the lithium secondary battery of the present invention, the occurrence of a short circuit can be suppressed.
  • FIG. 1 is an external perspective view of a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of lithium secondary batteries according to an embodiment of the present invention.
  • the method for manufacturing a lithium secondary battery according to an embodiment of the present invention is a method for manufacturing a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode is used as an active material in a charged state.
  • the present invention comprises the preparation of a positive electrode mixture paste containing the above-mentioned lithium metal or lithium alloy, the positive electrode active material, and the oxo acid of phosphorus, and the drying of the above-mentioned positive electrode mixture paste.
  • the manufacturing method it is possible to manufacture a lithium secondary battery in which the occurrence of a short circuit is suppressed.
  • the present inventors say that in the process of manufacturing a lithium secondary battery including a negative electrode containing a lithium metal, by adding phosphorus oxo acid to the positive electrode mixture paste, a short circuit that occurs when charging and discharging are repeated can be suppressed.
  • phosphorus oxo acid added to the positive electrode mixture paste, a short circuit that occurs when charging and discharging are repeated can be suppressed.
  • a positive electrode is prepared using a positive electrode mixture paste containing an oxo acid of phosphorus.
  • a film containing a phosphorus atom derived from phosphorus oxoacid is formed on the surface of the positive electrode active material. This coating is thought to suppress side reactions at the interface between the positive electrode active material and the non-aqueous electrolyte.
  • the content of phosphorus oxoacid in the positive electrode mixture paste is preferably 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • the content of oxoacid of phosphorus in the positive electrode mixture paste is 0.1 parts by mass or more and 0.3 parts by mass or less with respect to 100 parts by mass of the positive electrode active material, and the positive electrode active material is Li [Li. It is preferable to contain a lithium transition metal composite oxide represented by the composition formula of x Co (1-x) ] O 2 (0 ⁇ x ⁇ 0.5). In such a case, the capacity retention rate can be increased while suppressing the occurrence of a short circuit due to repeated charging and discharging.
  • the lithium secondary battery according to another embodiment of the present invention includes a positive electrode having a positive electrode mixture containing a positive electrode active material, a negative electrode containing a lithium metal or a lithium alloy as an active material in a charged state, and a non-aqueous electrolyte.
  • the occurrence of a short circuit can be suppressed.
  • the peak of P2p present at 133 eV or less in the spectrum of the positive electrode mixture by X-ray photoelectron spectroscopy is that the compound present on the surface of the positive electrode mixture has a phosphorus atom in a specific chemical bond state. Is shown to include. It is presumed that the compound containing a phosphorus atom forms a film on the surface of the positive electrode active material. In the lithium secondary battery, such a coating suppresses a side reaction at the interface between the positive electrode active material and the non-aqueous electrolyte, thereby alleviating the current concentration. As a result, it is considered that the dendrite-like growth of the lithium metal was inhibited in the negative electrode, and the occurrence of a short circuit could be suppressed.
  • the sample used for the X-ray photoelectron spectroscopy (XPS) measurement of the positive electrode mixture is prepared by the following method.
  • the lithium secondary battery is discharged with a current of 0.1 C to the discharge end voltage at the time of normal use, and is in a completely discharged state.
  • “during normal use” means a case where the lithium secondary battery is used by adopting the discharge conditions recommended or specified for the lithium secondary battery.
  • the lithium secondary battery in a completely discharged state is disassembled, the positive electrode is taken out, the positive electrode is thoroughly washed with dimethyl carbonate, and then dried under reduced pressure at room temperature. The dried positive electrode is cut out to a predetermined size (for example, 2 ⁇ 2 cm) and used as a sample for XPS measurement.
  • the work from disassembling the lithium secondary battery to preparing the sample in XPS measurement is performed in an argon atmosphere with a dew point of ⁇ 60 ° C. or lower, and the sample is enclosed in a transfer vessel and subjected to XPS measurement without exposure to the atmosphere.
  • the equipment and measurement conditions used in the XPS measurement of the positive electrode mixture are as follows.
  • the peak position of P2p in the above spectrum is a value obtained as follows. First, the peak of the binding energy attributed to sp2 carbon in C1s is set to 284.8 eV, and all the obtained spectra are corrected. Next, leveling processing is performed on each spectrum by removing the background using the linear method. In the spectrum after the leveling treatment, the binding energy showing the highest value in the range of 142 to 125 eV is defined as the peak position of P2p.
  • the positive electrode includes a positive electrode mixture layer containing the positive electrode mixture, and the volume density per unit area of the positive electrode mixture layer is preferably 3 mAh / cm 2 or more.
  • the capacity density per unit area of the positive electrode mixture layer shall be the value obtained by the following formula (a) when the design of the lithium secondary battery is clear, and the following capacity check when the design of the lithium secondary battery is unknown.
  • the value shall be the value obtained by the test and the following formula (b).
  • "capacity density” refers to the volume density per unit area of the positive electrode mixture layer.
  • the "rated capacity” is completely charged after the lithium secondary battery is fully charged by adopting the charge / discharge conditions recommended or specified in the lithium secondary battery. Discharge capacity when discharged to the discharged state, and if a charger for the lithium secondary battery is prepared, discharge when discharged to the completely discharged state after charging by applying the charger.
  • the lithium secondary battery is disassembled, the positive electrode is taken out, the non-aqueous electrolyte adhering to the taken out positive electrode is thoroughly washed with dimethyl carbonate, and the test battery is dried at room temperature for 24 hours and then with the lithium metal electrode as the counter electrode.
  • To assemble. Pure metallic lithium is used for the lithium metal electrode here.
  • a capacity confirmation test is carried out at a current value of 10 mA per 1 g of the positive electrode mixture layer. It is charged with a constant current until it reaches the end-of-charge voltage during normal use, and is fully charged. After pause, constant current discharge to the lower limit voltage during normal use.
  • the capacity density per unit area of the positive electrode mixture layer (mAh /) is calculated by the following formula (b). Find cm 2 ).
  • the work from disassembling the lithium secondary battery to assembling the test battery is performed in an argon atmosphere with a dew point of -60 ° C or lower.
  • “during normal use” is a case where the lithium secondary battery is used by adopting the charge / discharge conditions recommended or specified for the lithium secondary battery, and is used for the lithium secondary battery.
  • a charger is prepared, it means the case where the charger is applied and the lithium secondary battery is used.
  • Discharge capacity (mAh) obtained in the capacity confirmation test / Area of the positive electrode mixture layer in the test battery (cm 2 ) Capacity density (mAh / cm 2 ) ... (b)
  • the positive electrode potential at the end-of-charge voltage during normal use is 4.30 V (vs. Li / Li + ) or more.
  • the energy density of the lithium secondary battery can be increased.
  • a film derived from phosphorus oxoacid is formed on the surface of the positive electrode active material, and it is considered that side reactions at the interface between the positive electrode active material and the non-aqueous electrolyte are suppressed. Be done. Therefore, even if the positive electrode potential at the end-of-charge voltage during normal use is set high, the occurrence of a short circuit due to repeated charging and discharging can be suppressed.
  • the non-aqueous electrolyte contains lithium bis (fluorosulfonyl) imide.
  • the lithium secondary battery contains lithium bis (fluorosulfonyl) imide in the non-aqueous electrolyte, it is possible to further suppress the occurrence of a short circuit due to repeated charging and discharging.
  • the positive electrode active material preferably contains a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure or a spinel type crystal structure, or a polyanion compound containing nickel, cobalt or manganese. By using such a positive electrode active material, the capacity retention rate can be increased.
  • the positive electrode active material has an ⁇ -NaFeO type 2 crystal structure and has a composition of Li 1 + ⁇ Me 1- ⁇ O 2 (Me is a transition metal element, 1 ⁇ (1 + ⁇ ) / (1- ⁇ ) ⁇ 1.6). It preferably contains a lithium transition metal composite oxide represented by the formula.
  • the positive electrode active material has an ⁇ -NaFeO type 2 crystal structure, and Li [Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ ). , 0 ⁇ , 0.5 ⁇ x + ⁇ + ⁇ ⁇ 1), preferably containing a lithium transition metal composite oxide represented by the composition formula.
  • the positive electrode active material has an ⁇ -NaFeO type 2 crystal structure and is a lithium transition metal composite represented by the composition formula of Li [Li x Co (1-x) ] O 2 (0 ⁇ x ⁇ 0.5). It preferably contains an oxide.
  • a lithium secondary battery includes an electrode body having a positive electrode, a negative electrode, and a separator, a non-aqueous electrolyte, and a case containing the electrode body and the non-aqueous electrolyte.
  • the electrode body is usually a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are laminated via a separator, or a wound type in which a positive electrode and a negative electrode are laminated via a separator.
  • the non-aqueous electrolyte exists in the positive electrode, the negative electrode and the separator.
  • the positive electrode has a positive electrode base material and a positive electrode mixture layer arranged directly on the positive electrode base material or via an intermediate layer.
  • the positive electrode mixture layer is formed of a so-called positive electrode mixture containing a positive electrode active material.
  • the peak position of P2p exists at 133 eV or less in the spectrum of the positive electrode mixture by X-ray photoelectron spectroscopy.
  • the peak position of P2p may be 132.9 eV or less, 132.8 eV or less, or 132.7 eV or less. Further, the peak position of P2p may be 131 eV or more, 131.3 eV or more, 131.4 eV or more, or 131.5 eV or more.
  • the peak of P2p appearing in the above range indicates that the compound present on the surface of the positive electrode mixture contains a phosphorus atom in a specific chemical bond state. Such a compound containing a phosphorus atom is usually present on the surface of a particulate positive electrode active material.
  • Such phosphorus atoms suppress side reactions at the interface between the positive electrode active material and the non-aqueous electrolyte.
  • the positive electrode mixture having a peak of P2p of 133 eV or less can be obtained, for example, by drying a positive electrode mixture paste containing an oxo acid of phosphorus.
  • This phosphorus atom is preferably present on the surface of the positive electrode active material as a compound containing a PO4 anion. In the spectrum by X-ray photoelectron spectroscopy, the peak of P2p of such a compound appears in the range of 131 eV or more and 133 eV or less.
  • the positive electrode substrate has conductivity. Whether or not it has “conductivity” is determined with a volume resistivity of 107 ⁇ ⁇ cm measured in accordance with JIS-H-0505 (1975) as a threshold value.
  • the material of the positive electrode base material metals such as aluminum, titanium, tantalum, and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
  • Examples of the positive electrode base material include foils and thin-film deposition films, and foils are preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085 and A3003 specified in JIS-H-4000 (2014).
  • the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, further preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the intermediate layer is a layer arranged between the positive electrode base material and the positive electrode mixture layer.
  • the intermediate layer contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode mixture layer.
  • the composition of the intermediate layer is not particularly limited and includes, for example, a resin binder and conductive particles.
  • the positive electrode mixture layer contains a positive electrode active material and phosphorus oxoacid at least at the time of manufacturing a lithium secondary battery.
  • the positive electrode mixture layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • the positive electrode active material can be arbitrarily selected from known positive electrode active materials.
  • a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure a lithium transition metal composite oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, sulfur and the like can be mentioned.
  • the lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure include Li [Li x Ni (1-x) ] O 2 (0 ⁇ x ⁇ 0.5) and Li [Li x Ni ⁇ Co (1 ).
  • Examples of the lithium transition metal composite oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • Examples of the polyanionic compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like.
  • Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements. The surface of these materials may be coated with other materials.
  • one of these materials may be used alone, or two or more thereof may be mixed and used.
  • a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure or a spinel type crystal structure, or a polyanionic compound containing nickel, cobalt or manganese is preferable from the viewpoint of capacity retention. From the viewpoint of achieving both capacity and capacity retention rate, it is more preferable to use a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure.
  • the composition ratio of the lithium transition metal composite oxide in the present specification refers to the composition ratio when the lithium transition metal composite oxide is brought into a completely discharged state by the following method.
  • the lithium secondary battery is charged with a current of 0.05 C at a constant current until it reaches the end-of-charge voltage at the time of normal use, and is in a fully charged state.
  • a constant current discharge is performed with a current of 0.05 C to the lower limit voltage during normal use.
  • Disassemble take out the positive electrode, assemble a test battery with a metal lithium electrode as the counter electrode, and discharge with a constant current until the positive electrode potential reaches 2.0 V (vs.
  • Li / Li + at a current value of 10 mA per 1 g of the positive electrode mixture.
  • pure metallic lithium is used instead of a lithium alloy.
  • the non-aqueous electrolyte adhering to the removed positive electrode is thoroughly washed with dimethyl carbonate, dried at room temperature for 24 hours, and then the lithium transition metal composite oxide of the positive electrode active material is collected.
  • the collected lithium transition metal composite oxide is used for measurement.
  • the work from dismantling the non-aqueous electrolyte power storage element to collecting the lithium transition metal composite oxide is performed in an argon atmosphere with a dew point of -60 ° C or lower.
  • the crystal structure of the lithium transition metal composite oxide is determined by X-ray diffraction measurement using CuK ⁇ rays.
  • the X-ray diffraction measurement for the lithium transition metal composite oxide is performed on the lithium transition metal composite oxide that has been completely discharged by the above method. Specifically, the X-ray diffraction measurement is performed by powder X-ray diffraction measurement using an X-diffraction device (“MiniFlex II” manufactured by Rigaku), where the radiation source is CuK ⁇ ray, the tube voltage is 30 kV, and the tube current is 15 mA.
  • the diffracted X-rays pass through a K ⁇ filter having a thickness of 30 ⁇ m and are detected by a high-speed one-dimensional detector (D / teX Ultra 2).
  • the sampling width is 0.02 °
  • the scan speed is 5 ° / min
  • the divergent slit width is 0.625 °
  • the light receiving slit width is 13 mm (OPEN)
  • the scattering slit width is 8 mm.
  • the lithium-rich transition metal composite oxide is represented by the composition formula Li 1 + ⁇ Me 1- ⁇ O 2 .
  • Me is a transition metal element, and 1 ⁇ (1 + ⁇ ) / (1- ⁇ ) ⁇ 1.6.
  • the transition metal element Me preferably contains one or more elements selected from Mn, Co, and Ni, and more preferably contains Mn.
  • the molar ratio of Mn to the transition metal element Me, Mn / Me is preferably a value larger than 0.5.
  • the lithium-rich transition metal composite oxide has a high discharge capacity by reaching a relatively high potential exceeding 4.30 V, particularly a potential of 4.40 V or higher, with respect to the redox potential of the lithium metal at least in the first charge. Has the characteristic of being obtained.
  • the lithium excess type transition metal composite oxide may contain a small amount of a typical element, and it is particularly preferable that it contains Na.
  • the content of Na in the lithium excess type transition metal composite oxide is preferably 1000 ppm or more and 10000 ppm or less, and more preferably 2000 ppm or more and 9000 ppm or less. When the Na content in the lithium excess type transition metal composite oxide is in the above range, the discharge capacity can be increased.
  • the value of (1 + ⁇ ) / (1- ⁇ ), that is, the molar ratio of Li to the transition metal Me, Li / Me may be more than 1 and less than 1.6. It is preferably 1.1 or more and less than 1.5.
  • Li / Me is more preferably 1.15 or more and 1.45 or less, and further preferably 1.2 or more and 1.4 or less.
  • the molar ratio Mn / Me of Mn to the transition metal element Me may be more than 0 and 1 or less, preferably more than 0.5 and 1 or less, and 0.6 or more and 0.75 or less. Is more preferable. By setting Mn / Me in the above range, the discharge capacity can be increased.
  • the molar ratio Co / Me of Co to the transition metal element Me may be more than 0 and 1 or less, preferably 0.05 or more and 0.40 or less, and 0.10 or more. It is more preferably 0.30 or less.
  • the molar ratio Ni / Me of Ni to the transition metal element Me may be more than 0 and 1 or less, preferably 0.10 or more and 0.50 or less, and 0.15 or more. It is more preferably 0.40 or less.
  • lithium excess type transition metal composite oxide examples include Li 1.13 Co 0.11 Ni 0.17 Mn 0.59 O 2 , Li 1.11 Co 0.11 Ni 0.18 Mn 0.60 O 2 . , Li 1.15 Co 0.11 Ni 0.17 Mn 0.57 O 2 , Li 1.17 Co 0.11 Ni 0.56 O 2 , Li 1.05 Co 0.12 Ni 0.19 Mn 0. Examples thereof include 64 O 2 , Li 1.07 Co 0.12 Ni 0.18 Mn 0.63 O 2 , Li 1.09 Co 0.11 Ni 0.18 Mn 0.62 O 2 .
  • the lithium excess type transition metal composite oxide before charging and discharging is attributed to the space group P3 112 or R3-m.
  • the superlattice peak disappears, and the lithium-rich lithium transition metal composite oxide becomes the space group R3-m. It will be attributed.
  • P3 112 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and the P3 112 model is adopted when the atomic arrangement in R3-m is ordered. Will be done. It should be noted that "R3-m” should be originally described by adding a bar “-" on “3" of "R3m”.
  • the space group P3 112 is indexed on the (114) plane, and the space group R3-m is indexed on the (104) plane.
  • the lithium excess type lithium transition metal composite oxide has an oxygen position parameter obtained by crystal structure analysis by the Rietveld method based on an X-ray diffraction pattern of 0.262 or less in a fully discharged state and 0.267 in a fully charged state.
  • the above is preferable. This makes it possible to obtain a lithium secondary battery having excellent high rate discharge performance.
  • the oxygen position parameter is the spatial coordinate of Me (transition metal) (0,0,0) for the ⁇ -NaFeO type 2 crystal structure of the lithium transition metal composite oxide belonging to the space group R3-m.
  • the positive electrode active material is usually particles (powder).
  • the D50 of the positive electrode active material is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. By setting D 50 of the positive electrode active material to the above lower limit or higher, the production or handling of the positive electrode active material becomes easy. By setting D 50 of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode mixture is improved. When a complex of a positive electrode active material and another material is used, D 50 of the complex is referred to as D 50 of the positive electrode active material.
  • D 50 is based on JIS-Z-8825 (2013), and is based on the particle size distribution measured by laser diffraction / scattering method for a diluted solution obtained by diluting particles with a solvent. It means a value in which the volume-based integrated distribution calculated in accordance with 2 (2001) is 50%.
  • a crusher, a classifier, etc. are used to obtain powder with a predetermined particle size.
  • the crushing method include a method using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, or the like.
  • wet pulverization in which water or an organic solvent such as hexane coexists can also be used.
  • a classification method a sieve, a wind power classifier, or the like is used as needed for both dry and wet types.
  • the lower limit of the content of the positive electrode active material in the positive electrode mixture is preferably 50% by mass, more preferably 70% by mass, still more preferably 80% by mass. By setting the content of the positive electrode active material to the above lower limit or higher, the energy density of the positive electrode mixture can be increased.
  • the upper limit of the content of the positive electrode active material in the positive electrode mixture may be 100% by mass, 99% by mass or less, or 98% by mass or less.
  • the content of the positive electrode active material in the positive electrode mixture is preferably in the range of not less than any of the above lower limits and not more than any of the upper limits.
  • the lower limit of the volume density per unit area of the positive electrode mixture layer is preferably 3 mAh / cm 2 , more preferably 4 mAh / cm 2 , and even more preferably 5 mAh / cm 2 .
  • the capacitance density is preferably 3 mAh / cm 2 , more preferably 4 mAh / cm 2 , and even more preferably 5 mAh / cm 2 .
  • the upper limit of the volume density per unit area of the positive electrode mixture layer is, for example, 20 mAh / cm 2 , may be 15 mAh / cm 2 , or may be 10 mAh / cm 2 .
  • the volume density of the positive electrode mixture layer is preferably in the range of one of the above lower limit or more and one of the upper limit or less.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • a conductive agent include carbonaceous materials, metals, conductive ceramics and the like.
  • the carbonaceous material include graphitized carbon, non-graphitized carbon, graphene-based carbon and the like.
  • the non-graphitized carbon include carbon nanofibers, pitch-based carbon fibers, and carbon black.
  • Examples of carbon black include furnace black, acetylene black, and ketjen black.
  • Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerenes.
  • the shape of the conductive agent include powder and fibrous.
  • the conductive agent one of these materials may be used alone, or two or more of them may be mixed and used. Further, these materials may be combined and used. For example, a material in which carbon black and CNT are combined may be used. Among these, carbon black is preferable from the viewpoint of electron conductivity and coatability, and acetylene black is particularly prefer
  • the content of the conductive agent in the positive electrode mixture layer is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less.
  • binder a binder that can fix the positive electrode active material and is electrochemically stable within the range of use is usually used.
  • a water-based binder may be used as the binder, but it is preferable to use a non-water-based binder.
  • a water-based binder is a binder that is dispersed or dissolved in water. Above all, a binder that dissolves 1 part by mass or more with respect to 100 parts by mass of water at 20 ° C. is preferable as the water-based binder.
  • the aqueous binder include polyethylene oxide (polyethylene glycol), polypropylene oxide (polypropylene glycol), polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), and polyethylene (PE). ), Polypropylene (PP), nitrile-butadiene rubber, cellulose, etc. Among these, polyacrylic acid, styrene-butadiene rubber (SBR), and cellulose can be used alone or in combination from the viewpoint of coating stability and adhesion. preferable.
  • the non-aqueous binder is a binder that is dispersed or dissolved in an organic solvent. Above all, a binder that dissolves 1 part by mass or more with respect to 100 parts by mass of N-methyl-2-pyrodrin (NMP) at 20 ° C. is preferable as a non-aqueous binder.
  • NMP N-methyl-2-pyrodrin
  • the non-aqueous binder include polyvinylidene fluoride (PVDF), polyvinylidene fluoride and hexafluoropropylene copolymer (PVDF-HFP), ethylene and vinyl alcohol copolymer, polyacrylonitrile, polyphosphazene, and poly.
  • Siloxane polyvinylidene acetate, polyvinylidene methacrylate (PMMA), polystyrene, polycarbonate, polyamide, polyimide, polyamideimide, crosslinked polymer of cellulose and chitosanpyrrolidone carboxylate, chitin or chitosan derivative are preferable, among these.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP copolymer of vinylidene fluoride and hexafluoropropylene
  • polyimide and polyamideimide
  • the chitosan derivative include a polymer compound obtained by glycerylizing chitosan and a crosslinked body of chitosan.
  • a fluororesin such as PTFE or PVDF as the binder from the viewpoint of heat resistance, chemical stability, etc., and it is more preferable to use PVDF.
  • the binder one type may be used alone, or two or more types may be mixed and used.
  • the binder content in the positive electrode mixture layer is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • methyl cellulose examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • this functional group may be deactivated by methylation or the like in advance.
  • the filler is not particularly limited.
  • Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and hydroxide.
  • Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ion crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, etc.
  • Examples include mineral resource-derived substances such as apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, and mica, or man-made products thereof.
  • the positive electrode mixture layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W and other transition metal elements are used as positive electrode active materials, conductive agents, binders, thickeners, fillers. It may be contained as a component other than.
  • the negative electrode has a negative electrode base material and a negative electrode active material layer containing at least a lithium metal or a lithium alloy as an active material in a charged state.
  • the negative electrode base material is a conductive material other than lithium metal and lithium alloy.
  • the negative electrode base material is preferably a material that does not react with lithium because lithium metal is deposited. That is, it is preferable that the material does not form an alloy or compound with the lithium metal.
  • Examples of the negative electrode base material include metals such as copper, nickel, stainless steel, and nickel-plated steel, metal materials composed of alloys thereof, and carbon materials composed of activated carbon, graphite, graphene, carbon nanotubes, carbon fibers, and the like. Can be mentioned. Among these, copper or a copper alloy is preferably used because of its high conductivity.
  • the shape of the negative electrode base material is not particularly limited, and may be a foil, a mesh, a porous film, or the like.
  • the average thickness of the negative electrode substrate is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, further preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the lithium secondary battery has a negative electrode active material layer containing a lithium metal or a lithium alloy as an active material at least in a charged state.
  • the lithium alloy include a lithium alloy containing one or more elements selected from Al, Mg, Ag, In, Sn, Ga, Bi, Pt, and Au.
  • the negative electrode included in the lithium secondary battery may have at least a lithium metal or a lithium alloy in a charged state, and may not have a lithium metal or a lithium alloy in a discharged state. For example, by depositing lithium metal on at least a part of the surface of the negative electrode during charging, the negative electrode has lithium metal in the charged state, and the lithium metal on the surface of the negative electrode is substantially contained in the non-aqueous electrolyte during discharging.
  • the negative electrode may be a lithium secondary battery configured so as to have substantially no lithium metal in the discharged state by eluting all of them as lithium ions.
  • the separator can be appropriately selected from known separators.
  • a separator composed of only a base material layer a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one surface or both surfaces of the base material layer can be used.
  • the base material layer of the separator include woven fabrics, non-woven fabrics, and porous resin films. Among these, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance.
  • a material in which these resins are combined may be used.
