WO2022163125A1 - Nonaqueous electrolyte power storage element, power storage device, and method for producing nonaqueous electrolyte power storage element - Google Patents

Nonaqueous electrolyte power storage element, power storage device, and method for producing nonaqueous electrolyte power storage element Download PDF

Info

Publication number
WO2022163125A1
WO2022163125A1 PCT/JP2021/044382 JP2021044382W WO2022163125A1 WO 2022163125 A1 WO2022163125 A1 WO 2022163125A1 JP 2021044382 W JP2021044382 W JP 2021044382W WO 2022163125 A1 WO2022163125 A1 WO 2022163125A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
aqueous electrolyte
active material
electrode active
material layer
Prior art date
Application number
PCT/JP2021/044382
Other languages
French (fr)
Japanese (ja)
Inventor
弘将 村松
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2022578090A priority Critical patent/JPWO2022163125A1/ja
Publication of WO2022163125A1 publication Critical patent/WO2022163125A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys

Definitions

  • the present invention relates to a non-aqueous electrolyte storage element, a power storage device, and a method for manufacturing a non-aqueous electrolyte storage element.
  • Non-aqueous electrolyte secondary batteries typified by lithium-ion secondary batteries
  • the non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the electrodes. It is configured to be charged and discharged by Capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as non-aqueous electrolyte storage elements other than non-aqueous electrolyte secondary batteries.
  • Lithium metal has a remarkably large discharge capacity per active material mass compared to graphite, which is currently widely used as a negative electrode active material for lithium ion secondary batteries. That is, while the theoretical capacity per mass of graphite is 372 mAh/g, the theoretical capacity per mass of lithium metal is 3860 mAh/g, which is significantly large. For this reason, a non-aqueous electrolyte secondary battery using lithium metal as a negative electrode active material has been proposed (see Japanese Patent Application Laid-Open No. 2011-124154).
  • lithium metal may be deposited in the form of dendrites on the surface of the negative electrode during charging (hereinafter, lithium metal in the form of dendrites is referred to as "dendrite"). called.). These dendrites tend to become electrically isolated due to dissolution of lithium metal on the surface of the negative electrode during subsequent discharge. When the charge/discharge cycle is repeated, the deposition and electrical isolation of the dendrite are likely to occur repeatedly, which may reduce the coulombic efficiency of the non-aqueous electrolyte storage element after the charge/discharge cycle.
  • the present invention has been made based on the above circumstances, and provides a non-aqueous electrolyte storage element and a storage device that can improve the coulombic efficiency after charge-discharge cycles when the negative electrode contains lithium metal. With the goal.
  • One aspect of the present invention includes a negative electrode having a negative electrode active material layer and a coating layer covering the negative electrode active material layer, a positive electrode, and a non-aqueous electrolyte, the negative electrode active material layer containing lithium metal, and the coating It is a non-aqueous electrolyte storage element whose layer contains tin element and lithium element.
  • Another aspect of the present invention comprises laminating a coating material on the surface of a negative electrode active material layer containing lithium metal, wherein the coating material contains tin metal or a compound containing tin element as a main component.
  • Another aspect of the present invention is a power storage device including two or more non-aqueous electrolyte power storage elements and one or more non-aqueous electrolyte power storage elements according to one aspect of the present invention.
  • the non-aqueous electrolyte power storage element and the power storage device when the negative electrode contains lithium metal, the coulomb efficiency after charge-discharge cycles can be improved.
  • FIG. 1 is a see-through perspective view showing one embodiment of a non-aqueous electrolyte storage element.
  • FIG. 2 is a schematic diagram showing an embodiment of a power storage device configured by assembling a plurality of non-aqueous electrolyte power storage elements.
  • FIG. 3 is an image obtained by scanning electron microscope observation of the surface of the negative electrode after the initial charge in the example.
  • FIG. 4 is a scanning electron microscope image of the surface of the negative electrode of the comparative example after the initial charge.
  • a non-aqueous electrolyte storage element includes a negative electrode having a negative electrode active material layer and a coating layer covering the negative electrode active material layer, a positive electrode, and a non-aqueous electrolyte, wherein the negative electrode active material layer is Lithium metal is included, and the coating layer includes tin element and lithium element.
  • the non-aqueous electrolyte storage element can improve the coulomb efficiency after charge-discharge cycles even though the negative electrode contains lithium metal. Although the reason for this is not clear, the following reasons are presumed.
  • lithium metal is contained in the negative electrode of the non-aqueous electrolyte storage element
  • dendrites may precipitate on the surface of the negative electrode during charging.
  • a non-aqueous electrolyte is used as the non-aqueous electrolyte, there is a high degree of freedom regarding the deposition sites of lithium metal, and the current tends to concentrate on the sites where lithium metal is likely to deposit in response to the non-uniformity of the deposition sites. . This promotes the growth of dendrites on the surface of the negative electrode during charging.
  • the coat layer preferably has an average thickness of 10 nm or more.
  • the average thickness of the coating layer By setting the average thickness of the coating layer to the above lower limit or more, the affinity between tin and lithium is improved, so that the deposition of dendrites can be suppressed and the coulomb efficiency after charge-discharge cycles can be further improved.
  • the above-mentioned "average thickness of the coat layer" refers to a value obtained by the following method. First, a negative electrode before charge/discharge is prepared.
  • the non-aqueous electrolyte storage element is discharged at a current of 0.1 C to the discharge cut-off voltage in normal use to be in a completely discharged state.
  • the fully discharged non-aqueous electrolyte storage element is disassembled, and the negative electrode is taken out.
  • the negative electrode was cut into a predetermined area, the mass and average thickness of the negative electrode were measured, and then immersed in a large excess amount of water to react lithium metal in the negative electrode active material layer with water to form lithium hydroxide in water. Dissolve. After the negative electrode active material layer is completely dissolved, the negative electrode substrate is taken out and its mass and average thickness are measured.
  • the insoluble matter is taken out by filtration or the like, and its mass is measured.
  • the mass of the negative electrode active material layer is obtained by subtracting the mass of the negative electrode base material and the insoluble matter from the mass of the negative electrode.
  • the mass of the negative electrode active material layer was divided by the area of the negative electrode active material layer and the true density of the negative electrode active material layer (for example, 0.534 g/cm 3 when the negative electrode active material layer consists essentially of elemental lithium). Let the value be the "average thickness of the negative electrode active material layer".
  • a value obtained by subtracting the average thickness of the negative electrode base material and the average thickness of the negative electrode active material layer from the average thickness of the negative electrode is defined as the “average thickness of the coat layer”.
  • the “average thickness of the coating layer” is calculated from the average thickness of the negative electrode and the average thickness of the negative electrode substrate and the negative electrode active material layer. The value obtained by subtracting the average thickness of is further divided by 2.
  • the average thickness of the negative electrode active material layer is preferably 1 ⁇ m or more and 300 ⁇ m or less. When the negative electrode active material layer has an average thickness of 1 ⁇ m or more, good charge-discharge cycle performance can be exhibited. Further, since the negative electrode active material layer has an average thickness of 300 ⁇ m or less, the mass of the non-aqueous electrolyte storage element can be reduced, and the energy density can be improved.
  • the above-mentioned "average thickness of the negative electrode active material layer” refers to the "negative electrode active material layer thickness" obtained by the above-described method when the negative electrode active material layer and the coating layer are laminated on one side of the negative electrode substrate. In the case where the negative electrode active material layer and the coating layer are laminated on both sides of the negative electrode base material, the "average thickness of the negative electrode active material layer" obtained by the above method is further increased by 2. It means the value divided by
  • a method for manufacturing a non-aqueous electrolyte storage element comprises laminating a coating material on the surface of a negative electrode active material layer containing lithium metal, wherein the coating material contains tin metal or a tin element.
  • a compound is the main component.
  • the method for manufacturing the non-aqueous electrolyte storage element includes laminating a coating material on the surface of the negative electrode active material layer containing lithium metal, and the coating material is mainly composed of tin metal or a compound containing tin element,
  • a non-aqueous electrolyte storage element can be produced in which a negative electrode active material layer containing lithium metal is coated with a coating layer containing tin element and lithium element.
  • the "main component" in the coating material means the component with the highest content, and refers to a component that is contained in an amount of 99% by mass or more relative to the total mass of the coating material, and may be 100% by mass.
  • Another aspect of the present invention is a power storage device including two or more non-aqueous electrolyte power storage elements and one or more non-aqueous electrolyte power storage elements according to one aspect of the present invention.
  • the power storage device can improve coulombic efficiency after charge-discharge cycles even though the negative electrode contains lithium metal.
  • each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
  • the nonaqueous electrolyte storage element includes a negative electrode having a negative electrode active material layer and a coating layer covering the negative electrode active material layer, a positive electrode, and a nonaqueous electrolyte.
  • a non-aqueous electrolyte secondary battery will be described below as an example of the non-aqueous electrolyte storage element.
  • the positive electrode and the negative electrode generally form an electrode body alternately stacked by lamination or winding with a separator interposed therebetween. This electrode assembly is housed in a battery container, and the battery container is filled with a non-aqueous electrolyte. The non-aqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • known metal containers, resin containers, and the like which are usually used as containers for non-aqueous electrolyte secondary batteries, can be used.
  • the negative electrode of the non-aqueous electrolyte storage element has a negative electrode active material layer and a coating layer covering the negative electrode active material layer. Further, the negative electrode active material layer contains lithium metal, and the coat layer contains tin element and lithium element. Thereby, precipitation of dendrites can be suppressed. Therefore, repeated occurrence of dendrite deposition and electrical isolation is suppressed even if charge/discharge cycles are repeated, so that the non-aqueous electrolyte storage element can improve the coulomb efficiency after charge/discharge cycles.
  • a negative electrode base material has electroconductivity. Whether or not a material has "conductivity" is determined using a volume resistivity of 10 7 ⁇ cm as a threshold measured according to JIS-H-0505 (1975).
  • materials for the negative electrode substrate metals such as copper, nickel, stainless steel, nickel-plated steel, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred.
  • the negative electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate.
  • Examples of copper foil include rolled copper foil and electrolytic copper foil.
  • the average thickness of the negative electrode substrate is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer contains lithium metal as a negative electrode active material.
  • the above-mentioned lithium metal includes a lithium alloy as well as elemental lithium.
  • Lithium alloys include, for example, lithium aluminum alloys, lithium silver alloys, lithium zinc alloys, lithium calcium alloys, lithium magnesium alloys, lithium indium alloys, and the like.
  • the lithium alloy may contain multiple metal elements other than lithium.
  • the negative electrode active material layer containing lithium metal can be composed of a lithium metal foil, a deposited lithium metal layer, or the like.
  • a metal foil e.g., copper foil
  • an alloy containing a metal e.g., copper
  • lithium is placed between the metal foil and the negative electrode active material layer that is a negative electrode active material layer. Layers may be formed.
  • the negative electrode active material layer may contain elements such as Na, K, Ca, Fe, Mg, Si, and N.
  • the lower limit of the lithium metal content in the negative electrode active material layer is preferably 80% by mass, more preferably 90% by mass, and even more preferably 95% by mass.
  • the upper limit of this content may be 100% by mass.
  • the lower limit of the average thickness of the negative electrode active material layer is preferably 1 ⁇ m, more preferably 5 ⁇ m, and even more preferably 10 ⁇ m.
  • the upper limit of the average thickness of the negative electrode active material layer is preferably 300 ⁇ m, more preferably 200 ⁇ m, and even more preferably 100 ⁇ m.
  • the coat layer covers the negative electrode active material layer.
  • the coating layer is formed using a coating material containing tin metal or a compound containing tin element. Due to the reaction between the coating material containing the tin metal or the compound containing the tin element and the lithium metal contained in the negative electrode active material layer, a reaction product containing the tin element and the lithium element is formed in the coat layer. contains tin and lithium elements.
  • Tin metal is preferable as the tin metal or the compound containing tin element.
  • the tin metal includes elemental tin and tin alloys, and elemental tin is preferred. In the case of tin metal, the effect of suppressing dendrite precipitation is higher than in the case of a compound containing tin element such as an oxide.
  • the tin alloy may contain multiple metal elements other than tin.
  • the lower limit of the tin element content in the coat layer is preferably 95% by mass, more preferably 99% by mass.
  • the lower limit of the average thickness of the coat layer is preferably 10 nm, more preferably 15 nm, and even more preferably 30 nm.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer disposed directly on the positive electrode base material or via an intermediate layer.
  • the positive electrode base material has conductivity.
  • metals such as aluminum, titanium, tantalum and stainless steel, or alloys thereof are used.
  • aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
  • the positive electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode substrate.
  • aluminum or aluminum alloys include A1085, A3003, A1N30, etc. defined in JIS-H-4000 (2014) or JIS-H4160 (2006).
  • the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the intermediate layer is a layer arranged between the positive electrode substrate and the positive electrode active material layer.
  • the intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode substrate and the positive electrode active material layer.
  • the composition of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer contains arbitrary components such as a conductive agent, a binder (binding agent), a thickener, a filler, etc., as required.
  • the positive electrode active material can be appropriately selected from known positive electrode active materials.
  • a positive electrode active material for lithium ion secondary batteries a material capable of intercalating and deintercalating lithium ions is usually used.
  • positive electrode active materials include lithium-transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure, lithium-transition metal composite oxides having a spinel-type crystal structure, polyanion compounds, chalcogen compounds, and sulfur.
  • lithium transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure examples include Li[Li x Ni (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[Li x Ni ⁇ Co ( 1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Co (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[ Li x Ni ⁇ Mn (1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1), Li[Li x Ni ⁇ Co ⁇ Al (1-x- ⁇ - ⁇ ) ]O 2 ( 0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1) and the like.
  • lithium transition metal composite oxides having a spinel crystal structure examples include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • polyanion compounds include LiFePO4 , LiMnPO4 , LiNiPO4 , LiCoPO4, Li3V2(PO4)3 , Li2MnSiO4 , Li2CoPO4F and the like.
  • chalcogen compounds include titanium disulfide, molybdenum disulfide, and molybdenum dioxide.
  • the atoms or polyanions in these materials may be partially substituted with atoms or anionic species of other elements. These materials may be coated with other materials on their surfaces. In the positive electrode active material layer, one kind of these materials may be used alone, or two or more kinds may be mixed and used.
  • the positive electrode active material is usually particles (powder).
  • the average particle size of the positive electrode active material is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. By making the average particle size of the positive electrode active material equal to or more than the above lower limit, manufacturing or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode active material layer is improved. Note that when a composite of a positive electrode active material and another material is used, the average particle size of the composite is taken as the average particle size of the positive electrode active material.
  • Average particle size is based on JIS-Z-8825 (2013), based on the particle size distribution measured by a laser diffraction / scattering method for a diluted solution in which particles are diluted with a solvent, JIS-Z-8819 -2 (2001) means a value at which the volume-based integrated distribution calculated according to 50%.
  • Pulverizers, classifiers, etc. are used to obtain powder with a predetermined particle size.
  • Pulverization methods include, for example, a method using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve.
  • wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used.
  • a sieve, an air classifier, or the like is used as necessary, both dry and wet.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 97% by mass or less.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • Examples of such conductive agents include carbonaceous materials, metals, and conductive ceramics.
  • Carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, and the like.
  • Examples of non-graphitic carbon include carbon nanofiber, pitch-based carbon fiber, and carbon black.
  • Examples of carbon black include furnace black, acetylene black, and ketjen black.
