JPWO2017056932A1 - Method of using non-aqueous electrolyte secondary battery and negative electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method of using non-aqueous electrolyte secondary battery and negative electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JPWO2017056932A1
JPWO2017056932A1 JP2017543082A JP2017543082A JPWO2017056932A1 JP WO2017056932 A1 JPWO2017056932 A1 JP WO2017056932A1 JP 2017543082 A JP2017543082 A JP 2017543082A JP 2017543082 A JP2017543082 A JP 2017543082A JP WO2017056932 A1 JPWO2017056932 A1 JP WO2017056932A1
Authority
JP
Japan
Prior art keywords
negative electrode
active material
silicon
discharge
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017543082A
Other languages
Japanese (ja)
Other versions
JP6365785B2 (en
Inventor
貴一 廣瀬
貴一 廣瀬
吉川 博樹
博樹 吉川
博道 加茂
博道 加茂
謙二 荒井
謙二 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of JPWO2017056932A1 publication Critical patent/JPWO2017056932A1/en
Application granted granted Critical
Publication of JP6365785B2 publication Critical patent/JP6365785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

正極と、SiOx(但し、0.5≦x≦1.6)で示されるケイ素酸化物を主成分とするケイ素系活物質を含む負極活物質を用いた負極と、非水電解質とを具備する非水電解質二次電池の使用方法であって、前記電池について負極の単位面積あたり0.7mA/cm2の電流量で2回目の放電を行って得られる電池容量の1/5に相当する電流量で3回目の電池放電を行ったときの20倍以上の電流量で放電サイクルを行うことを特徴とする非水電解質二次電池の使用方法。A positive electrode, a negative electrode using a negative electrode active material containing a silicon-based active material mainly composed of a silicon oxide represented by SiOx (provided that 0.5 ≦ x ≦ 1.6), and a nonaqueous electrolyte are provided. A method of using a non-aqueous electrolyte secondary battery, wherein the current amount corresponds to 1/5 of the battery capacity obtained by performing a second discharge of the battery at a current amount of 0.7 mA / cm @ 2 per unit area of the negative electrode. A method for using a non-aqueous electrolyte secondary battery, wherein the discharge cycle is performed with a current amount 20 times or more that when the battery discharge is performed for the third time.

Description

本発明は、非水電解質二次電池の使用方法及びこれに用いる非水電解質二次電池用負極活物質に関する。   The present invention relates to a method for using a nonaqueous electrolyte secondary battery and a negative electrode active material for a nonaqueous electrolyte secondary battery used therefor.

近年、モバイル端末などに代表される小型の電子機器が広く普及しており、更なる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。
この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
In recent years, small electronic devices typified by mobile terminals and the like have become widespread, and further downsizing, weight reduction, and long life have been strongly demanded. In response to such market demands, development of secondary batteries capable of obtaining a high energy density, in particular, being small and light is underway.
This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.

その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。   Among them, lithium ion secondary batteries are highly expected because they are small and easy to increase in capacity, and can obtain higher energy density than lead batteries and nickel cadmium batteries.

上記のリチウムイオン二次電池は、正極及び負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。   Said lithium ion secondary battery is equipped with the electrolyte solution with the positive electrode, the negative electrode, and the separator, and the negative electrode contains the negative electrode active material in connection with charging / discharging reaction.

この負極活物質としては、炭素材料が広く使用されている一方で、最近の市場要求から電池容量の更なる向上が求められている。
電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。
負極活物質材としてのケイ素材の開発は、ケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。
また、活物質形状は、炭素材では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
As this negative electrode active material, a carbon material is widely used, but further improvement in battery capacity is required due to recent market requirements.
In order to improve battery capacity, use of silicon as a negative electrode active material has been studied. This is because the theoretical capacity of silicon (4199 mAh / g) is 10 times or more larger than the theoretical capacity of graphite (372 mAh / g), so that significant improvement in battery capacity can be expected.
The development of a siliceous material as a negative electrode active material has been examined not only for silicon alone but also for compounds represented by alloys and oxides.
In addition, the shape of the active material has been studied from a standard coating type for carbon materials to an integrated type directly deposited on a current collector.

しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。
負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じると共に、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
However, when silicon is used as the negative electrode active material as the main raw material, the negative electrode active material expands and contracts during charge / discharge, and therefore, it tends to break mainly near the surface of the negative electrode active material. Further, an ionic material is generated inside the active material, and the negative electrode active material is easily broken.
When the negative electrode active material surface layer is cracked, a new surface is generated thereby increasing the reaction area of the active material. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a coating that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.

これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成について下記のようなさまざまな検討がなされている。   So far, in order to improve the initial efficiency and cycle characteristics of the battery, various studies have been made on the negative electrode material for lithium ion secondary batteries mainly composed of a siliceous material and the electrode configuration as follows.

i.良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。
ii.高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。
iii.サイクル特性を改善すると共に高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。
iv.サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
i. For the purpose of obtaining good cycle characteristics and high safety, silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see, for example, Patent Document 1).
ii. In order to obtain high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of silicon oxide particles (see, for example, Patent Document 2).
iii. In order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed (for example, a patent) Reference 3).
iv. In order to improve the cycle characteristics, oxygen is contained in the silicon active material, the average oxygen content is 40 at% or less, and the oxygen content is increased at a location close to the current collector ( For example, see Patent Document 4).

v.初回充放電効率を改善するためにSi相、SiO2、MyO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。
vi.サイクル特性改善のため、SiOx(0.8≦x≦1.5、粒径範囲=1μm〜50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。
vii.サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1〜1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。
viii.電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。
ix.サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。
x.サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れると共に、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。
xi.高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば特許文献11参照)。
xii.過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
xiii.高い電池容量、サイクル特性の改善のため、ケイ素と炭素の混合電極を作製し、ケイ素比率を5wt%以上13wt%以下で設計している(例えば特許文献13参照)。
v. Si phase in order to improve the initial charge-discharge efficiency is used nanocomposites containing SiO 2, M y O metal oxide (for example, refer to Patent Document 5).
vi. In order to improve cycle characteristics, SiO x (0.8 ≦ x ≦ 1.5, particle size range = 1 μm to 50 μm) and a carbon material are mixed and fired at a high temperature (see, for example, Patent Document 6).
vii. In order to improve the cycle characteristics, the molar ratio of oxygen to silicon in the negative electrode active material is 0.1 to 1.2, and the difference between the maximum value and the minimum value of the molar ratio in the vicinity of the active material and current collector interface is 0. The active material is controlled within a range of 4 or less (see, for example, Patent Document 7).
viii. In order to improve battery load characteristics, a metal oxide containing lithium is used (see, for example, Patent Document 8).
ix. In order to improve cycle characteristics, a hydrophobic layer such as a silane compound is formed on the surface of the siliceous material (see, for example, Patent Document 9).
x. In order to improve cycle characteristics, conductivity is imparted by using silicon oxide and forming a graphite film on the surface layer (see, for example, Patent Document 10). In Patent Document 10, with respect to the shift value obtained from the RAMAN spectrum for graphite coating, with broad peaks appearing at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 1.5 <I 1330 / I 1580 <3.
xi. In order to improve high battery capacity and cycle characteristics, particles having a silicon microcrystalline phase dispersed in silicon dioxide are used (see, for example, Patent Document 11).
xii. In order to improve overcharge and overdischarge characteristics, a silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1: y (0 <y <2) is used (for example, see Patent Document 12).
xiii. In order to improve high battery capacity and cycle characteristics, a mixed electrode of silicon and carbon is produced, and the silicon ratio is designed at 5 wt% or more and 13 wt% or less (see, for example, Patent Document 13).

特開2001−185127号公報JP 2001-185127 A 特開2002−042806号公報JP 2002-042806 A 特開2006−164954号公報JP 2006-164955 A 特開2006−114454号公報JP 2006-114454 A 特開2009−070825号公報JP 2009-070825 A 特開2008−282819号公報JP 2008-282819 A 特開2008−251369号公報JP 2008-251369 A 特開2008−177346号公報JP 2008-177346 A 特開2007−234255号公報JP 2007-234255 A 特開2009−212074号公報JP 2009-212074 A 特開2009−205950号公報JP 2009-205950 A 特許第2997741号公報Japanese Patent No. 2999741 特開2010−092830号公報JP 2010-092830 A

上述したように、近年、電子機器に代表される小型のモバイル機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。
この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。
また、ケイ素材を用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近いサイクル特性が望まれている。
しかしながら、炭素材を用いたリチウムイオン二次電池と同等のサイクル安定性を示す負極電極を提案するには至っていなかった。
As described above, in recent years, small mobile devices typified by electronic devices have been improved in performance and multifunction, and lithium ion secondary batteries, which are the main power sources, are required to have an increased battery capacity. Yes.
As one method for solving this problem, development of a lithium ion secondary battery composed of a negative electrode using a siliceous material as a main material is desired.
Moreover, the lithium ion secondary battery using a siliceous material is desired to have a cycle characteristic close to that of a lithium ion secondary battery using a carbon material.
However, no negative electrode has been proposed that exhibits cycle stability equivalent to that of a lithium ion secondary battery using a carbon material.

本発明は、上記問題点に鑑みてなされたものであって、電池容量の増加、サイクル特性及び初期充放電特性を向上させることが可能な負極電極を用いた非水電解質二次電池の使用方法及び非水電解質二次電池用負極活物質を提供することを目的とする。   The present invention has been made in view of the above problems, and uses a non-aqueous electrolyte secondary battery using a negative electrode capable of improving battery capacity, improving cycle characteristics and initial charge / discharge characteristics. And it aims at providing the negative electrode active material for nonaqueous electrolyte secondary batteries.