  • the base material layer of the separator may be a complex obtained by adding inorganic particles or the like to these resins.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500 ° C. in an air atmosphere of 1 atm, and are heated from room temperature to 800 ° C. in an air atmosphere of 1 atm. It is more preferable that the mass reduction is 5% or less.
  • the material whose mass reduction is equal to or less than a predetermined value include inorganic compounds.
  • the inorganic compound include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate; magnesium hydroxide, calcium hydroxide and water.
  • Hydroxides such as aluminum oxide; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; sparingly soluble ion crystals such as calcium fluoride, barium fluoride and barium titanate Covalently bonded crystals such as silicon and diamond; talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, mica and other mineral resource-derived substances or man-made products thereof. ..
  • the inorganic compound a simple substance or a complex of these substances may be used alone, or two or more kinds thereof may be mixed and used.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the power storage device.
  • the porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • the "porosity" is a volume-based value and means a measured value with a mercury porosity meter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used.
  • the polymer include polyalkyl methacrylates such as polyacrylonitrile, polyethylene oxide, polypropylene oxide, polyethylene carbonate, polypropylene carbonate, polyvinyl carbonate, and polymethyl methacrylate, polyvinyl ethylene carbonate, polyvinyl acetate, polyvinyl pyrrolidone, polymaleic acid and derivatives thereof.
  • polymers may be combined with an inorganic salt or an ionic liquid.
  • the use of polymer gel has the effect of suppressing liquid leakage.
  • the separator the above-mentioned porous resin film, non-woven fabric, or the like may be used in combination with the polymer gel.
  • Non-water electrolyte As the non-aqueous electrolyte, a known non-aqueous electrolyte can be appropriately selected. A non-aqueous electrolyte solution may be used as the non-aqueous electrolyte.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like.
  • the non-aqueous solvent those in which some or all of the hydrogen atoms contained in these compounds are substituted with halogen may be used.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, styrene carbonate, 1-phenylvinylene carbonate, 1 , 2-Diphenylvinylene carbonate, 4-fluoroethylene carbonate (FEC), 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate (including DFEC, trans, cis and mixtures thereof), trifluoropropylene Carbonate (4- (trifluoromethyl) ethylene carbonate), 4-fluoro-4-methylethylene carbonate, 4-fluoro-5-methylethylene carbonate, 4- (fluoromethyl) ethylene carbonate, 4,4-bis (fluoromethyl) ) Ethylene carbonate and the like can be mentioned.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VEC vinylene carbonate
  • 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate and 4,5-difluoroethylene carbonate are preferable, and 4-fluoroethylene carbonate is more preferable, from the viewpoint of increasing the capacity retention rate of the lithium secondary battery.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methylphenyl carbonate, ethylphenyl carbonate, diphenyl carbonate, and 2,2,2-trifluoroethylmethyl carbonate (TFEMC).
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • TFEMC 2,2,2-trifluoroethylmethyl carbonate
  • Ethyl-2,2,2-trifluoroethyl carbonate bis (2,2,2-trifluoroethyl) carbonate, 2,2-difluoroethylmethyl carbonate, ethyl-2,2-difluoroethyl) carbonate, bis ( 2,2-Difluoroethyl) carbonate and the like.
  • the non-aqueous solvent it is preferable to use cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination.
  • the cyclic carbonate By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved.
  • the chain carbonate By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the non-aqueous solvent preferably contains a fluorinated solvent.
  • the fluorinated solvent is a non-aqueous solvent in which a part or all of hydrogen atoms are replaced with fluorine atoms.
  • the content of the fluorinated solvent in the non-aqueous solvent is preferably 20% by volume or more, more preferably 30% by volume or more, further preferably 50% by volume or more, still more preferably 70% by volume or more.
  • the content of the fluorinated solvent in the non-aqueous solvent may be 100% by volume or less.
  • fluorinated solvent examples include fluorinated carbonates, fluorinated ethers, fluorinated esters and the like. Among these, fluorinated carbonate and fluorinated ether are preferable, and fluorinated carbonate is more preferable, from the viewpoint of increasing the capacity retention rate.
  • Examples of the electrolyte salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , and LiN (SO). 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 , etc.
  • Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, LiN (SO 2 F) 2 and LiPF 6 are more preferable, and LiN (SO 2 F) 2 is further preferable.
  • the content of the electrolyte salt in the non-aqueous electrolyte solution is preferably 0.1 mol / dm 3 or more and 2.5 mol / dm 3 or less at 20 ° C. and 1 atm, and 0.3 mol / dm 3 or more and 2.0 mol / dm. It is more preferably 3 or less, more preferably 0.5 mol / dm 3 or more and 1.7 mol / dm 3 or less, and particularly preferably 0.7 mol / dm 3 or more and 1.5 mol / dm 3 or less.
  • the non-aqueous electrolyte solution may contain additives in addition to the non-aqueous solvent and the electrolyte salt.
  • additives include halogenated carbonate esters such as 4-fluoroethylene carbonate (FEC) and 4,5-difluoroethylene carbonate (DFEC); lithium bis (oxalate) borate (LiBOB) and lithium difluorooxalate borate (LiFOB).
  • Sulfonic acid esters such as lithium bis (oxalate) difluorophosphate (LiFOP); imide salts such as lithium bis (fluorosulfonyl) imide (LiFSI); biphenyl, alkyl biphenyl, terphenyl, partially hydride of terphenyl, cyclohexyl Aromatic compounds such as benzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; partial halides of the aromatic compounds such as 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; 2, Halogenated anisole compounds such as 4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole; vinylene carbonate, methylvinylene carbonate, ethyl
  • the content of the additive contained in the non-aqueous electrolytic solution is preferably 0.01% by mass or more and 10% by mass or less, and is 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolytic solution. It is more preferable to have it, more preferably 0.2% by mass or more and 5% by mass or less, and particularly preferably 0.3% by mass or more and 3% by mass or less.
  • a solid electrolyte may be used as the non-aqueous electrolyte. Further, the non-aqueous electrolyte solution and the solid electrolyte may be used in combination.
  • the solid electrolyte can be selected from any material having lithium ion conductivity and being solid at 25 ° C. under 1 atm.
  • the solid electrolyte include a sulfide solid electrolyte, an oxide solid electrolyte, an oxynitride solid electrolyte, a polymer solid electrolyte and the like.
  • a sulfide solid electrolyte and an oxide solid electrolyte are preferable, and a sulfide solid electrolyte is more preferable because of the high ionic conductivity.
  • the positive potential at the end of charging voltage during normal use is preferably 4.30 V (vs. Li / Li + ) or more, preferably 4.40 V (vs. Li / Li + ) or more, or In some cases, it is more preferably 4.50 V (vs. Li / Li + ) or higher.
  • the upper limit of the positive electrode potential at the end-of-charge voltage of the non-aqueous electrolyte power storage element during normal use is, for example, 5.00V (vs. Li / Li + ) and 4.80V (vs. Li / Li + ). It may be 4.70 V (vs. Li / Li + ) or 4.60 V (vs. Li / Li + ).
  • the shape of the lithium secondary battery is not particularly limited, and examples thereof include a cylindrical battery, a square battery, a flat battery, a coin battery, and a button battery.
  • FIG. 1 shows a lithium secondary battery 1 as an example of a square battery. The figure is a perspective view of the inside of the case.
  • the electrode body 2 having the positive electrode and the negative electrode wound around the separator is housed in the square case 3.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 41.
  • the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 51.
  • the lithium secondary battery may be a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer or a communication terminal, or a power source for power storage. It can be mounted as a power storage unit (battery module) composed of a plurality of lithium secondary batteries 1 assembled together. In this case, the technique of the present invention may be applied to at least one lithium secondary battery included in the power storage device.
  • FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected lithium secondary batteries 1 are assembled is further assembled.
  • the power storage device 30 includes a bus bar (not shown) for electrically connecting two or more lithium secondary batteries 1, a bus bar (not shown) for electrically connecting two or more power storage units 20 and the like. good.
  • the power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) for monitoring the state of one or more lithium secondary batteries 1.
  • the method for producing a lithium secondary battery according to the present embodiment includes producing a positive electrode mixture paste containing a positive electrode active material and phosphorus oxoacid, and drying the positive electrode mixture paste.
  • the lithium secondary battery according to the present embodiment is manufactured by, for example, the following manufacturing method.
  • the positive electrode can be produced, for example, by applying the positive electrode mixture paste directly to the positive electrode base material or via an intermediate layer and drying the mixture to form a positive electrode mixture layer.
  • the positive electrode mixture paste has a solid content and a dispersion medium.
  • the solid content contains a positive electrode active material and phosphorus oxoacid, and if necessary, contains optional components such as a conductive agent, a binder, a thickener, and a filler.
  • the positive electrode mixture paste can be prepared, for example, by stirring and kneading the positive electrode active material, phosphorus oxoacid, binder, and a conductive agent together with an appropriate amount of a dispersion medium.
  • the volume density per unit area of the positive electrode mixture layer depends on the content of the positive electrode active material in the positive electrode mixture layer, the type of the positive electrode active material, the thickness of the positive electrode mixture layer (the amount of the positive electrode mixture paste applied), and the like. Can be adjusted.
  • Examples of phosphorus oxo acids include phosphoric acid (H 3 PO 4 ), phosphonic acid (H 3 PO 3 ), phosphinic acid (H 3 PO 2 ), pyrophosphoric acid (H 4 P 2 O 7 ), polyphosphoric acid and the like. Be done. Among these, phosphoric acid and phosphonic acid are preferable, and phosphonic acid is more preferable.
  • a film containing phosphorus atoms can be formed on the surface of the positive electrode active material.
  • the peak of P2p of the phosphorus atom derived from the oxo acid of this phosphorus is observed below 133 eV.
  • the content ratio of phosphorus oxo acid in the positive electrode mixture paste is preferably 0.05 parts by mass or more and 5 parts by mass or less, and 0.07 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. It may be 0.08 part by mass or more and 1 part by mass or less, or 0.1 part by mass or more and 0.3 part by mass or less.
  • organic solvent used as the dispersion medium of the positive electrode mixture paste examples include polar solvents such as N-methyl-2-pyrodrin (NMP), acetone and ethanol, and non-polar solvents such as xylene, toluene and cyclohexane. can.
  • polar solvents are preferable, and NMP is more preferable.
  • the method for applying the positive electrode mixture paste is not particularly limited, and can be applied by a known method such as roller coating, screen coating, or spin coating.
  • a negative electrode is manufactured by forming a layer of lithium metal or a lithium alloy as an active material on the negative electrode base material.
  • the method for forming the layer of the lithium metal or the lithium alloy is not particularly limited, and the method can be performed by a known method such as crimping, electrodeposition, vapor deposition, or sputtering of the lithium metal foil or the lithium alloy foil.
  • the negative electrode included in the lithium secondary battery may have at least a lithium metal or a lithium alloy in a charged state, and may not have a lithium metal or a lithium alloy in a discharged state.
  • the negative electrode by depositing lithium metal on at least a part of the surface of the negative electrode during charging, the negative electrode has lithium metal in the charged state, and the lithium metal on the surface of the negative electrode is substantially contained in the non-aqueous electrolyte during discharging.
  • the negative electrode may be a lithium secondary battery configured so as to have substantially no lithium metal in the discharged state by eluting all of them as lithium ions. That is, in the formation of the electrode body of the lithium secondary battery, the negative electrode may have only the negative electrode base material.
  • non-aqueous electrolyte Preparation of non-aqueous electrolyte.
  • a non-aqueous solvent and an electrolyte salt may be mixed and adjusted, or industrially produced and sold ones may be used.
  • An electrode body is formed by laminating or winding a positive electrode and a negative electrode via a separator. Next, the electrode body and the non-aqueous electrolyte are housed in the case.
  • the inclusion of the non-aqueous electrolyte in the case can be appropriately selected from known methods. For example, when a non-aqueous electrolyte is used as the non-aqueous electrolyte, the non-aqueous electrolyte may be injected from the injection port formed in the case, and then the injection port may be sealed.
  • the lithium secondary battery of the present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique.
  • some of the configurations of certain embodiments can be deleted.
  • a well-known technique can be added to the configuration of a certain embodiment.
  • Example 1 (Preparation of positive electrode)
  • a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure and represented by Li 1 + ⁇ Me 1- ⁇ O 2 (Me is a transition metal element) was used (hereinafter, “active material”). Also referred to as "A").
  • active material a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure and represented by Li 1 + ⁇ Me 1- ⁇ O 2 (Me is a transition metal element) was used (hereinafter, “active material”). Also referred to as "A”).
  • the molar ratio of Li and Me, Li / Me was 1.33
  • the ratio of the positive electrode active material, the oxo acid of phosphorus, the conductive agent, and the binder was 93.5: 0.5: 4.5: 1.5 (in terms of solid content) in terms of mass ratio.
  • the adjusted positive electrode mixture paste was applied to one side of an aluminum foil as a positive electrode base material and dried to obtain a positive electrode.
  • the positive electrode was designed and manufactured so that the current density at 1 C was 3.0 mA / cm 2 .
  • a lithium metal foil (100% by mass of lithium metal) as a negative electrode active material was laminated on one side of a copper foil as a negative electrode base material and then pressed to obtain a negative electrode.
  • a mixed solvent was prepared by mixing FEC (4-fluoroethylene carbonate) and TFEMC (2,2,2-trifluoroethylmethyl carbonate) at a ratio of 3: 7. LiPF 6 as an electrolyte salt was dissolved in this mixed solvent at a concentration of 1.0 mol / dm 3 to prepare a non-aqueous electrolyte.
  • a microporous polyolefin membrane was used as the separator.
  • An electrode body was produced by laminating the positive electrode and the negative electrode via this separator. This electrode body was housed in a case made of a metal resin composite film, a non-aqueous electrolyte was injected into the case, and the electrode body was sealed by heat welding to obtain a lithium secondary battery of Example 1.
  • Comparative Example 1 A positive electrode mixture paste containing active material A as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and using N-methyl-2-pyrodrin (NMP) as a dispersion medium. was adjusted. The ratio of the positive electrode active material, the conductive agent, and the binder was 94: 4.5: 1.5 (in terms of solid content) in terms of mass ratio. A lithium secondary battery of Comparative Example 1 was obtained in the same manner as in Example 1 except that the positive electrode mixture paste was obtained by the above procedure.
  • NMP N-methyl-2-pyrodrin
  • Reference Example 1 A negative electrode mixture paste containing graphite as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener, and using water as a dispersion medium was prepared.
  • the ratio of the negative electrode active material, the binder, and the thickener was 96.7: 2.1: 1.2 (in terms of solid content) in terms of mass ratio.
  • the adjusted negative electrode mixture paste was applied to one side of a copper foil as a negative electrode base material and dried to obtain a negative electrode.
  • a lithium secondary battery of Reference Example 1 was obtained in the same manner as in Example 1 except that the negative electrode produced by the above procedure was used.
  • Reference Example 2 A lithium secondary battery of Reference Example 2 was obtained in the same manner as in Comparative Example 1 except that the same negative electrode as in Reference Example 1 was used.
  • Example 2 A lithium secondary battery of Example 2 was obtained in the same manner as in Example 1 except that LiFSI was used instead of LiPF 6 when adjusting the non-aqueous electrolyte.
  • Comparative Example 2 A lithium secondary battery of Comparative Example 2 was obtained in the same manner as in Comparative Example 1 except that LiFSI was used instead of LiPF 6 when adjusting the non-aqueous electrolyte.
  • Comparative Example 3 A lithium secondary battery of Comparative Example 3 was obtained in the same manner as in Comparative Example 1 except that 1% by mass of phosphonic acid was further added when preparing the non-aqueous electrolyte.
  • Example 3 As the positive electrode active material, a lithium transition metal composite oxide represented by LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used (hereinafter, also referred to as “active material B”). It contains active material B as a positive electrode active material, phosphonic acid as an oxo acid of phosphorus, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and contains N-methyl-2-pyrodrin (NMP). ) was used as a dispersion medium to prepare a positive electrode mixture paste.
  • active material B a lithium transition metal composite oxide represented by LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used (hereinafter, also referred to as “active material B”). It contains active material B as a positive electrode active material, phosphonic acid as an oxo acid of phosphorus, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and contains N-methyl-2-pyrodrin (NMP). )
  • the ratio of the positive electrode active material, the oxo acid of phosphorus, the conductive agent, and the binder was 92: 0.5: 4.5: 3.0 (in terms of solid content) in terms of mass ratio.
  • the adjusted positive electrode mixture paste was applied to one side of an aluminum foil as a positive electrode base material and dried to obtain a positive electrode.
  • the positive electrode was designed and manufactured so that the current density at 1C was 6.0 mA / cm 2 .
  • a lithium secondary battery of Example 3 was obtained in the same manner as in Example 1 except that the positive electrode produced by the above procedure was used.
  • NMP N-methyl-2-pyrodrin
  • the ratio of the positive electrode active material, the conductive agent, and the binder was 92.5: 4.5: 3.0 (in terms of solid content) in terms of mass ratio.
  • a lithium secondary battery of Comparative Example 4 was obtained in the same manner as in Example 3 except that the positive electrode mixture paste was obtained by the above procedure.
  • Example 4 As the positive electrode active material, a lithium transition metal composite oxide represented by LiCoO 2 was used (hereinafter, also referred to as “active material C”). It contains active material C as a positive electrode active material, phosphonic acid as an oxo acid of phosphorus, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and contains N-methyl-2-pyrodrin (NMP). ) was used as a dispersion medium to prepare a positive electrode mixture paste. The ratio of the positive electrode active material, the phosphorus oxoacid, the conductive agent, and the binder was 92.50: 0.50: 4.0: 3.0 (in terms of solid content) in terms of mass ratio.
  • active material C a lithium transition metal composite oxide represented by LiCoO 2
  • the adjusted positive electrode mixture paste was applied to one side of an aluminum foil as a positive electrode base material and dried to obtain a positive electrode.
  • the positive electrode was designed and manufactured so that the current density at 1C was 6.0 mA / cm 2 .
  • a lithium secondary battery of Example 4 was obtained in the same manner as in Example 1 except that the positive electrode produced by the above procedure was used.
  • Example 5 Examples except that the ratio of the positive electrode active material, the oxo acid of phosphorus, the conductive agent, and the binder was 92.75: 0.25: 4.0: 3.0 (solid content equivalent) in terms of mass ratio. In the same manner as in No. 4, the lithium secondary battery of Example 5 was obtained.
  • Example 6 Examples except that the ratio of the positive electrode active material, the oxo acid of phosphorus, the conductive agent, and the binder was 92.90: 0.10: 4.0: 3.0 (solid content equivalent) in terms of mass ratio. In the same manner as in No. 4, the lithium secondary battery of Example 6 was obtained.
  • NMP N-methyl-2-pyrodrin
  • the ratio of the positive electrode active material, the conductive agent, and the binder was 93.0: 4.0: 3.0 (in terms of solid content) in terms of mass ratio.
  • a lithium secondary battery of Comparative Example 5 was obtained in the same manner as in Example 4 except that the positive electrode mixture paste was obtained by the above procedure.
  • Example 7 The ratio of the positive electrode active material, phosphorus oxo acid, conductive agent, and binder was set to 92.25: 0.25: 4.5: 3.0 (solid content conversion) in terms of mass ratio, and at 1C.
  • a lithium secondary battery of Example 7 was obtained in the same manner as in Example 1 except that the current density was designed to be 6.0 mA / cm 2 .
  • Comparative Example 6 The ratio of the positive electrode active material, the conductive agent, and the binder was set to 92.50: 4.5: 3.0 (solid content conversion) in terms of mass ratio, and the current density at 1C was 6.0 mA / cm 2 .
  • a lithium secondary battery of Comparative Example 6 was obtained in the same manner as in Example 1 except that the battery was designed to be the same.
  • Example 1 For Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3, charge / discharge cycle tests were performed with three lithium secondary batteries, respectively, and the average number of charge / discharge cycles leading to a short circuit was calculated. , The number of cycles until the short circuit of each Example and Comparative Example was taken. Further, in Example 1 and Comparative Example 3, the discharge capacity in the second cycle was divided by the mass of the positive electrode active material to obtain the initial discharge capacity. Further, for Example 1 and Comparative Example 3, the case volume before initialization and the case volume after charging / discharging in the second cycle were measured, and the amount of increase in cell volume was calculated.
  • the lithium secondary batteries of Reference Example 1 and Reference Example 2 were evaluated under the following conditions.
  • the lithium secondary batteries of Example 3 and Comparative Example 4 were evaluated under the following conditions.
  • Example 3 and Comparative Example 4 A charge / discharge cycle test was performed on each of Example 3 and Comparative Example 4 with three lithium secondary batteries, and the average number of charge / discharge cycles leading to a short circuit was calculated as the number of cycles leading to a short circuit in each Example and Comparative Example. And said.
  • the lithium secondary batteries of Example 4, Example 5, Example 6, Example 7, Comparative Example 5, and Comparative Example 6 were evaluated under the following conditions.
  • Example 4 Initialization, Example 4, Example 5, Example 6, and Comparative Example 5, constant current charging up to 4.55 V with a charging current of 0.1 CmA in a constant temperature bath at 25 ° C., and further charging with a constant voltage of 4.55 V. After constant voltage charging until the current became 0.05 CmA, constant current discharge was performed up to 2.70 V at a discharge current of 0.1 CmA. There was a 10-minute rest period between charging and discharging.
  • Example 7 and Comparative Example 6 constant current charging up to 4.6 V with a charging current of 0.1 CmA in a constant temperature bath at 25 ° C., and until the charging current reaches 0.05 CmA at a constant voltage of 4.6 V. After constant voltage charging, constant current discharge was performed up to 2.0 V at a discharge current of 0.1 CmA. There was a 10 minute rest period between charging and discharging.
  • the lithium secondary batteries after initialization in Example 7 and Comparative Example 6 are constantly charged to 4.6 V with a charging current of 0.33 CmA in a constant temperature bath at 25 ° C., and further charged with a constant current of 4.6 V. After constant voltage charging until the charging current became 0.1 CmA, constant current discharge was performed up to 2.0 V at a discharge current of 0.33 CmA. A 10-minute rest period was provided after each of charging and discharging. These charging and discharging steps were set as one cycle, and this charging / discharging cycle was repeated until a short circuit occurred. The presence or absence of a short circuit was confirmed by a decrease in Coulomb efficiency and an increase in the amount of charging electricity during the charge / discharge cycle.
  • Example 4 A charge / discharge cycle test was performed on each of Example 4, Example 5, Example 6, Example 7, Comparative Example 5, and Comparative Example 6 with three lithium secondary batteries, and a charge / discharge cycle leading to a short circuit was performed. The average of the numbers was taken as the number of cycles until the short circuit of each Example and Comparative Example. Further, the percentage of the discharge capacity at the 80th cycle to the discharge capacity at the 2nd cycle was obtained, and the discharge capacity retention rate at the time of the 80th cycle was used. Further, for Example 4, Example 5, Example 6, and Comparative Example 5, the percentage of the discharge capacity at the 150th cycle to the discharge capacity at the second cycle was obtained and used as the discharge capacity retention rate at the time of 150 cycles.
  • XPS measurement The lithium secondary batteries of Example 1, Comparative Example 1, Comparative Example 3, Example 4, Example 5, Example 6, and Comparative Example 5 after initialization are discharged to 2.00 V at 0.1 CmA. , Completely discharged. Next, the lithium secondary battery was disassembled, the positive electrode was taken out, the positive electrode was thoroughly washed with dimethyl carbonate, and then dried under reduced pressure at room temperature. The positive electrode after drying was cut out and used as a sample for XPS measurement. The work from disassembling the lithium secondary battery to preparing the sample in the XPS measurement was performed in an argon atmosphere with a dew point of ⁇ 60 ° C. or lower. XPS measurement was performed with the above-mentioned equipment and measurement conditions, and the peak position of P2p in the spectrum of each sample by XPS was confirmed.
  • Example 1 and Comparative Example 1 As shown in Table 1, in Example 1 and Comparative Example 1, a short circuit occurred by repeating the charge / discharge cycle. On the other hand, in Reference Example 1 and Reference Example 2, a short circuit did not occur even if the charge / discharge cycle was repeated. It can be seen that the short circuit caused by repeating the charge / discharge cycle is a problem peculiar to the lithium secondary battery that utilizes the precipitation reaction and the elution reaction of the lithium metal as the charge / discharge reaction.
  • the lithium secondary battery of the example has a larger number of cycles leading to a short circuit than the lithium secondary battery of the comparative example, and can suppress the occurrence of a short circuit. It was also confirmed that the non-aqueous electrolyte containing LiFSI as an electrolyte salt enhances the effect of suppressing the occurrence of a short circuit.
  • Example 1 has a larger number of cycles leading to a short circuit than Comparative Example 3 and can suppress the occurrence of a short circuit. Further, as shown in Table 3, it was confirmed that the cell volume increase in Example 1 was smaller than that in Comparative Example 3, and the volume increase of the lithium secondary battery could be suppressed. Further, it was confirmed that Example 1 can have a larger initial discharge capacity as compared with Comparative Example 3.
  • the lithium secondary battery of the example has a larger number of cycles leading to a short circuit than the lithium secondary battery of the comparative example, and can suppress the occurrence of a short circuit.
  • the lithium secondary battery of the example has a larger number of cycles leading to a short circuit than the lithium secondary battery of the comparative example, and can suppress the occurrence of a short circuit. Further, it was confirmed that when the active material C was used as the positive electrode active material, the discharge capacity retention rate was lower than that when the active material A was used. Further, in the lithium secondary battery using the active material C as the positive electrode active material, the content of H 3 PO 3 as the oxo acid of phosphorus in the positive electrode mixture paste is 0.3 mass by mass with respect to 100 parts by mass of the positive electrode. It was confirmed that the decrease in the discharge capacity retention rate can be suppressed by reducing the amount to less than one part.