  • Graphene-based carbon includes graphene, carbon nanotube (CNT), fullerene, and the like.
  • the shape of the conductive agent may be powdery, fibrous, or the like.
  • As the conductive agent one type of these materials may be used alone, or two or more types may be mixed and used. Also, these materials may be combined for use.
  • a composite material of carbon black and CNT may be used.
  • carbon black is preferable from the viewpoint of electron conductivity and coatability
  • acetylene black is particularly preferable
  • the content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 1.5% by mass or more and 9% by mass or less.
  • Binders include, for example, fluorine resins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfone Elastomers such as modified EPDM, styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
  • fluorine resins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene-butadiene rubber
  • fluororubber polysaccharide polymers and the like.
  • the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 2% by mass or more and 9% by mass or less.
  • thickeners examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • the functional group may be previously deactivated by methylation or the like.
  • the filler is not particularly limited.
  • Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide, calcium hydroxide, hydroxide Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Mineral resource-derived substances such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof may be used.
  • the positive electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like.
  • typical metal elements, transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W are used as positive electrode active materials, conductive agents, binders, thickeners, fillers It may be contained as a component other than
  • the separator can be appropriately selected from known separators.
  • a separator consisting only of a base layer, a separator having a base layer and a heat-resistant layer containing heat-resistant particles and a binder on one or both sides of the base layer, or the like can be used.
  • Examples of the shape of the base material of the separator include woven fabric, non-woven fabric, and porous resin film. Among these shapes, a porous resin film is preferred from the viewpoint of strength, and a non-woven fabric is preferred from the viewpoint of non-aqueous electrolyte retention.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide, aramid, and the like are preferable from the viewpoint of oxidative decomposition resistance.
  • a material obtained by combining these resins may be used as the base material layer of the separator.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when the temperature is raised from room temperature to 500 ° C. in an air atmosphere of 1 atm, and the mass loss when the temperature is raised from room temperature to 800 ° C. is more preferably 5% or less.
  • An inorganic compound can be mentioned as a material whose mass reduction is less than or equal to a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride.
  • carbonates such as calcium carbonate
  • sulfates such as barium sulfate
  • sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium titanate
  • covalent crystals such as silicon and diamond
  • Mineral resource-derived substances such as zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • the inorganic compound a single substance or a composite of these substances may be used alone, or two or more of them may be mixed and used.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of the safety of the electric storage device.
  • the porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • the "porosity” is a volume-based value and means a value measured with a mercury porosimeter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used as the separator.
  • examples of polymers include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, and the like.
  • the use of polymer gel has the effect of suppressing liquid leakage.
  • a polymer gel may be used in combination with the porous resin film or non-woven fabric as described above.
  • Non-aqueous electrolyte The non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes.
  • a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent may be used as the non-aqueous electrolyte.
  • the non-aqueous electrolyte a room-temperature molten salt, an ionic liquid, a polymer solid electrolyte, a gel electrolyte, or the like can also be used.
  • an inorganic solid electrolyte can also be used.
  • these non-aqueous electrolytes may be used in combination.
  • the transference number of lithium ions in the non-aqueous electrolyte is 1.
  • the degree of freedom of deposition sites for lithium metal is high (for example, about 0.4), so current tends to concentrate on sites where lithium metal is likely to deposit in response to the non-uniformity of the deposition sites.
  • the deposition and dissolution of lithium metal destabilizes the film (SEI) on the surface of the negative electrode, and current concentrates on the sites where lithium metal is likely to deposit, promoting the growth of dendrites on the negative electrode surface during charging.
  • SEI film
  • the transference number of lithium ions is 1, and since they are solids, there is no degree of freedom in terms of precipitation sites. Decrease in coulombic efficiency after charge/discharge cycles is less likely to occur.
  • non-aqueous electrolyte a room temperature molten salt, an ionic liquid, a solid polymer electrolyte, a gel electrolyte, or the like
  • dendrites are likely to precipitate, so the non-aqueous electrolyte storage element is more effective. can demonstrate.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • Non-aqueous solvents include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like.
  • the non-aqueous solvent those in which some of the hydrogen atoms contained in these compounds are substituted with halogens may be used.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like. Among these, FEC is preferred.
  • chain carbonates examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like. Among these, EMC and DMC are preferred.
  • the non-aqueous solvent it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a combination of a cyclic carbonate and a chain carbonate.
  • a cyclic carbonate it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte.
  • a chain carbonate By using a chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 70:30.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • Lithium salt is usually used as the electrolyte salt.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 and LiN(SO 2 F) 2 , lithium bis(oxalate) borate (LiBOB), lithium difluorooxalate borate (LiFOB).
  • lithium oxalate salts such as lithium bis(oxalate) difluorophosphate ( LiFOP ), LiSO3CF3 , LiN ( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) (SO 2 C 4 F 9 ), LiC(SO 2 CF 3 ) 3 , LiC(SO 2 C 2 F 5 ) 3 and other lithium salts having a halogenated hydrocarbon group.
  • inorganic lithium salts are preferred, and LiPF6 is more preferred.
  • the content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/dm3 or more and 2.5 mol/dm3 or less , and 0.3 mol/dm3 or more and 2.0 mol/dm3 or less at 20 °C and 1 atm. It is more preferably 3 or less, more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, and particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less.
  • the non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt.
  • additives include halogenated carbonates such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC); lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), lithium bis(oxalate ) oxalates such as difluorophosphate (LiFOP); imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI); biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene , t-amylbenzene, diphenyl ether, dibenzofuran and other aromatic compounds; 2-fluorobiphenyl, o-cyclohexylfluorobenzene
  • the content of the additive contained in the non-aqueous electrolyte is preferably 0.01% by mass or more and 20% by mass or less, and 0.1% by mass or more and 15% by mass or less with respect to the total mass of the non-aqueous electrolyte. More preferably, it is 0.2% by mass or more and 12% by mass or less, and particularly preferably 0.3% by mass or more and 10% by mass or less.
  • the inorganic solid electrolyte can be selected from any material that has lithium ion conductivity and is solid at room temperature (for example, 15°C to 25°C).
  • examples of inorganic solid electrolytes include sulfide solid electrolytes, oxide solid electrolytes, and oxynitride solid electrolytes.
  • Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , LiI—Li 2 SP 2 S 5 , Li 10 Ge—P 2 S 12 and the like.
  • the shape of the non-aqueous electrolyte storage element of the present embodiment is not particularly limited, and examples thereof include cylindrical batteries, rectangular batteries, flat batteries, coin batteries, button batteries, and the like.
  • Fig. 1 shows a non-aqueous electrolyte storage element 1 as an example of a square battery.
  • An electrode body 2 having a positive electrode and a negative electrode wound with a separator sandwiched therebetween is housed in a rectangular container 3 .
  • the positive electrode is electrically connected to the positive electrode terminal 4 via a positive electrode lead 41 .
  • the negative electrode is electrically connected to the negative terminal 5 via a negative lead 51 .
  • the power storage device of this embodiment includes two or more non-aqueous electrolyte power storage devices and one or more non-aqueous electrolyte power storage devices of this embodiment.
  • the non-aqueous electrolyte storage element of the present embodiment is a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices such as personal computers and communication terminals, or electric power. It can be installed in a power source for storage or the like as a power storage unit (battery module) configured by collecting a plurality of non-aqueous electrolyte power storage elements 1 .
  • FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled.
  • the power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20, and the like.
  • the power storage unit 20 or the power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more non-aqueous electrolyte power storage elements.
  • the method for manufacturing the non-aqueous electrolyte storage element includes, in the step of preparing the negative electrode, laminating a coating material on the surface of the negative electrode active material layer containing lithium metal, wherein the coating material is tin metal or a compound containing a tin element. is the main component.
  • the method for manufacturing a non-aqueous electrolyte storage element can manufacture a non-aqueous electrolyte storage element in which the negative electrode active material layer containing lithium metal is coated with a coating layer containing tin element and lithium element by including the above steps.
  • the deposition of dendrites is suppressed, so that the coulomb efficiency after charge-discharge cycles can be improved.
  • a method for laminating the coating material sputtering or vapor deposition is preferable.
  • the step of preparing the negative electrode in the method for manufacturing the non-aqueous electrolyte storage element includes the step of stacking a negative electrode active material layer containing lithium metal on the surface of the negative electrode substrate before the step of stacking the coating material. is preferred. Lamination of the negative electrode substrate and the negative electrode active material layer can be performed by pressing or the like.
  • the method for manufacturing the non-aqueous electrolyte storage element includes, as other steps, for example, a step of preparing an electrode body, a step of preparing a non-aqueous electrolyte, and a step of accommodating the electrode body and the non-aqueous electrolyte in a container.
  • the step of preparing the electrode body may include a step of preparing the positive electrode and the negative electrode, and a step of forming the electrode body by laminating or winding the positive electrode and the negative electrode with a separator interposed therebetween.
  • the method for housing the non-aqueous electrolyte in the container can be appropriately selected from known methods. For example, when a liquid non-aqueous electrolyte is used, the non-aqueous electrolyte may be injected through an injection port formed in the container, and then the injection port may be sealed. The details of other elements constituting the non-aqueous electrolyte storage element obtained by the manufacturing method are as described above.
  • the electric storage device of the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of another embodiment can be added to the configuration of one embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique.
  • some of the configurations of certain embodiments can be deleted.
  • well-known techniques can be added to the configuration of a certain embodiment.
  • the nonaqueous electrolyte storage element is used as a chargeable/dischargeable nonaqueous electrolyte secondary battery (for example, a lithium secondary battery). etc. are optional.
  • the present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.
  • Example 1 to 5 and Comparative Examples 1 to 4 (Preparation of negative electrode) A copper foil having an average thickness of 10 ⁇ m was prepared as a negative electrode substrate. In Examples 1 to 5 and Comparative Examples 1 to 4, lithium metal having an average thickness shown in Table 1 was laminated as a negative electrode active material layer on one side of the copper foil. Each of the negative electrodes thus obtained had a rectangular shape with a width of 31 mm and a length of 42 mm.
  • a coat layer shown in Table 1 was formed on the surface of the negative electrode active material layer.
  • a coat layer shown in Table 1 was formed on one side of the negative electrode substrate.
  • the coating material was tin metal (Sn)
  • a coating layer was formed on the surface of the negative electrode active material layer or the negative electrode substrate by the following procedure using a sputtering method.
  • a MAGNETRON SPUTTERING DEVICE (JUC-5000) manufactured by JEOL was used as a sputtering apparatus, and tin metal with a purity of 99.99% was used as a target.
  • the height from the surface of the negative electrode active material layer or the negative electrode substrate to the target was 25 mm, and the current was 10 mA, and tin metal was sputtered onto the surface of the negative electrode active material layer or the negative electrode substrate. Moreover, the average thickness of the coat layer was adjusted by adjusting the coating time. All the above operations were performed in a dry room.
  • the coating materials were zinc oxide (ZnO) and silver (Ag), respectively
  • a coating layer was formed on the surface of the negative electrode active material layer by the following procedure. Zinc oxide particles with a particle size of 20 nm were prepared as the zinc oxide material.
  • Dotite D550 manufactured by Fujikura Kasei Co., Ltd. was prepared as a material for the silver metal.
  • a lithium transition metal composite oxide having an ⁇ -NaFeO 2 type crystal structure and represented by Li 1+ ⁇ Me 1 - ⁇ O 2 (Me is a transition metal) was used as a positive electrode active material.
  • the particle surface was coated with 0.3% by mass of Al 2 O 3 .
  • NMP N-methylpyrrolidone
  • AB acetylene black
  • PVDF polyvinylidene fluoride
  • a positive electrode material mixture paste containing the components by mass ratio was prepared.
  • an aluminum foil having an average thickness of 15 ⁇ m, which is a positive electrode base material the above positive electrode mixture paste is applied, dried, pressed, and cut to form a rectangular positive electrode active material layer having a width of 30 mm and a length of 40 mm.
  • An arranged positive electrode was produced.
  • a positive electrode mixture comprising a positive electrode active material, a conductive aid and a binder was applied to the prepared positive electrode in a mass of 3.0 g/100 cm 2 .
  • Fluoroethylene carbonate (FEC) and 2,2,2-trifluoroethylmethyl carbonate (TFEMC) were used as non-aqueous solvents. Then, after dissolving LiPF 6 at a concentration of 1 mol/dm 3 in a mixed solvent in which FEC: TFEMC is mixed at a volume ratio of 30:70, 1,3-propene sultone (PRS) as an additive is added at 2 % by mass to form a non-aqueous electrolyte.
  • FEC fluoroethylene carbonate
  • TFEMC 2,2,2-trifluoroethylmethyl carbonate
  • An electrode assembly was produced by laminating the above positive electrode and the above negative electrode with a polyethylene microporous film as a separator interposed therebetween. This electrode body was housed in a container, 0.5 mL of the non-aqueous electrolyte was injected into the interior, and then the opening was sealed by heat welding. An electrolyte storage device was obtained.
  • the charged amount of electricity per mass of the positive electrode active material (mAh/g) is calculated and defined as the "positive electrode charged amount of electricity at the 100th cycle", based on the discharge capacity at the 100th cycle.
  • the discharge capacity (mAh/g) per mass of the positive electrode active material was calculated and defined as "the positive electrode discharge capacity at the 100th cycle”.
  • Table 1 shows the percentage of the positive electrode discharge capacity at the 100th cycle to the positive electrode charge quantity of electricity at the 100th cycle as "100th cycle coulomb efficiency (%)".
  • FIG. 3 shows a scanning electron microscope (SEM) image of Example 1 after initial charging
  • FIG. 4 shows an SEM image of Comparative Example 1 after initial charging.
  • the above-mentioned "after initial charge” means a state in which the battery is charged only once (a state in which no discharge is performed).
  • Examples 1 to 5 having a negative electrode active material layer containing lithium metal and a coating layer containing tin element and covering the negative electrode active material layer are positive electrodes in the second cycle. Both the discharge capacity, the coulomb efficiency at the 100th cycle, and the discharge capacity retention rate were good, and better results were obtained when the thickness of the coating layer was increased.
  • Comparative Example 1 which has a negative electrode active material layer containing lithium metal but does not have the coating layer, the positive electrode discharge capacity at the 2nd cycle is good, but the coulomb efficiency at the 100th cycle is low. was This is considered to be due to the fact that dendrites were deposited by repeating the charge/discharge cycle, causing an internal short circuit. From the SEM images of the surfaces of the negative electrodes of Example 1 and Comparative Example 1 after the initial charging shown in FIGS. Recognize. In addition, in Comparative Examples 2 and 3, in which the coating material did not contain the tin element, the coulombic efficiency and the discharge capacity retention rate at the 100th cycle were inferior.
  • Comparative Example 4 which has a coating layer containing a tin element but does not have a negative electrode active material layer containing lithium metal, almost no decrease in the coulombic efficiency at the 100th cycle was observed. , the discharge capacity retention rate at the 100th cycle was greatly reduced because the negative electrode did not have a sufficient amount of usable lithium metal.
  • the coating layers in Examples 1 to 5 and Comparative Examples 2 to 4 contained an element derived from the coating material and a lithium element. This is presumed to be due to the formation of a reaction product between the coating material and the lithium metal contained in the negative electrode active material layer.
  • the non-aqueous electrolyte storage element can improve the coulombic efficiency after charge-discharge cycles when the negative electrode contains lithium metal.
  • the present invention can be applied to personal computers, electronic devices such as communication terminals, non-aqueous electrolyte storage elements used as power sources for automobiles, storage devices, and the like.
  • Non-aqueous electrolyte storage element 1 Non-aqueous electrolyte storage element 2 Electrode body 3 Container 4 Positive electrode terminal 41 Positive electrode lead 5 Negative electrode terminal 51 Negative electrode lead 20 Storage unit 30 Storage device