本発明は、上記目的を達成するために、非水電解質二次電池用負極における負極活物質として、少なくともケイ素系活物質(SiOx:0.5≦x≦1.6)を含むと共に、前記ケイ素系活物質を含んだ負極電極を用いた非水電解質二次電池について、単位面積あたり0.7mA/cm2の電流量で2回目の放電を行い、得られる電池容量の1/5に相当する電流量で電池放電を行ったとき(3回目)に対して、20倍以上の電流量で放電サイクルを行う非水電解質二次電池の使用方法を提供する。
なお、本発明において、3回目の放電を行ったときの20倍以上の電流量で放電サイクルを始めたときを1サイクル目とする。
In order to achieve the above object, the present invention includes at least a silicon-based active material (SiO x : 0.5 ≦ x ≦ 1.6) as a negative electrode active material in a negative electrode for a nonaqueous electrolyte secondary battery, For a non-aqueous electrolyte secondary battery using a negative electrode containing a silicon-based active material, discharge for the second time at a current amount of 0.7 mA / cm 2 per unit area, corresponding to 1/5 of the obtained battery capacity Provided is a method for using a non-aqueous electrolyte secondary battery in which a discharge cycle is performed with a current amount 20 times or more that when the battery is discharged with a current amount (third time).
In the present invention, the first cycle is the time when the discharge cycle is started with a current amount 20 times or more that of the third discharge.

このような二次電池に使用されるケイ素酸化物は放電電位約0.65V近辺の変曲点より高い電位において、リチウムシリケートの一部が分解され、電池サイクル特性を低下させる。本充放電条件を用いて電池サイクル試験を行うことで、シリケートの分解を抑制することが可能であるため、電池サイクル特性を向上させることができる。本二次電池はハンドドリルに代表される高出力型電池に最も適しており、ケイ素材の容量向上効果と共に、長期サイクルを実現する二次電池となる。   In the silicon oxide used in such a secondary battery, a part of lithium silicate is decomposed at a potential higher than the inflection point in the vicinity of the discharge potential of about 0.65 V, and the battery cycle characteristics are deteriorated. By performing a battery cycle test using these charge / discharge conditions, it is possible to suppress the decomposition of the silicate, so that the battery cycle characteristics can be improved. This secondary battery is most suitable for a high-power battery represented by a hand drill, and it is a secondary battery that realizes a long-term cycle with an effect of improving the capacity of the silica material.

このとき、20倍以上の電流量で放電することで電池特性を飛躍的に改善することができる。但し、10倍程度でも改善することが可能となるが、一般的な電池試験である500サイクル近辺まで寿命を延長することができない。市販電池、特に炭素系を主流として用いた高出力型電池に比べ、類似した電池特性を実現するためには20倍以上が望ましい。   At this time, the battery characteristics can be drastically improved by discharging with a current amount of 20 times or more. However, although it can be improved even by about 10 times, the life cannot be extended to around 500 cycles which is a general battery test. Compared to commercially available batteries, particularly high-power batteries using carbon as the mainstream, 20 times or more is desirable in order to realize similar battery characteristics.

特に40倍以上で使用することで負極側の寿命を大幅に延命することが可能となる。また80倍を超えると、正極側の影響が無視できなくなり電池特性を低下させることとなる。しかしながら、これは本発明で実施した正極材及び正極組成における評価であり、より改善された材料、組成を用いることで電流量範囲を増加することも可能である。   In particular, the life on the negative electrode side can be greatly extended by using it at 40 times or more. On the other hand, if it exceeds 80 times, the influence on the positive electrode side cannot be ignored, and the battery characteristics are deteriorated. However, this is an evaluation of the positive electrode material and the positive electrode composition implemented in the present invention, and it is possible to increase the current amount range by using a more improved material and composition.

本電池充放電終止電位は、負極律束であることが望ましい。特に高出力系電池において、正極側の電池降下を用いて電池終止を行う場合、容量が不安定になるばかりでなく、電池劣化も進むおそれがある。そのため、3サイクル目に得られた電池容量の半分に値する電池容量を放電した時の電位に対し、電池終止電位における正負極電位の変化率は負極の方が正極よりも大きいことが望ましい。電池終止電位は負極の変化寄与が大きいこととなる。
なお電位規定は3サイクル目の低レート放電時における電位変化を用いる。
It is desirable that the charge / discharge end potential of the battery is a negative electrode regulation. In particular, in a high-power battery, when battery termination is performed using a battery drop on the positive electrode side, not only the capacity becomes unstable, but battery deterioration may also progress. Therefore, it is desirable that the rate of change of the positive and negative electrode potentials at the battery end potential is larger at the negative electrode than at the positive electrode with respect to the potential when the battery capacity equivalent to half of the battery capacity obtained in the third cycle is discharged. The battery end potential greatly contributes to the change in the negative electrode.
Note that the potential regulation uses the potential change during the low rate discharge in the third cycle.

負極利用率は90%以上99%以下が望ましい。99%を超えると負極側でLi析出が発現しやすくなる。また90%を下回ると、電池容量低下が無視できなくなる。
負極利用率は以下の式で得られる。
[正極充電容量(対Li:電池充電電位+0.05Vで得られる正極容量)−負極不可逆容量(対Li:0V−1.2Vの範囲で得られる負極不可逆容量)]/負極可逆容量(対Li:0V−1.2V範囲で得られる負極放電容量)
The negative electrode utilization rate is desirably 90% or more and 99% or less. If it exceeds 99%, Li precipitation tends to occur on the negative electrode side. On the other hand, if it is less than 90%, a decrease in battery capacity cannot be ignored.
The negative electrode utilization rate is obtained by the following formula.
[Positive electrode charge capacity (vs. Li: positive electrode capacity obtained at battery charge potential + 0.05V) −Negative electrode irreversible capacity (vs. Li: negative electrode irreversible capacity obtained in the range of 0V-1.2V)] / Negative electrode reversible capacity (vs. Li : Negative electrode discharge capacity obtained in the range of 0V-1.2V)

ケイ素酸化物は不可逆容量が大きく、炭素材に置換する量が多くなると可逆リチウム量が低下するため、効率改善が必須となる。特にケイ素酸化物のバルク内部にリチウムシリケートを予め生成することで、電池充電時に消失するリチウムを補填することが可能となる。
リチウム補填方法は特に限定することはないが、熱ドープ法、電気化学法、酸化還元法などが挙げられる。熱ドープ法はLiHなどと混合し、加熱することで得ることができる。電気化学法は電気化学的に電位制御を用いて必要なLiを挿入・脱離することができる。酸化還元法では、例えばナフタレンなどに溶解したリチウムを用いてリチウム補填を行うことができる。
Silicon oxide has a large irreversible capacity, and the amount of reversible lithium decreases as the amount replaced with a carbon material increases, so improvement in efficiency is essential. In particular, by generating lithium silicate in the bulk of the silicon oxide in advance, it is possible to compensate for lithium that disappears when the battery is charged.
The lithium filling method is not particularly limited, and examples thereof include a thermal doping method, an electrochemical method, and a redox method. The thermal doping method can be obtained by mixing with LiH or the like and heating. The electrochemical method can insert and desorb necessary Li electrochemically using potential control. In the oxidation-reduction method, lithium supplementation can be performed using, for example, lithium dissolved in naphthalene.

特に炭素系活物質とケイ素系活物質との総量(負極活物質に対するケイ素系活物質)の置換量として、6wt%以上が好ましい。少量添加である場合、ケイ素酸化物の容量寄与率が小さいだけでなく、負極の微視的な容量増減が発現するため、対極である正極側に負極容量に応じた微視的な電位変化が生じやすくなる。
具体的には、例えば、ケイ素酸化物の充電容量が2200mAh/gに対し、炭素系活物質が350mAh/gである場合、微視的にケイ素酸化物が分散した状況下において、対抗する正極は規定された電池電位に到達するまでLiを抜き取ることとなり、当初予定していた到達電位を上回る高充電電圧となる。そのため、分散状態を緩和するためにケイ素酸化物を負極活物質層中に均一分散することが必要となる。
In particular, the substitution amount of the total amount of the carbon-based active material and the silicon-based active material (silicon-based active material with respect to the negative electrode active material) is preferably 6 wt% or more. When a small amount is added, not only the capacity contribution ratio of the silicon oxide is small, but also the microscopic capacity increase / decrease of the negative electrode appears, so that the microscopic potential change according to the negative electrode capacity is present on the positive electrode side which is the counter electrode. It tends to occur.
Specifically, for example, when the charge capacity of silicon oxide is 2200 mAh / g and the carbon-based active material is 350 mAh / g, the opposing positive electrode is microscopically dispersed in a situation where silicon oxide is dispersed. Li is extracted until the specified battery potential is reached, resulting in a high charge voltage that exceeds the initially planned reached potential. Therefore, it is necessary to uniformly disperse the silicon oxide in the negative electrode active material layer in order to relax the dispersion state.

ケイ素系活物質の29Si−MAS−NMRスペクトルから得られるケミカルシフト値として、リチウムシリケートに起因するピーク強度Aと二酸化ケイ素に起因するピーク強度Bの比がA>Bであることが望ましい。不可逆容量の一部として二酸化ケイ素領域を予めリチウムシリケートへ置換することで、初期効率の高いケイ素系活物質の作製が可能となる。As a chemical shift value obtained from the 29 Si-MAS-NMR spectrum of the silicon-based active material, it is desirable that the ratio of the peak intensity A attributed to lithium silicate to the peak intensity B attributed to silicon dioxide satisfies A> B. By replacing the silicon dioxide region with lithium silicate in advance as part of the irreversible capacity, a silicon-based active material with high initial efficiency can be produced.