Abstract

One embodiment of the present invention provides a method for producing a lithium secondary battery which is provided with a positive electrode, a negative electrode and a nonaqueous electrolyte, wherein the negative electrode contains lithium metal or a lithium alloy that serves as an active material in a charged state. This method for producing a lithium secondary battery comprises: a process for producing a positive electrode mixture paste that contains a positive electrode active material and an oxo acid of phosphorus; and a process for drying the positive electrode mixture paste. Another embodiment of the present invention provides a lithium secondary battery which is provided with: a positive electrode that comprises a positive electrode mixture containing a positive electrode active material; a negative electrode that contains lithium metal or a lithium alloy which serves as an active material in a charged state; and a nonaqueous electrolyte. With respect to this lithium secondary battery, a peak of P2p is present at 133 eV or less in the spectrum of the positive electrode mixture as determined by X-ray photoelectron spectroscopy.

Description

リチウム二次電池の製造方法及びリチウム二次電池Manufacturing method of lithium secondary battery and lithium secondary battery
 本発明は、リチウム二次電池の製造方法及びリチウム二次電池に関する。 The present invention relates to a method for manufacturing a lithium secondary battery and a lithium secondary battery.
 リチウム二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。リチウム二次電池は、一般的には、一対の電極を有する電極体及び電極間に介在する非水電解質を備え、両電極間をリチウムイオンが移動することで充放電するよう構成される。 Lithium secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc. due to their high energy density. A lithium secondary battery generally includes an electrode body having a pair of electrodes and a non-aqueous electrolyte interposed between the electrodes, and is configured to be charged and discharged by the movement of lithium ions between the electrodes.
 現在実用化されているリチウム二次電池においては、負極にリチウムイオンを吸蔵放出する負極活物質(炭素材料、半金属材料、金属酸化物材料等)を使用することが一般的である。このような負極活物質を用いると、エネルギー密度が低くなる問題がある。 In the lithium secondary batteries currently in practical use, it is common to use a negative electrode active material (carbon material, semi-metal material, metal oxide material, etc.) that occludes and releases lithium ions in the negative electrode. When such a negative electrode active material is used, there is a problem that the energy density becomes low.
 エネルギー密度を高める手段として、負極にリチウム金属を用いることが挙げられる。リチウム金属は単位体積及び単位質量あたりの容量が高く、作動電位が低い。このため、負極の充放電反応としてリチウム金属の析出反応および溶出反応を利用することで、エネルギー密度の高いリチウム二次電池が得られる。 As a means of increasing the energy density, the use of lithium metal for the negative electrode can be mentioned. Lithium metal has a high capacity per unit volume and unit mass, and has a low operating potential. Therefore, by utilizing the precipitation reaction and the elution reaction of the lithium metal as the charge / discharge reaction of the negative electrode, a lithium secondary battery having a high energy density can be obtained.
 特許文献1には、リチウム金属またはリチウム合金を活物質とした負極と、有機電解液とセパレータを介して、金属酸化物、金属硫化物などを活物質とした正極とからなるリチウム二次電池において、上記有機電解液に亜燐酸ジエステルを含有させることが記載されている。そして、実施例には、エチレンカーボネート(EC)と、ジメチルカーボネート(DME)と、亜燐酸ジエチルを体積比60:39:1の配合比で混合した電解液を用いることが記載されている。 Patent Document 1 describes a lithium secondary battery comprising a negative electrode made of a lithium metal or a lithium alloy as an active material and a positive electrode made of a metal oxide, a metal sulfide, etc. as an active material via an organic electrolytic solution and a separator. , It is described that the organic electrolytic solution contains a phosphite diester. Then, in the Example, it is described that an electrolytic solution in which ethylene carbonate (EC), dimethyl carbonate (DME), and diethyl phosphite are mixed in a volume ratio of 60:39: 1 is used.
 特許文献2には、N-メチルピロドリンを分散媒として、正極活物質であるLi1.18Ni0.10Co0.17Mn0.55、アセチレンブラック、PVDFを94:4.5:1.5の質量比で混合した混合物に、正極活物質の質量に対して1質量%のホスホン酸(HPO)を添加して正極合剤ペーストを得た実施例が記載されている。また、上記正極合剤ペーストを用いて作製した正極と、活物質としてグラファイトを含む負極とを組み合わせた非水電解質蓄電素子が記載されている。 Patent Document 2 describes Li 1.18 Ni 0.10 Co 0.17 Mn 0.55 O 2 , acetylene black, and PVDF 94: 4.5, which are positive electrode active substances, using N-methylpyrodrin as a dispersion medium. An example is described in which 1% by mass of phosphonic acid (H 3 PO 3 ) is added to a mixture mixed at a mass ratio of: 1.5 with respect to the mass of the positive electrode active material to obtain a positive electrode mixture paste. There is. Further, a non-aqueous electrolyte power storage element in which a positive electrode produced by using the positive electrode mixture paste and a negative electrode containing graphite as an active material are combined is described.
特開平5-190205Japanese Patent Application Laid-Open No. 5-190205 特開2018-125209JP-A-2018-125209
 リチウムイオンを吸蔵放出する負極活物質を用いた負極においては、充電時には負極活物質にリチウムイオンが挿入され、放電時には負極活物質からリチウムイオンが放出される。つまり、充放電反応としてリチウム金属の析出反応および溶出反応を利用しない。このため、このような負極活物質を用いれば、特殊な条件で充放電を行わない限りは、析出反応時にリチウム金属がデンドライト状に成長することはなくなる。
 これに対し、リチウム金属を用いた負極では、充放電にリチウム金属の析出反応および溶出反応を利用することから、充放電を繰り返すと析出反応時にリチウム金属がデンドライト状に成長し、短絡を引き起こす問題がある。そこで、充電により負極にリチウム金属を析出させるリチウム二次電池において、充放電を繰り返した際に生じる短絡を抑制する技術が望まれる。
In a negative electrode using a negative electrode active material that occludes and discharges lithium ions, lithium ions are inserted into the negative electrode active material during charging, and lithium ions are released from the negative electrode active material during discharging. That is, the lithium metal precipitation reaction and elution reaction are not used as the charge / discharge reaction. Therefore, if such a negative electrode active material is used, the lithium metal does not grow like a dendrite during the precipitation reaction unless charging and discharging are performed under special conditions.
On the other hand, in the negative electrode using lithium metal, the precipitation reaction and elution reaction of lithium metal are used for charging and discharging. Therefore, when charging and discharging are repeated, the lithium metal grows like a dendrite during the precipitation reaction, causing a short circuit. There is. Therefore, in a lithium secondary battery that deposits lithium metal on the negative electrode by charging, a technique for suppressing a short circuit that occurs when charging and discharging are repeated is desired.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、短絡の発生を抑制できるリチウム二次電池、及びその製造方法を提供することである。 The present invention has been made based on the above circumstances, and an object thereof is to provide a lithium secondary battery capable of suppressing the occurrence of a short circuit, and a method for manufacturing the same.
 本発明の一実施形態に係るリチウム二次電池の製造方法は、正極と、負極と、非水電解質とを備えるリチウム二次電池の製造方法であって、上記負極は、充電状態において活物質としてのリチウム金属又はリチウム合金を含み、正極活物質、及びリンのオキソ酸を含む正極合剤ペーストを作製することと、上記正極合剤ペーストを乾燥することと、を備える。 The method for manufacturing a lithium secondary battery according to an embodiment of the present invention is a method for manufacturing a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode is used as an active material in a charged state. The present invention comprises the preparation of a positive electrode mixture paste containing the above-mentioned lithium metal or lithium alloy, the positive electrode active material, and the oxo acid of phosphorus, and the drying of the above-mentioned positive electrode mixture paste.
 本発明の他の実施形態に係るリチウム二次電池は、正極活物質を含む正極合剤を備えた正極と、充電状態において活物質としてのリチウム金属又はリチウム合金を含む負極と、非水電解質とを備え、上記正極合剤のX線光電子分光法によるスペクトルにおいて、P2pのピークが133eV以下に存在する、リチウム二次電池である。 The lithium secondary battery according to another embodiment of the present invention includes a positive electrode having a positive electrode mixture containing a positive electrode active material, a negative electrode containing a lithium metal or a lithium alloy as an active material in a charged state, and a non-aqueous electrolyte. A lithium secondary battery having a P2p peak of 133 eV or less in the spectrum of the positive electrode mixture obtained by X-ray photoelectron spectroscopy.
 本発明のリチウム二次電池の製造方法によれば、短絡の発生が抑制されたリチウム二次電池を製造することができる。本発明のリチウム二次電池によれば、短絡の発生を抑制することができる。 According to the method for manufacturing a lithium secondary battery of the present invention, it is possible to manufacture a lithium secondary battery in which the occurrence of a short circuit is suppressed. According to the lithium secondary battery of the present invention, the occurrence of a short circuit can be suppressed.
図1は、本発明の一実施形態に係るリチウム二次電池の外観斜視図である。FIG. 1 is an external perspective view of a lithium secondary battery according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るリチウム二次電池を複数個集合して構成した蓄電装置を示す概略図である。FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of lithium secondary batteries according to an embodiment of the present invention.
 はじめに、本明細書によって開示されるリチウム二次電池の製造方法、及びリチウム二次電池の概要について説明する。 First, the manufacturing method of the lithium secondary battery disclosed in the present specification and the outline of the lithium secondary battery will be described.
 本発明の一実施形態に係るリチウム二次電池の製造方法は、正極と、負極と、非水電解質とを備えるリチウム二次電池の製造方法であって、上記負極は、充電状態において活物質としてのリチウム金属又はリチウム合金を含み、正極活物質、及びリンのオキソ酸を含む正極合剤ペーストを作製することと、上記正極合剤ペーストを乾燥することと、を備える。 The method for manufacturing a lithium secondary battery according to an embodiment of the present invention is a method for manufacturing a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode is used as an active material in a charged state. The present invention comprises the preparation of a positive electrode mixture paste containing the above-mentioned lithium metal or lithium alloy, the positive electrode active material, and the oxo acid of phosphorus, and the drying of the above-mentioned positive electrode mixture paste.
 当該製造方法によれば、短絡の発生が抑制されたリチウム二次電池を製造することができる。 According to the manufacturing method, it is possible to manufacture a lithium secondary battery in which the occurrence of a short circuit is suppressed.
 本発明者らは、リチウム金属を含む負極を備えるリチウム二次電池の製造過程において、正極合剤ペーストにリンのオキソ酸を加えることで、充放電を繰り返した際に生じる短絡を抑制できるという、従来の技術常識からは予想できない驚くべき事象が生じることを見出した。 The present inventors say that in the process of manufacturing a lithium secondary battery including a negative electrode containing a lithium metal, by adding phosphorus oxo acid to the positive electrode mixture paste, a short circuit that occurs when charging and discharging are repeated can be suppressed. We have found that surprising events occur that cannot be predicted from the conventional wisdom of technology.
 本発明を実施するにあたり、かかる効果が得られる理由を明らかにする必要はないが、例えば、以下のことが考えられる。
 充電を繰り返すことにより、負極においてリチウム金属をデンドライト状に成長させる要因の一つに、電流集中が挙げられる。これに対し、本発明では、リンのオキソ酸を含む正極合剤ペーストを用いて正極を作製する。このような正極合剤ペーストを用いて正極を作製することで、正極活物質の表面にリンのオキソ酸に由来するリン原子を含む被膜が形成される。この被膜は、正極活物質と非水電解質との界面での副反応を抑制すると考えられる。副反応が抑制されると、正極の部分的な高抵抗化が抑制され、電流集中が緩和される。その結果、負極においてリチウム金属のデンドライト状の成長が阻害され、短絡の発生を抑制できたと考えられる。
In carrying out the present invention, it is not necessary to clarify the reason why such an effect is obtained, but for example, the following can be considered.
Current concentration is one of the factors that cause the lithium metal to grow in a dendrite shape on the negative electrode by repeating charging. On the other hand, in the present invention, a positive electrode is prepared using a positive electrode mixture paste containing an oxo acid of phosphorus. By producing a positive electrode using such a positive electrode mixture paste, a film containing a phosphorus atom derived from phosphorus oxoacid is formed on the surface of the positive electrode active material. This coating is thought to suppress side reactions at the interface between the positive electrode active material and the non-aqueous electrolyte. When the side reaction is suppressed, the partial increase in resistance of the positive electrode is suppressed, and the current concentration is alleviated. As a result, it is considered that the dendrite-like growth of the lithium metal was inhibited in the negative electrode, and the occurrence of a short circuit could be suppressed.
 上記正極合剤ペーストにおける上記リンのオキソ酸の含有量が、上記正極活物質100質量部に対して0.05質量部以上5質量部以下であることが好ましい。このような正極合剤ペーストを用いることによって、充放電の繰り返しに伴う短絡の発生をより抑制することができる。 The content of phosphorus oxoacid in the positive electrode mixture paste is preferably 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. By using such a positive electrode mixture paste, it is possible to further suppress the occurrence of a short circuit due to repeated charging and discharging.
 上記正極合剤ペーストにおける上記リンのオキソ酸の含有量が、上記正極活物質100質量部に対して0.1質量部以上0.3質量部以下であり、上記正極活物質が、Li[LiCo(1-x)]O(0≦x<0.5)の組成式で表されるリチウム遷移金属複合酸化物を含むことが好ましい。このような場合、充放電の繰り返しに伴う短絡の発生を抑制しつつ、容量維持率を高めることができる。 The content of oxoacid of phosphorus in the positive electrode mixture paste is 0.1 parts by mass or more and 0.3 parts by mass or less with respect to 100 parts by mass of the positive electrode active material, and the positive electrode active material is Li [Li. It is preferable to contain a lithium transition metal composite oxide represented by the composition formula of x Co (1-x) ] O 2 (0 ≦ x <0.5). In such a case, the capacity retention rate can be increased while suppressing the occurrence of a short circuit due to repeated charging and discharging.
 本発明の他の実施形態に係るリチウム二次電池は、正極活物質を含む正極合剤を備えた正極と、充電状態において活物質としてのリチウム金属又はリチウム合金を含む負極と、非水電解質とを備え、上記正極合剤のX線光電子分光法によるスペクトルにおいて、P2pのピークが133eV以下に存在する、リチウム二次電池である。 The lithium secondary battery according to another embodiment of the present invention includes a positive electrode having a positive electrode mixture containing a positive electrode active material, a negative electrode containing a lithium metal or a lithium alloy as an active material in a charged state, and a non-aqueous electrolyte. A lithium secondary battery having a P2p peak of 133 eV or less in the spectrum of the positive electrode mixture obtained by X-ray photoelectron spectroscopy.
 当該リチウム二次電池によれば、短絡の発生を抑制することができる。 According to the lithium secondary battery, the occurrence of a short circuit can be suppressed.
 本発明を実施するにあたり、かかる効果が得られる理由を明らかにする必要はないが、例えば、以下のことが考えられる。
 当該リチウム二次電池について、上記正極合剤のX線光電子分光法によるスペクトルにおける133eV以下に存在するP2pのピークは、正極合剤の表面に存在する化合物が、ある特定の化学結合状態のリン原子を含むことを示している。このリン原子を含む化合物は、正極活物質表面で被膜を形成していると推測される。当該リチウム二次電池においては、このような被膜により、正極活物質と非水電解質との界面での副反応が抑制されることで、電流集中が緩和される。その結果、負極においてリチウム金属のデンドライト状の成長が阻害され、短絡の発生を抑制できたと考えられる。
In carrying out the present invention, it is not necessary to clarify the reason why such an effect is obtained, but for example, the following can be considered.
For the lithium secondary battery, the peak of P2p present at 133 eV or less in the spectrum of the positive electrode mixture by X-ray photoelectron spectroscopy is that the compound present on the surface of the positive electrode mixture has a phosphorus atom in a specific chemical bond state. Is shown to include. It is presumed that the compound containing a phosphorus atom forms a film on the surface of the positive electrode active material. In the lithium secondary battery, such a coating suppresses a side reaction at the interface between the positive electrode active material and the non-aqueous electrolyte, thereby alleviating the current concentration. As a result, it is considered that the dendrite-like growth of the lithium metal was inhibited in the negative electrode, and the occurrence of a short circuit could be suppressed.
 正極合剤のX線光電子分光法(XPS)測定に用いる試料は、次の方法により準備する。リチウム二次電池を、0.1Cの電流で、通常使用時の放電終止電圧まで放電し、完全放電状態とする。ここで、「通常使用時」とは、当該リチウム二次電池において推奨され、又は指定される放電条件を採用して当該リチウム二次電池を使用する場合をいう。完全放電状態のリチウム二次電池を解体して正極を取り出し、ジメチルカーボネートを用いて正極を充分に洗浄した後、室温にて減圧乾燥を行う。乾燥後の正極を、所定サイズ(例えば2×2cm)に切り出し、XPS測定における試料とする。リチウム二次電池の解体からXPS測定における試料の作製までの作業は、露点-60℃以下のアルゴン雰囲気中で行い、試料はトランスファーベッセルに封入して大気非暴露にてXPS測定に供する。正極合剤のXPS測定における使用装置及び測定条件は以下のとおりである。
装置:KRATOS ANALYTICAL社の「AXIS NOVA」
X線源:単色化AlKα
加速電圧:15kV
管電流:10mA
分析面積:700μm×300μm
測定範囲:P2p=142~125eV、C1s=300~272eV
測定間隔:0.1eV
測定時間:P2p=72.3秒/回、C1s=70.0秒/回
積算回数:P2p=15回、C1s=8回
The sample used for the X-ray photoelectron spectroscopy (XPS) measurement of the positive electrode mixture is prepared by the following method. The lithium secondary battery is discharged with a current of 0.1 C to the discharge end voltage at the time of normal use, and is in a completely discharged state. Here, "during normal use" means a case where the lithium secondary battery is used by adopting the discharge conditions recommended or specified for the lithium secondary battery. The lithium secondary battery in a completely discharged state is disassembled, the positive electrode is taken out, the positive electrode is thoroughly washed with dimethyl carbonate, and then dried under reduced pressure at room temperature. The dried positive electrode is cut out to a predetermined size (for example, 2 × 2 cm) and used as a sample for XPS measurement. The work from disassembling the lithium secondary battery to preparing the sample in XPS measurement is performed in an argon atmosphere with a dew point of −60 ° C. or lower, and the sample is enclosed in a transfer vessel and subjected to XPS measurement without exposure to the atmosphere. The equipment and measurement conditions used in the XPS measurement of the positive electrode mixture are as follows.
Equipment: "AXIS NOVA" from KRATOS ANALYTICAL
X-ray source: Monochromatic AlKα
Acceleration voltage: 15kV
Tube current: 10mA
Analytical area: 700 μm × 300 μm
Measurement range: P2p = 142 to 125 eV, C1s = 300 to 272 eV
Measurement interval: 0.1 eV
Measurement time: P2p = 72.3 seconds / time, C1s = 70.0 seconds / time Total number of times: P2p = 15 times, C1s = 8 times
 上記スペクトルにおけるP2pのピーク位置は、次のようにして求められる値とする。まず、C1sにおけるsp2炭素に帰属される結合エネルギーのピークを284.8eVとし、得られたすべてのスペクトルを補正する。次に、それぞれのスペクトルに対して、直線法を用いてバックグラウンドを除去することにより、水平化処理を行う。水平化処理後のスペクトルにおいて、142から125eVの範囲で強度が最も高い値を示す結合エネルギーをP2pのピーク位置とする。 The peak position of P2p in the above spectrum is a value obtained as follows. First, the peak of the binding energy attributed to sp2 carbon in C1s is set to 284.8 eV, and all the obtained spectra are corrected. Next, leveling processing is performed on each spectrum by removing the background using the linear method. In the spectrum after the leveling treatment, the binding energy showing the highest value in the range of 142 to 125 eV is defined as the peak position of P2p.
 上記正極は上記正極合剤を含む正極合剤層を備え、上記正極合剤層の単位面積あたりの容量密度が3mAh/cm以上であることが好ましい。このような正極を用いることで、充放電の繰り返しに伴う短絡の発生を抑制しつつ、リチウム二次電池のエネルギー密度を高めることができる。 The positive electrode includes a positive electrode mixture layer containing the positive electrode mixture, and the volume density per unit area of the positive electrode mixture layer is preferably 3 mAh / cm 2 or more. By using such a positive electrode, it is possible to increase the energy density of the lithium secondary battery while suppressing the occurrence of a short circuit due to repeated charging and discharging.
 正極合剤層の単位面積当たりの容量密度は、リチウム二次電池の設計が明らかな場合は下記式(a)により求められる値とし、リチウム二次電池の設計が不明な場合は以下の容量確認試験及び下記式(b)により求められる値とする。下記式(a)及び(b)中、「容量密度」は正極合剤層の単位面積当たりの容量密度を指す。また、下記式(a)中、「定格容量」は、リチウム二次電池を、当該リチウム二次電池において推奨され、又は指定される充放電条件を採用して、満充電状態とした後、完全放電状態まで放電したときの放電容量をいい、当該リチウム二次電池のための充電器が用意されている場合は、その充電器を適用して充電した後、完全放電状態まで放電したときの放電容量をいう。「実効面積」は、正極合剤層と負極活物質層とが対向している面積をいう。
(リチウム二次電池の設計が明らかな場合)
 リチウム二次電池の定格容量(mAh)/正極合剤層の実効面積(cm)=容量密度(mAh/cm) ・・・(a)
(リチウム二次電池の設計が不明な場合)
 リチウム二次電池を解体し任意の面積に打ち抜いた正極の容量確認試験を実施する。まず、リチウム二次電池を解体し、正極を取り出しジメチルカーボネートを用いて、取り出した正極に付着した非水電解質を十分に洗浄し、室温にて一昼夜乾燥後、リチウム金属電極を対極とした試験電池を組み立てる。ここでのリチウム金属電極には、純金属リチウムを用いる。正極合剤層1gあたり10mAの電流値で、容量確認試験を実施する。通常使用時の充電終止電圧となるまで定電流充電し、満充電状態とする。休止後、通常使用時の下限電圧まで定電流放電する。容量確認試験で得られた放電容量(mAh)と、試験電池における正極合剤層の面積(cm)とから、下記式(b)により正極合剤層の単位面積あたりの容量密度(mAh/cm)を求める。リチウム二次電池の解体から試験電池の組み立てまでの作業は露点-60℃以下のアルゴン雰囲気中で行う。なお、「通常使用時」とは、当該リチウム二次電池について推奨され、又は指定される充放電条件を採用して当該リチウム二次電池を使用する場合であり、当該リチウム二次電池のための充電器が用意されている場合は、その充電器を適用して当該リチウム二次電池を使用する場合をいう。
 容量確認試験で得られた放電容量(mAh)/試験電池における正極合剤層の面積(cm)=容量密度(mAh/cm) ・・・(b)
The capacity density per unit area of the positive electrode mixture layer shall be the value obtained by the following formula (a) when the design of the lithium secondary battery is clear, and the following capacity check when the design of the lithium secondary battery is unknown. The value shall be the value obtained by the test and the following formula (b). In the following formulas (a) and (b), "capacity density" refers to the volume density per unit area of the positive electrode mixture layer. Further, in the following formula (a), the "rated capacity" is completely charged after the lithium secondary battery is fully charged by adopting the charge / discharge conditions recommended or specified in the lithium secondary battery. Discharge capacity when discharged to the discharged state, and if a charger for the lithium secondary battery is prepared, discharge when discharged to the completely discharged state after charging by applying the charger. Refers to capacity. The "effective area" refers to the area where the positive electrode mixture layer and the negative electrode active material layer face each other.
(When the design of the lithium secondary battery is clear)
Rated capacity of lithium secondary battery (mAh) / Effective area of positive electrode mixture layer (cm 2 ) = Capacity density (mAh / cm 2 ) ... (a)
(If the design of the lithium secondary battery is unknown)
The capacity confirmation test of the positive electrode punched out to an arbitrary area by disassembling the lithium secondary battery is carried out. First, the lithium secondary battery is disassembled, the positive electrode is taken out, the non-aqueous electrolyte adhering to the taken out positive electrode is thoroughly washed with dimethyl carbonate, and the test battery is dried at room temperature for 24 hours and then with the lithium metal electrode as the counter electrode. To assemble. Pure metallic lithium is used for the lithium metal electrode here. A capacity confirmation test is carried out at a current value of 10 mA per 1 g of the positive electrode mixture layer. It is charged with a constant current until it reaches the end-of-charge voltage during normal use, and is fully charged. After pause, constant current discharge to the lower limit voltage during normal use. From the discharge capacity (mAh) obtained in the capacity confirmation test and the area of the positive electrode mixture layer (cm 2 ) in the test battery, the capacity density per unit area of the positive electrode mixture layer (mAh /) is calculated by the following formula (b). Find cm 2 ). The work from disassembling the lithium secondary battery to assembling the test battery is performed in an argon atmosphere with a dew point of -60 ° C or lower. In addition, "during normal use" is a case where the lithium secondary battery is used by adopting the charge / discharge conditions recommended or specified for the lithium secondary battery, and is used for the lithium secondary battery. When a charger is prepared, it means the case where the charger is applied and the lithium secondary battery is used.
Discharge capacity (mAh) obtained in the capacity confirmation test / Area of the positive electrode mixture layer in the test battery (cm 2 ) = Capacity density (mAh / cm 2 ) ... (b)
 当該リチウム二次電池においては、通常使用時の充電終止電圧における正極電位が4.30V(vs.Li/Li)以上であることが好ましい。通常使用時の充電終止電圧における正極電位を高くすることで、当該リチウム二次電池のエネルギー密度を高めることができる。また、当該リチウム二次電池が備える正極では、正極活物質の表面にリンのオキソ酸に由来する被膜が形成され、正極活物質と非水電解質との界面での副反応が抑制されると考えられる。このため、通常使用時の充電終止電圧における正極電位を高く設定しても、充放電の繰り返しに伴う短絡の発生を抑制できる。 In the lithium secondary battery, it is preferable that the positive electrode potential at the end-of-charge voltage during normal use is 4.30 V (vs. Li / Li + ) or more. By increasing the positive electrode potential at the end-of-charge voltage during normal use, the energy density of the lithium secondary battery can be increased. Further, in the positive electrode provided in the lithium secondary battery, a film derived from phosphorus oxoacid is formed on the surface of the positive electrode active material, and it is considered that side reactions at the interface between the positive electrode active material and the non-aqueous electrolyte are suppressed. Be done. Therefore, even if the positive electrode potential at the end-of-charge voltage during normal use is set high, the occurrence of a short circuit due to repeated charging and discharging can be suppressed.
 上記非水電解質が、リチウムビス(フルオロスルホニル)イミドを含むことが好ましい。当該リチウム二次電池が非水電解質にリチウムビス(フルオロスルホニル)イミドを含むことによって、充放電の繰り返しに伴う短絡の発生をさらに抑制することができる。 It is preferable that the non-aqueous electrolyte contains lithium bis (fluorosulfonyl) imide. When the lithium secondary battery contains lithium bis (fluorosulfonyl) imide in the non-aqueous electrolyte, it is possible to further suppress the occurrence of a short circuit due to repeated charging and discharging.
 上記正極活物質が、α-NaFeO型結晶構造若しくはスピネル型結晶構造を有するリチウム遷移金属複合酸化物、又はニッケル、コバルト若しくはマンガンを含むポリアニオン化合物を含むことが好ましい。このような正極活物質を用いることで、容量維持率を高めることができる。 The positive electrode active material preferably contains a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure or a spinel type crystal structure, or a polyanion compound containing nickel, cobalt or manganese. By using such a positive electrode active material, the capacity retention rate can be increased.
 上記正極活物質が、α-NaFeO型結晶構造を有し、Li1+αMe1-α(Meは遷移金属元素、1<(1+α)/(1-α)<1.6)の組成式で表されるリチウム遷移金属複合酸化物を含むことが好ましい。このような正極活物質を用いることで、充放電の繰り返しに伴う短絡の発生を抑制しつつ、リチウム二次電池のエネルギー密度を高めることができる。 The positive electrode active material has an α-NaFeO type 2 crystal structure and has a composition of Li 1 + α Me 1-α O 2 (Me is a transition metal element, 1 <(1 + α) / (1-α) <1.6). It preferably contains a lithium transition metal composite oxide represented by the formula. By using such a positive electrode active material, it is possible to increase the energy density of the lithium secondary battery while suppressing the occurrence of a short circuit due to repeated charging and discharging.
 上記正極活物質が、α-NaFeO型結晶構造を有し、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<x+γ+β≦1)の組成式で表されるリチウム遷移金属複合酸化物を含むことが好ましい。このような正極活物質を用いることで、充放電の繰り返しに伴う短絡の発生を抑制しつつ、リチウム二次電池のエネルギー密度を高めることができる。 The positive electrode active material has an α-NaFeO type 2 crystal structure, and Li [Li x Ni γ Mn β Co (1-x-γ-β) ] O 2 (0 ≦ x <0.5, 0 <γ). , 0 <β, 0.5 <x + γ + β ≦ 1), preferably containing a lithium transition metal composite oxide represented by the composition formula. By using such a positive electrode active material, it is possible to increase the energy density of the lithium secondary battery while suppressing the occurrence of a short circuit due to repeated charging and discharging.
 上記正極活物質が、α-NaFeO型結晶構造を有し、Li[LiCo(1-x)]O(0≦x<0.5)の組成式で表されるリチウム遷移金属複合酸化物を含むことが好ましい。このような正極活物質を用いることで、充放電の繰り返しに伴う短絡の発生を抑制しつつ、リチウム二次電池のエネルギー密度を高めることができる。 The positive electrode active material has an α-NaFeO type 2 crystal structure and is a lithium transition metal composite represented by the composition formula of Li [Li x Co (1-x) ] O 2 (0 ≦ x <0.5). It preferably contains an oxide. By using such a positive electrode active material, it is possible to increase the energy density of the lithium secondary battery while suppressing the occurrence of a short circuit due to repeated charging and discharging.
 以下、本発明の一実施形態に係るリチウム二次電池、及び当該リチウム二次電池の製造方法について詳述する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, the lithium secondary battery according to the embodiment of the present invention and the method for manufacturing the lithium secondary battery will be described in detail. Matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art.
<リチウム二次電池>
 本発明の一実施形態に係るリチウム二次電池は、正極、負極及びセパレータを有する電極体と、非水電解質と、上記電極体及び上記非水電解質を収容するケースと、を備える。電極体は、通常、複数の正極及び複数の負極がセパレータを介して積層された積層型、又は、正極及び負極がセパレータを介して積層された状態で捲回された捲回型である。非水電解質は、正極、負極及びセパレータに含まれた状態で存在する。
<Lithium secondary battery>
A lithium secondary battery according to an embodiment of the present invention includes an electrode body having a positive electrode, a negative electrode, and a separator, a non-aqueous electrolyte, and a case containing the electrode body and the non-aqueous electrolyte. The electrode body is usually a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are laminated via a separator, or a wound type in which a positive electrode and a negative electrode are laminated via a separator. The non-aqueous electrolyte exists in the positive electrode, the negative electrode and the separator.
(正極)
 正極は、正極基材と、上記正極基材に直接又は中間層を介して配される正極合剤層とを有する。上記正極合剤層は、正極活物質を含むいわゆる正極合剤から形成される。
(Positive electrode)
The positive electrode has a positive electrode base material and a positive electrode mixture layer arranged directly on the positive electrode base material or via an intermediate layer. The positive electrode mixture layer is formed of a so-called positive electrode mixture containing a positive electrode active material.
 当該リチウム二次電池は、X線光電子分光法による正極合剤のスペクトルにおいて、P2pのピーク位置が133eV以下に存在する。P2pのピーク位置は、132.9eV以下であってもよく、132.8eV以下であってもよく、132.7eV以下であってもよい。また、P2pのピーク位置は131eV以上であってもよく、131.3eV以上であってもよく、131.4eV以上であってもよく、131.5eV以上であってもよい。