Abstract

One aspect of the present invention is a nonaqueous electrolyte power storage element which is provided with: a negative electrode that comprises a negative electrode active material layer and a coat layer that covers the negative electrode active material layer; a positive electrode; and a nonaqueous electrolyte. With respect to this nonaqueous electrolyte power storage element, the negative electrode active material layer contains lithium metal, while the coat layer contains elemental tin and elemental lithium.

Description

非水電解質蓄電素子、蓄電装置及び非水電解質蓄電素子の製造方法NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, ELECTRICAL STORAGE DEVICE, AND METHOD FOR MANUFACTURING NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT
 本発明は、非水電解質蓄電素子、蓄電装置及び非水電解質蓄電素子の製造方法に関する。 The present invention relates to a non-aqueous electrolyte storage element, a power storage device, and a method for manufacturing a non-aqueous electrolyte storage element.
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。 Non-aqueous electrolyte secondary batteries, typified by lithium-ion secondary batteries, are widely used in electronic devices such as personal computers, communication terminals, and automobiles due to their high energy density. The non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the electrodes. It is configured to be charged and discharged by Capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as non-aqueous electrolyte storage elements other than non-aqueous electrolyte secondary batteries.
 近年、非水電解質二次電池の高容量化に向けて、負極の高容量化が求められている。リチウム金属は、現在リチウムイオン二次電池の負極活物質として広く用いられている黒鉛と比較すると活物質質量あたりの放電容量が著しく大きい。すなわち、黒鉛の質量あたりの理論容量は372mAh/gであるが、リチウム金属の質量あたりの理論容量は3860mAh/gとなり、著しく大きい。このため、負極活物質としてリチウム金属を用いた非水電解質二次電池が提案されている(特開2011-124154号公報参照)。 In recent years, in order to increase the capacity of non-aqueous electrolyte secondary batteries, there has been a demand for higher capacity negative electrodes. Lithium metal has a remarkably large discharge capacity per active material mass compared to graphite, which is currently widely used as a negative electrode active material for lithium ion secondary batteries. That is, while the theoretical capacity per mass of graphite is 372 mAh/g, the theoretical capacity per mass of lithium metal is 3860 mAh/g, which is significantly large. For this reason, a non-aqueous electrolyte secondary battery using lithium metal as a negative electrode active material has been proposed (see Japanese Patent Application Laid-Open No. 2011-124154).
特開2011-124154号公報JP 2011-124154 A
 しかしながら、負極がリチウム金属を含有する非水電解質蓄電素子においては、充電の際に負極表面でリチウム金属が樹枝状に析出することがある(以下、樹枝状の形態をしたリチウム金属を「デンドライト」という。)。このデンドライトは、続く放電の際に負極表面のリチウム金属が溶解することによって電気的に孤立化しやすくなる。充放電サイクルを繰り返すと、このデンドライトの析出及び電気的な孤立化が繰り返し起こりやすくなることによって、非水電解質蓄電素子の充放電サイクル後のクーロン効率が低くなるおそれがある。 However, in a non-aqueous electrolyte storage device in which the negative electrode contains lithium metal, lithium metal may be deposited in the form of dendrites on the surface of the negative electrode during charging (hereinafter, lithium metal in the form of dendrites is referred to as "dendrite"). called.). These dendrites tend to become electrically isolated due to dissolution of lithium metal on the surface of the negative electrode during subsequent discharge. When the charge/discharge cycle is repeated, the deposition and electrical isolation of the dendrite are likely to occur repeatedly, which may reduce the coulombic efficiency of the non-aqueous electrolyte storage element after the charge/discharge cycle.
 本発明は、以上のような事情に基づいてなされたものであり、負極がリチウム金属を含有する場合に、充放電サイクル後のクーロン効率を向上できる非水電解質蓄電素子及び蓄電装置を提供することを目的とする。 The present invention has been made based on the above circumstances, and provides a non-aqueous electrolyte storage element and a storage device that can improve the coulombic efficiency after charge-discharge cycles when the negative electrode contains lithium metal. With the goal.
 本発明の一側面は、負極活物質層及びこの負極活物質層を被覆するコート層を有する負極と、正極と、非水電解質とを備え、上記負極活物質層がリチウム金属を含み、上記コート層が錫元素及びリチウム元素を含む非水電解質蓄電素子である。 One aspect of the present invention includes a negative electrode having a negative electrode active material layer and a coating layer covering the negative electrode active material layer, a positive electrode, and a non-aqueous electrolyte, the negative electrode active material layer containing lithium metal, and the coating It is a non-aqueous electrolyte storage element whose layer contains tin element and lithium element.
 本発明の他の一側面は、リチウム金属を含む負極活物質層の表面にコート材を積層することを備え、上記コート材が錫金属又は錫元素を含む化合物を主成分とする非水電解質蓄電素子の製造方法である。 Another aspect of the present invention comprises laminating a coating material on the surface of a negative electrode active material layer containing lithium metal, wherein the coating material contains tin metal or a compound containing tin element as a main component. A device manufacturing method.
 本発明の他の一側面は、非水電解質蓄電素子を二以上備え、且つ上記本発明の一側面に係る非水電解質蓄電素子を一以上備えた蓄電装置である。 Another aspect of the present invention is a power storage device including two or more non-aqueous electrolyte power storage elements and one or more non-aqueous electrolyte power storage elements according to one aspect of the present invention.
 本発明の一側面に係る非水電解質蓄電素子及び蓄電装置によれば、負極がリチウム金属を含有する場合に、充放電サイクル後のクーロン効率を向上できる。 According to the non-aqueous electrolyte power storage element and the power storage device according to one aspect of the present invention, when the negative electrode contains lithium metal, the coulomb efficiency after charge-discharge cycles can be improved.
図1は、非水電解質蓄電素子の一実施形態を示す透視斜視図である。FIG. 1 is a see-through perspective view showing one embodiment of a non-aqueous electrolyte storage element. 図2は、非水電解質蓄電素子を複数個集合して構成した蓄電装置の一実施形態を示す概略図である。FIG. 2 is a schematic diagram showing an embodiment of a power storage device configured by assembling a plurality of non-aqueous electrolyte power storage elements. 図3は、実施例の初回充電後の負極表面の走査電子顕微鏡観察による画像である。FIG. 3 is an image obtained by scanning electron microscope observation of the surface of the negative electrode after the initial charge in the example. 図4は、比較例の初回充電後の負極表面の走査電子顕微鏡観察による画像である。FIG. 4 is a scanning electron microscope image of the surface of the negative electrode of the comparative example after the initial charge.
 初めに、本明細書によって開示される非水電解質蓄電素子、蓄電装置及び非水電解質蓄電素子の製造方法の概要について説明する。 First, an outline of the non-aqueous electrolyte storage element, the storage device, and the method for manufacturing the non-aqueous electrolyte storage element disclosed by the present specification will be described.
 本発明の一側面に係る非水電解質蓄電素子は、負極活物質層及びこの負極活物質層を被覆するコート層を有する負極と、正極と、非水電解質とを備え、上記負極活物質層がリチウム金属を含み、上記コート層が錫元素及びリチウム元素を含む。 A non-aqueous electrolyte storage element according to one aspect of the present invention includes a negative electrode having a negative electrode active material layer and a coating layer covering the negative electrode active material layer, a positive electrode, and a non-aqueous electrolyte, wherein the negative electrode active material layer is Lithium metal is included, and the coating layer includes tin element and lithium element.
 当該非水電解質蓄電素子は、負極がリチウム金属を含有するにもかかわらず、充放電サイクル後のクーロン効率を向上できる。この理由は定かではないが、以下の理由が推測される。非水電解質蓄電素子の負極にリチウム金属が含まれる場合、充電の際に負極表面でデンドライトが析出することがある。特に、非水電解質として非水電解液が用いられた場合、リチウム金属の析出サイトについて自由度が高く、析出サイトの不均一性に対応してリチウム金属が析出しやすいサイトへ電流が集中しやすい。これにより、充電時に負極表面においてデンドライトの成長が促進される。このデンドライトは、続く放電時に負極表面のリチウム金属が溶解することによって電気的に孤立化しやすくなる。充放電サイクルを繰り返すと、このデンドライトの析出及び電気的な孤立化が繰り返し起こりやすくなる。電気的に孤立化したリチウム金属は充放電に寄与できなくなるため、非水電解質蓄電素子の充放電サイクル後のクーロン効率が低下する。これに対し、当該非水電解質蓄電素子は、リチウム金属を含む負極活物質層が錫元素及びリチウム元素を含むコート層により被覆されていることにより、デンドライトの析出を抑制できる。そのため、充放電サイクルを繰り返してもデンドライトの析出及び電気的な孤立化が繰り返し起こることが抑制されるので、当該非水電解質蓄電素子は、充放電サイクル後のクーロン効率を向上できると考えられる。 The non-aqueous electrolyte storage element can improve the coulomb efficiency after charge-discharge cycles even though the negative electrode contains lithium metal. Although the reason for this is not clear, the following reasons are presumed. When lithium metal is contained in the negative electrode of the non-aqueous electrolyte storage element, dendrites may precipitate on the surface of the negative electrode during charging. In particular, when a non-aqueous electrolyte is used as the non-aqueous electrolyte, there is a high degree of freedom regarding the deposition sites of lithium metal, and the current tends to concentrate on the sites where lithium metal is likely to deposit in response to the non-uniformity of the deposition sites. . This promotes the growth of dendrites on the surface of the negative electrode during charging. These dendrites tend to become electrically isolated due to dissolution of lithium metal on the surface of the negative electrode during subsequent discharge. Repeated charge/discharge cycles tend to cause this dendrite deposition and electrical isolation to occur repeatedly. Since the electrically isolated lithium metal cannot contribute to charge/discharge, the coulombic efficiency of the non-aqueous electrolyte storage element after charge/discharge cycles decreases. In contrast, in the non-aqueous electrolyte storage element, the negative electrode active material layer containing lithium metal is covered with the coating layer containing tin element and lithium element, so that dendrite deposition can be suppressed. Therefore, repeated occurrence of dendrite deposition and electrical isolation is suppressed even if charge-discharge cycles are repeated, so the non-aqueous electrolyte storage element is considered to be able to improve coulombic efficiency after charge-discharge cycles.
 当該非水電解質蓄電素子においては、上記コート層の平均厚さが10nm以上であることが好ましい。上記コート層の平均厚さを上記下限以上とすることで、錫とリチウムとの親和性が向上するので、デンドライトの析出を抑制し、充放電サイクル後のクーロン効率をより向上できる。上記「コート層の平均厚さ」とは、以下の方法で求められる値をいう。まず、充放電前の負極を準備する。又は、充放電後の非水電解質蓄電素子から負極を準備する場合は、当該非水電解質蓄電素子を0.1Cの電流で、通常使用時の放電終止電圧まで放電し、完全放電状態とする。完全放電状態の非水電解質蓄電素子を解体して、負極を取り出す。負極を所定の面積に切り出し、その負極の質量と平均厚さを測定した後、大過剰量の水に浸漬して、負極活物質層中のリチウム金属を水と反応させ水酸化リチウムとして水に溶解させる。負極活物質層が完全に溶解したら、負極基材を取り出し、その質量と平均厚さを測定する。不溶解物をろ過等により取り出し、その質量を測定する。負極の質量から負極基材と不溶解物の質量を引いた値を、負極活物質層の質量とする。その負極活物質層の質量を負極活物質層の面積及び負極活物質層の真密度(例えば負極活物質層が実質的にリチウム単体のみからなる場合、0.534 g/cm)で除した値を「負極活物質層の平均厚さ」とする。負極の平均厚さから負極基材の平均厚さと負極活物質層の平均厚さを引いた値を「コート層の平均厚さ」とする。なお、負極基材の両面に負極活物質層及びコート層が積層されている場合は、「コート層の平均厚さ」は、負極の平均厚さから負極基材の平均厚さと負極活物質層の平均厚さを引いた値をさらに2で除した値とする。 In the non-aqueous electrolyte storage element, the coat layer preferably has an average thickness of 10 nm or more. By setting the average thickness of the coating layer to the above lower limit or more, the affinity between tin and lithium is improved, so that the deposition of dendrites can be suppressed and the coulomb efficiency after charge-discharge cycles can be further improved. The above-mentioned "average thickness of the coat layer" refers to a value obtained by the following method. First, a negative electrode before charge/discharge is prepared. Alternatively, when the negative electrode is prepared from a charged/discharged non-aqueous electrolyte storage element, the non-aqueous electrolyte storage element is discharged at a current of 0.1 C to the discharge cut-off voltage in normal use to be in a completely discharged state. The fully discharged non-aqueous electrolyte storage element is disassembled, and the negative electrode is taken out. The negative electrode was cut into a predetermined area, the mass and average thickness of the negative electrode were measured, and then immersed in a large excess amount of water to react lithium metal in the negative electrode active material layer with water to form lithium hydroxide in water. Dissolve. After the negative electrode active material layer is completely dissolved, the negative electrode substrate is taken out and its mass and average thickness are measured. The insoluble matter is taken out by filtration or the like, and its mass is measured. The mass of the negative electrode active material layer is obtained by subtracting the mass of the negative electrode base material and the insoluble matter from the mass of the negative electrode. The mass of the negative electrode active material layer was divided by the area of the negative electrode active material layer and the true density of the negative electrode active material layer (for example, 0.534 g/cm 3 when the negative electrode active material layer consists essentially of elemental lithium). Let the value be the "average thickness of the negative electrode active material layer". A value obtained by subtracting the average thickness of the negative electrode base material and the average thickness of the negative electrode active material layer from the average thickness of the negative electrode is defined as the “average thickness of the coat layer”. When the negative electrode active material layer and the coating layer are laminated on both sides of the negative electrode substrate, the “average thickness of the coating layer” is calculated from the average thickness of the negative electrode and the average thickness of the negative electrode substrate and the negative electrode active material layer. The value obtained by subtracting the average thickness of is further divided by 2.
 上記負極活物質層の平均厚さが1μm以上300μm以下であることが好ましい。上記負極活物質層の平均厚さが1μm以上であることによって、良好な充放電サイクル性能を発現することができる。また、上記負極活物質層の平均厚さが300μm以下であることによって、非水電解質蓄電素子の質量が小さくなり、エネルギー密度を向上することができる。なお、上記「負極活物質層の平均厚さ」とは、負極基材のいずれか一方の面に負極活物質層及びコート層が積層されている場合は、上記した方法で求められる「負極活物質層の平均厚さ」をいい、負極基材の両面に負極活物質層及びコート層が積層されている場合は、上記した方法で求められる「負極活物質層の平均厚さ」をさらに2で除した値をいう。 The average thickness of the negative electrode active material layer is preferably 1 μm or more and 300 μm or less. When the negative electrode active material layer has an average thickness of 1 μm or more, good charge-discharge cycle performance can be exhibited. Further, since the negative electrode active material layer has an average thickness of 300 μm or less, the mass of the non-aqueous electrolyte storage element can be reduced, and the energy density can be improved. The above-mentioned "average thickness of the negative electrode active material layer" refers to the "negative electrode active material layer thickness" obtained by the above-described method when the negative electrode active material layer and the coating layer are laminated on one side of the negative electrode substrate. In the case where the negative electrode active material layer and the coating layer are laminated on both sides of the negative electrode base material, the "average thickness of the negative electrode active material layer" obtained by the above method is further increased by 2. It means the value divided by
 本発明の他の一側面に係る非水電解質蓄電素子の製造方法は、リチウム金属を含む負極活物質層の表面にコート材を積層することを備え、上記コート材が錫金属又は錫元素を含む化合物を主成分とする。当該非水電解質蓄電素子の製造方法は、リチウム金属を含む負極活物質層の表面にコート材を積層することを備え、上記コート材が錫金属又は錫元素を含む化合物を主成分とするので、リチウム金属を含む負極活物質層が錫元素及びリチウム元素を含むコート層により被覆されている非水電解質蓄電素子を製造できる。従って、当該非水電解質蓄電素子の製造方法により製造された非水電解質蓄電素子は、デンドライトの析出が抑制されるので、充放電サイクル後のクーロン効率を向上できる。ここで、コート材における「主成分」とは、最も含有量の多い成分を意味し、コート材の総質量に対して99質量%以上含まれる成分をいい、100質量%であってもよい。 A method for manufacturing a non-aqueous electrolyte storage element according to another aspect of the present invention comprises laminating a coating material on the surface of a negative electrode active material layer containing lithium metal, wherein the coating material contains tin metal or a tin element. A compound is the main component. The method for manufacturing the non-aqueous electrolyte storage element includes laminating a coating material on the surface of the negative electrode active material layer containing lithium metal, and the coating material is mainly composed of tin metal or a compound containing tin element, A non-aqueous electrolyte storage element can be produced in which a negative electrode active material layer containing lithium metal is coated with a coating layer containing tin element and lithium element. Therefore, in the non-aqueous electrolyte storage element manufactured by the method for manufacturing a non-aqueous electrolyte storage element, the deposition of dendrites is suppressed, so that the coulomb efficiency after charge-discharge cycles can be improved. Here, the "main component" in the coating material means the component with the highest content, and refers to a component that is contained in an amount of 99% by mass or more relative to the total mass of the coating material, and may be 100% by mass.
 本発明の他の一側面は、非水電解質蓄電素子を二以上備え、且つ上記本発明の一側面に係る非水電解質蓄電素子を一以上備えた蓄電装置である。当該蓄電装置は、負極がリチウム金属を含有するにもかかわらず、充放電サイクル後のクーロン効率を向上できる。 Another aspect of the present invention is a power storage device including two or more non-aqueous electrolyte power storage elements and one or more non-aqueous electrolyte power storage elements according to one aspect of the present invention. The power storage device can improve coulombic efficiency after charge-discharge cycles even though the negative electrode contains lithium metal.