またこのとき、前記ケイ素系活物質と炭素系活物質とを混合した負極活物質を使用して作製した負極電極と対極リチウムとからなる試験セルを充放電し、放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、前記ケイ素系活物質がリチウムを脱離するよう電流を流す放電時における前記負極電極の電位Vが0.40〜0.55Vの範囲にピークを有するものであることが好ましい。   At this time, a test cell composed of a negative electrode and a counter electrode lithium prepared using a negative electrode active material in which the silicon-based active material and the carbon-based active material are mixed is charged and discharged, and the discharge capacity Q is set to the counter electrode lithium. When a graph showing the relationship between the differential value dQ / dV differentiated by the potential V of the negative electrode as a reference and the potential V is drawn, during discharge in which current flows so that the silicon-based active material desorbs lithium It is preferable that the potential V of the negative electrode has a peak in the range of 0.40 to 0.55V.

V−dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。   The above peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery.

このとき、前記ケイ素系活物質が、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズ(Si(111)に帰属される回折ピークの半値幅に基づき、シェラーの式により求められる)が7.5nm以下であることが好ましい。このような半値幅及び結晶子サイズを有するケイ素系活物質は、結晶性が低くSi結晶の存在量が少ないため、電池特性を向上させることができる。   At this time, the silicon-based active material has a half-value width (2θ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more and a crystal due to the crystal plane. The child size (determined by Scherrer's equation based on the half width of the diffraction peak attributed to Si (111)) is preferably 7.5 nm or less. Since the silicon-based active material having such a half-value width and crystallite size has low crystallinity and a small amount of Si crystals, battery characteristics can be improved.

以上のことから、本発明は、下記の非水電解質二次電池の使用方法及び非水電解質二次電池用負極活物質を提供する。
〔1〕
正極と、SiOx(但し、0.5≦x≦1.6)で示されるケイ素酸化物を主成分とするケイ素系活物質を含む負極活物質を用いた負極と、非水電解質とを具備する非水電解質二次電池の使用方法であって、前記電池について負極の単位面積あたり0.7mA/cm2の電流量で2回目の放電を行って得られる電池容量の1/5に相当する電流量で3回目の電池放電を行ったときの20倍以上の電流量で放電サイクルを行うことを特徴とする非水電解質二次電池の使用方法。
〔2〕
3回目の電池放電時における電流量の40倍以上80倍以下の電流量で放電サイクルを行う〔1〕記載の使用方法。
〔3〕
前記放電サイクルの3サイクル目に得られる放電容量の50%放電時における正負極電位に対し、終止電位時の正負極電位変化率が正極よりも負極が大きいものである〔1〕又は〔2〕記載の使用方法。
〔4〕
負極利用率が90%以上99%以下である〔1〕〜〔3〕のいずれかに記載の使用方法。
〔5〕
ケイ素系活物質が、ケイ素酸化物の内部にLi2SiO3及びLi4SiO4のうち少なくとも1種を含むものであり、負極活物質の総量に対するケイ素系活物質の比が6質量%以上である〔1〕〜〔4〕のいずれかに記載の使用方法。
〔6〕
前記ケイ素系活物質が、29Si−MAS−NMRスペクトルから得られるケミカルシフト値として−75ppm付近に与えられるLi2SiO3に由来するピークの強度Aと、−95〜−150ppmに与えられるSiO2領域に由来するピークの強度Bとが、A>Bの関係を満たす〔1〕〜〔5〕のいずれかに記載の使用方法。
〔7〕
前記ケイ素系活物質が、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下である〔1〕〜〔6〕のいずれかに記載の使用方法。
〔8〕
前記ケイ素系活物質が、導電性炭素で被覆されている〔1〕〜〔7〕のいずれかに記載の使用方法。
〔9〕
SiOx(但し、0.5≦x≦1.6)で示されるケイ素酸化物の内部にLi2SiO3及びLi4SiO4のうち少なくとも1種を含むケイ素系活物質の表層が炭素にて被覆され、前記ケイ素系活物質を2質量%以上含有することを特徴とする非水電解質二次電池用負極活物質。
〔10〕
前記ケイ素系活物質が、29Si−MAS−NMRスペクトルから得られるケミカルシフト値として−75ppm付近に与えられるLi2SiO3に由来するピークの強度Aと、−95〜−150ppmに与えられるSiO2領域に由来するピークの強度Bとが、A>Bの関係を満たす〔9〕記載の負極活物質。
〔11〕
前記ケイ素系活物質と炭素系活物質とを混合した負極活物質を使用して作製した負極電極と対極リチウムとからなる試験セルを充放電し、放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、前記ケイ素系活物質がリチウムを脱離するよう電流を流す放電時における前記負極電極の電位Vが、0.40〜0.55Vの範囲にピークを有するものである〔9〕又は〔10〕記載の負極活物質。
〔12〕
前記ケイ素系活物質が、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下である〔9〕〜〔11〕のいずれかに記載の負極活物質。
〔13〕
前記ケイ素系活物質が、導電性炭素で被覆されている〔9〕〜〔12〕のいずれかに記載の負極活物質。
In view of the above, the present invention provides the following method of using a nonaqueous electrolyte secondary battery and a negative electrode active material for a nonaqueous electrolyte secondary battery.
[1]
A positive electrode, a negative electrode using a negative electrode active material containing a silicon-based active material whose main component is a silicon oxide represented by SiO x (where 0.5 ≦ x ≦ 1.6), and a non-aqueous electrolyte The non-aqueous electrolyte secondary battery is used and corresponds to 1/5 of the battery capacity obtained by performing a second discharge with a current amount of 0.7 mA / cm 2 per unit area of the negative electrode for the battery. A method for using a non-aqueous electrolyte secondary battery, characterized in that a discharge cycle is performed with a current amount 20 times or more that when a third battery discharge is performed with a current amount.
[2]
[1] The method according to [1], wherein the discharge cycle is performed at a current amount of 40 times to 80 times the current amount at the time of the third battery discharge.
[3]
[1] or [2] where the negative electrode potential change rate at the end potential is larger at the negative electrode than at the positive electrode with respect to the positive and negative electrode potential at 50% discharge of the discharge capacity obtained at the third cycle of the discharge cycle. Usage as described.
[4]
The usage method according to any one of [1] to [3], wherein the negative electrode utilization ratio is 90% or more and 99% or less.
[5]
The silicon-based active material contains at least one of Li 2 SiO 3 and Li 4 SiO 4 inside the silicon oxide, and the ratio of the silicon-based active material to the total amount of the negative electrode active material is 6% by mass or more. The usage method according to any one of [1] to [4].
[6]
The silicon-based active material has a peak intensity A derived from Li 2 SiO 3 given in the vicinity of −75 ppm as a chemical shift value obtained from a 29 Si-MAS-NMR spectrum, and SiO 2 given to −95 to −150 ppm. The method according to any one of [1] to [5], wherein the peak intensity B derived from the region satisfies a relationship of A> B.
[7]
The silicon-based active material has a half-width (2θ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more, and a crystallite size due to the crystal plane is The method according to any one of [1] to [6], which is 7.5 nm or less.
[8]
The method according to any one of [1] to [7], wherein the silicon-based active material is coated with conductive carbon.
[9]
The surface layer of the silicon-based active material containing at least one of Li 2 SiO 3 and Li 4 SiO 4 inside the silicon oxide represented by SiO x (where 0.5 ≦ x ≦ 1.6) is carbon. A negative electrode active material for a non-aqueous electrolyte secondary battery, which is coated and contains 2% by mass or more of the silicon-based active material.
[10]
The silicon-based active material has a peak intensity A derived from Li 2 SiO 3 given in the vicinity of −75 ppm as a chemical shift value obtained from a 29 Si-MAS-NMR spectrum, and SiO 2 given to −95 to −150 ppm. The negative electrode active material according to [9], wherein a peak intensity B derived from the region satisfies a relationship of A> B.
[11]
Charge and discharge a test cell composed of a negative electrode prepared using a negative electrode active material obtained by mixing the silicon-based active material and the carbon-based active material and a counter electrode lithium, and the discharge capacity Q is based on the counter electrode lithium. The negative electrode during discharge in which a current flows so that the silicon-based active material desorbs lithium when a graph showing the relationship between the differential value dQ / dV differentiated by the potential V of the negative electrode and the potential V is drawn. The negative electrode active material according to [9] or [10], wherein the potential V has a peak in the range of 0.40 to 0.55V.
[12]
The silicon-based active material has a half-width (2θ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more, and a crystallite size due to the crystal plane is The negative electrode active material according to any one of [9] to [11], which is 7.5 nm or less.
[13]
The negative electrode active material according to any one of [9] to [12], wherein the silicon-based active material is coated with conductive carbon.

本発明の非水電解質二次電池用負極におけるケイ素系活物質は少なくともケイ素酸化物(SiOx:0.5≦x≦1.6)を含むと共に、前記ケイ素系活物質を含んだ負極電極を用いた非水電解質二次電池は、単位面積あたり0.7mA/cm2の電流量で2回目の放電を行って得られる電池容量の1/5に相当する電流量で電池放電を行ったとき(3回目)に対して、20倍以上の電流量で放電サイクルを行うことにより、電池容量を向上させ、かつ安定した電池サイクル特性を得ることが可能となる。The silicon-based active material in the negative electrode for a non-aqueous electrolyte secondary battery of the present invention includes at least a silicon oxide (SiO x : 0.5 ≦ x ≦ 1.6), and a negative electrode including the silicon-based active material. The nonaqueous electrolyte secondary battery used was discharged at a current amount equivalent to 1/5 of the battery capacity obtained by performing a second discharge at a current amount of 0.7 mA / cm 2 per unit area. By performing the discharge cycle with a current amount of 20 times or more with respect to (third time), it is possible to improve the battery capacity and obtain stable battery cycle characteristics.