 上記範囲に現れるP2pのピークは、正極合剤の表面に存在する化合物が、ある特定の化学結合状態のリン原子を含むことを示している。このようなリン原子を含む化合物は、通常、粒子状の正極活物質の表面に存在する。このようなリン原子により、正極活物質と非水電解質との界面における副反応が抑制される。P2pのピークが133eV以下に存在する正極合剤は、例えば、リンのオキソ酸を含む正極合剤ペーストを乾燥することで得ることができる。このリン原子は、POアニオンを含む化合物として正極活物質の表面に存在することが好ましい。X線光電子分光法によるスペクトルにおいて、このような化合物のP2pのピークは131eV以上133eV以下の範囲に現れる。
In the lithium secondary battery, the peak position of P2p exists at 133 eV or less in the spectrum of the positive electrode mixture by X-ray photoelectron spectroscopy. The peak position of P2p may be 132.9 eV or less, 132.8 eV or less, or 132.7 eV or less. Further, the peak position of P2p may be 131 eV or more, 131.3 eV or more, 131.4 eV or more, or 131.5 eV or more.

The peak of P2p appearing in the above range indicates that the compound present on the surface of the positive electrode mixture contains a phosphorus atom in a specific chemical bond state. Such a compound containing a phosphorus atom is usually present on the surface of a particulate positive electrode active material. Such phosphorus atoms suppress side reactions at the interface between the positive electrode active material and the non-aqueous electrolyte. The positive electrode mixture having a peak of P2p of 133 eV or less can be obtained, for example, by drying a positive electrode mixture paste containing an oxo acid of phosphorus. This phosphorus atom is preferably present on the surface of the positive electrode active material as a compound containing a PO4 anion. In the spectrum by X-ray photoelectron spectroscopy, the peak of P2p of such a compound appears in the range of 131 eV or more and 133 eV or less.
 正極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cmを閾値として判定する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085、A3003等が例示できる。 The positive electrode substrate has conductivity. Whether or not it has "conductivity" is determined with a volume resistivity of 107 Ω · cm measured in accordance with JIS-H-0505 (1975) as a threshold value. As the material of the positive electrode base material, metals such as aluminum, titanium, tantalum, and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost. Examples of the positive electrode base material include foils and thin-film deposition films, and foils are preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085 and A3003 specified in JIS-H-4000 (2014).
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。 The average thickness of the positive electrode substrate is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, further preferably 8 μm or more and 30 μm or less, and particularly preferably 10 μm or more and 25 μm or less. By setting the average thickness of the positive electrode base material in the above range, it is possible to increase the energy density per volume of the secondary battery while increasing the strength of the positive electrode base material.
 中間層は、正極基材と正極合剤層との間に配される層である。中間層は、炭素粒子等の導電性を有する粒子を含むことで正極基材と正極合剤層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、樹脂バインダ及び導電性を有する粒子を含む。 The intermediate layer is a layer arranged between the positive electrode base material and the positive electrode mixture layer. The intermediate layer contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode mixture layer. The composition of the intermediate layer is not particularly limited and includes, for example, a resin binder and conductive particles.
 正極合剤層は、少なくともリチウム二次電池の作製時において、正極活物質及びリンのオキソ酸を含む。正極合剤層は、必要に応じて、導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。 The positive electrode mixture layer contains a positive electrode active material and phosphorus oxoacid at least at the time of manufacturing a lithium secondary battery. The positive electrode mixture layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
 正極活物質としては、公知の正極活物質の中から任意で選択できる。例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。
 α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物としては、Li[LiNi(1-x)]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1、0<x+γ≦1)、Li[LiCo(1-x)]O(0≦x<0.5)、Li[LiNiγMn(1-x-γ)]O(0≦x<0.5、0<γ<1、0<x+γ≦1)、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<x+γ+β≦1)、Li[LiNiγCoβAl(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<x+γ+β<1)等が挙げられる。
 スピネル型結晶構造を有するリチウム遷移金属複合酸化物としては、LiMn、LiNiγMn(2-γ)等が挙げられる。
 ポリアニオン化合物としては、LiFePO、LiMnPO、LiNiPO、LiCoPO,Li(PO、LiMnSiO、LiCoPOF等が挙げられる。
 カルコゲン化合物としては、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。
 これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極合剤層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの正極活物質の中でも、容量維持率の観点から、α-NaFeO型結晶構造若しくはスピネル型結晶構造を有するリチウム遷移金属複合酸化物、又はニッケル、コバルト若しくはマンガンを含むポリアニオン化合物が好ましく、放電容量と容量維持率を両立する観点から、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物を用いることがより好ましい。
The positive electrode active material can be arbitrarily selected from known positive electrode active materials. For example, a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, sulfur and the like can be mentioned.
Examples of the lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure include Li [Li x Ni (1-x) ] O 2 (0 ≦ x <0.5) and Li [Li x Ni γ Co (1 ). -X -γ) ] O 2 (0 ≦ x <0.5, 0 <γ <1, 0 <x + γ ≦ 1), Li [Li x Co (1-x) ] O 2 (0 ≦ x <0. 5), Li [Li x Ni γ Mn (1-x-γ) ] O 2 (0 ≦ x <0.5, 0 <γ <1, 0 <x + γ ≦ 1), Li [Li x Ni γ Mn β Co (1-x-γ-β) ] O 2 (0≤x <0.5, 0 <γ, 0 <β, 0.5 <x + γ + β≤1), Li [Li x Ni γ Co β Al (1 ) -X -γ-β) ] O 2 (0≤x <0.5, 0 <γ, 0 <β, 0.5 <x + γ + β <1) and the like.
Examples of the lithium transition metal composite oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni γ Mn (2-γ) O 4 .
Examples of the polyanionic compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like.
Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like.
The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements. The surface of these materials may be coated with other materials. In the positive electrode mixture layer, one of these materials may be used alone, or two or more thereof may be mixed and used.
Among these positive electrode active materials, a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure or a spinel type crystal structure, or a polyanionic compound containing nickel, cobalt or manganese is preferable from the viewpoint of capacity retention. From the viewpoint of achieving both capacity and capacity retention rate, it is more preferable to use a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure.
 なお、本明細書におけるリチウム遷移金属複合酸化物の組成比は、次の方法により完全放電状態としたときの組成比をいう。まず、リチウム二次電池を、0.05Cの電流で通常使用時の充電終止電圧となるまで定電流充電し、満充電状態とする。30分の休止後、0.05Cの電流で通常使用時の下限電圧まで定電流放電する。解体し、正極を取り出し、金属リチウム電極を対極とした試験電池を組み立て、正極合剤1gあたり10mAの電流値で、正極電位が2.0V(vs.Li/Li)となるまで定電流放電を行い、正極を完全放電状態に調整する。ここでの金属リチウム電極には、リチウム合金ではなく、純金属リチウムを用いる。再解体し、正極を取り出す。ジメチルカーボネートを用いて、取り出した正極に付着した非水電解質を十分に洗浄し、室温にて一昼夜乾燥後、正極活物質のリチウム遷移金属複合酸化物を採取する。採取したリチウム遷移金属複合酸化物を測定に供する。非水電解質蓄電素子の解体からリチウム遷移金属複合酸化物の採取までの作業は露点-60℃以下のアルゴン雰囲気中で行う。 The composition ratio of the lithium transition metal composite oxide in the present specification refers to the composition ratio when the lithium transition metal composite oxide is brought into a completely discharged state by the following method. First, the lithium secondary battery is charged with a current of 0.05 C at a constant current until it reaches the end-of-charge voltage at the time of normal use, and is in a fully charged state. After a 30-minute pause, a constant current discharge is performed with a current of 0.05 C to the lower limit voltage during normal use. Disassemble, take out the positive electrode, assemble a test battery with a metal lithium electrode as the counter electrode, and discharge with a constant current until the positive electrode potential reaches 2.0 V (vs. Li / Li + ) at a current value of 10 mA per 1 g of the positive electrode mixture. To adjust the positive electrode to a completely discharged state. For the metallic lithium electrode here, pure metallic lithium is used instead of a lithium alloy. Re-disassemble and take out the positive electrode. The non-aqueous electrolyte adhering to the removed positive electrode is thoroughly washed with dimethyl carbonate, dried at room temperature for 24 hours, and then the lithium transition metal composite oxide of the positive electrode active material is collected. The collected lithium transition metal composite oxide is used for measurement. The work from dismantling the non-aqueous electrolyte power storage element to collecting the lithium transition metal composite oxide is performed in an argon atmosphere with a dew point of -60 ° C or lower.
 リチウム遷移金属複合酸化物の結晶構造は、CuKα線を用いたエックス線回折測定により求める。リチウム遷移金属複合酸化物に対するエックス線回折測定は、上記方法により完全放電状態としたリチウム遷移金属複合酸化物に対して行う。具体的には、エックス線回折測定は、エックス回折装置(Rigaku社の「MiniFlex II」)を用いた粉末エックス線回折測定によって、線源はCuKα線、管電圧は30kV、管電流は15mAとして行う。このとき、回折エックス線は、厚さ30μmのKβフィルターを通り、高速一次元検出器(D/teX Ultra 2)にて検出される。また、サンプリング幅は0.02°、スキャンスピードは5°/min、発散スリット幅は0.625°、受光スリット幅は13mm(OPEN)、散乱スリット幅は8mmとする。 The crystal structure of the lithium transition metal composite oxide is determined by X-ray diffraction measurement using CuKα rays. The X-ray diffraction measurement for the lithium transition metal composite oxide is performed on the lithium transition metal composite oxide that has been completely discharged by the above method. Specifically, the X-ray diffraction measurement is performed by powder X-ray diffraction measurement using an X-diffraction device (“MiniFlex II” manufactured by Rigaku), where the radiation source is CuKα ray, the tube voltage is 30 kV, and the tube current is 15 mA. At this time, the diffracted X-rays pass through a Kβ filter having a thickness of 30 μm and are detected by a high-speed one-dimensional detector (D / teX Ultra 2). The sampling width is 0.02 °, the scan speed is 5 ° / min, the divergent slit width is 0.625 °, the light receiving slit width is 13 mm (OPEN), and the scattering slit width is 8 mm.
 α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の中でも、リチウム過剰型リチウム遷移金属複合酸化物を用いることが好ましい。リチウム過剰型遷移金属複合酸化物は、組成式Li1+αMe1-αで表される。上記組成式において、Meは遷移金属元素であり、1<(1+α)/(1-α)<1.6である。遷移金属元素MeはMn、Co、Niから選択される1種以上の元素を含むと好ましく、Mnを含むとより好ましい。遷移金属元素Meに対するMnのモル比Mn/Meは0.5より大きい値であると好ましい。
 リチウム過剰型遷移金属複合酸化物は、少なくとも最初の充電においてリチウム金属の酸化還元電位に対して4.30Vを超える比較的高い電位、特に4.40V以上の電位に至って行うことにより、高い放電容量が得られるという特徴がある。このような正極活物質を、リチウム金属を用いた負極と組み合わせることで、エネルギー密度の高いリチウム二次電池を得ることができる。
Among the lithium transition metal composite oxides having an α-NaFeO type 2 crystal structure, it is preferable to use a lithium excess type lithium transition metal composite oxide. The lithium-rich transition metal composite oxide is represented by the composition formula Li 1 + α Me 1-α O 2 . In the above composition formula, Me is a transition metal element, and 1 <(1 + α) / (1-α) <1.6. The transition metal element Me preferably contains one or more elements selected from Mn, Co, and Ni, and more preferably contains Mn. The molar ratio of Mn to the transition metal element Me, Mn / Me, is preferably a value larger than 0.5.
The lithium-rich transition metal composite oxide has a high discharge capacity by reaching a relatively high potential exceeding 4.30 V, particularly a potential of 4.40 V or higher, with respect to the redox potential of the lithium metal at least in the first charge. Has the characteristic of being obtained. By combining such a positive electrode active material with a negative electrode using a lithium metal, a lithium secondary battery having a high energy density can be obtained.
 リチウム過剰型遷移金属複合酸化物は、少量の典型元素を含んでも良く、中でもNaを含有すると好ましい。リチウム過剰型遷移金属複合酸化物におけるNaの含有量は、1000ppm以上10000ppm以下であると好ましく、2000ppm以上9000ppm以下であるとより好ましい。リチウム過剰型遷移金属複合酸化物におけるNaの含有量が上記の範囲であることで、放電容量を高めることができる。 The lithium excess type transition metal composite oxide may contain a small amount of a typical element, and it is particularly preferable that it contains Na. The content of Na in the lithium excess type transition metal composite oxide is preferably 1000 ppm or more and 10000 ppm or less, and more preferably 2000 ppm or more and 9000 ppm or less. When the Na content in the lithium excess type transition metal composite oxide is in the above range, the discharge capacity can be increased.
 組成式Li1+αMe1-αにおいては、(1+α)/(1-α)の値、すなわち遷移金属Meに対するLiのモル比Li/Meは、1超1.6未満であればよく、1.1以上1.5未満であると好ましい。Li/Meを上記の範囲とすることで、放電容量の大きいリチウム二次電池を得ることができる。また、Li/Meは1.15以上1.45以下であるとより好ましく、1.2以上1.4以下であるとさらに好ましい。Li/Meを上記の範囲とすることで、放電容量が大きく、高率放電特性に優れたリチウム二次電池を得ることができる。 In the composition formula Li 1 + α Me 1-α O 2 , the value of (1 + α) / (1-α), that is, the molar ratio of Li to the transition metal Me, Li / Me, may be more than 1 and less than 1.6. It is preferably 1.1 or more and less than 1.5. By setting Li / Me in the above range, a lithium secondary battery having a large discharge capacity can be obtained. Further, Li / Me is more preferably 1.15 or more and 1.45 or less, and further preferably 1.2 or more and 1.4 or less. By setting Li / Me in the above range, it is possible to obtain a lithium secondary battery having a large discharge capacity and excellent high rate discharge characteristics.
 遷移金属元素MeがMnを含む場合、遷移金属元素Meに対するMnのモル比Mn/Meは、0超1以下であればよく、0.5超1以下が好ましく、0.6以上0.75以下がより好ましい。Mn/Meを上記の範囲とすることで、放電容量を高めることができる。 When the transition metal element Me contains Mn, the molar ratio Mn / Me of Mn to the transition metal element Me may be more than 0 and 1 or less, preferably more than 0.5 and 1 or less, and 0.6 or more and 0.75 or less. Is more preferable. By setting Mn / Me in the above range, the discharge capacity can be increased.
 遷移金属元素MeがCoを含む場合、遷移金属元素Meに対するCoのモル比Co/Meは、0超1以下であればよく、0.05以上0.40以下であると好ましく、0.10以上0.30以下であるとより好ましい。 When the transition metal element Me contains Co, the molar ratio Co / Me of Co to the transition metal element Me may be more than 0 and 1 or less, preferably 0.05 or more and 0.40 or less, and 0.10 or more. It is more preferably 0.30 or less.
 遷移金属元素MeがNiを含む場合、遷移金属元素Meに対するNiのモル比Ni/Meは、0超1以下であればよく、0.10以上0.50以下であると好ましく、0.15以上0.40以下であるとより好ましい。 When the transition metal element Me contains Ni, the molar ratio Ni / Me of Ni to the transition metal element Me may be more than 0 and 1 or less, preferably 0.10 or more and 0.50 or less, and 0.15 or more. It is more preferably 0.40 or less.
 リチウム過剰型遷移金属複合酸化物としては、例えば、Li1.13Co0.11Ni0.17Mn0.59、Li1.11Co0.11Ni0.18Mn0.60、Li1.15Co0.11Ni0.17Mn0.57、Li1.17Co0.11Ni0.56、Li1.05Co0.12Ni0.19Mn0.64、Li1.07Co0.12Ni0.18Mn0.63、Li1.09Co0.11Ni0.18Mn0.62等が挙げられる。 Examples of the lithium excess type transition metal composite oxide include Li 1.13 Co 0.11 Ni 0.17 Mn 0.59 O 2 , Li 1.11 Co 0.11 Ni 0.18 Mn 0.60 O 2 . , Li 1.15 Co 0.11 Ni 0.17 Mn 0.57 O 2 , Li 1.17 Co 0.11 Ni 0.56 O 2 , Li 1.05 Co 0.12 Ni 0.19 Mn 0. Examples thereof include 64 O 2 , Li 1.07 Co 0.12 Ni 0.18 Mn 0.63 O 2 , Li 1.09 Co 0.11 Ni 0.18 Mn 0.62 O 2 .
 充放電を行う前のリチウム過剰型遷移金属複合酸化物は、空間群P312あるいはR3-mに帰属される。このうち、空間群P312に帰属されるものは、CuKα線を用いたエックス線回折図において、2θ=21°付近に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。ところが、一度でも充電を行い、結晶中のLiが脱離すると結晶の対称性が変化することにより、超格子ピークが消滅して、リチウム過剰型リチウム遷移金属複合酸化物は空間群R3-mに帰属されるようになる。ここで、P312は、R3-mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3-mにおける原子配置に秩序性が認められるときに該P3112モデルが採用される。なお、「R3-m」は本来「R3m」の「3」の上にバー「-」を施して表記すべきものである。 The lithium excess type transition metal composite oxide before charging and discharging is attributed to the space group P3 112 or R3-m. Of these, the one belonging to the space group P3 1 12 is a superlattice peak (Li [Li 1/3 Mn 2/3 ] O 2 type) near 2θ = 21 ° in the X-ray diffraction diagram using CuKα rays. The peak seen in monoclinic crystals) is confirmed. However, when charging is performed even once and Li in the crystal is desorbed, the symmetry of the crystal changes, the superlattice peak disappears, and the lithium-rich lithium transition metal composite oxide becomes the space group R3-m. It will be attributed. Here, P3 112 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and the P3 112 model is adopted when the atomic arrangement in R3-m is ordered. Will be done. It should be noted that "R3-m" should be originally described by adding a bar "-" on "3" of "R3m".
 リチウム遷移金属複合酸化物は、六方晶の空間群P312あるいはR3-mのいずれかに帰属され、CuKα線を用いたエックス線回折図において、2θ=18.6°±1°の回折ピークの半値幅が0.20°から0.27°又は/及び2θ=44.1°±1°の回折ピークの半値幅が0.26°から0.39°であることが好ましい。こうすることにより、正極活物質の放電容量を大きくすることが可能となる。なお、2θ=18.6°±1°の回折ピークは、空間群P312及びR3-mではミラー指数hklにおける(003)面に、2θ=44.1°±1°の回折ピークは、空間群P312では(114)面、空間群R3-mでは(104)面にそれぞれ指数付けされる。 The lithium transition metal composite oxide is attributed to either the hexagonal space group P3 1 12 or R3-m, and has a diffraction peak of 2θ = 18.6 ° ± 1 ° in an X-ray diffraction diagram using CuKα rays. It is preferable that the half-value width is 0.20 ° to 0.27 ° or / and the half-value width of the diffraction peak of 2θ = 44.1 ° ± 1 ° is 0.26 ° to 0.39 °. By doing so, it becomes possible to increase the discharge capacity of the positive electrode active material. The diffraction peak of 2θ = 18.6 ° ± 1 ° is on the (003) plane at the Miller index hkl in the space group P3 1 12 and R3-m, and the diffraction peak of 2θ = 44.1 ° ± 1 ° is The space group P3 112 is indexed on the (114) plane, and the space group R3-m is indexed on the (104) plane.
 さらに、リチウム過剰型リチウム遷移金属複合酸化物は、エックス線回折パターンを基にリートベルト法による結晶構造解析から求められる酸素位置パラメータが、完全放電状態において0.262以下、満充電状態において0.267以上であることが好ましい。これにより、高率放電性能が優れたリチウム二次電池を得ることができる。なお、酸素位置パラメータとは、空間群R3-mに帰属されるリチウム遷移金属複合酸化物のα―NaFeO型結晶構造について、Me(遷移金属)の空間座標を(0,0,0)、Li(リチウム)の空間座標を(0,0,1/2)、O(酸素)の空間座標を(0,0,z)と定義したときの、zの値をいう。即ち、酸素位置パラメータは、O(酸素)位置がMe(遷移金属)位置からどれだけ離れているかを示す相対的な指標となる。 Further, the lithium excess type lithium transition metal composite oxide has an oxygen position parameter obtained by crystal structure analysis by the Rietveld method based on an X-ray diffraction pattern of 0.262 or less in a fully discharged state and 0.267 in a fully charged state. The above is preferable. This makes it possible to obtain a lithium secondary battery having excellent high rate discharge performance. The oxygen position parameter is the spatial coordinate of Me (transition metal) (0,0,0) for the α-NaFeO type 2 crystal structure of the lithium transition metal composite oxide belonging to the space group R3-m. The value of z when the spatial coordinates of Li (lithium) are defined as (0, 0, 1/2) and the spatial coordinates of O (oxygen) are defined as (0, 0, z). That is, the oxygen position parameter is a relative index indicating how far the O (oxygen) position is from the Me (transition metal) position.
 正極活物質は、通常、粒子(粉体)である。正極活物質のD50は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質のD50を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質のD50を上記上限以下とすることで、正極合剤の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体のD50を正極活物質のD50とする。「D50」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。 The positive electrode active material is usually particles (powder). The D50 of the positive electrode active material is preferably, for example, 0.1 μm or more and 20 μm or less. By setting D 50 of the positive electrode active material to the above lower limit or higher, the production or handling of the positive electrode active material becomes easy. By setting D 50 of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode mixture is improved. When a complex of a positive electrode active material and another material is used, D 50 of the complex is referred to as D 50 of the positive electrode active material. "D 50 " is based on JIS-Z-8825 (2013), and is based on the particle size distribution measured by laser diffraction / scattering method for a diluted solution obtained by diluting particles with a solvent. It means a value in which the volume-based integrated distribution calculated in accordance with 2 (2001) is 50%.
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。 A crusher, a classifier, etc. are used to obtain powder with a predetermined particle size. Examples of the crushing method include a method using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, or the like. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane coexists can also be used. As a classification method, a sieve, a wind power classifier, or the like is used as needed for both dry and wet types.
 正極合剤における正極活物質の含有量の下限は、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。正極活物質の含有量を上記下限以上とすることで、正極合剤のエネルギー密度を高めることができる。一方、正極合剤における正極活物質の含有量の上限は、100質量%であってよく、99質量%以下であってもよく、98質量%以下であってもよい。正極合剤における正極活物質の含有量は、上記いずれかの下限以上かついずれかの上限以下の範囲内とすることが好ましい。
The lower limit of the content of the positive electrode active material in the positive electrode mixture is preferably 50% by mass, more preferably 70% by mass, still more preferably 80% by mass. By setting the content of the positive electrode active material to the above lower limit or higher, the energy density of the positive electrode mixture can be increased. On the other hand, the upper limit of the content of the positive electrode active material in the positive electrode mixture may be 100% by mass, 99% by mass or less, or 98% by mass or less. The content of the positive electrode active material in the positive electrode mixture is preferably in the range of not less than any of the above lower limits and not more than any of the upper limits.
 正極合剤層の単位面積あたりの容量密度の下限は、3mAh/cmが好ましく、4mAh/cmがより好ましく、5mAh/cmがさらに好ましい。容量密度を上記下限以上とすることで、リチウム二次電池のエネルギー密度を高めることができる。また、このような高容量密度の従来の正極では、放電における電流密度が高まるために、短絡の発生が生じやすく、本発明の利点を十分に享受することができる。一方、正極合剤層の単位面積あたりの容量密度の上限は、例えば、20mAh/cmであり、15mAh/cmであってもよく、10mAh/cmであってもよい。正極合剤層の容量密度は、上記いずれかの下限以上かついずれかの上限以下の範囲内とすることが好ましい。 The lower limit of the volume density per unit area of the positive electrode mixture layer is preferably 3 mAh / cm 2 , more preferably 4 mAh / cm 2 , and even more preferably 5 mAh / cm 2 . By setting the capacitance density to the above lower limit or higher, the energy density of the lithium secondary battery can be increased. Further, in the conventional positive electrode having such a high capacity density, a short circuit is likely to occur because the current density in the discharge is increased, and the advantages of the present invention can be fully enjoyed. On the other hand, the upper limit of the volume density per unit area of the positive electrode mixture layer is, for example, 20 mAh / cm 2 , may be 15 mAh / cm 2 , or may be 10 mAh / cm 2 . The volume density of the positive electrode mixture layer is preferably in the range of one of the above lower limit or more and one of the upper limit or less.
 導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛化炭素、非黒鉛化炭素、グラフェン系炭素等が挙げられる。非黒鉛化炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。 The conductive agent is not particularly limited as long as it is a conductive material. Examples of such a conductive agent include carbonaceous materials, metals, conductive ceramics and the like. Examples of the carbonaceous material include graphitized carbon, non-graphitized carbon, graphene-based carbon and the like. Examples of the non-graphitized carbon include carbon nanofibers, pitch-based carbon fibers, and carbon black. Examples of carbon black include furnace black, acetylene black, and ketjen black. Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerenes. Examples of the shape of the conductive agent include powder and fibrous. As the conductive agent, one of these materials may be used alone, or two or more of them may be mixed and used. Further, these materials may be combined and used. For example, a material in which carbon black and CNT are combined may be used. Among these, carbon black is preferable from the viewpoint of electron conductivity and coatability, and acetylene black is particularly preferable.
 正極合剤層における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、リチウム二次電池のエネルギー密度を高めることができる。 The content of the conductive agent in the positive electrode mixture layer is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the content of the conductive agent in the above range, the energy density of the lithium secondary battery can be increased.
 バインダとしては、正極活物質を固定でき、かつ使用範囲で電気化学的に安定であるものが通常用いられる。バインダとして水系バインダを用いてもよいが、非水系バインダを用いることが好ましい。 As the binder, a binder that can fix the positive electrode active material and is electrochemically stable within the range of use is usually used. A water-based binder may be used as the binder, but it is preferable to use a non-water-based binder.
 水系バインダは、水に分散又は溶解するバインダである。中でも、20℃において、水100質量部に対して1質量部以上溶解するバインダが水系バインダとして好ましい。水系バインダとしては、例えば、ポリエチレンオキサイド(ポリエチレングリコール)、ポリプロピレンオキサイド(ポリプロピレングリコール)、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリエチレン(PE)、ポリプロピレン(PP)、ニトリル―ブタジエンゴム、セルロース等が好ましく、これらの中でも、塗工安定性や密着性の観点から、ポリアクリル酸、スチレンブタジエンゴム(SBR)、セルロースの単独または混合使用が好ましい。 A water-based binder is a binder that is dispersed or dissolved in water. Above all, a binder that dissolves 1 part by mass or more with respect to 100 parts by mass of water at 20 ° C. is preferable as the water-based binder. Examples of the aqueous binder include polyethylene oxide (polyethylene glycol), polypropylene oxide (polypropylene glycol), polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), and polyethylene (PE). ), Polypropylene (PP), nitrile-butadiene rubber, cellulose, etc. Among these, polyacrylic acid, styrene-butadiene rubber (SBR), and cellulose can be used alone or in combination from the viewpoint of coating stability and adhesion. preferable.
 非水系バインダは、有機溶媒に分散又は溶解するバインダである。中でも、20℃において、N-メチル-2-ピロドリン(NMP)100質量部に対して1質量部以上溶解するバインダが非水系バインダとして好ましい。非水系バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(PVDF―HFP)、エチレンとビニルアルコールとの共重合体、ポリアクリロニトリル、ポリホスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリメタクリル酸メチル(PMMA)、ポリスチレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、セルロースとキトサンピロリドンカルボン酸塩との架橋重合体、キチン又はキトサンの誘導体が好ましく、これらの中でも、塗工安定性、および密着性の観点から、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(PVDF―HFP)、ポリイミド、ポリアミドイミドが好ましい。なお、キトサンの誘導体としては、キトサンをグリセリル化した高分子化合物、キトサンの架橋体等を挙げることができる。 The non-aqueous binder is a binder that is dispersed or dissolved in an organic solvent. Above all, a binder that dissolves 1 part by mass or more with respect to 100 parts by mass of N-methyl-2-pyrodrin (NMP) at 20 ° C. is preferable as a non-aqueous binder. Examples of the non-aqueous binder include polyvinylidene fluoride (PVDF), polyvinylidene fluoride and hexafluoropropylene copolymer (PVDF-HFP), ethylene and vinyl alcohol copolymer, polyacrylonitrile, polyphosphazene, and poly. Siloxane, polyvinylidene acetate, polyvinylidene methacrylate (PMMA), polystyrene, polycarbonate, polyamide, polyimide, polyamideimide, crosslinked polymer of cellulose and chitosanpyrrolidone carboxylate, chitin or chitosan derivative are preferable, among these. From the viewpoint of coating stability and adhesion, polyvinylidene fluoride (PVDF), a copolymer of vinylidene fluoride and hexafluoropropylene (PVDF-HFP), polyimide, and polyamideimide are preferable. Examples of the chitosan derivative include a polymer compound obtained by glycerylizing chitosan and a crosslinked body of chitosan.
 バインダとしては、上記の材料の中でも、耐熱性、化学的安定性等の観点からPTFEやPVDF等のフッ素樹脂を用いることが好ましく、PVDFを用いることがより好ましい。バインダは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Among the above materials, it is preferable to use a fluororesin such as PTFE or PVDF as the binder from the viewpoint of heat resistance, chemical stability, etc., and it is more preferable to use PVDF. As the binder, one type may be used alone, or two or more types may be mixed and used.
 正極合剤層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。 The binder content in the positive electrode mixture layer is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the binder content within the above range, the active substance can be stably retained.
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。 Examples of the thickener include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose. When the thickener has a functional group that reacts with lithium or the like, this functional group may be deactivated by methylation or the like in advance.
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。 The filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and hydroxide. Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ion crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, etc. Examples include mineral resource-derived substances such as apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, and mica, or man-made products thereof.
 正極合剤層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。 The positive electrode mixture layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W and other transition metal elements are used as positive electrode active materials, conductive agents, binders, thickeners, fillers. It may be contained as a component other than.
(負極)
 負極は、負極基材と、少なくとも充電状態において活物質としてのリチウム金属又はリチウム合金を含む負極活物質層とを有する。
(Negative electrode)
The negative electrode has a negative electrode base material and a negative electrode active material layer containing at least a lithium metal or a lithium alloy as an active material in a charged state.
 負極基材は、リチウム金属及びリチウム合金以外の導電性材料である。負極基材は、リチウム金属が析出するため、リチウムと反応しない材料であることが好ましい。すなわち、リチウム金属との合金又は化合物を形成しない材料であることが好ましい。負極基材としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はこれらの合金で構成された金属材料、活性炭、グラファイト、グラフェン、カーボンナノチューブ、炭素繊維等で構成された炭素材料が挙げられる。これらの中でも、導電性が高いことから、銅又は銅合金を用いることが好ましい。負極基材の形状は特に限定されず、箔、メッシュ、多孔質膜等であってもよい。 The negative electrode base material is a conductive material other than lithium metal and lithium alloy. The negative electrode base material is preferably a material that does not react with lithium because lithium metal is deposited. That is, it is preferable that the material does not form an alloy or compound with the lithium metal. Examples of the negative electrode base material include metals such as copper, nickel, stainless steel, and nickel-plated steel, metal materials composed of alloys thereof, and carbon materials composed of activated carbon, graphite, graphene, carbon nanotubes, carbon fibers, and the like. Can be mentioned. Among these, copper or a copper alloy is preferably used because of its high conductivity. The shape of the negative electrode base material is not particularly limited, and may be a foil, a mesh, a porous film, or the like.
 負極基材の平均厚さは2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、リチウム二次電池の体積当たりのエネルギー密度を高めることができる。 The average thickness of the negative electrode substrate is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 30 μm or less, further preferably 4 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less. By setting the average thickness of the negative electrode base material in the above range, it is possible to increase the energy density per volume of the lithium secondary battery while increasing the strength of the negative electrode base material.
 当該リチウム二次電池は、少なくとも充電状態において活物質としてのリチウム金属又はリチウム合金を含む負極活物質層を有する。リチウム合金としては、例えば、Al、Mg、Ag、In、Sn、Ga、Bi、Pt、Auから選択される1以上の元素を含むリチウム合金が挙げられる。なお、当該リチウム二次電池が備える負極は、少なくとも充電状態においてリチウム金属又はリチウム合金を有していればよく、放電状態においてリチウム金属又はリチウム合金を有していなくてもよい。例えば、充電時にリチウム金属が負極表面の少なくとも一部の領域に析出することで、充電状態において負極はリチウム金属を有しており、放電時に負極表面のリチウム金属が非水電解質中に実質的に全てリチウムイオンとして溶出することで、放電状態において負極はリチウム金属を実質的に有しないように構成されたリチウム二次電池であってもよい。



The lithium secondary battery has a negative electrode active material layer containing a lithium metal or a lithium alloy as an active material at least in a charged state. Examples of the lithium alloy include a lithium alloy containing one or more elements selected from Al, Mg, Ag, In, Sn, Ga, Bi, Pt, and Au. The negative electrode included in the lithium secondary battery may have at least a lithium metal or a lithium alloy in a charged state, and may not have a lithium metal or a lithium alloy in a discharged state. For example, by depositing lithium metal on at least a part of the surface of the negative electrode during charging, the negative electrode has lithium metal in the charged state, and the lithium metal on the surface of the negative electrode is substantially contained in the non-aqueous electrolyte during discharging. The negative electrode may be a lithium secondary battery configured so as to have substantially no lithium metal in the discharged state by eluting all of them as lithium ions.