 以下、本発明の一実施形態に係る非水電解質蓄電素子、蓄電装置及び非水電解質蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。 Hereinafter, a non-aqueous electrolyte storage element, a power storage device, a method for manufacturing a non-aqueous electrolyte storage element, and other embodiments according to one embodiment of the present invention will be described in detail. Note that the name of each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
<非水電解質蓄電素子>
 当該非水電解質蓄電素子は、負極活物質層及びこの負極活物質層を被覆するコート層を有する負極と、正極と、非水電解質とを備える。以下、非水電解質蓄電素子の一例として、非水電解質二次電池について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体は電池容器に収納され、この電池容器内に非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。また、上記電池容器としては、非水電解質二次電池の容器として通常用いられる公知の金属容器、樹脂容器等を用いることができる。
<Non-aqueous electrolyte storage element>
The nonaqueous electrolyte storage element includes a negative electrode having a negative electrode active material layer and a coating layer covering the negative electrode active material layer, a positive electrode, and a nonaqueous electrolyte. A non-aqueous electrolyte secondary battery will be described below as an example of the non-aqueous electrolyte storage element. The positive electrode and the negative electrode generally form an electrode body alternately stacked by lamination or winding with a separator interposed therebetween. This electrode assembly is housed in a battery container, and the battery container is filled with a non-aqueous electrolyte. The non-aqueous electrolyte is interposed between the positive electrode and the negative electrode. As the battery container, known metal containers, resin containers, and the like, which are usually used as containers for non-aqueous electrolyte secondary batteries, can be used.
[負極]
 当該非水電解質蓄電素子の負極は、負極活物質層及びこの負極活物質層を被覆するコート層を有する。また、上記負極活物質層がリチウム金属を含み、上記コート層が錫元素及びリチウム元素を含む。これにより、デンドライトの析出を抑制できる。従って、充放電サイクルを繰り返してもデンドライトの析出及び電気的な孤立化が繰り返し起こることが抑制されるので、当該非水電解質蓄電素子は、充放電サイクル後のクーロン効率を向上できる。
[Negative electrode]
The negative electrode of the non-aqueous electrolyte storage element has a negative electrode active material layer and a coating layer covering the negative electrode active material layer. Further, the negative electrode active material layer contains lithium metal, and the coat layer contains tin element and lithium element. Thereby, precipitation of dendrites can be suppressed. Therefore, repeated occurrence of dendrite deposition and electrical isolation is suppressed even if charge/discharge cycles are repeated, so that the non-aqueous electrolyte storage element can improve the coulomb efficiency after charge/discharge cycles.
(負極基材)
 負極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cmを閾値として判定する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
(Negative electrode base material)
A negative electrode base material has electroconductivity. Whether or not a material has "conductivity" is determined using a volume resistivity of 10 7 Ω·cm as a threshold measured according to JIS-H-0505 (1975). As materials for the negative electrode substrate, metals such as copper, nickel, stainless steel, nickel-plated steel, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred. Examples of the negative electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate. Examples of copper foil include rolled copper foil and electrolytic copper foil.
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、非水電解質二次電池の体積当たりのエネルギー密度を高めることができる。 The average thickness of the negative electrode substrate is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 30 μm or less, even more preferably 4 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less. By setting the average thickness of the negative electrode substrate within the above range, the energy density per volume of the non-aqueous electrolyte secondary battery can be increased while increasing the strength of the negative electrode substrate.
(負極活物質層)
 負極活物質層は、負極活物質を含有する。上記負極活物質層は、負極活物質としてリチウム金属を含む。負極活物質がリチウム金属を含むことで活物質質量あたりの放電容量を向上できる。上記リチウム金属には、リチウム単体の他、リチウム合金が含まれる。リチウム合金としては、例えば、リチウムアルミニウム合金、リチウム銀合金、リチウム亜鉛合金、リチウムカルシウム合金、リチウムマグネシウム合金、リチウムインジウム合金等が挙げられる。リチウム合金は、リチウム以外の複数の金属元素を含んでいてもよい。リチウム金属を含む負極活物質層は、リチウム金属箔、蒸着リチウム金属層等から構成することができる。
(Negative electrode active material layer)
The negative electrode active material layer contains a negative electrode active material. The negative electrode active material layer contains lithium metal as a negative electrode active material. When the negative electrode active material contains lithium metal, the discharge capacity per mass of the active material can be improved. The above-mentioned lithium metal includes a lithium alloy as well as elemental lithium. Lithium alloys include, for example, lithium aluminum alloys, lithium silver alloys, lithium zinc alloys, lithium calcium alloys, lithium magnesium alloys, lithium indium alloys, and the like. The lithium alloy may contain multiple metal elements other than lithium. The negative electrode active material layer containing lithium metal can be composed of a lithium metal foil, a deposited lithium metal layer, or the like.
 上記負極基材として金属箔(例えば銅箔)を用いた場合、金属箔と負極活物質層である負極活物質層との間に金属箔の成分である金属(例えば銅)とリチウムを含む合金層が形成されていてもよい。 When a metal foil (e.g., copper foil) is used as the negative electrode base material, an alloy containing a metal (e.g., copper) that is a component of the metal foil and lithium is placed between the metal foil and the negative electrode active material layer that is a negative electrode active material layer. Layers may be formed.
 さらに、負極活物質層は、Na、K、Ca、Fe、Mg、Si、N等の元素を含有してもよい。 Furthermore, the negative electrode active material layer may contain elements such as Na, K, Ca, Fe, Mg, Si, and N.
 上記負極活物質層に占めるリチウム金属の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。一方、この含有量の上限は、100質量%であってもよい。 The lower limit of the lithium metal content in the negative electrode active material layer is preferably 80% by mass, more preferably 90% by mass, and even more preferably 95% by mass. On the other hand, the upper limit of this content may be 100% by mass.
 負極活物質層の平均厚さの下限としては、1μmが好ましく、5μmがより好ましく、10μmがさらに好ましい。一方、負極活物質層の平均厚さの上限としては、300μmが好ましく、200μmがより好ましく、100μmがさらに好ましい。負極活物質層の平均厚さを上記の範囲とすることで、非水電解質蓄電素子の良好な充放電サイクル性能と高いエネルギー密度とを両立することができる。 The lower limit of the average thickness of the negative electrode active material layer is preferably 1 μm, more preferably 5 μm, and even more preferably 10 μm. On the other hand, the upper limit of the average thickness of the negative electrode active material layer is preferably 300 μm, more preferably 200 μm, and even more preferably 100 μm. By setting the average thickness of the negative electrode active material layer within the above range, both good charge/discharge cycle performance and high energy density of the non-aqueous electrolyte power storage element can be achieved.
(コート層)
 コート層は、負極活物質層を被覆する。コート層は、錫金属又は錫元素を含む化合物を含むコート材を用いて形成する。上記錫金属又は錫元素を含む化合物を含むコート材と負極活物質層に含まれるリチウム金属との反応により、コート層には錫元素及びリチウム元素を含む反応生成物が形成されるので、コート層は、錫元素及びリチウム元素を含む。上記錫金属又は錫元素を含む化合物としては、錫金属が好ましい。上記錫金属としては、錫単体及び錫合金が含まれ、錫単体が好ましい。錫金属の場合、酸化物等の錫元素を含む化合物である場合と比べ、よりデンドライトの析出を抑制する効果が高い。錫合金は、錫以外の複数の金属元素を含んでいてもよい。
(Coating layer)
The coat layer covers the negative electrode active material layer. The coating layer is formed using a coating material containing tin metal or a compound containing tin element. Due to the reaction between the coating material containing the tin metal or the compound containing the tin element and the lithium metal contained in the negative electrode active material layer, a reaction product containing the tin element and the lithium element is formed in the coat layer. contains tin and lithium elements. Tin metal is preferable as the tin metal or the compound containing tin element. The tin metal includes elemental tin and tin alloys, and elemental tin is preferred. In the case of tin metal, the effect of suppressing dendrite precipitation is higher than in the case of a compound containing tin element such as an oxide. The tin alloy may contain multiple metal elements other than tin.
 コート層における錫元素の含有量の下限としては、95質量%が好ましく、99質量%がより好ましい。 The lower limit of the tin element content in the coat layer is preferably 95% by mass, more preferably 99% by mass.
 コート層の平均厚さの下限としては、10nmが好ましく、15nmがより好ましく、30nmがさらに好ましい。上記コート層の平均厚さを上記下限以上とすることで、錫元素とリチウム元素を含む反応生成物が適度に形成されるので、デンドライトの析出を抑制し、充放電サイクル後のクーロン効率をより向上できる。 The lower limit of the average thickness of the coat layer is preferably 10 nm, more preferably 15 nm, and even more preferably 30 nm. By setting the average thickness of the coating layer to the above lower limit or more, a reaction product containing tin element and lithium element is appropriately formed, so dendrite precipitation is suppressed and the coulomb efficiency after charge-discharge cycles is improved. can improve.
[正極]
 正極は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。
[Positive electrode]
The positive electrode has a positive electrode base material and a positive electrode active material layer disposed directly on the positive electrode base material or via an intermediate layer.
 正極基材は、導電性を有する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。 The positive electrode base material has conductivity. As the material for the positive electrode substrate, metals such as aluminum, titanium, tantalum and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost. Examples of the positive electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode substrate. Examples of aluminum or aluminum alloys include A1085, A3003, A1N30, etc. defined in JIS-H-4000 (2014) or JIS-H4160 (2006).
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、非水電解質二次電池の体積当たりのエネルギー密度を高めることができる。 The average thickness of the positive electrode substrate is preferably 3 µm or more and 50 µm or less, more preferably 5 µm or more and 40 µm or less, even more preferably 8 µm or more and 30 µm or less, and particularly preferably 10 µm or more and 25 µm or less. By setting the average thickness of the positive electrode substrate within the above range, it is possible to increase the strength of the positive electrode substrate and increase the energy density per volume of the non-aqueous electrolyte secondary battery.
 中間層は、正極基材と正極活物質層との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダ及び導電剤を含む。 The intermediate layer is a layer arranged between the positive electrode substrate and the positive electrode active material layer. The intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode substrate and the positive electrode active material layer. The composition of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
 正極活物質層は、正極活物質を含む。正極活物質層は、必要に応じて、導電剤、バインダ(結着剤)、増粘剤、フィラー等の任意成分を含む。 The positive electrode active material layer contains a positive electrode active material. The positive electrode active material layer contains arbitrary components such as a conductive agent, a binder (binding agent), a thickener, a filler, etc., as required.
 正極活物質としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi(1-x)]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiCo(1-x)]O(0≦x<0.5)、Li[LiNiγMn(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LiNiγCoβAl(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LiMn、LiNiγMn(2-γ)等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The positive electrode active material can be appropriately selected from known positive electrode active materials. As a positive electrode active material for lithium ion secondary batteries, a material capable of intercalating and deintercalating lithium ions is usually used. Examples of positive electrode active materials include lithium-transition metal composite oxides having an α-NaFeO 2 type crystal structure, lithium-transition metal composite oxides having a spinel-type crystal structure, polyanion compounds, chalcogen compounds, and sulfur. Examples of lithium transition metal composite oxides having an α-NaFeO 2 type crystal structure include Li[Li x Ni (1-x) ]O 2 (0≦x<0.5), Li[Li x Ni γ Co ( 1-x-γ) ]O 2 (0≦x<0.5, 0<γ<1), Li[Li x Co (1-x) ]O 2 (0≦x<0.5), Li[ Li x Ni γ Mn (1-x-γ) ]O 2 (0≦x<0.5, 0<γ<1), Li[Li x Ni γ Mn β Co (1-x-γ-β) ] O 2 (0≦x<0.5, 0<γ, 0<β, 0.5<γ+β<1), Li[Li x Ni γ Co β Al (1-x-γ-β) ]O 2 ( 0≦x<0.5, 0<γ, 0<β, 0.5<γ+β<1) and the like. Examples of lithium transition metal composite oxides having a spinel crystal structure include Li x Mn 2 O 4 and Li x Ni γ Mn (2-γ) O 4 . Examples of polyanion compounds include LiFePO4 , LiMnPO4 , LiNiPO4 , LiCoPO4, Li3V2(PO4)3 , Li2MnSiO4 , Li2CoPO4F and the like. Examples of chalcogen compounds include titanium disulfide, molybdenum disulfide, and molybdenum dioxide. The atoms or polyanions in these materials may be partially substituted with atoms or anionic species of other elements. These materials may be coated with other materials on their surfaces. In the positive electrode active material layer, one kind of these materials may be used alone, or two or more kinds may be mixed and used.
 正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。 The positive electrode active material is usually particles (powder). The average particle size of the positive electrode active material is preferably, for example, 0.1 μm or more and 20 μm or less. By making the average particle size of the positive electrode active material equal to or more than the above lower limit, manufacturing or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode active material layer is improved. Note that when a composite of a positive electrode active material and another material is used, the average particle size of the composite is taken as the average particle size of the positive electrode active material. "Average particle size" is based on JIS-Z-8825 (2013), based on the particle size distribution measured by a laser diffraction / scattering method for a diluted solution in which particles are diluted with a solvent, JIS-Z-8819 -2 (2001) means a value at which the volume-based integrated distribution calculated according to 50%.
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。 Pulverizers, classifiers, etc. are used to obtain powder with a predetermined particle size. Pulverization methods include, for example, a method using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used. As a classification method, a sieve, an air classifier, or the like is used as necessary, both dry and wet.
 正極活物質層における正極活物質の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上97質量%以下がさらに好ましい。正極活物質の含有量を上記の範囲とすることで、正極活物質層の高エネルギー密度化と製造性を両立できる。 The content of the positive electrode active material in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 97% by mass or less. By setting the content of the positive electrode active material within the above range, it is possible to achieve both high energy density and manufacturability of the positive electrode active material layer.
 導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。 The conductive agent is not particularly limited as long as it is a conductive material. Examples of such conductive agents include carbonaceous materials, metals, and conductive ceramics. Carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, and the like. Examples of non-graphitic carbon include carbon nanofiber, pitch-based carbon fiber, and carbon black. Examples of carbon black include furnace black, acetylene black, and ketjen black. Graphene-based carbon includes graphene, carbon nanotube (CNT), fullerene, and the like. The shape of the conductive agent may be powdery, fibrous, or the like. As the conductive agent, one type of these materials may be used alone, or two or more types may be mixed and used. Also, these materials may be combined for use. For example, a composite material of carbon black and CNT may be used. Among these, carbon black is preferable from the viewpoint of electron conductivity and coatability, and acetylene black is particularly preferable.
 正極活物質層における導電剤の含有量は、1質量%以上10質量%以下が好ましく、1.5質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、非水電解質二次電池のエネルギー密度を高めることができる。 The content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 1.5% by mass or more and 9% by mass or less. By setting the content of the conductive agent within the above range, the energy density of the non-aqueous electrolyte secondary battery can be increased.
 バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。 Binders include, for example, fluorine resins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfone Elastomers such as modified EPDM, styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
 正極活物質層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、2質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。 The content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 2% by mass or more and 9% by mass or less. By setting the content of the binder within the above range, the active material can be stably retained.
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。 Examples of thickeners include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose. When the thickener has a functional group that reacts with lithium or the like, the functional group may be previously deactivated by methylation or the like.