本発明の負極活物質を用いた非水電解質二次電池用負極及びこの負極を用いた非水電解質二次電池は、電池容量、サイクル特性、及び初回充放電特性を向上させることができる。また、上記二次電池を用いた電子機器、電動工具、電気自動車及び電力貯蔵システム等でも同様の効果を得ることができ、特に電動工具などに適している。   The negative electrode for nonaqueous electrolyte secondary batteries using the negative electrode active material of the present invention and the nonaqueous electrolyte secondary battery using this negative electrode can improve battery capacity, cycle characteristics, and initial charge / discharge characteristics. Moreover, the same effect can be acquired also in the electronic device using the said secondary battery, an electric tool, an electric vehicle, an electric power storage system, etc., and is especially suitable for an electric tool etc.

本発明の非水電解質二次電池用負極の構成を示す断面図である。It is sectional drawing which shows the structure of the negative electrode for nonaqueous electrolyte secondary batteries of this invention. 本発明の負極活物質を改質する電気化学的手法の説明図である。It is explanatory drawing of the electrochemical method which modifies the negative electrode active material of this invention.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。
このケイ素材を用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近いサイクル特性が望まれているが、炭素材を用いたリチウムイオン二次電池と同等のサイクル安定性を示す負極電極を提案するには至っていなかった。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
As described above, as one method for increasing the battery capacity of a lithium ion secondary battery, the use of a negative electrode using a silicon material as a main material as a negative electrode of a lithium ion secondary battery has been studied.
The lithium ion secondary battery using this silicon material is expected to have cycle characteristics similar to those of a lithium ion secondary battery using a carbon material, but the cycle is equivalent to that of a lithium ion secondary battery using a carbon material. A negative electrode that exhibits stability has not been proposed.

そこで、本発明者らは、リチウムイオン二次電池の負極として、良好なサイクル特性が得られる負極活物質について鋭意検討を重ね、本発明に至った。
本発明の非水電解質二次電池用負極はケイ素酸化物(SiOx:0.5≦x≦1.6)を含むと共に、前記ケイ素酸化物を主成分とするケイ素系活物質を含んだ負極電極を用いた非水電解質二次電池は、単位面積あたり0.7mA/cm2の電流量で2回目の放電を行って得られる電池容量の1/5に相当する電流量で電池放電を行ったとき(3回目)に対して、20倍以上の電流量で放電サイクルを行うことである。
なお、1回目の充放電及び2回目の充電は、特に制限されないが、少なくとも1回目又は2回目の電池電位が4V以上で充電することが好ましい。
Therefore, the present inventors have made extensive studies on a negative electrode active material that can provide good cycle characteristics as a negative electrode of a lithium ion secondary battery, and have reached the present invention.
The negative electrode for a non-aqueous electrolyte secondary battery of the present invention contains a silicon oxide (SiO x : 0.5 ≦ x ≦ 1.6) and a negative electrode containing a silicon-based active material containing the silicon oxide as a main component. A nonaqueous electrolyte secondary battery using an electrode discharges a battery at a current amount equivalent to 1/5 of the battery capacity obtained by performing a second discharge at a current amount of 0.7 mA / cm 2 per unit area. The discharge cycle is performed with a current amount of 20 times or more as compared to the third time.
The first charging / discharging and the second charging are not particularly limited, but it is preferable to charge at least at the first or second battery potential of 4V or more.

本発明の非水電解質二次電池用負極活物質を用いた非水電解質二次電池用負極について説明する。図1は、本発明の一実施形態における非水電解質二次電池用負極(以下、単に「負極」と称することがある)の断面構成を表している。   The negative electrode for nonaqueous electrolyte secondary batteries using the negative electrode active material for nonaqueous electrolyte secondary batteries of the present invention will be described. FIG. 1 shows a cross-sectional configuration of a negative electrode for a non-aqueous electrolyte secondary battery (hereinafter, simply referred to as “negative electrode”) according to an embodiment of the present invention.

[負極の構成]
図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていてもよい。更に、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[Configuration of negative electrode]
As shown in FIG. 1, the negative electrode 10 is configured to have a negative electrode active material layer 12 on a negative electrode current collector 11. The negative electrode active material layer 12 may be provided on both surfaces or only one surface of the negative electrode current collector 11. Furthermore, the negative electrode current collector 11 may be omitted as long as the negative electrode active material of the present invention is used.

[負極集電体]
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けたもので構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)が挙げられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
[Negative electrode current collector]
The negative electrode current collector 11 is an excellent conductive material and is composed of a material having excellent mechanical strength. Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).

負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、100ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。   The negative electrode current collector 11 preferably contains carbon (C) or sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved. In particular, in the case of having an active material layer that expands during charging, if the current collector contains the above-described element, there is an effect of suppressing electrode deformation including the current collector. Although content of said content element is not specifically limited, Especially, it is preferable that it is 100 ppm or less. This is because a higher deformation suppressing effect can be obtained.

負極集電体11の表面は、粗化されていても、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は化学エッチングされた金属箔などである。粗化されていない負極集電体は、例えば圧延金属箔などである。   The surface of the negative electrode current collector 11 may be roughened or not roughened. The roughened negative electrode current collector is, for example, a metal foil subjected to electrolytic treatment, embossing treatment, or chemical etching. The non-roughened negative electrode current collector is, for example, a rolled metal foil.

[負極活物質層]
負極活物質層12は、リチウムイオンを吸蔵、放出可能な複数の粒子状負極活物質(以下、負極活物質粒子とも称する)を含んでおり、電池設計上、更に負極結着剤や導電助剤など、他の材料を含んでいてもよい。
[Negative electrode active material layer]
The negative electrode active material layer 12 includes a plurality of particulate negative electrode active materials (hereinafter also referred to as negative electrode active material particles) that can occlude and release lithium ions. Further, in terms of battery design, the negative electrode binder and the conductive auxiliary agent are further included. Other materials may be included.

本発明の負極に用いられる負極活物質は、ケイ素系活物質及び炭素系活物質を含む。そして、ケイ素系活物質はリチウムイオンを吸蔵、放出可能なケイ素酸化物の部分(表面又は内部)にLi化合物を含有しており、更にその表面に炭素による被膜層を有する。   The negative electrode active material used for the negative electrode of the present invention includes a silicon-based active material and a carbon-based active material. The silicon-based active material contains a Li compound in a silicon oxide portion (surface or inside) capable of occluding and releasing lithium ions, and further has a carbon coating layer on the surface.

本発明の負極に用いられるケイ素酸化物はSiOx(但し、0.5≦x≦1.6)で示される酸化ケイ素材であり、その組成としてはxが1に近い方が好ましい。高いサイクル特性が得られるからである。本発明におけるケイ素酸化物組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。The silicon oxide used for the negative electrode of the present invention is a silicon oxide material represented by SiO x (where 0.5 ≦ x ≦ 1.6), and the composition is preferably such that x is close to 1. This is because high cycle characteristics can be obtained. The silicon oxide composition in the present invention does not necessarily mean 100% purity, and may contain a trace amount of impurity elements.

ケイ素系活物質は、そのケイ素酸化物粒子内部にLi2SiO3及びLi4SiO4のうち少なくとも1種を含み、更に上記のように、ケイ素系活物質の表層は炭素にて被覆されていることが好ましい。このようなものであれば、安定した電池特性を得ることをできる。The silicon-based active material contains at least one of Li 2 SiO 3 and Li 4 SiO 4 inside the silicon oxide particles, and the surface layer of the silicon-based active material is coated with carbon as described above. It is preferable. If it is such, the stable battery characteristic can be acquired.

このようなケイ素系活物質粒子は、内部に生成するSiO2成分の一部をLi化合物へ変更することにより得ることができる。中でもLi4SiO4、Li2SiO3は特によい特性を示す。
Li化合物はNMR(核磁気共鳴)とXPS(X線光電子分光)で定量可能である。XPSとNMRの測定は、例えば、以下の条件により行うことができる。
XPS
・装置:X線光電子分光装置
・X線源:単色化Al Kα線
・X線スポット径:100μm
・Arイオン銃スパッタ条件:0.5kV 2mm×2mm
29Si−MAS−NMR(マジック角回転核磁気共鳴)
・装置:Bruker社製700NMR分光器
・プローブ:4mmHR−MASローター 50μL
・試料回転速度:10kHz
・測定環境温度:25℃
Such silicon-based active material particles can be obtained by changing a part of the SiO 2 component generated inside to a Li compound. Of these, Li 4 SiO 4 and Li 2 SiO 3 exhibit particularly good characteristics.
Li compounds can be quantified by NMR (nuclear magnetic resonance) and XPS (X-ray photoelectron spectroscopy). The XPS and NMR measurements can be performed, for example, under the following conditions.
XPS
-Equipment: X-ray photoelectron spectrometer-X-ray source: Monochromatic Al Kα ray-X-ray spot diameter: 100 μm
Ar ion gun sputtering conditions: 0.5 kV 2 mm x 2 mm
29 Si-MAS-NMR (magic angle rotating nuclear magnetic resonance)
Apparatus: 700 NMR spectrometer manufactured by Bruker, Inc. Probe: 4 mmHR-MAS rotor 50 μL
Sample rotation speed: 10 kHz
・ Measurement environment temperature: 25 ℃

このように得られたケイ素系活物質を含んだ負極電極を用いた非水電解質二次電池は、負極の単位面積あたり0.7mA/cm2の電流量で2回目の放電を行って得られる電池容量の1/5に相当する電流量で電池放電を行ったとき(3回目)に対して20倍以上の電流量で放電サイクルを行う。ケイ素酸化物の高電位側におけるリチウムシリケートの一部分解を抑制することで、電池サイクル特性を向上させることができる。The nonaqueous electrolyte secondary battery using the negative electrode containing the silicon-based active material thus obtained is obtained by performing the second discharge at a current amount of 0.7 mA / cm 2 per unit area of the negative electrode. When battery discharge is performed at a current amount corresponding to 1/5 of the battery capacity (third time), a discharge cycle is performed at a current amount 20 times or more. By suppressing partial decomposition of lithium silicate on the high potential side of the silicon oxide, battery cycle characteristics can be improved.