(セパレータ)
 セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。
 セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。セパレータの基材層は、これらの樹脂に無機粒子等を加えた複合体であってもよい。
(Separator)
The separator can be appropriately selected from known separators. As the separator, for example, a separator composed of only a base material layer, a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one surface or both surfaces of the base material layer can be used. Examples of the base material layer of the separator include woven fabrics, non-woven fabrics, and porous resin films. Among these, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte.
As the material of the base material layer of the separator, polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance. As the base material layer of the separator, a material in which these resins are combined may be used. The base material layer of the separator may be a complex obtained by adding inorganic particles or the like to these resins.
 耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃まで加熱したときの質量減少が5%以下であるものが好ましく、1気圧の空気雰囲気下で室温から800℃まで加熱したときの質量減少が5%以下であるものがさらに好ましい。上記の質量減少が所定値以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。 The heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500 ° C. in an air atmosphere of 1 atm, and are heated from room temperature to 800 ° C. in an air atmosphere of 1 atm. It is more preferable that the mass reduction is 5% or less. Examples of the material whose mass reduction is equal to or less than a predetermined value include inorganic compounds. Examples of the inorganic compound include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate; magnesium hydroxide, calcium hydroxide and water. Hydroxides such as aluminum oxide; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; sparingly soluble ion crystals such as calcium fluoride, barium fluoride and barium titanate Covalently bonded crystals such as silicon and diamond; talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, mica and other mineral resource-derived substances or man-made products thereof. .. As the inorganic compound, a simple substance or a complex of these substances may be used alone, or two or more kinds thereof may be mixed and used. Among these inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the power storage device.
 セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。 The porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance. Here, the "porosity" is a volume-based value and means a measured value with a mercury porosity meter.
 セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンカーボネート、ポリプロピレンカーボネート、ポリビニルカーボネート、ポリメチルメタアクリレート等のポリアルキルメタアクリレート類、ポリビニルエチレンカーボネート、ポリビニルアセテート、ポリビニルピロリドン、ポリマレイン酸およびその誘導体、ポリフッ化ビニリデン、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン等が挙げられる。これらのポリマーは、共重合体や混合体であってもよい。また、これらのポリマーは無機塩やイオン液体と複合されていてもよい。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述した多孔質樹脂フィルム又は不織布等とポリマーゲルとを併用してもよい。 As the separator, a polymer gel composed of a polymer and a non-aqueous electrolyte may be used. Examples of the polymer include polyalkyl methacrylates such as polyacrylonitrile, polyethylene oxide, polypropylene oxide, polyethylene carbonate, polypropylene carbonate, polyvinyl carbonate, and polymethyl methacrylate, polyvinyl ethylene carbonate, polyvinyl acetate, polyvinyl pyrrolidone, polymaleic acid and derivatives thereof. , Polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene and the like. These polymers may be copolymers or mixtures. Further, these polymers may be combined with an inorganic salt or an ionic liquid. The use of polymer gel has the effect of suppressing liquid leakage. As the separator, the above-mentioned porous resin film, non-woven fabric, or the like may be used in combination with the polymer gel.
(非水電解質)
 非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
(Non-water electrolyte)
As the non-aqueous electrolyte, a known non-aqueous electrolyte can be appropriately selected. A non-aqueous electrolyte solution may be used as the non-aqueous electrolyte. The non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部又は全部がハロゲンに置換されたものを用いてもよい。 The non-aqueous solvent can be appropriately selected from known non-aqueous solvents. Examples of the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like. As the non-aqueous solvent, those in which some or all of the hydrogen atoms contained in these compounds are substituted with halogen may be used.
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート、4-フルオロエチレンカーボネート(FEC)、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート(DFEC、trans体、cis体およびそれらの混合物を含む)、トリフルオロプロピレンカーボネート(4-(トリフルオロメチル)エチレンカーボネート)、4-フルオロ-4-メチルエチレンカーボネート、4-フルオロ-5-メチルエチレンカーボネート、4-(フルオロメチル)エチレンカーボネート、4,4-ビス(フルオロメチル)エチレンカーボネート等が挙げられる。これらの中でも、リチウム二次電池の容量維持率を高める観点から、4-フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート及び4,5-ジフルオロエチレンカーボネートが好ましく、4-フルオロエチレンカーボネートがより好ましい。 Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, styrene carbonate, 1-phenylvinylene carbonate, 1 , 2-Diphenylvinylene carbonate, 4-fluoroethylene carbonate (FEC), 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate (including DFEC, trans, cis and mixtures thereof), trifluoropropylene Carbonate (4- (trifluoromethyl) ethylene carbonate), 4-fluoro-4-methylethylene carbonate, 4-fluoro-5-methylethylene carbonate, 4- (fluoromethyl) ethylene carbonate, 4,4-bis (fluoromethyl) ) Ethylene carbonate and the like can be mentioned. Among these, 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate and 4,5-difluoroethylene carbonate are preferable, and 4-fluoroethylene carbonate is more preferable, from the viewpoint of increasing the capacity retention rate of the lithium secondary battery.
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート(TFEMC)、エチル-2,2,2-トリフルオロエチルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、2,2-ジフルオロエチルメチルカーボネート、エチル―2,2-ジフルオロエチル)カーボネート、ビス(2,2-ジフルオロエチル)カーボネート等が挙げられる。 Examples of the chain carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methylphenyl carbonate, ethylphenyl carbonate, diphenyl carbonate, and 2,2,2-trifluoroethylmethyl carbonate (TFEMC). , Ethyl-2,2,2-trifluoroethyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, 2,2-difluoroethylmethyl carbonate, ethyl-2,2-difluoroethyl) carbonate, bis ( 2,2-Difluoroethyl) carbonate and the like.
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。 As the non-aqueous solvent, it is preferable to use cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination. By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved. By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low. When the cyclic carbonate and the chain carbonate are used in combination, the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate: chain carbonate) is preferably in the range of, for example, 5:95 to 50:50.
 非水溶媒はフッ素化溶媒を含むことが好ましい。フッ素化溶媒は、水素原子の一部又は全部がフッ素原子に置換された非水溶媒である。非水溶媒におけるフッ素化溶媒の含有量は、20体積%以上が好ましく、30体積%以上がより好ましく、50体積%以上がさらに好ましく、70体積%以上がよりさらに好ましい。非水溶媒におけるフッ素化溶媒の含有量は100体積%以下であってもよい。このような非水溶媒を用いることで、充放電を繰り返した際の容量維持率を高めることができる。 The non-aqueous solvent preferably contains a fluorinated solvent. The fluorinated solvent is a non-aqueous solvent in which a part or all of hydrogen atoms are replaced with fluorine atoms. The content of the fluorinated solvent in the non-aqueous solvent is preferably 20% by volume or more, more preferably 30% by volume or more, further preferably 50% by volume or more, still more preferably 70% by volume or more. The content of the fluorinated solvent in the non-aqueous solvent may be 100% by volume or less. By using such a non-aqueous solvent, it is possible to increase the capacity retention rate when charging and discharging are repeated.
 フッ素化溶媒としては、フッ素化カーボネート、フッ素化エーテル、フッ素化エステル等が挙げられる。これらの中でも、容量維持率を高める観点から、フッ素化カーボネート及びフッ素化エーテルが好ましく、フッ素化カーボネートがより好ましい。 Examples of the fluorinated solvent include fluorinated carbonates, fluorinated ethers, fluorinated esters and the like. Among these, fluorinated carbonate and fluorinated ether are preferable, and fluorinated carbonate is more preferable, from the viewpoint of increasing the capacity retention rate.
 電解質塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)、等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化アルキル基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiN(SOF)及びLiPFがより好ましく、LiN(SOF)がさらに好ましい。 Examples of the electrolyte salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , and LiN (SO). 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 , etc. Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, LiN (SO 2 F) 2 and LiPF 6 are more preferable, and LiN (SO 2 F) 2 is further preferable.
 非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。 The content of the electrolyte salt in the non-aqueous electrolyte solution is preferably 0.1 mol / dm 3 or more and 2.5 mol / dm 3 or less at 20 ° C. and 1 atm, and 0.3 mol / dm 3 or more and 2.0 mol / dm. It is more preferably 3 or less, more preferably 0.5 mol / dm 3 or more and 1.7 mol / dm 3 or less, and particularly preferably 0.7 mol / dm 3 or more and 1.5 mol / dm 3 or less. By setting the content of the electrolyte salt in the above range, the ionic conductivity of the non-aqueous electrolyte solution can be increased.
 非水電解液は、非水溶媒と電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、4-フルオロエチレンカーボネート(FEC)、4,5-ジフルオロエチレンカーボネート(DFEC)等のハロゲン化炭酸エステル;リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸エステル;リチウムビス(フルオロスルホニル)イミド(LiFSI)等のイミド塩;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、プロペンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The non-aqueous electrolyte solution may contain additives in addition to the non-aqueous solvent and the electrolyte salt. Examples of the additive include halogenated carbonate esters such as 4-fluoroethylene carbonate (FEC) and 4,5-difluoroethylene carbonate (DFEC); lithium bis (oxalate) borate (LiBOB) and lithium difluorooxalate borate (LiFOB). ), Sulfonic acid esters such as lithium bis (oxalate) difluorophosphate (LiFOP); imide salts such as lithium bis (fluorosulfonyl) imide (LiFSI); biphenyl, alkyl biphenyl, terphenyl, partially hydride of terphenyl, cyclohexyl Aromatic compounds such as benzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; partial halides of the aromatic compounds such as 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; 2, Halogenated anisole compounds such as 4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole; vinylene carbonate, methylvinylene carbonate, ethylvinylene carbonate, succinic anhydride, glutaric anhydride. , Maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride; ethylene sulfite, propylene sulfite, dimethyl sulfite, propane sulton, propensulton, butane sulton, methyl methanesulfonate, busulphan, toluene sulfonic acid. Methyl, Dimethyl Sulfate, Ethylene Sulfate, Sulfonate, Dimethyl Sulfonate, Diethyl Sulfonate, Dimethyl Sulfoxide, Diethyl Sulfoxide, Tetramethylene Sulfoxide, Diphenyl Sulfate, 4,4'-Bis (2,2-Dioxo-1,3,2-Dioxathiolane) , 4-Methylsulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, thioanisol, diphenyldisulfide, dipyridinium disulfide, perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanium , Lithium monofluorophosphate, lithium difluorophosphate and the like. These additives may be used alone or in combination of two or more.
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。 The content of the additive contained in the non-aqueous electrolytic solution is preferably 0.01% by mass or more and 10% by mass or less, and is 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolytic solution. It is more preferable to have it, more preferably 0.2% by mass or more and 5% by mass or less, and particularly preferably 0.3% by mass or more and 3% by mass or less. By setting the content of the additive in the above range, it is possible to improve the capacity maintenance performance or the cycle performance after high temperature storage, and further improve the safety.
 非水電解質には、固体電解質を用いてもよい。また、非水電解液と固体電解質とを併用してもよい。 A solid electrolyte may be used as the non-aqueous electrolyte. Further, the non-aqueous electrolyte solution and the solid electrolyte may be used in combination.
 固体電解質としては、リチウムイオン伝導性を有し、1気圧下、25℃において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、酸窒化物固体電解質、ポリマー固体電解質等が挙げられる。これらの中でも、イオン伝導度の高さから硫化物固体電解質及び酸化物固体電解質が好ましく、硫化物固体電解質がより好ましい。 The solid electrolyte can be selected from any material having lithium ion conductivity and being solid at 25 ° C. under 1 atm. Examples of the solid electrolyte include a sulfide solid electrolyte, an oxide solid electrolyte, an oxynitride solid electrolyte, a polymer solid electrolyte and the like. Among these, a sulfide solid electrolyte and an oxide solid electrolyte are preferable, and a sulfide solid electrolyte is more preferable because of the high ionic conductivity.
 当該リチウム二次電池においては、通常使用時の充電終止電圧における正極電位が4.30V(vs.Li/Li)以上であることが好ましく、4.40V(vs.Li/Li)以上又は4.50V(vs.Li/Li)以上であることがさらに好ましい場合もある。通常使用時の充電終止電圧における正極電位を上記下限以上とすることで、放電容量を大きくし、エネルギー密度を高めることができる。
 当該非水電解質蓄電素子の通常使用時の充電終止電圧における正極電位の上限としては、例えば5.00V(vs.Li/Li)であり、4.80V(vs.Li/Li)であってもよく、4.70V(vs.Li/Li)であってもよく、4.60V(vs.Li/Li)であってもよい。
In the lithium secondary battery, the positive potential at the end of charging voltage during normal use is preferably 4.30 V (vs. Li / Li + ) or more, preferably 4.40 V (vs. Li / Li + ) or more, or In some cases, it is more preferably 4.50 V (vs. Li / Li + ) or higher. By setting the positive electrode potential at the end-of-charge voltage during normal use to the above lower limit or higher, the discharge capacity can be increased and the energy density can be increased.
The upper limit of the positive electrode potential at the end-of-charge voltage of the non-aqueous electrolyte power storage element during normal use is, for example, 5.00V (vs. Li / Li + ) and 4.80V (vs. Li / Li + ). It may be 4.70 V (vs. Li / Li + ) or 4.60 V (vs. Li / Li + ).
 当該リチウム二次電池の形状は特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
 図1に角型電池の一例としての、リチウム二次電池1を示す。なお、同図は、ケース内部を透視した図としている。セパレータを挟んで捲回された正極及び負極を有する電極体2が角型のケース3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。
The shape of the lithium secondary battery is not particularly limited, and examples thereof include a cylindrical battery, a square battery, a flat battery, a coin battery, and a button battery.
FIG. 1 shows a lithium secondary battery 1 as an example of a square battery. The figure is a perspective view of the inside of the case. The electrode body 2 having the positive electrode and the negative electrode wound around the separator is housed in the square case 3. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 41. The negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 51.
 当該リチウム二次電池は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数のリチウム二次電池1を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電装置に含まれる少なくとも一つのリチウム二次電池に対して、本発明の技術が適用されていればよい。
 図2に、電気的に接続された二以上のリチウム二次電池1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上のリチウム二次電池1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上のリチウム二次電池1の状態を監視する状態監視装置(図示せず)を備えていてもよい。
The lithium secondary battery may be a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer or a communication terminal, or a power source for power storage. It can be mounted as a power storage unit (battery module) composed of a plurality of lithium secondary batteries 1 assembled together. In this case, the technique of the present invention may be applied to at least one lithium secondary battery included in the power storage device.
FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected lithium secondary batteries 1 are assembled is further assembled. Even if the power storage device 30 includes a bus bar (not shown) for electrically connecting two or more lithium secondary batteries 1, a bus bar (not shown) for electrically connecting two or more power storage units 20 and the like. good. The power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) for monitoring the state of one or more lithium secondary batteries 1.
<リチウム二次電池の製造方法>
 本実施形態に係るリチウム二次電池の製造方法は、正極活物質及びリンのオキソ酸を含む正極合剤ペーストを作製することと、上記正極合剤ペーストを乾燥することとを備える。本実施形態に係るリチウム二次電池は、例えば、以下の製造方法によって製造される。
<Manufacturing method of lithium secondary battery>
The method for producing a lithium secondary battery according to the present embodiment includes producing a positive electrode mixture paste containing a positive electrode active material and phosphorus oxoacid, and drying the positive electrode mixture paste. The lithium secondary battery according to the present embodiment is manufactured by, for example, the following manufacturing method.
(正極の製造)
 正極の作製は、例えば正極基材に直接又は中間層を介して正極合剤ペーストを塗工し、乾燥させることによって正極合剤層を形成すること等によって行うことができる。正極合剤ペーストは、固形分と分散媒とを有する。固形分は正極活物質及びリンのオキソ酸を含み、必要に応じて、導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。正極合剤ペーストの作製は、例えば正極活物質、リンのオキソ酸、バインダ、及び導電剤を、適量の分散媒とともに攪拌し、混練すること等によって行うことができる。正極合剤層の単位面積あたりの容量密度は、正極合剤層における正極活物質の含有量、正極活物質の種類、正極合剤層の厚さ(正極合剤ペーストの塗工量)等によって調整することができる。
(Manufacturing of positive electrode)
The positive electrode can be produced, for example, by applying the positive electrode mixture paste directly to the positive electrode base material or via an intermediate layer and drying the mixture to form a positive electrode mixture layer. The positive electrode mixture paste has a solid content and a dispersion medium. The solid content contains a positive electrode active material and phosphorus oxoacid, and if necessary, contains optional components such as a conductive agent, a binder, a thickener, and a filler. The positive electrode mixture paste can be prepared, for example, by stirring and kneading the positive electrode active material, phosphorus oxoacid, binder, and a conductive agent together with an appropriate amount of a dispersion medium. The volume density per unit area of the positive electrode mixture layer depends on the content of the positive electrode active material in the positive electrode mixture layer, the type of the positive electrode active material, the thickness of the positive electrode mixture layer (the amount of the positive electrode mixture paste applied), and the like. Can be adjusted.
 リンのオキソ酸とは、リン原子に水酸基(-OH)とオキシ基(=O)とが結合した構造を有する化合物を指す。リンのオキソ酸としては、リン酸(HPO)、ホスホン酸(HPO)、ホスフィン酸(HPO)、ピロリン酸(H)、ポリリン酸等が挙げられる。これらの中でも、リン酸及びホスホン酸が好ましく、ホスホン酸がより好ましい。リンのオキソ酸を含む正極合剤ペーストを乾燥させることで、正極活物質の表面に、リン原子を含む被膜を形成することができる。X線光電子分光法によるスペクトルにおいて、このリンのオキソ酸に由来するリン原子のP2pのピークは、133eV以下に観測される。 The phosphorus oxoacid refers to a compound having a structure in which a hydroxyl group (-OH) and an oxy group (= O) are bonded to a phosphorus atom. Examples of phosphorus oxo acids include phosphoric acid (H 3 PO 4 ), phosphonic acid (H 3 PO 3 ), phosphinic acid (H 3 PO 2 ), pyrophosphoric acid (H 4 P 2 O 7 ), polyphosphoric acid and the like. Be done. Among these, phosphoric acid and phosphonic acid are preferable, and phosphonic acid is more preferable. By drying the positive electrode mixture paste containing phosphorus oxoacid, a film containing phosphorus atoms can be formed on the surface of the positive electrode active material. In the spectrum by X-ray photoelectron spectroscopy, the peak of P2p of the phosphorus atom derived from the oxo acid of this phosphorus is observed below 133 eV.
 正極合剤ペーストにおけるリンのオキソ酸の含有割合は、正極活物質100質量部に対して、0.05質量部以上5質量部以下であると好ましく、0.07質量部以上3質量部以下であってもよく、0.08質量部以上1質量部以下であってもよく、0.1質量部以上0.3質量部以下であってもよい。リンのオキソ酸の含有割合を上記の範囲とすることで、正極活物質に対して十分なリン原子を含む被膜を形成することができる。 The content ratio of phosphorus oxo acid in the positive electrode mixture paste is preferably 0.05 parts by mass or more and 5 parts by mass or less, and 0.07 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. It may be 0.08 part by mass or more and 1 part by mass or less, or 0.1 part by mass or more and 0.3 part by mass or less. By setting the content ratio of phosphorus oxoacid in the above range, a film containing a sufficient phosphorus atom for the positive electrode active material can be formed.
 正極合剤ペーストの分散媒として用いる有機溶媒としては、例えば、N-メチル-2-ピロドリン(NMP)、アセトン、エタノール等の極性溶媒、キシレン、トルエン、シクロヘキサン等の無極性溶媒等を挙げることができる。これらの中でも、極性溶媒が好ましく、NMPがより好ましい。 Examples of the organic solvent used as the dispersion medium of the positive electrode mixture paste include polar solvents such as N-methyl-2-pyrodrin (NMP), acetone and ethanol, and non-polar solvents such as xylene, toluene and cyclohexane. can. Among these, polar solvents are preferable, and NMP is more preferable.
 正極合剤ペーストの塗工方法は特に限定されず、ローラコーティング、スクリーンコーティング、スピンコーティング等の公知の方法により行うことができる。 The method for applying the positive electrode mixture paste is not particularly limited, and can be applied by a known method such as roller coating, screen coating, or spin coating.
(負極の製造)
 負極基材上に活物質としてのリチウム金属又はリチウム合金の層を形成することで、負極を作製する。リチウム金属又はリチウム合金の層を形成する方法は特に限定されず、リチウム金属箔又はリチウム合金箔の圧着、電析、蒸着、スパッタリング等の公知の方法により行うことができる。なお、当該リチウム二次電池が備える負極は、少なくとも充電状態においてリチウム金属又はリチウム合金を有していればよく、放電状態においてリチウム金属又はリチウム合金を有していなくてもよい。例えば、充電時にリチウム金属が負極表面の少なくとも一部の領域に析出することで、充電状態において負極はリチウム金属を有しており、放電時に負極表面のリチウム金属が非水電解質中に実質的に全てリチウムイオンとして溶出することで、放電状態において負極はリチウム金属を実質的に有しないように構成されたリチウム二次電池であってもよい。すなわち、当該リチウム二次電池の電極体の形成においては、負極は負極基材のみを有していてもよい。
(Manufacturing of negative electrode)
A negative electrode is manufactured by forming a layer of lithium metal or a lithium alloy as an active material on the negative electrode base material. The method for forming the layer of the lithium metal or the lithium alloy is not particularly limited, and the method can be performed by a known method such as crimping, electrodeposition, vapor deposition, or sputtering of the lithium metal foil or the lithium alloy foil. The negative electrode included in the lithium secondary battery may have at least a lithium metal or a lithium alloy in a charged state, and may not have a lithium metal or a lithium alloy in a discharged state. For example, by depositing lithium metal on at least a part of the surface of the negative electrode during charging, the negative electrode has lithium metal in the charged state, and the lithium metal on the surface of the negative electrode is substantially contained in the non-aqueous electrolyte during discharging. The negative electrode may be a lithium secondary battery configured so as to have substantially no lithium metal in the discharged state by eluting all of them as lithium ions. That is, in the formation of the electrode body of the lithium secondary battery, the negative electrode may have only the negative electrode base material.
(非水電解質の準備)
 非水電解質を準備する。非水電解質は、例えば、非水溶媒及び電解質塩を混合して調整してもよく、工業的に生産・販売されているものを使用してもよい。
(Preparation of non-aqueous electrolyte)
Prepare a non-aqueous electrolyte. As the non-aqueous electrolyte, for example, a non-aqueous solvent and an electrolyte salt may be mixed and adjusted, or industrially produced and sold ones may be used.
(リチウム二次電池の組み立て)
 正極及び負極を、セパレータを介して積層又は捲回することにより電極体を形成する。次いで、電極体及び非水電解質をケースに収容する。非水電解質をケースに収容することは、公知の方法から適宜選択できる。例えば、非水電解質に非水電解液を用いる場合、ケースに形成された注入口から非水電解液を注入した後、注入口を封止すればよい。
(Assembly of lithium secondary battery)
An electrode body is formed by laminating or winding a positive electrode and a negative electrode via a separator. Next, the electrode body and the non-aqueous electrolyte are housed in the case. The inclusion of the non-aqueous electrolyte in the case can be appropriately selected from known methods. For example, when a non-aqueous electrolyte is used as the non-aqueous electrolyte, the non-aqueous electrolyte may be injected from the injection port formed in the case, and then the injection port may be sealed.
<その他の実施形態>
 本発明のリチウム二次電池は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。

<Other embodiments>
The lithium secondary battery of the present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique. In addition, some of the configurations of certain embodiments can be deleted. Further, a well-known technique can be added to the configuration of a certain embodiment.