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。 The filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide, calcium hydroxide, hydroxide Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Mineral resource-derived substances such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof may be used.
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。 The positive electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like. typical metal elements, transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W are used as positive electrode active materials, conductive agents, binders, thickeners, fillers It may be contained as a component other than
[セパレータ]
 セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層とこの基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材の形状としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形状の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
[Separator]
The separator can be appropriately selected from known separators. As the separator, for example, a separator consisting only of a base layer, a separator having a base layer and a heat-resistant layer containing heat-resistant particles and a binder on one or both sides of the base layer, or the like can be used. can. Examples of the shape of the base material of the separator include woven fabric, non-woven fabric, and porous resin film. Among these shapes, a porous resin film is preferred from the viewpoint of strength, and a non-woven fabric is preferred from the viewpoint of non-aqueous electrolyte retention. As the material for the base layer of the separator, polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide, aramid, and the like are preferable from the viewpoint of oxidative decomposition resistance. A material obtained by combining these resins may be used as the base material layer of the separator.
 耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃まで昇温したときの質量減少が5%以下であるものが好ましく、室温から800℃まで昇温したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。 The heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when the temperature is raised from room temperature to 500 ° C. in an air atmosphere of 1 atm, and the mass loss when the temperature is raised from room temperature to 800 ° C. is more preferably 5% or less. An inorganic compound can be mentioned as a material whose mass reduction is less than or equal to a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride. carbonates such as calcium carbonate; sulfates such as barium sulfate; sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium titanate; covalent crystals such as silicon and diamond; Mineral resource-derived substances such as zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof. As the inorganic compound, a single substance or a composite of these substances may be used alone, or two or more of them may be mixed and used. Among these inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of the safety of the electric storage device.
 セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。 The porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance. Here, the "porosity" is a volume-based value and means a value measured with a mercury porosimeter.
 セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。 A polymer gel composed of a polymer and a non-aqueous electrolyte may be used as the separator. Examples of polymers include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, and the like. The use of polymer gel has the effect of suppressing liquid leakage. As the separator, a polymer gel may be used in combination with the porous resin film or non-woven fabric as described above.
[非水電解質]
 非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水溶媒に電解質塩が溶解されている非水電解液を用いてもよい。また、上記非水電解質として、常温溶融塩、イオン液体、高分子固体電解質、ゲル電解質等を用いることもできる。さらに、無機固体電解質を用いることもできる。また、これらの非水電解質を併用してもよい。当該非水電解質蓄電素子は、上記非水電解質として、非水電解液、常温溶融塩、イオン液体、高分子固体電解質、ゲル電解質等を用いる場合、非水電解質中のリチウムイオンの輸率が1ではなく(例えば0.4程度)、リチウム金属の析出サイトについて自由度が高いため、析出サイトの不均一性に対応してリチウム金属が析出しやすいサイトへ電流が集中しやすい。さらに、リチウム金属の析出溶解にともない負極表面における被膜(SEI)が不安定化し、リチウム金属が析出しやすいサイトへ電流が集中することにより、充電時に負極表面においてデンドライトの成長が促進される。これに対して、無機固体電解質では、リチウムイオンの輸率が1であり、また固体であるため析出サイトについて自由度が無いため、デンドライトは生じにくく、またリチウム金属と固体電解質との反応に伴う充放電サイクル後のクーロン効率の低下が生じにくい。従って、上記非水電解質として非水電解液、常温溶融塩、イオン液体、高分子固体電解質、ゲル電解質等を用いた場合にデンドライトが析出しやすいことから、当該非水電解質蓄電素子はより効果を発揮することができる。
[Non-aqueous electrolyte]
The non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes. A non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent may be used as the non-aqueous electrolyte. As the non-aqueous electrolyte, a room-temperature molten salt, an ionic liquid, a polymer solid electrolyte, a gel electrolyte, or the like can also be used. Furthermore, an inorganic solid electrolyte can also be used. Also, these non-aqueous electrolytes may be used in combination. In the non-aqueous electrolyte storage element, when a non-aqueous electrolyte, a room temperature molten salt, an ionic liquid, a polymer solid electrolyte, a gel electrolyte, or the like is used as the non-aqueous electrolyte, the transference number of lithium ions in the non-aqueous electrolyte is 1. However, the degree of freedom of deposition sites for lithium metal is high (for example, about 0.4), so current tends to concentrate on sites where lithium metal is likely to deposit in response to the non-uniformity of the deposition sites. Furthermore, the deposition and dissolution of lithium metal destabilizes the film (SEI) on the surface of the negative electrode, and current concentrates on the sites where lithium metal is likely to deposit, promoting the growth of dendrites on the negative electrode surface during charging. On the other hand, in inorganic solid electrolytes, the transference number of lithium ions is 1, and since they are solids, there is no degree of freedom in terms of precipitation sites. Decrease in coulombic efficiency after charge/discharge cycles is less likely to occur. Therefore, when a non-aqueous electrolyte, a room temperature molten salt, an ionic liquid, a solid polymer electrolyte, a gel electrolyte, or the like is used as the non-aqueous electrolyte, dendrites are likely to precipitate, so the non-aqueous electrolyte storage element is more effective. can demonstrate.
 上記非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。 The non-aqueous solvent can be appropriately selected from known non-aqueous solvents. Non-aqueous solvents include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like. As the non-aqueous solvent, those in which some of the hydrogen atoms contained in these compounds are substituted with halogens may be used.
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもFECが好ましい。 Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like. Among these, FEC is preferred.
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMC及びDMCが好ましい。 Examples of chain carbonates include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like. Among these, EMC and DMC are preferred.
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から70:30の範囲とすることが好ましい。 As the non-aqueous solvent, it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a combination of a cyclic carbonate and a chain carbonate. By using a cyclic carbonate, it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte. By using a chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low. When a cyclic carbonate and a chain carbonate are used together, the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate:chain carbonate) is preferably in the range of, for example, 5:95 to 70:30.
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、通常リチウム塩が用いられる。 The electrolyte salt can be appropriately selected from known electrolyte salts. Lithium salt is usually used as the electrolyte salt.
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。 Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 and LiN(SO 2 F) 2 , lithium bis(oxalate) borate (LiBOB), lithium difluorooxalate borate (LiFOB). , lithium oxalate salts such as lithium bis(oxalate) difluorophosphate ( LiFOP ), LiSO3CF3 , LiN ( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) (SO 2 C 4 F 9 ), LiC(SO 2 CF 3 ) 3 , LiC(SO 2 C 2 F 5 ) 3 and other lithium salts having a halogenated hydrocarbon group. Among these, inorganic lithium salts are preferred, and LiPF6 is more preferred.
 非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。 The content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/dm3 or more and 2.5 mol/dm3 or less , and 0.3 mol/dm3 or more and 2.0 mol/dm3 or less at 20 °C and 1 atm. It is more preferably 3 or less, more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, and particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less. By setting the content of the electrolyte salt within the above range, the ionic conductivity of the non-aqueous electrolyte can be increased.
 非水電解液は、非水溶媒と電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)等のハロゲン化炭酸エステル;リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸塩;リチウムビス(フルオロスルホニル)イミド(LiFSI)等のイミド塩;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、1,3-プロペンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,4-ブテンスルトン、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt. Examples of additives include halogenated carbonates such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC); lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), lithium bis(oxalate ) oxalates such as difluorophosphate (LiFOP); imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI); biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene , t-amylbenzene, diphenyl ether, dibenzofuran and other aromatic compounds; 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene and other partial halides of the above aromatic compounds; 2,4-difluoroanisole, 2 Halogenated anisole compounds such as ,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole; vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, anhydride Citraconic acid, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride; ethylene sulfite, propylene sulfite, dimethyl sulfite, methyl methanesulfonate, busulfan, methyl toluenesulfonate, dimethyl sulfate, ethylene sulfate, sulfolane, dimethylsulfone, diethyl Sulfone, dimethylsulfoxide, diethylsulfoxide, tetramethylenesulfoxide, diphenylsulfide, 4,4'-bis(2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl-2,2-dioxo- 1,3,2-dioxathiolane, thioanisole, diphenyl disulfide, dipyridinium disulfide, 1,3-propenesultone, 1,3-propanesultone, 1,4-butanesultone, 1,4-butenesultone, perfluorooctane, boric acid Tristrimethylsilyl, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanate, lithium monofluorophosphate, lithium difluorophosphate and the like. These additives may be used singly or in combination of two or more.
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上20質量%以下であると好ましく、0.1質量%以上15質量%以下であるとより好ましく、0.2質量%以上12質量%以下であるとさらに好ましく、0.3質量%以上10質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。 The content of the additive contained in the non-aqueous electrolyte is preferably 0.01% by mass or more and 20% by mass or less, and 0.1% by mass or more and 15% by mass or less with respect to the total mass of the non-aqueous electrolyte. More preferably, it is 0.2% by mass or more and 12% by mass or less, and particularly preferably 0.3% by mass or more and 10% by mass or less. By setting the content of the additive within the above range, it is possible to improve capacity retention performance or cycle performance after high-temperature storage, or to further improve safety.
 上記無機固体電解質としては、リチウムイオン伝導性を有し、常温(例えば15℃から25℃)において固体である任意の材料から選択できる。無機固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、酸窒化物固体電解質等が挙げられる。 The inorganic solid electrolyte can be selected from any material that has lithium ion conductivity and is solid at room temperature (for example, 15°C to 25°C). Examples of inorganic solid electrolytes include sulfide solid electrolytes, oxide solid electrolytes, and oxynitride solid electrolytes.
 硫化物固体電解質としては、例えば、LiS-P、LiI-LiS-P、Li10Ge-P12等が挙げられる。 Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , LiI—Li 2 SP 2 S 5 , Li 10 Ge—P 2 S 12 and the like.
[非水電解質蓄電素子の具体的構成]
 本実施形態の非水電解質蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
[Specific configuration of non-aqueous electrolyte storage element]
The shape of the non-aqueous electrolyte storage element of the present embodiment is not particularly limited, and examples thereof include cylindrical batteries, rectangular batteries, flat batteries, coin batteries, button batteries, and the like.
 図1に角型電池の一例としての非水電解質蓄電素子1を示す。なお、同図は、容器内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。 Fig. 1 shows a non-aqueous electrolyte storage element 1 as an example of a square battery. In addition, the same figure is taken as the figure which saw through the inside of a container. An electrode body 2 having a positive electrode and a negative electrode wound with a separator sandwiched therebetween is housed in a rectangular container 3 . The positive electrode is electrically connected to the positive electrode terminal 4 via a positive electrode lead 41 . The negative electrode is electrically connected to the negative terminal 5 via a negative lead 51 .
<蓄電装置の構成>
 本実施形態の蓄電素子は、非水電解質蓄電素子を二以上備え、且つ本実施形態の非水電解質蓄電素子を一以上備える。本実施形態の非水電解質蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の非水電解質蓄電素子1を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの非水電解質蓄電素子に対して、本発明の技術が適用されていればよい。
 図2に、電気的に接続された二以上の非水電解質蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の非水電解質蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<Configuration of power storage device>
The power storage device of this embodiment includes two or more non-aqueous electrolyte power storage devices and one or more non-aqueous electrolyte power storage devices of this embodiment. The non-aqueous electrolyte storage element of the present embodiment is a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices such as personal computers and communication terminals, or electric power. It can be installed in a power source for storage or the like as a power storage unit (battery module) configured by collecting a plurality of non-aqueous electrolyte power storage elements 1 . In this case, the technology of the present invention may be applied to at least one non-aqueous electrolyte storage element included in the storage unit.
FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled. The power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20, and the like. The power storage unit 20 or the power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more non-aqueous electrolyte power storage elements.
<非水電解質蓄電素子の製造方法>
 当該非水電解質蓄電素子の製造方法は、負極を準備する工程において、リチウム金属を含む負極活物質層の表面にコート材を積層することを備え、上記コート材が錫金属又は錫元素を含む化合物を主成分とする。当該非水電解質蓄電素子の製造方法は、上記工程を備えることで、リチウム金属を含む負極活物質層が錫元素及びリチウム元素を含むコート層により被覆されている非水電解質蓄電素子を製造できる。従って、当該非水電解質蓄電素子の製造方法により製造された非水電解質蓄電素子は、デンドライトの析出が抑制されるので、充放電サイクル後のクーロン効率を向上できる。上記コート材の積層方法としては、スパッタリング又は蒸着が好ましい。
<Method for producing non-aqueous electrolyte storage element>
The method for manufacturing the non-aqueous electrolyte storage element includes, in the step of preparing the negative electrode, laminating a coating material on the surface of the negative electrode active material layer containing lithium metal, wherein the coating material is tin metal or a compound containing a tin element. is the main component. The method for manufacturing a non-aqueous electrolyte storage element can manufacture a non-aqueous electrolyte storage element in which the negative electrode active material layer containing lithium metal is coated with a coating layer containing tin element and lithium element by including the above steps. Therefore, in the non-aqueous electrolyte storage element manufactured by the method for manufacturing a non-aqueous electrolyte storage element, the deposition of dendrites is suppressed, so that the coulomb efficiency after charge-discharge cycles can be improved. As a method for laminating the coating material, sputtering or vapor deposition is preferable.
 また、当該非水電解質蓄電素子の製造方法の負極を準備する工程においては、上記コート材を積層する工程の前に負極基材の表面にリチウム金属を含む負極活物質層を積層する工程を備えることが好ましい。上記負極基材と上記負極活物質層との積層は、プレス等をすることにより行うことができる。 Further, the step of preparing the negative electrode in the method for manufacturing the non-aqueous electrolyte storage element includes the step of stacking a negative electrode active material layer containing lithium metal on the surface of the negative electrode substrate before the step of stacking the coating material. is preferred. Lamination of the negative electrode substrate and the negative electrode active material layer can be performed by pressing or the like.