この場合、電流量は20倍以上であることが望ましく、より望ましくは40倍以上80倍以下となる。20倍未満においてもサイクル特性を向上させる効果があるが、炭素系活物質を用いた二次電池により近い電池特性を得るためには20倍以上である必要がある。   In this case, the amount of current is desirably 20 times or more, and more desirably 40 times or more and 80 times or less. Even if it is less than 20 times, there is an effect of improving the cycle characteristics, but in order to obtain battery characteristics closer to those of the secondary battery using the carbon-based active material, it is necessary to be 20 times or more.

電池終止に伴う正負極電位はその多くは負極側の変化によってもたらされることが望ましい。
上記放電サイクルの3サイクル目に得られる放電容量の50%放電時における正負極電位に対し、終止電位時の正負極電位変化率が正極よりも負極が大きいものであることが好ましい。
Most of the positive and negative electrode potentials associated with the end of the battery are desirably brought about by changes on the negative electrode side.
The positive / negative electrode potential change rate at the end potential is preferably larger at the negative electrode than at the positive electrode with respect to the positive / negative electrode potential at the time of 50% discharge of the discharge capacity obtained in the third cycle of the discharge cycle.

負極利用率は90%以上99%以下が望ましい。99%を超えると負極側でLi析出が発現しやすくなる。また90%を下回ると、電池容量低下が無視できなくなる。   The negative electrode utilization rate is desirably 90% or more and 99% or less. If it exceeds 99%, Li precipitation tends to occur on the negative electrode side. On the other hand, if it is less than 90%, a decrease in battery capacity cannot be ignored.

更に、本発明においてケイ素系活物質は、負極活物質の総量に対するケイ素系活物質の比率を2質量%以上、特に6質量%以上とすることが好ましく、これにより、負極電極の容量を均一化することができ、より好ましくは10質量%以上であり、100質量%でもよい。   Furthermore, in the present invention, it is preferable that the silicon-based active material has a ratio of the silicon-based active material to the total amount of the negative electrode active material of 2% by mass or more, particularly 6% by mass or more, thereby uniformizing the capacity of the negative electrode. More preferably, it is 10 mass% or more, and may be 100 mass%.

本発明の負極材に含まれるケイ素系活物質の結晶性は低いほどよい。具体的には、ケイ素系活物質のX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下であることが望ましい。特に結晶性が低くSi結晶の存在量が少ないことにより、電池特性を向上させるだけでなく、安定的なLi化合物の生成をすることができる。ケイ素系活物質は非晶質でもよい。   The lower the crystallinity of the silicon-based active material contained in the negative electrode material of the present invention, the better. Specifically, the half-value width (2θ) of the diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of the silicon-based active material is 1.2 ° or more, and the crystal due to the crystal plane The child size is desirably 7.5 nm or less. Particularly, since the crystallinity is low and the abundance of Si crystals is small, not only the battery characteristics are improved, but also a stable Li compound can be generated. The silicon-based active material may be amorphous.

ケイ素系活物質の29Si−MAS−NMRスペクトルから得られるケミカルシフト値として、リチウムシリケートに起因するピーク強度Aと二酸化ケイ素に起因するピーク強度Bの比がA>Bであることが望ましい。不可逆容量の一部として二酸化ケイ素領域を予めリチウムシリケートへ置換することで、初期効率の高いケイ素系活物質の作製が可能となる。As a chemical shift value obtained from the 29 Si-MAS-NMR spectrum of the silicon-based active material, it is desirable that the ratio of the peak intensity A attributed to lithium silicate to the peak intensity B attributed to silicon dioxide satisfies A> B. By replacing the silicon dioxide region with lithium silicate in advance as part of the irreversible capacity, a silicon-based active material with high initial efficiency can be produced.

本発明において、前記ケイ素系活物質以外の負極活物質としては、好ましくは炭素系活物質が挙げられ、炭素系活物質としては、天然黒鉛、人造黒鉛、MCMB、ハードカーボン、ソフトカーボン、表面ピッチ層コート天然黒鉛等の1種又は2種以上が用いられる。   In the present invention, the negative electrode active material other than the silicon-based active material preferably includes a carbon-based active material, and the carbon-based active material includes natural graphite, artificial graphite, MCMB, hard carbon, soft carbon, surface pitch. One type or two or more types such as layer-coated natural graphite are used.

なお、上述したように、負極活物質としてはケイ素系活物質を単独で用いてもよいが、ケイ素系活物質と炭素系活物質とを併用することができ、この場合、ケイ素系活物質と炭素系活物質との比率は、質量比として2:98〜100:0、より好ましくは6:94〜100:0、更に好ましくは10:90〜100:0であることがよいが、例えば6:94〜30:70の質量比とすることで、ケイ素系活物質の割合を低減することができる。   As described above, a silicon-based active material may be used alone as the negative electrode active material, but a silicon-based active material and a carbon-based active material can be used in combination. The ratio with respect to the carbon-based active material may be 2:98 to 100: 0, more preferably 6:94 to 100: 0, and still more preferably 10:90 to 100: 0 as a mass ratio. : The ratio of a silicon-type active material can be reduced by setting it as mass ratio of 94-30: 70.

またこのとき、前記ケイ素系活物質と炭素系活物質とを混合した負極活物質を使用して作製した負極電極と対極リチウムとからなる試験セルを充放電し、放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、前記ケイ素系活物質がリチウムを脱離するよう電流を流す放電時における前記負極電極の電位Vが0.40〜0.55Vの範囲にピークを有するものであることが好ましい。   At this time, a test cell composed of a negative electrode and a counter electrode lithium prepared using a negative electrode active material in which the silicon-based active material and the carbon-based active material are mixed is charged and discharged, and the discharge capacity Q is set to the counter electrode lithium. When a graph showing the relationship between the differential value dQ / dV differentiated by the potential V of the negative electrode as a reference and the potential V is drawn, during discharge in which current flows so that the silicon-based active material desorbs lithium It is preferable that the potential V of the negative electrode has a peak in the range of 0.40 to 0.55V.

V−dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。   The above peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery.

負極結着剤として、例えば高分子材料、合成ゴムなどのいずれか1種以上が挙げられる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、あるいはカルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、あるいはエチレンプロピレンジエンなどである。   Examples of the negative electrode binder include one or more of polymer materials and synthetic rubbers. Examples of the polymer material include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, and carboxymethylcellulose. The synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber, or ethylene propylene diene.

負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ(CNT)、カーボンナノファイバーなどの炭素材料のいずれか1種以上が挙げられる。特にカーボンナノチューブは膨張収縮率が高いケイ素材と炭素材の電気コンタクトを得ることに向いている。   Examples of the negative electrode conductive assistant include one or more carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotube (CNT), and carbon nanofiber. In particular, carbon nanotubes are suitable for obtaining electrical contacts between a silicon material and a carbon material having a high expansion / contraction rate.

負極活物質層は、例えば塗布法で形成される。塗布法とは負極活物質粒子と上記した結着剤など、また必要に応じて導電助剤、炭素材料を混合したのち、有機溶剤や水などに分散させ塗布する方法である。   The negative electrode active material layer is formed by, for example, a coating method. The coating method is a method in which a negative electrode active material particle and the above-described binder, and the like, and a conductive additive and a carbon material are mixed as necessary, and then dispersed and coated in an organic solvent or water.

[負極の製造方法]
本発明の非水電解質二次電池用負極材に含まれる負極活物質粒子の製造方法を説明すると、まず、SiOx(0.5≦x≦1.6)で表されるケイ素酸化物を作製する。次に、ケイ素酸化物にLiを挿入することにより、該ケイ素酸化物の内部にLi化合物を生成させて該ケイ素酸化物を改質し、これをケイ素系活物質とすることが好ましい。
[Production method of negative electrode]
The method for producing negative electrode active material particles contained in the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention will be described. First, a silicon oxide represented by SiO x (0.5 ≦ x ≦ 1.6) is produced. To do. Next, it is preferable that Li is inserted into the silicon oxide to generate a Li compound inside the silicon oxide to modify the silicon oxide, and this is used as a silicon-based active material.

より具体的には、負極活物質粒子は、例えば、以下の手順により製造される。
まず、酸化ケイ素ガスを発生する原料を不活性ガスの存在下もしくは減圧下900〜1,600℃の温度範囲で加熱し、酸化ケイ素ガスを発生させる。この場合、原料は金属ケイ素粉末と二酸化ケイ素粉末との混合物であり、金属ケイ素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属ケイ素粉末/二酸化ケイ素粉末<1.3の範囲であることが望ましい。粒子中のSi結晶子は仕込み範囲や気化温度の変更、また生成後の熱処理で制御される。発生したガスは吸着板に堆積される。反応炉内温度を100℃以下に下げた状態で堆積物を取り出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。
More specifically, the negative electrode active material particles are produced, for example, by the following procedure.
First, a raw material that generates silicon oxide gas is heated in a temperature range of 900 to 1600 ° C. in the presence of an inert gas or under reduced pressure to generate silicon oxide gas. In this case, the raw material is a mixture of metal silicon powder and silicon dioxide powder, and considering the surface oxygen of the metal silicon powder and the presence of trace amounts of oxygen in the reactor, the mixing molar ratio is 0.8 <metal silicon powder / Desirably, silicon dioxide powder <1.3. The Si crystallites in the particles are controlled by changing the preparation range and vaporization temperature, and by heat treatment after generation. The generated gas is deposited on the adsorption plate. The deposit is taken out in a state where the temperature in the reaction furnace is lowered to 100 ° C. or lower, and pulverized and pulverized using a ball mill, a jet mill or the like.