 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.
[実施例1]
(正極の作製)
 正極活物質として、α―NaFeO型結晶構造を有し、Li1+αMe1-α(Meは遷移金属元素)で表されるリチウム遷移金属複合酸化物を用いた(以下、「活物質A」とも記載する)。ここで、LiとMeのモル比Li/Meは1.33であり、Meは、Ni及びMnからなり、Ni:Mn=1:2のモル比で含んでいた。
 正極活物質としての活物質Aと、リンのオキソ酸としてのホスホン酸と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを含有し、N-メチル-2-ピロドリン(NMP)を分散媒とする正極合剤ペーストを調整した。正極活物質とリンのオキソ酸と導電剤とバインダとの比率は、質量比で、93.5:0.5:4.5:1.5(固形分換算)とした。調整した正極合剤ペーストを、正極基材としてのアルミニウム箔の片面に塗工し、乾燥させることで、正極を得た。なお、正極は1Cでの電流密度が3.0mA/cmとなるように設計して作製した。
[Example 1]
(Preparation of positive electrode)
As the positive electrode active material, a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure and represented by Li 1 + α Me 1-α O 2 (Me is a transition metal element) was used (hereinafter, “active material”). Also referred to as "A"). Here, the molar ratio of Li and Me, Li / Me, was 1.33, and Me was composed of Ni and Mn, and was contained in a molar ratio of Ni: Mn = 1: 2.
It contains active material A as a positive electrode active material, phosphonic acid as an oxo acid of phosphorus, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and contains N-methyl-2-pyrodrin (NMP). ) Was used as a dispersion medium to prepare a positive electrode mixture paste. The ratio of the positive electrode active material, the oxo acid of phosphorus, the conductive agent, and the binder was 93.5: 0.5: 4.5: 1.5 (in terms of solid content) in terms of mass ratio. The adjusted positive electrode mixture paste was applied to one side of an aluminum foil as a positive electrode base material and dried to obtain a positive electrode. The positive electrode was designed and manufactured so that the current density at 1 C was 3.0 mA / cm 2 .
(負極の作製)
 負極基材としての銅箔の片面に、負極活物質としてリチウム金属箔(リチウム金属100質量%)を積層後プレスし、負極を得た。
(Manufacturing of negative electrode)
A lithium metal foil (100% by mass of lithium metal) as a negative electrode active material was laminated on one side of a copper foil as a negative electrode base material and then pressed to obtain a negative electrode.
(非水電解質の調整)
 FEC(4-フルオロエチレンカーボネート)とTFEMC(2,2,2-トリフルオロエチルメチルカーボネート)とを3:7の割合で混合した混合溶媒を調整した。この混合溶媒に、電解質塩としてのLiPFを1.0mol/dmの濃度で溶解させ、非水電解質を調整した。
(Adjustment of non-aqueous electrolyte)
A mixed solvent was prepared by mixing FEC (4-fluoroethylene carbonate) and TFEMC (2,2,2-trifluoroethylmethyl carbonate) at a ratio of 3: 7. LiPF 6 as an electrolyte salt was dissolved in this mixed solvent at a concentration of 1.0 mol / dm 3 to prepare a non-aqueous electrolyte.
(リチウム二次電池の作製)
 セパレータとして、ポリオレフィン製微多孔膜を用いた。このセパレータを介して、上記正極と上記負極とを積層することにより電極体を作製した。この電極体を金属樹脂複合フィルム製のケースに収納し、内部に非水電解質を注入した後、熱溶着により封口し、実施例1のリチウム二次電池を得た。
(Manufacturing of lithium secondary battery)
A microporous polyolefin membrane was used as the separator. An electrode body was produced by laminating the positive electrode and the negative electrode via this separator. This electrode body was housed in a case made of a metal resin composite film, a non-aqueous electrolyte was injected into the case, and the electrode body was sealed by heat welding to obtain a lithium secondary battery of Example 1.
[比較例1]
 正極活物質としての活物質Aと、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを含有し、N-メチル-2-ピロドリン(NMP)を分散媒とする正極合剤ペーストを調整した。正極活物質と導電剤とバインダとの比率は、質量比で、94:4.5:1.5(固形分換算)とした。以上の手順で正極合剤ペーストを得たこと以外は、実施例1と同様にして、比較例1のリチウム二次電池を得た。
[Comparative Example 1]
A positive electrode mixture paste containing active material A as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and using N-methyl-2-pyrodrin (NMP) as a dispersion medium. Was adjusted. The ratio of the positive electrode active material, the conductive agent, and the binder was 94: 4.5: 1.5 (in terms of solid content) in terms of mass ratio. A lithium secondary battery of Comparative Example 1 was obtained in the same manner as in Example 1 except that the positive electrode mixture paste was obtained by the above procedure.
[参考例1]
 負極活物質としての黒鉛と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを含有し、水を分散媒とする負極合剤ペーストを調製した。負極活物質とバインダと増粘剤との比率は、質量比で、96.7:2.1:1.2(固形分換算)とした。調整した負極合剤ペーストを負極基材としての銅箔の片面に塗工し、乾燥させることで、負極を得た。
 以上の手順で作製した負極を用いたこと以外は、実施例1と同様にして、参考例1のリチウム二次電池を得た。
[Reference Example 1]
A negative electrode mixture paste containing graphite as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener, and using water as a dispersion medium was prepared. The ratio of the negative electrode active material, the binder, and the thickener was 96.7: 2.1: 1.2 (in terms of solid content) in terms of mass ratio. The adjusted negative electrode mixture paste was applied to one side of a copper foil as a negative electrode base material and dried to obtain a negative electrode.
A lithium secondary battery of Reference Example 1 was obtained in the same manner as in Example 1 except that the negative electrode produced by the above procedure was used.
[参考例2]
 参考例1と同様の負極を用いたこと以外は、比較例1と同様にして、参考例2のリチウム二次電池を得た。
[Reference Example 2]
A lithium secondary battery of Reference Example 2 was obtained in the same manner as in Comparative Example 1 except that the same negative electrode as in Reference Example 1 was used.
[実施例2]
 非水電解質を調整する際、LiPFの代わりにLiFSIを用いたこと以外は、実施例1と同様にして、実施例2のリチウム二次電池を得た。
[Example 2]
A lithium secondary battery of Example 2 was obtained in the same manner as in Example 1 except that LiFSI was used instead of LiPF 6 when adjusting the non-aqueous electrolyte.
[比較例2]
 非水電解質を調整する際、LiPFの代わりにLiFSIを用いたこと以外は、比較例1と同様にして、比較例2のリチウム二次電池を得た。
[Comparative Example 2]
A lithium secondary battery of Comparative Example 2 was obtained in the same manner as in Comparative Example 1 except that LiFSI was used instead of LiPF 6 when adjusting the non-aqueous electrolyte.
[比較例3]
 非水電解質を調整する際、さらにホスホン酸を1質量%添加したこと以外は、比較例1と同様にして、比較例3のリチウム二次電池を得た。
[Comparative Example 3]
A lithium secondary battery of Comparative Example 3 was obtained in the same manner as in Comparative Example 1 except that 1% by mass of phosphonic acid was further added when preparing the non-aqueous electrolyte.
[実施例3]

 正極活物質として、LiNi1/3Co1/3Mn1/3で表されるリチウム遷移金属複合酸化物を用いた(以下、「活物質B」とも記載する)。
 正極活物質としての活物質Bと、リンのオキソ酸としてのホスホン酸と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを含有し、N-メチル-2-ピロドリン(NMP)を分散媒とする正極合剤ペーストを調整した。正極活物質とリンのオキソ酸と導電剤とバインダとの比率は、質量比で、92:0.5:4.5:3.0(固形分換算)とした。調整した正極合剤ペーストを、正極基材としてのアルミニウム箔の片面に塗工し、乾燥させることで、正極を得た。なお、正極は1Cでの電流密度が6.0mA/cmとなるように設計して作製した。
 以上の手順で作製した正極を用いたこと以外は、実施例1と同様にして、実施例3のリチウム二次電池を得た。








[Example 3]

As the positive electrode active material, a lithium transition metal composite oxide represented by LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used (hereinafter, also referred to as “active material B”).
It contains active material B as a positive electrode active material, phosphonic acid as an oxo acid of phosphorus, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and contains N-methyl-2-pyrodrin (NMP). ) Was used as a dispersion medium to prepare a positive electrode mixture paste. The ratio of the positive electrode active material, the oxo acid of phosphorus, the conductive agent, and the binder was 92: 0.5: 4.5: 3.0 (in terms of solid content) in terms of mass ratio. The adjusted positive electrode mixture paste was applied to one side of an aluminum foil as a positive electrode base material and dried to obtain a positive electrode. The positive electrode was designed and manufactured so that the current density at 1C was 6.0 mA / cm 2 .
A lithium secondary battery of Example 3 was obtained in the same manner as in Example 1 except that the positive electrode produced by the above procedure was used.