 当該非水電解質蓄電素子の製造方法は、その他の工程として例えば電極体を準備する工程と、非水電解質を準備する工程と、電極体及び非水電解質を容器に収容する工程とを備える。電極体を準備する工程は、正極及び負極を準備する工程と、正極及び負極を、セパレータを介して積層又は巻回することにより電極体を形成する工程を備えていてもよい。 The method for manufacturing the non-aqueous electrolyte storage element includes, as other steps, for example, a step of preparing an electrode body, a step of preparing a non-aqueous electrolyte, and a step of accommodating the electrode body and the non-aqueous electrolyte in a container. The step of preparing the electrode body may include a step of preparing the positive electrode and the negative electrode, and a step of forming the electrode body by laminating or winding the positive electrode and the negative electrode with a separator interposed therebetween.
 上記非水電解質を容器に収容する方法は、公知の方法から適宜選択できる。例えば、液状の非水電解液を用いる場合、容器に形成された注入口から非水電解液を注入した後、注入口を封止すればよい。当該製造方法によって得られる非水電解質蓄電素子を構成するその他の各要素についての詳細は上述したとおりである。 The method for housing the non-aqueous electrolyte in the container can be appropriately selected from known methods. For example, when a liquid non-aqueous electrolyte is used, the non-aqueous electrolyte may be injected through an injection port formed in the container, and then the injection port may be sealed. The details of other elements constituting the non-aqueous electrolyte storage element obtained by the manufacturing method are as described above.
[その他の実施形態]
 尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
[Other embodiments]
It should be noted that the electric storage device of the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention. For example, the configuration of another embodiment can be added to the configuration of one embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique. Furthermore, some of the configurations of certain embodiments can be deleted. Also, well-known techniques can be added to the configuration of a certain embodiment.
 上記実施形態では、非水電解質蓄電素子が充放電可能な非水電解質二次電池(例えばリチウム二次電池)として用いられる場合について説明したが、非水電解質蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。 In the above embodiment, the nonaqueous electrolyte storage element is used as a chargeable/dischargeable nonaqueous electrolyte secondary battery (for example, a lithium secondary battery). etc. are optional. The present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.
 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described more specifically by way of examples. The invention is not limited to the following examples.
[実施例1から実施例5及び比較例1から比較例4]
(負極の作製)
 負極基材として、平均厚さ10μmの銅箔を準備した。実施例1から実施例5及び比較例1から比較例4については、上記銅箔の片面に負極活物質層として表1に記載の平均厚さのリチウム金属を積層した。このようにして得た負極は、いずれも、幅31mm、長さ42mmの矩形状である。
[Examples 1 to 5 and Comparative Examples 1 to 4]
(Preparation of negative electrode)
A copper foil having an average thickness of 10 μm was prepared as a negative electrode substrate. In Examples 1 to 5 and Comparative Examples 1 to 4, lithium metal having an average thickness shown in Table 1 was laminated as a negative electrode active material layer on one side of the copper foil. Each of the negative electrodes thus obtained had a rectangular shape with a width of 31 mm and a length of 42 mm.
(コート層の形成)
 次に、実施例1から実施例5、比較例2及び比較例3については、上記負極活物質層の表面に、表1に示すコート層を形成した。比較例4については、上記負極基材の片面に、表1に示すコート層を形成した。コート材が錫金属(Sn)である実施例1から実施例5及び比較例4については、スパッタリング法を用いて次の手順で負極活物質層又は負極基材の表面にコート層を形成した。スパッタリング装置としてJEOL製 MAGNETRON SPUTTERING DEVICE (JUC-5000)を用い、ターゲットには純度99.99%の錫金属を用いた。負極活物質層又は負極基材の表面からターゲットまでの高さは25mmとし、電流は10mAとして、負極活物質層又は負極基材の表面に錫金属をスパッタリングした。また、コート時間を調整することで、コート層の平均厚さを調整した。上記の作業は全てドライルーム内で行った。
 コート材がそれぞれ酸化亜鉛(ZnO)、銀(Ag)である比較例2及び比較例3については、塗工法を用いて次の手順で負極活物質層の表面にコート層を形成した。上記酸化亜鉛の材料として粒径20nmの酸化亜鉛粒子を準備した。上記銀金属の材料として藤倉化成社製ドータイトD550を準備した。N-メチルピロリドンを分散媒とし、上記酸化亜鉛又は銀金属の材料:ポリフッ化ビニリデン=95:5の質量比で含有するコート層ペーストを作製し、アプリケーターロールを用いて、負極活物質層の表面に塗工した。その後100℃で30分乾燥させることによって分散媒を揮発させた。上記の作業は全てドライルーム内で行った。
(Formation of coat layer)
Next, for Examples 1 to 5 and Comparative Examples 2 and 3, a coat layer shown in Table 1 was formed on the surface of the negative electrode active material layer. For Comparative Example 4, a coat layer shown in Table 1 was formed on one side of the negative electrode substrate. In Examples 1 to 5 and Comparative Example 4 in which the coating material was tin metal (Sn), a coating layer was formed on the surface of the negative electrode active material layer or the negative electrode substrate by the following procedure using a sputtering method. A MAGNETRON SPUTTERING DEVICE (JUC-5000) manufactured by JEOL was used as a sputtering apparatus, and tin metal with a purity of 99.99% was used as a target. The height from the surface of the negative electrode active material layer or the negative electrode substrate to the target was 25 mm, and the current was 10 mA, and tin metal was sputtered onto the surface of the negative electrode active material layer or the negative electrode substrate. Moreover, the average thickness of the coat layer was adjusted by adjusting the coating time. All the above operations were performed in a dry room.
For Comparative Examples 2 and 3 in which the coating materials were zinc oxide (ZnO) and silver (Ag), respectively, a coating layer was formed on the surface of the negative electrode active material layer by the following procedure. Zinc oxide particles with a particle size of 20 nm were prepared as the zinc oxide material. Dotite D550 manufactured by Fujikura Kasei Co., Ltd. was prepared as a material for the silver metal. Using N-methylpyrrolidone as a dispersion medium, a coating layer paste containing the zinc oxide or silver metal material: polyvinylidene fluoride = 95:5 mass ratio was prepared, and an applicator roll was used to coat the surface of the negative electrode active material layer. coated on. After that, the dispersion medium was volatilized by drying at 100° C. for 30 minutes. All the above operations were performed in a dry room.
(正極の作製)
 正極活物質として正極活物質として、α-NaFeO型結晶構造を有し、Li1+αMe1-α(Meは遷移金属)で表されるリチウム遷移金属複合酸化物を用いた。ここで、LiとMeのモル比Li/Meは1.33であり、Meは、Ni及びMnからなり、Ni:Mn=0.33:0.67のモル比で含んでいるものであり、粒子表面には0.3質量%のAlがコートされているものであった。
(Preparation of positive electrode)
As a positive electrode active material, a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure and represented by Li 1+ αMe 1 -αO 2 (Me is a transition metal) was used. Here, the molar ratio Li/Me between Li and Me is 1.33, and Me consists of Ni and Mn, and is contained in a molar ratio of Ni:Mn=0.33:0.67, The particle surface was coated with 0.3% by mass of Al 2 O 3 .
 N-メチルピロリドン(NMP)を分散媒とし、上記正極活物質、導電剤であるアセチレンブラック(AB)、及びバインダであるポリフッ化ビニリデン(PVDF)を92.5:4.5:3.0の質量比で含有する正極合剤ペーストを作製した。正極基材である平均厚さ15μmのアルミニウム箔の片面に、上記正極合剤ペーストを塗工し、乾燥し、プレス後、切断し、幅30mm、長さ40mmの矩形状に正極活物質層が配置された正極を作製した。作製した正極には正極活物質、導電助剤及びバインダからなる正極合剤が3.0g/100cmの質量で塗布されていた。 Using N-methylpyrrolidone (NMP) as a dispersion medium, the positive electrode active material, acetylene black (AB) as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder are mixed at a ratio of 92.5:4.5:3.0. A positive electrode material mixture paste containing the components by mass ratio was prepared. On one side of an aluminum foil having an average thickness of 15 μm, which is a positive electrode base material, the above positive electrode mixture paste is applied, dried, pressed, and cut to form a rectangular positive electrode active material layer having a width of 30 mm and a length of 40 mm. An arranged positive electrode was produced. A positive electrode mixture comprising a positive electrode active material, a conductive aid and a binder was applied to the prepared positive electrode in a mass of 3.0 g/100 cm 2 .
(非水電解質の調製)
 非水溶媒として、フルオロエチレンカーボネート(FEC)及び2,2,2-トリフルオロエチルメチルカーボネート(TFEMC)を用いた。そして、FEC:TFEMC=30:70の体積比で混合された混合溶媒に、LiPFを1mol/dmの濃度で溶解させた後、添加剤としての1,3-プロペンスルトン(PRS)を2質量%添加し、非水電解質とした。
(Preparation of non-aqueous electrolyte)
Fluoroethylene carbonate (FEC) and 2,2,2-trifluoroethylmethyl carbonate (TFEMC) were used as non-aqueous solvents. Then, after dissolving LiPF 6 at a concentration of 1 mol/dm 3 in a mixed solvent in which FEC: TFEMC is mixed at a volume ratio of 30:70, 1,3-propene sultone (PRS) as an additive is added at 2 % by mass to form a non-aqueous electrolyte.
(非水電解質蓄電素子の作製)
 セパレータであるポリエチレン製の微多孔膜を介して、上記正極と上記負極とを積層することにより電極体を作製した。この電極体を容器に収納し、内部に上記非水電解質を0.5mL注入した後、熱溶着により封口し、パウチセルである実施例1から実施例5及び比較例1から比較例4の非水電解質蓄電素子を得た。
(Preparation of non-aqueous electrolyte storage element)
An electrode assembly was produced by laminating the above positive electrode and the above negative electrode with a polyethylene microporous film as a separator interposed therebetween. This electrode body was housed in a container, 0.5 mL of the non-aqueous electrolyte was injected into the interior, and then the opening was sealed by heat welding. An electrolyte storage device was obtained.
(初期充放電)
 得られた各非水電解質蓄電素子について、25℃において、以下の条件にて、2サイクルの初期充放電を行った。初回充電として、充電電流0.1C、充電終止電圧4.6Vとして定電流定電圧充電した。充電の終了条件は、充電電流が0.05Cとなるまでとした。その後、10分間の休止期間を設けた。その後、初回放電として、放電電流0.1C、放電終止電圧2.0Vとして定電流放電を行い、その後、10分間の休止期間を設けた。上記初回充放電と同一の条件で2サイクル目の充放電を行った。なお、1Cの電流値は正極活物質の質量あたり270mA/gとした。
(initial charge/discharge)
Two cycles of initial charging and discharging were performed on each obtained non-aqueous electrolyte storage element at 25° C. under the following conditions. As the initial charging, constant current and constant voltage charging was performed with a charging current of 0.1 C and a charging end voltage of 4.6 V. The charging termination condition was until the charging current reached 0.05C. A rest period of 10 minutes was then provided. After that, as the first discharge, constant current discharge was performed with a discharge current of 0.1 C and a discharge final voltage of 2.0 V, followed by a rest period of 10 minutes. A second cycle of charging and discharging was performed under the same conditions as the first charging and discharging. The current value at 1C was set to 270 mA/g per mass of the positive electrode active material.
(2サイクル目の正極放電容量)
 上記2サイクル目の放電容量に基づいて正極活物質の質量あたりの放電容量(mAh/g)を算出し、「2サイクル目の正極放電容量」として表1に示す。
(Positive electrode discharge capacity at 2nd cycle)
Based on the discharge capacity at the second cycle, the discharge capacity (mAh/g) per mass of the positive electrode active material was calculated and shown in Table 1 as "second cycle positive electrode discharge capacity".
 (充放電サイクル試験後のクーロン効率)
 上記初期充放電後の実施例1から実施例5及び比較例1から比較例4に係る非水電解質蓄電素子について、さらに以下の条件にて、充放電サイクル試験を行った。25℃において、充電電流0.2C、充電終止電圧4.6Vとして定電流定電圧充電した。充電の終了条件は、充電電流が0.05Cとなるまでとした。その後、10分間の休止期間を設けた。その後、放電電流0.1C、放電終止電圧2.0Vとして定電流放電を行い、その後、10分間の休止期間を設けた。この充放電を100サイクル繰り返した。100サイクル目の充電電気量に基づいて正極活物質の質量あたりの充電電気量(mAh/g)を算出し、「100サイクル目の正極充電電気量」とし、100サイクル目の放電容量に基づいて正極活物質の質量あたりの放電容量(mAh/g)を算出し、「100サイクル目の正極放電容量」とした。
 上記100サイクル目の正極充電電気量に対する上記100サイクル目の正極放電容量の百分率を「100サイクル目のクーロン効率(%)」として表1に示す。
(Coulomb efficiency after charge-discharge cycle test)
After the initial charge/discharge, the non-aqueous electrolyte storage elements of Examples 1 to 5 and Comparative Examples 1 to 4 were further subjected to a charge/discharge cycle test under the following conditions. At 25° C., constant-current and constant-voltage charging was performed with a charging current of 0.2 C and a charging final voltage of 4.6 V. The charging termination condition was until the charging current reached 0.05C. A rest period of 10 minutes was then provided. Thereafter, constant current discharge was performed with a discharge current of 0.1 C and a discharge final voltage of 2.0 V, followed by a rest period of 10 minutes. This charging and discharging was repeated 100 cycles. Based on the charged amount of electricity at the 100th cycle, the charged amount of electricity per mass of the positive electrode active material (mAh/g) is calculated and defined as the "positive electrode charged amount of electricity at the 100th cycle", based on the discharge capacity at the 100th cycle. The discharge capacity (mAh/g) per mass of the positive electrode active material was calculated and defined as "the positive electrode discharge capacity at the 100th cycle".
Table 1 shows the percentage of the positive electrode discharge capacity at the 100th cycle to the positive electrode charge quantity of electricity at the 100th cycle as "100th cycle coulomb efficiency (%)".
(充放電サイクル試験後の放電容量維持率)
 上記初期充放電における2サイクル目の正極放電容量に対する上記100サイクル目の正極放電容量の百分率を「100サイクル目の放電容量維持率(%)」として表1に示す。
(Discharge capacity retention rate after charge-discharge cycle test)
The percentage of the positive electrode discharge capacity at the 100th cycle to the positive electrode discharge capacity at the 2nd cycle in the initial charge/discharge is shown in Table 1 as "100th cycle discharge capacity retention rate (%)".
(初回充電後の負極表面の走査電子顕微鏡観察)
 初回充電後の負極表面について、電界放射型走査電子顕微鏡(FE‐SEM)としてJEOL社製JSM-7001Fを用いて観察を行った。加速電圧は1kVとした。図3に実施例1の初回充電後の走査電子顕微鏡(SEM)観察による画像を示し、図4に比較例1の初回充電後のSEM観察による画像を示す。なお、上記「初回充電後」とは、1回だけ充電した状態(放電を行っていない状態)であることを意味する。
(Scanning electron microscope observation of negative electrode surface after initial charge)
The surface of the negative electrode after the initial charge was observed using a field emission scanning electron microscope (FE-SEM), JSM-7001F manufactured by JEOL. The acceleration voltage was set to 1 kV. FIG. 3 shows a scanning electron microscope (SEM) image of Example 1 after initial charging, and FIG. 4 shows an SEM image of Comparative Example 1 after initial charging. In addition, the above-mentioned "after initial charge" means a state in which the battery is charged only once (a state in which no discharge is performed).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、リチウム金属を含む負極活物質層と、錫元素を含み、上記負極活物質層を被覆するコート層とを有する実施例1から実施例5は、2サイクル目の正極放電容量、並びに100サイクル目のクーロン効率及び放電容量維持率いずれもが良好であり、コート層の厚さを大きくするとより良好な結果が得られた。 As shown in Table 1, Examples 1 to 5 having a negative electrode active material layer containing lithium metal and a coating layer containing tin element and covering the negative electrode active material layer are positive electrodes in the second cycle. Both the discharge capacity, the coulomb efficiency at the 100th cycle, and the discharge capacity retention rate were good, and better results were obtained when the thickness of the coating layer was increased.
 一方、リチウム金属を含む負極活物質層を有するが、上記コート層を有していない比較例1においては、2サイクル目の正極放電容量は良好であるが、100サイクル目のクーロン効率が低下していた。これは、充放電サイクルを繰り返すことで、デンドライトが析出し、内部短絡が生じたことによると考えられる。図3及び図4に示す実施例1及び比較例1の初回充電後の負極表面のSEM画像から、負極活物質層に上記コート層を被覆することにより、デンドライトの析出が抑制されていることがわかる。また、上記コート材に錫元素を含まない比較例2及び比較例3においては、100サイクル目のクーロン効率及び放電容量維持率が劣っていた。さらに、錫元素を含むコート層を有するが、リチウム金属を含む負極活物質層を有していない比較例4においては、100サイクル目のクーロン効率の低下はほとんど見られなかったが、100サイクル目において負極が使用可能なリチウム金属を十分に有していないことにより、100サイクル目の放電容量維持率が大きく低下していた。
 なお、実施例1から実施例5並びに比較例2から比較例4におけるコート層は、コート材由来の元素及びリチウム元素を含んでいた。これは、コート材と負極活物質層に含まれるリチウム金属との反応生成物が形成されたことによるものと推測される。
On the other hand, in Comparative Example 1, which has a negative electrode active material layer containing lithium metal but does not have the coating layer, the positive electrode discharge capacity at the 2nd cycle is good, but the coulomb efficiency at the 100th cycle is low. was This is considered to be due to the fact that dendrites were deposited by repeating the charge/discharge cycle, causing an internal short circuit. From the SEM images of the surfaces of the negative electrodes of Example 1 and Comparative Example 1 after the initial charging shown in FIGS. Recognize. In addition, in Comparative Examples 2 and 3, in which the coating material did not contain the tin element, the coulombic efficiency and the discharge capacity retention rate at the 100th cycle were inferior. Furthermore, in Comparative Example 4, which has a coating layer containing a tin element but does not have a negative electrode active material layer containing lithium metal, almost no decrease in the coulombic efficiency at the 100th cycle was observed. , the discharge capacity retention rate at the 100th cycle was greatly reduced because the negative electrode did not have a sufficient amount of usable lithium metal.
The coating layers in Examples 1 to 5 and Comparative Examples 2 to 4 contained an element derived from the coating material and a lithium element. This is presumed to be due to the formation of a reaction product between the coating material and the lithium metal contained in the negative electrode active material layer.
 以上の結果、当該非水電解質蓄電素子は、負極がリチウム金属を含有する場合に、充放電サイクル後のクーロン効率を向上できることが示された。 The above results showed that the non-aqueous electrolyte storage element can improve the coulombic efficiency after charge-discharge cycles when the negative electrode contains lithium metal.
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質蓄電素子、及び蓄電装置などに適用できる。 The present invention can be applied to personal computers, electronic devices such as communication terminals, non-aqueous electrolyte storage elements used as power sources for automobiles, storage devices, and the like.
1  非水電解質蓄電素子
2  電極体
3  容器
4  正極端子
41 正極リード
5  負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置
1 Non-aqueous electrolyte storage element 2 Electrode body 3 Container 4 Positive electrode terminal 41 Positive electrode lead 5 Negative electrode terminal 51 Negative electrode lead 20 Storage unit 30 Storage device