次に、得られた粉末材料の表層に炭素層を生成することができるが、この工程は必須ではない。   Next, a carbon layer can be formed on the surface layer of the obtained powder material, but this step is not essential.

得られた粉末材料の表層に炭素層を生成する手法としては、熱分解CVDが望ましい。熱分解CVDは炉内にセットしたケイ素酸化物(以下、酸化ケイ素という場合がある)粉末と炉内に炭化水素ガスを充満させ炉内温度を昇温させる。分解温度は特に限定しないが特に1,200℃以下が望ましい。より望ましいのは950℃以下であり、活物質粒子の不均化を抑制することが可能である。炭化水素ガスは特に限定することはないが、CnHm組成のうち3≧nが望ましい。低製造コスト及び分解生成物の物性がよいからである。   Pyrolysis CVD is desirable as a method for generating a carbon layer on the surface layer of the obtained powder material. Thermal decomposition CVD fills a silicon oxide (hereinafter sometimes referred to as silicon oxide) powder set in the furnace and a hydrocarbon gas into the furnace to raise the temperature in the furnace. The decomposition temperature is not particularly limited, but is particularly preferably 1,200 ° C. or lower. More desirably, the temperature is 950 ° C. or lower, and disproportionation of the active material particles can be suppressed. The hydrocarbon gas is not particularly limited, but 3 ≧ n is desirable in the CnHm composition. This is because the low production cost and the physical properties of the decomposition products are good.

次に、粉末材料のバルク内の改質を行う。バルク内改質は電気化学的にLiを挿入・脱離し得る装置を用いて行うことが望ましい。特に装置構造を限定することはないが、例えば図2に示すバルク内改質装置20を用いてバルク内改質を行うことができる。バルク内改質装置20は、有機溶媒23で満たされた浴槽27と、浴槽27内に配置され、電源26の一方に接続された陽電極(リチウム源、改質源)21と、浴槽27内に配置され、電源26の他方に接続された粉末格納容器25と、陽電極21と粉末格納容器25との間に設けられたセパレータ24とを有している。粉末格納容器25には、酸化ケイ素の粉末22が格納される。そして、粉末格納容器には、酸化ケイ素粒子を格納し、電源により酸化ケイ素粒子を格納した粉末格納容器と陽電極(リチウム源)に電圧をかける。これにより、酸化ケイ素粒子にリチウムを挿入、脱離することができるため、酸化ケイ素の粉末を改質できる。   Next, modification in the bulk of the powder material is performed. In-bulk reforming is desirably performed using an apparatus capable of electrochemically inserting and extracting Li. Although the apparatus structure is not particularly limited, for example, bulk reforming can be performed using the bulk reforming apparatus 20 shown in FIG. The in-bulk reformer 20 includes a bathtub 27 filled with an organic solvent 23, a positive electrode (lithium source, reforming source) 21 disposed in the bathtub 27 and connected to one of the power sources 26, And a separator 24 provided between the positive electrode 21 and the powder storage container 25. The powder storage container 25 is connected to the other side of the power source 26. The powder storage container 25 stores silicon oxide powder 22. The powder storage container stores silicon oxide particles, and a voltage is applied to the powder storage container and the positive electrode (lithium source) storing the silicon oxide particles by a power source. Thereby, since lithium can be inserted into and desorbed from the silicon oxide particles, the silicon oxide powder can be modified.

浴槽内の有機溶媒として、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどを用いることができる。また、有機溶媒に含まれる電解質塩として、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などを用いることができる。As the organic solvent in the bath, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, fluoromethyl methyl carbonate, difluoromethyl methyl carbonate, and the like can be used. Further, as an electrolyte salt contained in the organic solvent, lithium hexafluorophosphate (LiPF 6), or the like can be used lithium tetrafluoroborate (LiBF 4).

陽電極はLi箔を用いてもよく、また、Li含有化合物を用いてもよい。Li含有化合物として、炭酸リチウム、酸化リチウム、コバルト酸リチウム、オリビン鉄リチウム、ニッケル酸リチウム、リン酸バナジウムリチウムなどが挙げられる。   The positive electrode may use a Li foil or a Li-containing compound. Examples of the Li-containing compound include lithium carbonate, lithium oxide, lithium cobaltate, lithium olivine, lithium nickelate, and lithium vanadium phosphate.

また、改質は熱ドープ法を使用して行ってもよい。この場合、例えば、粉末材料をLiH粉やLi粉と混合し、非酸化雰囲気下で加熱をすることで改質可能である。非酸化雰囲気としては、例えば、Ar雰囲気などが使用できる。より具体的には、まず、Ar雰囲気下でLiH粉又はLi粉と酸化ケイ素粉末を十分に混ぜ、封止を行い、封止した容器ごと攪拌することで均一化する。その後、700〜750℃の範囲で加熱し改質を行う。またこの場合、Liをケイ素化合物から脱離するには、加熱後の粉末を十分に冷却し、その後アルコールやアルカリ水、弱酸や純水で洗浄する方法などを使用できる。   The modification may be performed using a thermal doping method. In this case, for example, the powder material can be modified by mixing with LiH powder or Li powder and heating in a non-oxidizing atmosphere. For example, an Ar atmosphere can be used as the non-oxidizing atmosphere. More specifically, first, LiH powder or Li powder and silicon oxide powder are sufficiently mixed in an Ar atmosphere, sealed, and homogenized by stirring the sealed container. Thereafter, the reforming is performed by heating in the range of 700 to 750 ° C. In this case, in order to desorb Li from the silicon compound, a method of sufficiently cooling the heated powder and then washing with alcohol, alkaline water, weak acid or pure water can be used.

酸還元反応を用いた改質法では、10質量%のリチウム片を加えたビフェニルのテトラヒドロフラン(THF)1mol/L溶液に20℃、10時間含浸後、粉末を濾取し、次にナフタレンのTHF2mol/L溶液に20℃、20時間含浸後、粉末を濾取し、次にp−ベンゾキノンのTHF1mol/L溶液に20℃、2時間含浸後、粉末を濾取し、更に炭酸リチウム飽和水溶液中で攪拌し、粉末を濾取する。次に、洗浄処理後のケイ素化合物を減圧下で乾燥処理する。   In the reforming method using an acid reduction reaction, a 1 mol / L solution of biphenyl in tetrahydrofuran (THF) added with 10% by mass of lithium is impregnated at 20 ° C. for 10 hours, and then the powder is collected by filtration. / L solution was impregnated at 20 ° C. for 20 hours, and then the powder was collected by filtration. Next, p-benzoquinone was impregnated in THF 1 mol / L solution at 20 ° C. for 2 hours, and the powder was collected by filtration. Stir and filter off the powder. Next, the silicon compound after the washing treatment is dried under reduced pressure.

続いて、上記ケイ素系活物質と前記の炭素系活物質を混合すると共に、負極活物質粒子と負極結着剤、導電助剤など他の材料とを混合し負極合剤としたのち、有機溶剤又は水などを加えてスラリーとする。   Subsequently, the silicon-based active material and the carbon-based active material are mixed, and the negative electrode active material particles are mixed with other materials such as a negative electrode binder and a conductive additive to form a negative electrode mixture, and then an organic solvent. Or water etc. are added and it is set as a slurry.

次に負極集電体の表面に合剤スラリーを塗布し、乾燥させて図1に示す負極活物質層12を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。   Next, a mixture slurry is applied to the surface of the negative electrode current collector and dried to form the negative electrode active material layer 12 shown in FIG. At this time, you may perform a heat press etc. as needed.

[リチウムイオン二次電池]
次に、上記した負極を用いた非水電解質二次電池の具体例として、リチウムイオン二次電池について説明する。
[Lithium ion secondary battery]
Next, a lithium ion secondary battery will be described as a specific example of a non-aqueous electrolyte secondary battery using the above-described negative electrode.

[ラミネートフィルム型二次電池の構成]
ラミネートフィルム型二次電池は、主にシート状の外装部材の内部に積層電極体が収納されたものである。この電極体は正極、負極間にセパレータを有し、積層されたものである。正極に正極リードが取り付けられ、負極に負極リードが取り付けられている。電極体の最外周部は保護テープにより保護されている。
[Configuration of laminated film type secondary battery]
A laminated film type secondary battery is one in which a laminated electrode body is accommodated mainly in a sheet-like exterior member. This electrode body has a separator between a positive electrode and a negative electrode and is laminated. A positive electrode lead is attached to the positive electrode, and a negative electrode lead is attached to the negative electrode. The outermost peripheral part of the electrode body is protected by a protective tape.

正負極リードは、例えば、外装部材の内部から外部に向かって一方向で導出されている。正極リードは、例えば、アルミニウムなどの導電性材料により形成され、負極リードは、例えば、ニッケル、銅などの導電性材料により形成される。   For example, the positive and negative electrode leads are led out in one direction from the inside of the exterior member to the outside. The positive electrode lead is formed of a conductive material such as aluminum, and the negative electrode lead is formed of a conductive material such as nickel or copper.