[比較例4]
 正極活物質としての活物質Bと、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを含有し、N-メチル-2-ピロドリン(NMP)を分散媒とする正極合剤ペーストを調整した。正極活物質と導電剤とバインダとの比率は、質量比で、92.5:4.5:3.0(固形分換算)とした。以上の手順で正極合剤ペーストを得たこと以外は、実施例3と同様にして、比較例4のリチウム二次電池を得た。
[Comparative Example 4]
A positive electrode mixture paste containing active material B as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and using N-methyl-2-pyrodrin (NMP) as a dispersion medium. Was adjusted. The ratio of the positive electrode active material, the conductive agent, and the binder was 92.5: 4.5: 3.0 (in terms of solid content) in terms of mass ratio. A lithium secondary battery of Comparative Example 4 was obtained in the same manner as in Example 3 except that the positive electrode mixture paste was obtained by the above procedure.
[実施例4]
 正極活物質として、LiCoOで表されるリチウム遷移金属複合酸化物を用いた(以下、「活物質C」とも記載する)。
 正極活物質としての活物質Cと、リンのオキソ酸としてのホスホン酸と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを含有し、N-メチル-2-ピロドリン(NMP)を分散媒とする正極合剤ペーストを調整した。正極活物質とリンのオキソ酸と導電剤とバインダとの比率は、質量比で、92.50:0.50:4.0:3.0(固形分換算)とした。調整した正極合剤ペーストを、正極基材としてのアルミニウム箔の片面に塗工し、乾燥させることで、正極を得た。なお、正極は1Cでの電流密度が6.0mA/cmとなるように設計して作製した。
 以上の手順で作製した正極を用いたこと以外は、実施例1と同様にして、実施例4のリチウム二次電池を得た。
[Example 4]
As the positive electrode active material, a lithium transition metal composite oxide represented by LiCoO 2 was used (hereinafter, also referred to as “active material C”).
It contains active material C as a positive electrode active material, phosphonic acid as an oxo acid of phosphorus, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and contains N-methyl-2-pyrodrin (NMP). ) Was used as a dispersion medium to prepare a positive electrode mixture paste. The ratio of the positive electrode active material, the phosphorus oxoacid, the conductive agent, and the binder was 92.50: 0.50: 4.0: 3.0 (in terms of solid content) in terms of mass ratio. The adjusted positive electrode mixture paste was applied to one side of an aluminum foil as a positive electrode base material and dried to obtain a positive electrode. The positive electrode was designed and manufactured so that the current density at 1C was 6.0 mA / cm 2 .
A lithium secondary battery of Example 4 was obtained in the same manner as in Example 1 except that the positive electrode produced by the above procedure was used.
[実施例5]
 正極活物質とリンのオキソ酸と導電剤とバインダとの比率を、質量比で、92.75:0.25:4.0:3.0(固形分換算)としたこと以外は、実施例4と同様にして、実施例5のリチウム二次電池を得た。
[Example 5]
Examples except that the ratio of the positive electrode active material, the oxo acid of phosphorus, the conductive agent, and the binder was 92.75: 0.25: 4.0: 3.0 (solid content equivalent) in terms of mass ratio. In the same manner as in No. 4, the lithium secondary battery of Example 5 was obtained.
[実施例6]
 正極活物質とリンのオキソ酸と導電剤とバインダとの比率を、質量比で、92.90:0.10:4.0:3.0(固形分換算)としたこと以外は、実施例4と同様にして、実施例6のリチウム二次電池を得た。
[Example 6]
Examples except that the ratio of the positive electrode active material, the oxo acid of phosphorus, the conductive agent, and the binder was 92.90: 0.10: 4.0: 3.0 (solid content equivalent) in terms of mass ratio. In the same manner as in No. 4, the lithium secondary battery of Example 6 was obtained.
[比較例5]
 正極活物質としての活物質Cと、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを含有し、N-メチル-2-ピロドリン(NMP)を分散媒とする正極合剤ペーストを調整した。正極活物質と導電剤とバインダとの比率は、質量比で、93.0:4.0:3.0(固形分換算)とした。以上の手順で正極合剤ペーストを得たこと以外は、実施例4と同様にして、比較例5のリチウム二次電池を得た。
[Comparative Example 5]
A positive electrode mixture paste containing active material C as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder, and using N-methyl-2-pyrodrin (NMP) as a dispersion medium. Was adjusted. The ratio of the positive electrode active material, the conductive agent, and the binder was 93.0: 4.0: 3.0 (in terms of solid content) in terms of mass ratio. A lithium secondary battery of Comparative Example 5 was obtained in the same manner as in Example 4 except that the positive electrode mixture paste was obtained by the above procedure.
[実施例7]
 正極活物質とリンのオキソ酸と導電剤とバインダとの比率を、質量比で、92.25:0.25:4.5:3.0(固形分換算)としたことと、1Cでの電流密度が6.0mA/cmとなるように設計したこと以外は、実施例1と同様にして、実施例7のリチウム二次電池を得た。
[Example 7]
The ratio of the positive electrode active material, phosphorus oxo acid, conductive agent, and binder was set to 92.25: 0.25: 4.5: 3.0 (solid content conversion) in terms of mass ratio, and at 1C. A lithium secondary battery of Example 7 was obtained in the same manner as in Example 1 except that the current density was designed to be 6.0 mA / cm 2 .
[比較例6]
 正極活物質と導電剤とバインダとの比率を、質量比で、92.50:4.5:3.0(固形分換算)としたことと、1Cでの電流密度が6.0mA/cmとなるように設計したこと以外は、実施例1と同様にして、比較例6のリチウム二次電池を得た。
[Comparative Example 6]
The ratio of the positive electrode active material, the conductive agent, and the binder was set to 92.50: 4.5: 3.0 (solid content conversion) in terms of mass ratio, and the current density at 1C was 6.0 mA / cm 2 . A lithium secondary battery of Comparative Example 6 was obtained in the same manner as in Example 1 except that the battery was designed to be the same.
[評価]
 実施例1、実施例2、比較例1、比較例2、及び比較例3のリチウム二次電池について、以下の条件にて評価を行った。
[evaluation]
The lithium secondary batteries of Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3 were evaluated under the following conditions.
(初期化成)
 25℃の恒温槽内で、充電電流0.6mAcm-2にて4.60Vまで定電流充電し、さらに4.60Vの定電圧で充電電流が0.12mAcm-2となるまで定電圧充電を行った後、放電電流0.6mAcm-2にて2.00Vまで定電流放電を行った。充電と放電との間には10分間の休止期間を設けた。
(Initialization)
In a constant temperature bath at 25 ° C, constant current charge up to 4.60V with a charging current of 0.6mAcm -2 , and then constant voltage charging with a constant voltage of 4.60V until the charging current reaches 0.12mAcm-2. After that, constant current discharge was performed up to 2.00 V with a discharge current of 0.6 mAcm -2 . There was a 10 minute rest period between charging and discharging.
(充放電サイクル試験)
 初期化成後のリチウム二次電池について、25℃の恒温槽内で、充電電流1.2mAcm-2にて4.60Vまで定電流充電し、さらに4.60Vの定電圧で充電電流が0.12mAcm-2となるまで定電圧充電を行った後、放電電流0.6mAcm-2にて2.00Vまで定電流放電を行った。充電及び放電の後にはそれぞれ10分間の休止期間を設けた。これら充電及び放電の工程を1サイクルとして、この充放電サイクルを短絡が生じるまで繰り返した。短絡の発生の有無は、充放電サイクル中のクーロン効率の低下および充電電気量の増大により確認した。実施例1、実施例2、比較例1、比較例2、及び比較例3について、それぞれ3個のリチウム二次電池で充放電サイクル試験を行い、短絡に至るまでの充放電サイクル数の平均を、各実施例及び比較例の短絡までのサイクル数とした。また、実施例1及び比較例3について、2サイクル目の放電容量を正極活物質の質量で除し、初期放電容量とした。さらに、実施例1及び比較例3について、初期化成前のケース体積と、2サイクル目の充放電後のケース体積を測定し、セル体積増加量を算出した。
(Charge / discharge cycle test)
The lithium secondary battery after initialization is charged with a constant current of 1.2 mAcm -2 to 4.60 V in a constant temperature bath at 25 ° C, and the charging current is 0.12 mA cm with a constant voltage of 4.60 V. After constant voltage charging until it became -2 , constant current discharge was performed up to 2.00V with a discharge current of 0.6mAcm -2 . A 10-minute rest period was provided after each of charging and discharging. These charging and discharging steps were set as one cycle, and this charging / discharging cycle was repeated until a short circuit occurred. The presence or absence of a short circuit was confirmed by a decrease in Coulomb efficiency and an increase in the amount of charging electricity during the charge / discharge cycle. For Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3, charge / discharge cycle tests were performed with three lithium secondary batteries, respectively, and the average number of charge / discharge cycles leading to a short circuit was calculated. , The number of cycles until the short circuit of each Example and Comparative Example was taken. Further, in Example 1 and Comparative Example 3, the discharge capacity in the second cycle was divided by the mass of the positive electrode active material to obtain the initial discharge capacity. Further, for Example 1 and Comparative Example 3, the case volume before initialization and the case volume after charging / discharging in the second cycle were measured, and the amount of increase in cell volume was calculated.
 参考例1及び参考例2のリチウム二次電池について、以下の条件にて評価を行った。 The lithium secondary batteries of Reference Example 1 and Reference Example 2 were evaluated under the following conditions.
(初期化成)
 25℃の恒温槽内で、充電電流0.1CmAにて4.60Vまで定電流充電し、さらに4.60Vの定電圧で充電電流が0.05CmAとなるまで定電圧充電を行った後、放電電流0.1CmAにて2.00Vまで定電流放電を行った。充電と放電との間には10分間の休止期間を設けた。
(Initialization)
In a constant temperature bath at 25 ° C, constant current charge up to 4.60V with a charging current of 0.1CmA, then constant voltage charging at a constant voltage of 4.60V until the charging current reaches 0.05CmA, and then discharge. A constant current discharge was performed up to 2.00 V at a current of 0.1 CmA. There was a 10 minute rest period between charging and discharging.
(充放電サイクル試験)
 初期化成後のリチウム二次電池について、45℃の恒温槽内で、充電電流1.0CmAにて4.60Vまで定電流充電し、さらに4.60Vの定電圧で充電電流が0.05CmAとなるまで定電圧充電を行った後、放電電流1.0CmAにて2.00Vまで定電流放電を行った。充電及び放電の後にはそれぞれ10分間の休止期間を設けた。これら充電及び放電の工程を1サイクルとして、この充放電サイクルを300サイクル繰り返した。300サイクルもの充放電を繰り返したにもかかわらず、参考例1及び参考例2のリチウム二次電池では、短絡の発生は認められなかった。
(Charge / discharge cycle test)
The lithium secondary battery after initialization is charged at a constant current of 1.0 CmA to 4.60 V in a constant temperature bath at 45 ° C., and the charging current becomes 0.05 CmA at a constant voltage of 4.60 V. After constant voltage charging up to, constant current discharge was performed up to 2.00 V at a discharge current of 1.0 CmA. A 10-minute rest period was provided after each of charging and discharging. The charging and discharging steps were set as one cycle, and this charging / discharging cycle was repeated for 300 cycles. Despite repeated charging and discharging for 300 cycles, no short circuit was observed in the lithium secondary batteries of Reference Example 1 and Reference Example 2.
 実施例3及び比較例4のリチウム二次電池について、以下の条件にて評価を行った。 The lithium secondary batteries of Example 3 and Comparative Example 4 were evaluated under the following conditions.
(初期化成)
 25℃の恒温槽内で、充電電流0.1CmAにて4.40Vまで定電流充電し、さらに4.40Vの定電圧で充電電流が0.05CmAとなるまで定電圧充電を行った後、放電電流0.1CmAにて2.50Vまで定電流放電を行った。充電と放電との間には10分間の休止期間を設けた。
(Initialization)
In a constant temperature bath at 25 ° C, constant current charge up to 4.40V with a charging current of 0.1CmA, then constant voltage charging with a constant voltage of 4.40V until the charging current reaches 0.05CmA, and then discharge. A constant current discharge was performed up to 2.50 V at a current of 0.1 CmA. There was a 10 minute rest period between charging and discharging.
(充放電サイクル試験)
 初期化成後のリチウム二次電池について、25℃の恒温槽内で、充電電流0.2CmAにて4.40Vまで定電流充電し、さらに4.40Vの定電圧で充電電流が0.05CmAとなるまで定電圧充電を行った後、放電電流0.1CmAにて2.50Vまで定電流放電を行った。充電及び放電の後にはそれぞれ10分間の休止期間を設けた。これら充電及び放電の工程を1サイクルとして、この充放電サイクルを短絡が生じるまで繰り返した。短絡の発生の有無は、充放電サイクル中のクーロン効率の低下および充電電気量の増大により確認した。実施例3及び比較例4について、それぞれ3個のリチウム二次電池で充放電サイクル試験を行い、短絡に至るまでの充放電サイクル数の平均を、各実施例及び比較例の短絡までのサイクル数とした。
(Charge / discharge cycle test)
The lithium secondary battery after initialization is charged at a constant current of 0.2 CmA to 4.40 V in a constant temperature bath at 25 ° C, and the charging current becomes 0.05 CmA at a constant voltage of 4.40 V. After constant voltage charging up to, constant current discharge was performed up to 2.50 V at a discharge current of 0.1 CmA. A 10-minute rest period was provided after each of charging and discharging. These charging and discharging steps were set as one cycle, and this charging / discharging cycle was repeated until a short circuit occurred. The presence or absence of a short circuit was confirmed by a decrease in Coulomb efficiency and an increase in the amount of charging electricity during the charge / discharge cycle. A charge / discharge cycle test was performed on each of Example 3 and Comparative Example 4 with three lithium secondary batteries, and the average number of charge / discharge cycles leading to a short circuit was calculated as the number of cycles leading to a short circuit in each Example and Comparative Example. And said.
 実施例4、実施例5、実施例6、実施例7、比較例5、及び比較例6のリチウム二次電池について、以下の条件にて評価を行った。 The lithium secondary batteries of Example 4, Example 5, Example 6, Example 7, Comparative Example 5, and Comparative Example 6 were evaluated under the following conditions.
(初期化成)
 実施例4、実施例5、実施例6、比較例5について、25℃の恒温槽内で、充電電流0.1CmAにて4.55Vまで定電流充電し、さらに4.55Vの定電圧で充電電流が0.05CmAとなるまで定電圧充電を行った後、放電電流0.1CmAにて2.70Vまで定電流放電を行った。充電と放電との間には10分間の休止期間を設けた 。
 実施例7、比較例6について、25℃の恒温槽内で、充電電流0.1CmAにて4.6Vまで定電流充電し、さらに4.6Vの定電圧で充電電流が0.05CmAとなるまで定電圧充電を行った後、放電電流0.1CmAにて2.0Vまで定電流放電を行った。充電と放電との間には10分間の休止期間を設けた。
(Initialization)
In Example 4, Example 5, Example 6, and Comparative Example 5, constant current charging up to 4.55 V with a charging current of 0.1 CmA in a constant temperature bath at 25 ° C., and further charging with a constant voltage of 4.55 V. After constant voltage charging until the current became 0.05 CmA, constant current discharge was performed up to 2.70 V at a discharge current of 0.1 CmA. There was a 10-minute rest period between charging and discharging.
For Example 7 and Comparative Example 6, constant current charging up to 4.6 V with a charging current of 0.1 CmA in a constant temperature bath at 25 ° C., and until the charging current reaches 0.05 CmA at a constant voltage of 4.6 V. After constant voltage charging, constant current discharge was performed up to 2.0 V at a discharge current of 0.1 CmA. There was a 10 minute rest period between charging and discharging.
(充放電サイクル試験)
 実施例4、実施例5、実施例6、比較例5における初期化成後のリチウム二次電池について、25℃の恒温槽内で、充電電流0.2CmAにて4.55Vまで定電流充電し、さらに4.55Vの定電圧で充電電流が0.05CmAとなるまで定電圧充電を行った後、放電電流0.1CmAにて2.70Vまで定電流放電を行った。充電及び放電の後にはそれぞれ10分間の休止期間を設けた。これら充電及び放電の工程を1サイクルとして、この充放電サイクルを短絡が生じるまで繰り返した。短絡の発生の有無は、充放電サイクル中のクーロン効率の低下および充電電気量の増大により確認した。
 実施例7、比較例6における初期化成後のリチウム二次電池について、25℃の恒温槽内で、充電電流0.33CmAにて4.6Vまで定電流充電し、さらに4.6Vの定電圧で充電電流が0.1CmAとなるまで定電圧充電を行った後、放電電流0.33CmAにて2.0Vまで定電流放電を行った。充電及び放電の後にはそれぞれ10分間の休止期間を設けた。これら充電及び放電の工程を1サイクルとして、この充放電サイクルを短絡が生じるまで繰り返した。短絡の発生の有無は、充放電サイクル中のクーロン効率の低下および充電電気量の増大により確認した。
 実施例4、実施例5、実施例6、実施例7、比較例5、及び比較例6について、それぞれ3個のリチウム二次電池で充放電サイクル試験を行い、短絡に至るまでの充放電サイクル数の平均を、各実施例及び比較例の短絡までのサイクル数とした。また、2サイクル目の放電容量に対する80サイクル目の放電容量の百分率を求め、80サイクル時点での放電容量維持率とした。さらに、実施例4、実施例5、実施例6、及び比較例5について、2サイクル目の放電容量に対する150サイクル目の放電容量の百分率を求め、150サイクル時点での放電容量維持率とした。
(Charge / discharge cycle test)
The lithium secondary batteries after initialization in Example 4, Example 5, Example 6, and Comparative Example 5 were constantly charged to 4.55 V at a charging current of 0.2 CmA in a constant temperature bath at 25 ° C. Further, constant voltage charging was performed at a constant voltage of 4.55 V until the charging current became 0.05 CmA, and then constant current discharge was performed at a discharge current of 0.1 CmA to 2.70 V. A 10-minute rest period was provided after each of charging and discharging. These charging and discharging steps were set as one cycle, and this charging / discharging cycle was repeated until a short circuit occurred. The presence or absence of a short circuit was confirmed by a decrease in Coulomb efficiency and an increase in the amount of charging electricity during the charge / discharge cycle.
The lithium secondary batteries after initialization in Example 7 and Comparative Example 6 are constantly charged to 4.6 V with a charging current of 0.33 CmA in a constant temperature bath at 25 ° C., and further charged with a constant current of 4.6 V. After constant voltage charging until the charging current became 0.1 CmA, constant current discharge was performed up to 2.0 V at a discharge current of 0.33 CmA. A 10-minute rest period was provided after each of charging and discharging. These charging and discharging steps were set as one cycle, and this charging / discharging cycle was repeated until a short circuit occurred. The presence or absence of a short circuit was confirmed by a decrease in Coulomb efficiency and an increase in the amount of charging electricity during the charge / discharge cycle.