Claims (5)

  1.  負極活物質層及びこの負極活物質層を被覆するコート層を有する負極と、
     正極と、
     非水電解質と
     を備え、
     上記負極活物質層がリチウム金属を含み、
     上記コート層が錫元素及びリチウム元素を含む非水電解質蓄電素子。
    a negative electrode having a negative electrode active material layer and a coat layer covering the negative electrode active material layer;
    a positive electrode;
    comprising a non-aqueous electrolyte and
    The negative electrode active material layer contains lithium metal,
    A non-aqueous electrolyte power storage device, wherein the coating layer contains tin element and lithium element.
  2.  上記コート層の平均厚さが10nm以上である請求項1に記載の非水電解質蓄電素子。 The non-aqueous electrolyte storage element according to claim 1, wherein the coating layer has an average thickness of 10 nm or more.
  3.  上記負極活物質層の平均厚さが1μm以上300μm以下である請求項1又は請求項2に記載の非水電解質蓄電素子。 3. The non-aqueous electrolyte storage element according to claim 1, wherein the negative electrode active material layer has an average thickness of 1 μm or more and 300 μm or less.
  4.  リチウム金属を含む負極活物質層の表面にコート材を積層することを備え、
     上記コート材が錫金属又は錫元素を含む化合物を主成分とする非水電解質蓄電素子の製造方法。
    Laminating a coating material on the surface of the negative electrode active material layer containing lithium metal,
    A method for producing a non-aqueous electrolyte storage element, wherein the coating material contains tin metal or a compound containing tin element as a main component.
  5.  非水電解質蓄電素子を二以上備え、且つ請求項1から請求項3のいずれか1項に記載の非水電解質蓄電素子を一以上備えた蓄電装置。 A power storage device comprising two or more non-aqueous electrolyte power storage elements and one or more non-aqueous electrolyte power storage elements according to any one of claims 1 to 3.
PCT/JP2021/044382 2021-01-26 2021-12-03 Nonaqueous electrolyte power storage element, power storage device, and method for producing nonaqueous electrolyte power storage element WO2022163125A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578090A JPWO2022163125A1 (en) 2021-01-26 2021-12-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021010704 2021-01-26
JP2021-010704 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022163125A1 true WO2022163125A1 (en) 2022-08-04