外装部材は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は、例えばナイロンなどである。   The exterior member is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order, and this laminate film is a fusion of two films so that the fusion layer faces the electrode body. The outer peripheral edge portions of the layers are bonded together with an adhesive or the like. The fused part is, for example, a film such as polyethylene or polypropylene, and the metal part is aluminum foil or the like. The protective layer is, for example, nylon.

外装部材と正負極リードとの間には、外気侵入防止のため密着フィルムが挿入されている。この材料は、例えばポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。   An adhesion film is inserted between the exterior member and the positive and negative electrode leads to prevent intrusion of outside air. This material is, for example, polyethylene, polypropylene, or polyolefin resin.

[正極]
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
正極集電体は、例えば、アルミニウムなどの導電性材料により形成されている。
正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいてもよい。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
[Positive electrode]
The positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, similarly to the negative electrode 10 of FIG.
The positive electrode current collector is made of, for example, a conductive material such as aluminum.
The positive electrode active material layer includes one or more positive electrode materials capable of occluding and releasing lithium ions, and includes other materials such as a binder, a conductive additive, and a dispersant depending on the design. You may go out. In this case, details regarding the binder and the conductive additive are the same as, for example, the negative electrode binder and the negative electrode conductive additive already described.

正極活物質材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物が挙げられる。これら記述される正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、Liy12あるいはLiz2PO4で表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。y、zの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦y≦1.10、0.05≦z≦1.10で示される。As the positive electrode active material, a lithium-containing compound is desirable. Examples of the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element. Among these described positive electrode materials, compounds having at least one of nickel, iron, manganese, and cobalt are preferable. These chemical formulas are represented by, for example, Li y M 1 O 2 or Li z M 2 PO 4 . In the formula, M 1 and M 2 represent at least one transition metal element. The values of y and z vary depending on the battery charge / discharge state, but are generally expressed as 0.05 ≦ y ≦ 1.10 and 0.05 ≦ z ≦ 1.10.

リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiyCoO2)、リチウムニッケル複合酸化物(LizNiO2)、リチウムニッケルコバルト複合酸化物などが挙げられる。リチウムニッケルコバルト複合酸化物としては、例えばリチウムニッケルコバルトアルミニウム複合酸化物(NCA)やリチウムニッケルコバルトマンガン複合酸化物(NCM)などが挙げられる。
リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO4)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnuPO4(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られると共に、優れたサイクル特性も得られるからである。
Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li y CoO 2 ), lithium nickel composite oxide (Li z NiO 2 ), and lithium nickel cobalt composite oxide. . Examples of the lithium nickel cobalt composite oxide include lithium nickel cobalt aluminum composite oxide (NCA) and lithium nickel cobalt manganese composite oxide (NCM).
Examples of the phosphoric acid compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 <u <1)). Is mentioned. This is because when these positive electrode materials are used, a high battery capacity can be obtained and excellent cycle characteristics can be obtained.

[負極]
負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体の両面に負極活物質層を有している。この負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
[Negative electrode]
The negative electrode has the same configuration as the negative electrode 10 for lithium ion secondary battery in FIG. 1 described above, and has, for example, a negative electrode active material layer on both sides of the current collector. This negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. Thereby, precipitation of lithium metal on the negative electrode can be suppressed.

正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。   The positive electrode active material layer is provided on part of both surfaces of the positive electrode current collector, and the negative electrode active material layer is also provided on part of both surfaces of the negative electrode current collector. In this case, for example, the negative electrode active material layer provided on the negative electrode current collector is provided with a region where there is no opposing positive electrode active material layer. This is to perform a stable battery design.

上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることがない。そのため、負極活物質層の状態が形成直後のまま維持され、これによって負極活物質の組成など、充放電の有無に依存せずに再現性よく組成などを正確に調べることができる。   In the region where the negative electrode active material layer and the positive electrode active material layer do not face each other, there is almost no influence of charge / discharge. Therefore, the state of the negative electrode active material layer is maintained as it is, so that the composition and the like of the negative electrode active material can be accurately examined with good reproducibility without depending on the presence or absence of charge / discharge.

[セパレータ]
セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有してもよい。合成樹脂として、例えばポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[Separator]
The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing current short-circuiting due to bipolar contact. This separator is formed of a porous film made of, for example, a synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.

[電解液]
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいてもよい。
[Electrolyte]
At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution). This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.

溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2−ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。よりよい特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。   For example, a non-aqueous solvent can be used as the solvent. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran. Among these, it is desirable to use at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. This is because better characteristics can be obtained. In this case, more advantageous characteristics can be obtained by combining a high viscosity solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.

合金系負極を用いる場合、特に溶媒としてハロゲン化鎖状炭酸エステル又はハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において負極活物質表面に安定な被膜が形成されるからである。ハロゲン化鎖状炭酸エステルは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。ハロゲン化環状炭酸エステルは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。   When using an alloy-based negative electrode, it is preferable that at least one of a halogenated chain carbonate or a halogenated cyclic carbonate is contained as a solvent. This is because a stable coating is formed on the surface of the negative electrode active material during charging / discharging, particularly during charging. The halogenated chain carbonate is a chain carbonate having halogen as a constituent element (at least one hydrogen is replaced by a halogen). The halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (at least one hydrogen is replaced by halogen).

ハロゲンの種類は特に限定されないが、フッ素がより好ましい。他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は、多いほど望ましい。得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。   The type of halogen is not particularly limited, but fluorine is more preferable. This is because a film having a higher quality than other halogens is formed. Also, the larger the number of halogens, the better. This is because the resulting coating is more stable and the decomposition reaction of the electrolytic solution is reduced.

ハロゲン化鎖状炭酸エステルは、例えば炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4−フルオロ−1,3−ジオキソラン−2−オンあるいは4,5−ジフルオロ−1,3−ジオキソラン−2−オンなどが挙げられる。   Examples of the halogenated chain carbonate include fluoromethyl methyl carbonate and difluoromethyl methyl carbonate. Examples of the halogenated cyclic carbonate include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.

溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。   The solvent additive preferably contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed. Examples of the unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.

また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。   The solvent additive preferably contains sultone (cyclic sulfonic acid ester). This is because the chemical stability of the battery is improved. Examples of sultone include propane sultone and propene sultone.

更に、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えばプロパンジスルホン酸無水物が挙げられる。   Furthermore, the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved. Examples of the acid anhydride include propanedisulfonic acid anhydride.

電解質塩は、例えばリチウム塩などの軽金属塩のいずれか1種以上含むことができる。リチウム塩として、例えば六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などが挙げられる。The electrolyte salt can include any one or more of light metal salts such as lithium salts. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).

電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。   The content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.

[ラミネートフィルム型二次電池の製造方法]
最初に上記した正極材を用いて正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱してもよく、また圧縮を複数回繰り返してもよい。
[Production method of laminated film type secondary battery]
First, a positive electrode is manufactured using the positive electrode material described above. First, a positive electrode active material and, if necessary, a binder, a conductive additive and the like are mixed to form a positive electrode mixture, and then dispersed in an organic solvent to form a positive electrode mixture slurry. Subsequently, the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer. Finally, the positive electrode active material layer is compression molded with a roll press or the like. At this time, heating may be performed, and compression may be repeated a plurality of times.

次に、上記したリチウムイオン二次電池用負極の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。   Next, a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector using the same operation procedure as that for producing the negative electrode for a lithium ion secondary battery described above.

正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていてもよい(図1を参照)。   When producing the positive electrode and the negative electrode, respective active material layers are formed on both surfaces of the positive electrode and the negative electrode current collector. At this time, the active material application length of both surface portions may be shifted in either electrode (see FIG. 1).

続いて、電解液を調製する。続いて、超音波溶接などにより、正極集電体に正極リードを取り付けると共に、負極集電体に負極リードを取り付ける。続いて、正極と負極とをセパレータを介して積層させて電極体を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように電極体を成型する。続いて、折りたたんだフィルム状の外装部材の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、電極体を封入する。正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調製した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。
以上のようにして、ラミネートフィルム型二次電池を製造することができる。
Subsequently, an electrolytic solution is prepared. Subsequently, the positive electrode lead is attached to the positive electrode current collector and the negative electrode lead is attached to the negative electrode current collector by ultrasonic welding or the like. Subsequently, a positive electrode and a negative electrode are laminated via a separator to produce an electrode body, and a protective tape is adhered to the outermost periphery. Next, the electrode body is molded so as to have a flat shape. Subsequently, after sandwiching the wound electrode body between the folded film-shaped exterior members, the insulating portions of the exterior members are bonded to each other by a thermal fusion method, and the electrode body is sealed in a released state only in one direction. . An adhesion film is inserted between the positive electrode lead and the negative electrode lead and the exterior member. A predetermined amount of the prepared electrolytic solution is introduced from the release section, and vacuum impregnation is performed. After impregnation, the release part is bonded by a vacuum heat fusion method.
As described above, a laminated film type secondary battery can be manufactured.