A charge / discharge cycle test was performed on each of Example 4, Example 5, Example 6, Example 7, Comparative Example 5, and Comparative Example 6 with three lithium secondary batteries, and a charge / discharge cycle leading to a short circuit was performed. The average of the numbers was taken as the number of cycles until the short circuit of each Example and Comparative Example. Further, the percentage of the discharge capacity at the 80th cycle to the discharge capacity at the 2nd cycle was obtained, and the discharge capacity retention rate at the time of the 80th cycle was used. Further, for Example 4, Example 5, Example 6, and Comparative Example 5, the percentage of the discharge capacity at the 150th cycle to the discharge capacity at the second cycle was obtained and used as the discharge capacity retention rate at the time of 150 cycles.
(XPS測定)
 初期化成後の実施例1、比較例1、比較例3、実施例4、実施例5、実施例6、及び比較例5のリチウム二次電池を、0.1CmAにて2.00Vまで放電し、完全放電状態とした。次いで、リチウム二次電池を解体して正極を取り出し、ジメチルカーボネートを用いて正極を充分に洗浄した後、室温にて減圧乾燥を行った。乾燥後の正極を切り出し、XPS測定における試料とした。リチウム二次電池の解体からXPS測定における試料の作製までの作業は、露点-60℃以下のアルゴン雰囲気中で行った。上述した使用装置及び測定条件にて、XPS測定を行い、各試料のXPSによるスペクトルにおけるP2pのピーク位置を確認した。
(XPS measurement)
The lithium secondary batteries of Example 1, Comparative Example 1, Comparative Example 3, Example 4, Example 5, Example 6, and Comparative Example 5 after initialization are discharged to 2.00 V at 0.1 CmA. , Completely discharged. Next, the lithium secondary battery was disassembled, the positive electrode was taken out, the positive electrode was thoroughly washed with dimethyl carbonate, and then dried under reduced pressure at room temperature. The positive electrode after drying was cut out and used as a sample for XPS measurement. The work from disassembling the lithium secondary battery to preparing the sample in the XPS measurement was performed in an argon atmosphere with a dew point of −60 ° C. or lower. XPS measurement was performed with the above-mentioned equipment and measurement conditions, and the peak position of P2p in the spectrum of each sample by XPS was confirmed.
 評価の結果を表1、表2、表3、表4、及び表5に示す。 The evaluation results are shown in Table 1, Table 2, Table 3, Table 4, and Table 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示す通り、実施例1及び比較例1は、充放電サイクルを繰り返すことで短絡が生じた。一方、参考例1及び参考例2は、充放電サイクルを繰り返しても短絡が生じなかった。充放電サイクルを繰り返すことで生じる短絡は、充放電反応としてリチウム金属の析出反応および溶出反応を利用するリチウム二次電池に特有の課題であることが分かる。 As shown in Table 1, in Example 1 and Comparative Example 1, a short circuit occurred by repeating the charge / discharge cycle. On the other hand, in Reference Example 1 and Reference Example 2, a short circuit did not occur even if the charge / discharge cycle was repeated. It can be seen that the short circuit caused by repeating the charge / discharge cycle is a problem peculiar to the lithium secondary battery that utilizes the precipitation reaction and the elution reaction of the lithium metal as the charge / discharge reaction.
 表2に示す通り、実施例のリチウム二次電池は、比較例のリチウム二次電池と比較して、短絡に至るまでのサイクル数が大きく、短絡の発生を抑制できることが確認された。また、非水電解質が電解質塩としてLiFSIを含むことで、短絡の発生を抑制する効果が大きくなることが確認された。 As shown in Table 2, it was confirmed that the lithium secondary battery of the example has a larger number of cycles leading to a short circuit than the lithium secondary battery of the comparative example, and can suppress the occurrence of a short circuit. It was also confirmed that the non-aqueous electrolyte containing LiFSI as an electrolyte salt enhances the effect of suppressing the occurrence of a short circuit.
 表2に示す通り、実施例1は比較例3と比較して短絡に至るまでのサイクル数が大きく、短絡の発生を抑制できることが確認された。さらに、表3に示す通り、実施例1は比較例3と比較して、セル体積増加量が小さく、リチウム二次電池の体積増加を抑制できることが確認された。さらに、実施例1は比較例3と比較して、初期放電容量を大きくできることが確認された。 As shown in Table 2, it was confirmed that Example 1 has a larger number of cycles leading to a short circuit than Comparative Example 3 and can suppress the occurrence of a short circuit. Further, as shown in Table 3, it was confirmed that the cell volume increase in Example 1 was smaller than that in Comparative Example 3, and the volume increase of the lithium secondary battery could be suppressed. Further, it was confirmed that Example 1 can have a larger initial discharge capacity as compared with Comparative Example 3.
 表4に示す通り、実施例のリチウム二次電池は、比較例のリチウム二次電池と比較して、短絡に至るまでのサイクル数が大きく、短絡の発生を抑制できることが確認された。 As shown in Table 4, it was confirmed that the lithium secondary battery of the example has a larger number of cycles leading to a short circuit than the lithium secondary battery of the comparative example, and can suppress the occurrence of a short circuit.
 表5に示す通り、実施例のリチウム二次電池は、比較例のリチウム二次電池と比較して、短絡に至るまでのサイクル数が大きく、短絡の発生を抑制できることが確認された。また、正極活物質として活物質Cを用いた場合には、活物質Aを用いた場合と比較して、放電容量維持率が低下することが確認された。さらに、正極活物質に活物質Cを用いたリチウム二次電池においては、正極合剤ペーストにおけるリンのオキソ酸としてのHPOの含有量を、正極100質量部に対して0.3質量部以下とすることで、放電容量維持率の低下を抑制できることが確認された。 As shown in Table 5, it was confirmed that the lithium secondary battery of the example has a larger number of cycles leading to a short circuit than the lithium secondary battery of the comparative example, and can suppress the occurrence of a short circuit. Further, it was confirmed that when the active material C was used as the positive electrode active material, the discharge capacity retention rate was lower than that when the active material A was used. Further, in the lithium secondary battery using the active material C as the positive electrode active material, the content of H 3 PO 3 as the oxo acid of phosphorus in the positive electrode mixture paste is 0.3 mass by mass with respect to 100 parts by mass of the positive electrode. It was confirmed that the decrease in the discharge capacity retention rate can be suppressed by reducing the amount to less than one part.
 以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明は上記の具体例を様々に変形、変更したものが含まれる。 Although the present invention has been described in detail above, the above-described embodiment is merely an example, and the invention disclosed here includes various modifications and modifications of the above-mentioned specific examples.
1  リチウム二次電池
2  電極体
3  ケース
4  正極端子
41 正極リード
5  負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置
 
 
1 Lithium secondary battery 2 Electrode body 3 Case 4 Positive terminal 41 Positive lead 5 Negative terminal 51 Negative lead 20 Power storage unit 30 Power storage device

Claims (11)

  1.  正極と、負極と、非水電解質とを備えるリチウム二次電池の製造方法であって、
     上記負極は、充電状態において活物質としてのリチウム金属又はリチウム合金を含み、
     正極活物質、及びリンのオキソ酸を含む正極合剤ペーストを作製することと、
     上記正極合剤ペーストを乾燥することと、
    を備える、リチウム二次電池の製造方法。
    A method for manufacturing a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte.
    The negative electrode contains a lithium metal or a lithium alloy as an active material in a charged state, and contains a lithium metal or a lithium alloy.
    To prepare a positive electrode mixture paste containing a positive electrode active material and phosphorus oxoacid,
    Drying the positive electrode mixture paste and
    A method for manufacturing a lithium secondary battery.
  2.  上記正極合剤ペーストにおける上記リンのオキソ酸の含有量が、上記正極活物質100質量部に対して0.05質量部以上5質量部以下である請求項1に記載のリチウム二次電池の製造方法。 The production of the lithium secondary battery according to claim 1, wherein the content of the phosphorus oxoacid in the positive electrode mixture paste is 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. Method.
  3.  上記正極合剤ペーストにおける上記リンのオキソ酸の含有量が、上記正極活物質100質量部に対して0.1質量部以上0.3質量部以下であり、
     上記正極活物質が、Li[LiCo(1-x)]O(0≦x<0.5)の組成式で表されるリチウム遷移金属複合酸化物を含む請求項2に記載のリチウム二次電池の製造方法。
    The content of oxoacid of phosphorus in the positive electrode mixture paste is 0.1 part by mass or more and 0.3 part by mass or less with respect to 100 parts by mass of the positive electrode active material.
    The lithium according to claim 2, wherein the positive electrode active material contains a lithium transition metal composite oxide represented by the composition formula of Li [Li x Co (1-x) ] O 2 (0 ≦ x <0.5). How to manufacture a secondary battery.
  4.  正極活物質を含む正極合剤を備えた正極と、
     充電状態において活物質としてのリチウム金属又はリチウム合金を含む負極と、
     非水電解質と
    を備え、
     上記正極合剤のX線光電子分光法によるスペクトルにおいて、P2pのピークが133eV以下に存在する、リチウム二次電池。
    A positive electrode with a positive electrode mixture containing a positive electrode active material, and
    A negative electrode containing lithium metal or a lithium alloy as an active material in a charged state,
    Equipped with non-aqueous electrolyte,
    A lithium secondary battery in which the peak of P2p exists at 133 eV or less in the spectrum of the positive electrode mixture by X-ray photoelectron spectroscopy.
  5.  上記正極は上記正極合剤を含む正極合剤層を備え、
     上記正極合剤層の単位面積あたりの容量密度が3mAh/cm以上である請求項4に記載のリチウム二次電池。
    The positive electrode comprises a positive electrode mixture layer containing the positive electrode mixture.
    The lithium secondary battery according to claim 4, wherein the capacity density per unit area of the positive electrode mixture layer is 3 mAh / cm 2 or more.
  6.  通常使用時の充電終止電圧における正極電位が4.30V(vs.Li/Li)以上である請求項4又は請求項5に記載のリチウム二次電池。 The lithium secondary battery according to claim 4 or 5, wherein the positive electrode potential at the end-of-charge voltage during normal use is 4.30 V (vs. Li / Li + ) or more.
  7.  上記非水電解質が、リチウムビス(フルオロスルホニル)イミドを含む請求項4から請求項6のいずれかに記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 4 to 6, wherein the non-aqueous electrolyte contains a lithium bis (fluorosulfonyl) imide.
  8.  上記正極活物質が、α-NaFeO型結晶構造若しくはスピネル型結晶構造を有するリチウム遷移金属複合酸化物、又はニッケル、コバルト若しくはマンガンを含むポリアニオン化合物を含む請求項4から請求項7のいずれかに記載のリチウム二次電池。 The present invention according to any one of claims 4 to 7, wherein the positive electrode active material contains a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure or a spinel type crystal structure, or a polyanion compound containing nickel, cobalt or manganese. The lithium secondary battery described.
  9.  上記正極活物質が、α-NaFeO型結晶構造を有し、Li1+αMe1-α(Meは遷移金属元素、1<(1+α)/(1-α)<1.6)の組成式で表されるリチウム遷移金属複合酸化物を含む請求項8に記載のリチウム二次電池。 The positive electrode active material has an α-NaFeO type 2 crystal structure and has a composition of Li 1 + α Me 1-α O 2 (Me is a transition metal element, 1 <(1 + α) / (1-α) <1.6). The lithium secondary battery according to claim 8, which comprises a lithium transition metal composite oxide represented by the formula.
  10.  上記正極活物質が、α-NaFeO型結晶構造を有し、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<x+γ+β≦1)の組成式で表されるリチウム遷移金属複合酸化物を含む請求項8に記載のリチウム二次電池。 The positive electrode active material has an α-NaFeO type 2 crystal structure, and Li [Li x Ni γ Mn β Co (1-x-γ-β) ] O 2 (0 ≦ x <0.5, 0 <γ). , 0 <β, 0.5 <x + γ + β ≦ 1) The lithium secondary battery according to claim 8, which contains a lithium transition metal composite oxide represented by the composition formula.
  11.  上記正極活物質が、α-NaFeO型結晶構造を有し、Li[LiCo(1-x)]O(0≦x<0.5)の組成式で表されるリチウム遷移金属複合酸化物を含む請求項8に記載のリチウム二次電池。
     
     
     
     
    The positive electrode active material has an α-NaFeO type 2 crystal structure and is a lithium transition metal composite represented by the composition formula of Li [Li x Co (1-x) ] O 2 (0 ≦ x <0.5). The lithium secondary battery according to claim 8, which comprises an oxide.



PCT/JP2021/032784 2020-09-08 2021-09-07 Method for producing lithium secondary battery, and lithium secondary battery WO2022054781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022547600A JPWO2022054781A1 (en) 2020-09-08 2021-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-150343 2020-09-08
JP2020150343 2020-09-08

Publications (1)

Publication Number Publication Date
WO2022054781A1 true WO2022054781A1 (en) 2022-03-17

Family

ID=80632139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032784 WO2022054781A1 (en) 2020-09-08 2021-09-07 Method for producing lithium secondary battery, and lithium secondary battery

Country Status (2)

Country Link
JP (1) JPWO2022054781A1 (en)
WO (1) WO2022054781A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036260A1 (en) * 2010-09-16 2012-03-22 日本ゼオン株式会社 Secondary battery positive electrode
WO2019077919A1 (en) * 2017-10-20 2019-04-25 株式会社Gsユアサ Nonaqueous electrolyte storage element and method for producing nonaqueous electrolyte storage element
JP2020021596A (en) * 2018-07-31 2020-02-06 株式会社Gsユアサ Nonaqueous electrolyte power storage element and method of manufacturing nonaqueous electrolyte power storage element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036260A1 (en) * 2010-09-16 2012-03-22 日本ゼオン株式会社 Secondary battery positive electrode
WO2019077919A1 (en) * 2017-10-20 2019-04-25 株式会社Gsユアサ Nonaqueous electrolyte storage element and method for producing nonaqueous electrolyte storage element
JP2020021596A (en) * 2018-07-31 2020-02-06 株式会社Gsユアサ Nonaqueous electrolyte power storage element and method of manufacturing nonaqueous electrolyte power storage element

Also Published As

Publication number Publication date
JPWO2022054781A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
JP7215331B2 (en) Method for manufacturing non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
WO2021246186A1 (en) Positive electrode and power storage element
JP2022091637A (en) Negative electrode for nonaqueous electrolyte electricity-storage device, nonaqueous electrolyte electricity-storage device, and manufacturing method of them
JP2022134613A (en) Positive electrode mixture for non-aqueous electrolyte storage element, positive electrode for non-aqueous electrolyte storage element, and non-aqueous electrolyte storage element
WO2022054781A1 (en) Method for producing lithium secondary battery, and lithium secondary battery
CN115516660A (en) Positive electrode for electricity storage element and electricity storage element
JP2021190165A (en) Positive electrode and power storage element
WO2023190422A1 (en) Positive electrode for non-aqueous electrolyte power storage element, and non-aqueous electrolyte power storage element comprising same
WO2023281960A1 (en) Positive electrode, power storage element and power storage device
WO2023248769A1 (en) Active material particles, electrode, power storage element and power storage device
WO2022102591A1 (en) Non-aqueous electrolyte storage element, and non-aqueous electrolyte storage device
WO2023100801A1 (en) Nonaqueous electrolyte power storage element, device, and method for using nonaqueous electrolyte power storage element
WO2023276863A1 (en) Non-aqueous electrolyte power storage element
WO2024062862A1 (en) Electrode, electric power storage element and electric power storage device
WO2023032751A1 (en) Positive electrode for nonaqueous electrolyte power storage element, nonaqueous electrolyte power storage element, and power storage device
WO2022097400A1 (en) Positive electrode active material for power storage element, positive electrode for power storage element, power storage element, and power storage device
WO2023286718A1 (en) Power storage element
WO2024029333A1 (en) Non-aqueous electrolyte power storage element
WO2022163125A1 (en) Nonaqueous electrolyte power storage element, power storage device, and method for producing nonaqueous electrolyte power storage element
WO2023224070A1 (en) Non-aqueous electrolyte power storage element
WO2023224071A1 (en) Nonaqueous electrolyte power storage element
WO2023032752A1 (en) Power storage element and power storage device
WO2023090439A1 (en) Non-aqueous electrolyte electric power storage element
EP4047678A1 (en) Electricity storage element and electricity storage device
EP4297122A1 (en) Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866740

Country of ref document: EP

Kind code of ref document: A1