Family

ID=82653260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044382 WO2022163125A1 (en) 2021-01-26 2021-12-03 Nonaqueous electrolyte power storage element, power storage device, and method for producing nonaqueous electrolyte power storage element

Country Status (2)

Country Link
JP (1) JPWO2022163125A1 (en)
WO (1) WO2022163125A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068094A (en) * 1999-08-25 2001-03-16 Hyogo Prefecture Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2015187964A (en) * 2014-03-13 2015-10-29 株式会社Gsユアサ Nonaqueous electrolyte power storage element and power storage device including the same
CN109360937A (en) * 2018-11-15 2019-02-19 中国科学院宁波材料技术与工程研究所 A kind of cathode with SEI protective layer, preparation method and lithium/sodium metal battery
CN111193062A (en) * 2020-02-20 2020-05-22 青岛科技大学 Solid-state lithium ion battery and preparation method thereof
CN111430720A (en) * 2019-01-10 2020-07-17 国家能源投资集团有限责任公司 Electrode protection layer and preparation method thereof, electrode and lithium battery
JP2020184407A (en) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 All-solid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068094A (en) * 1999-08-25 2001-03-16 Hyogo Prefecture Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2015187964A (en) * 2014-03-13 2015-10-29 株式会社Gsユアサ Nonaqueous electrolyte power storage element and power storage device including the same
CN109360937A (en) * 2018-11-15 2019-02-19 中国科学院宁波材料技术与工程研究所 A kind of cathode with SEI protective layer, preparation method and lithium/sodium metal battery
CN111430720A (en) * 2019-01-10 2020-07-17 国家能源投资集团有限责任公司 Electrode protection layer and preparation method thereof, electrode and lithium battery
JP2020184407A (en) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 All-solid battery
CN111193062A (en) * 2020-02-20 2020-05-22 青岛科技大学 Solid-state lithium ion battery and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022163125A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2021246186A1 (en) Positive electrode and power storage element
JP2022134613A (en) Positive electrode mixture for non-aqueous electrolyte storage element, positive electrode for non-aqueous electrolyte storage element, and non-aqueous electrolyte storage element
WO2022163125A1 (en) Nonaqueous electrolyte power storage element, power storage device, and method for producing nonaqueous electrolyte power storage element
WO2023224071A1 (en) Nonaqueous electrolyte power storage element
WO2022249667A1 (en) Nonaqueous electrolyte power storage element and power storage device
WO2022168845A1 (en) Nonaqueous electrolyte power storage element and power storage device
WO2023248769A1 (en) Active material particles, electrode, power storage element and power storage device
WO2023074559A1 (en) Power storage element
WO2022239520A1 (en) Power storage element, manufacturing method therefor, and power storage device
WO2023276863A1 (en) Non-aqueous electrolyte power storage element
WO2023090439A1 (en) Non-aqueous electrolyte electric power storage element
WO2022181516A1 (en) Nonaqueous electrolyte power storage element
WO2023224070A1 (en) Non-aqueous electrolyte power storage element
WO2022230835A1 (en) Nonaqueous-electrolyte electricity storage element
WO2022239861A1 (en) Electric power storage element
WO2023190422A1 (en) Positive electrode for non-aqueous electrolyte power storage element, and non-aqueous electrolyte power storage element comprising same
WO2024062862A1 (en) Electrode, electric power storage element and electric power storage device
WO2023048190A1 (en) Power storage element, power storage element manufacturing method and power storage device
WO2023167235A1 (en) Power storage element and power storage device
WO2022202576A1 (en) Nonaqueous electrolyte power storage element
WO2022209815A1 (en) Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device
WO2024010016A1 (en) Non-aqueous electrolyte storage element, device, method for using non-aqueous electrolyte storage element, and method for manufacturing non-aqueous electrolyte storage element
JP7476478B2 (en) Anode, method for manufacturing anode, non-aqueous electrolyte storage element, and method for manufacturing non-aqueous electrolyte storage element
WO2023100801A1 (en) Nonaqueous electrolyte power storage element, device, and method for using nonaqueous electrolyte power storage element
WO2023281960A1 (en) Positive electrode, power storage element and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923130

Country of ref document: EP

Kind code of ref document: A1