上記作製したラミネートフィルム型二次電池等の本発明の非水電解質二次電池において、充放電時の負極利用率が90%以上99%以下であることが好ましい。
負極利用率を90%以上の範囲とすれば、初回充電効率が低下せず、電池容量の向上を大きくできる。また、負極利用率を99%以下の範囲とすれば、Liが析出してしまうことがなく安全性を確保できる。
In the non-aqueous electrolyte secondary battery of the present invention such as the produced laminate film type secondary battery, the negative electrode utilization rate during charge / discharge is preferably 90% or more and 99% or less.
If the negative electrode utilization rate is in the range of 90% or more, the initial charge efficiency does not decrease, and the battery capacity can be greatly improved. Moreover, if the negative electrode utilization rate is in the range of 99% or less, Li is not precipitated and safety can be ensured.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

以下の手順により、ラミネートフィルム型二次電池を作製した。
最初に正極を作製した。正極活物質はリチウムニッケルコバルトマンガン複合酸化物(NCM)であるLiCo0.33Ni0.33Mn0.332を96質量部と、正極導電助剤(ケッチェンブラック)2質量部と、正極結着剤(ポリフッ化ビニリデン、PVDF)2質量部とを混合し正極合剤とした。続いて正極合剤を有機溶剤(N−メチル−2−ピロリドン、NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体(アルミニウムシート)の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmを用いた。最後にロールプレスで圧縮成型を行った。
A laminate film type secondary battery was produced by the following procedure.
First, a positive electrode was produced. The positive electrode active material is 96 parts by mass of LiCo 0.33 Ni 0.33 Mn 0.33 O 2 which is a lithium nickel cobalt manganese composite oxide (NCM), 2 parts by mass of a positive electrode conductive additive (Ketjen Black), and a positive electrode binder (polyfluoride). 2 parts by mass of vinylidene chloride, PVDF) was mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone, NMP) to obtain a paste slurry. Then, the slurry was apply | coated to both surfaces of the positive electrode electrical power collector (aluminum sheet) with the coating apparatus which has a die head, and it dried with the hot air type drying apparatus. At this time, the positive electrode current collector had a thickness of 15 μm. Finally, compression molding was performed with a roll press.

次に負極を作製した。負極活物質は金属ケイ素と二酸化ケイ素を混合した原料を反応炉へ設置し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取り出しボールミルで粉砕した。粒径を調整した後、必要に応じて熱分解CVDを行うことで炭素層を被覆した。作製した粉末はLiHを用いて740℃、アルゴン雰囲気下で2時間、熱ドープを行った。作製した粉末は純水とエタノール混合液で洗浄し、残渣及び異物除去を行って、負極ケイ素系活物質粒子を得た。
続いて、負極ケイ素系活物質粒子と人造黒鉛、天然黒鉛(必要に応じてハードカーボン、ソフトカーボンを一部配合)を10:80:10の重量比で配合した。次に配合した負極活物質、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(アセチレンブラック)、スチレンブタジエンコポリマー(以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)を90.5〜92.5:1:1:2.5:3〜5の乾燥重量比で混合した後、純水で希釈し負極合材スラリーとした。最後に、真空雰囲気中で100℃×1時間の乾燥を行った。
Next, a negative electrode was produced. The negative electrode active material is a mixture of metallic silicon and silicon dioxide, placed in a reactor, and vaporized in a vacuum atmosphere of 10 Pa is deposited on the adsorption plate. After cooling sufficiently, the deposit is taken out. It grind | pulverized with the ball mill. After adjusting the particle size, the carbon layer was coated by performing thermal decomposition CVD as necessary. The produced powder was thermally doped with LiH at 740 ° C. in an argon atmosphere for 2 hours. The produced powder was washed with pure water and ethanol mixed solution, and the residue and foreign matter were removed to obtain negative electrode silicon-based active material particles.
Subsequently, negative electrode silicon-based active material particles, artificial graphite, and natural graphite (some blended with hard carbon and soft carbon as needed) were blended at a weight ratio of 10:80:10. Next, the blended negative electrode active material, conductive auxiliary agent 1 (carbon nanotube, CNT), conductive auxiliary agent 2 (acetylene black), styrene butadiene copolymer (hereinafter referred to as SBR), carboxymethylcellulose (hereinafter referred to as CMC) 90 After mixing at a dry weight ratio of 5-92.5: 1: 1: 2.5: 3-5, the mixture was diluted with pure water to obtain a negative electrode mixture slurry. Finally, drying was performed at 100 ° C. for 1 hour in a vacuum atmosphere.

また、ケイ素系活物質粒子、導電助剤1、導電助剤2、負極結着剤の前駆体(ポリアミック酸)とを83:10:2:5の乾燥重量比で混合したのち、NMPで希釈してペースト状の負極合剤スラリーとした。この場合には、ポリアミック酸の溶媒としてNMPを用いた。続いて、コーティング装置で負極集電体の両面に負極合剤スラリーを塗布してから乾燥させた。この負極集電体としては、電解銅箔(厚さ=15μm)を用いた。最後に、真空雰囲気中で400℃で1時間焼成した。これにより、負極結着剤(ポリイミド)が形成された。
本実施例中ケイ素酸化物100%のみ本組成を用いた。
Further, after mixing silicon-based active material particles, conductive additive 1, conductive additive 2, and negative electrode binder precursor (polyamic acid) at a dry weight ratio of 83: 10: 2: 5, diluted with NMP. Thus, a paste-like negative electrode mixture slurry was obtained. In this case, NMP was used as a solvent for the polyamic acid. Subsequently, the negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector with a coating apparatus and then dried. As this negative electrode current collector, an electrolytic copper foil (thickness = 15 μm) was used. Finally, baking was performed at 400 ° C. for 1 hour in a vacuum atmosphere. Thereby, the negative electrode binder (polyimide) was formed.
In this example, this composition was used only for silicon oxide 100%.

次に、溶媒エチレンカーボネート(EC)及びジメチルカーボネート(DMC)を混合したのち、電解質塩(六フッ化リン酸リチウム:LiPF6)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でEC:DMC=30:70とし、電解質塩の含有量を溶媒に対して1.0mol/kgとした。得られた電解液に(4−フルオロ−1,3−ジオキソラン−2−オン(FEC))、ビニレンカーボネート(VC)をそれぞれ2wt%、1wt%添加した。Next, after mixing solvent ethylene carbonate (EC) and dimethyl carbonate (DMC), electrolyte salt (lithium hexafluorophosphate: LiPF 6 ) was dissolved to prepare an electrolytic solution. In this case, the composition of the solvent was EC: DMC = 30: 70 by volume, and the content of the electrolyte salt was 1.0 mol / kg with respect to the solvent. 2 wt% and 1 wt% of (4-fluoro-1,3-dioxolan-2-one (FEC)) and vinylene carbonate (VC) were added to the obtained electrolytic solution, respectively.

次に、以下のようにして二次電池を組み立てた。最初に、正極集電体部と塗布部を有するシートを打ち抜いた。この時正極塗布部の幅は32mm×35mmであった。続いて、負極集電体部と塗布部を有するシートを打ち抜いた。負極塗布部の幅は34mm×37mmであった。打ち抜きシートは複数枚用意し、片面正極塗布部を打ち抜いたシートを1番下に敷いた後、セパレータ、両面塗布負極、セパレータ、両面塗布正極の順に18層積層し、最後に正極片面部を負極塗布部に合うようセパレータを介して積層した。
正極集電体にはアルミリードを超音波溶接し、負極集電体にはニッケルリードを溶接した。
積層体はPET(ポリエチレンテレフタレート)保護テープで固定した。
セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムを挟んだ積層フィルム10μmを用いた。続いて、外装部材間に電極体を挟んだのち、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及びポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調製した電解液を注入し、真空雰囲気下で含浸した後、熱融着し封止した。
Next, a secondary battery was assembled as follows. First, a sheet having a positive electrode current collector portion and a coating portion was punched out. At this time, the width of the positive electrode application part was 32 mm × 35 mm. Subsequently, a sheet having a negative electrode current collector portion and a coating portion was punched out. The width of the negative electrode application part was 34 mm × 37 mm. Prepare a plurality of punched sheets, lay a sheet with the single-sided positive electrode coating part on the bottom, and stack 18 layers in the order of separator, double-sided negative electrode, separator, double-sided positive electrode. It laminated | stacked through the separator so that it might suit an application part.
An aluminum lead was ultrasonically welded to the positive electrode current collector, and a nickel lead was welded to the negative electrode current collector.
The laminate was fixed with a PET (polyethylene terephthalate) protective tape.
As the separator, a laminated film having a thickness of 10 μm was used in which a film mainly composed of porous polyethylene was sandwiched between films mainly composed of porous polypropylene. Subsequently, after sandwiching the electrode body between the exterior members, the outer peripheral edges except for one side were heat-sealed, and the electrode body was housed inside. As the exterior member, an aluminum laminated film in which a nylon film, an aluminum foil, and a polypropylene film were laminated was used. Subsequently, an electrolyte prepared from the opening was injected, impregnated in a vacuum atmosphere, and then heat-sealed and sealed.

サイクル特性については、以下のようにして調べた。最初に電池安定化のため25℃の雰囲気下、2回充放電を行った。次に2回目の放電容量に対して1/5に相当する電流値で3回目の放電を行った。電池サイクル試験は3回目の放電容量で得られた数値(本実験では約1A)に対して、電流値を倍増させてサイクル試験を行った。この時、電流値を増加させた最初の放電を1サイクル目とした。なお充電時の電流値は2サイクル目に得られた放電容量の1/5で行った。
続いて総サイクル数が500サイクル(初期充放電、2回目、3回目充放電を除いて500サイクル)となるまで充放電を行い、その都度放電容量を測定した。最後に500サイクル目の放電容量を電流値を増加させた1サイクル目の放電容量で割り、%表示のため100を掛け、容量の維持率を算出した。1,2回目充放電条件として、4.2Vに達するまで定電流密度0.7mA/cm2で充電し、4.2Vに達した段階で4.2V定電圧で電流密度が0.25mA/cm2に達するまで充電した。また放電時は0.7mA/cm2の定電流密度で電池電圧が2.0Vに達するまで放電した。
サイクル特性は得られた電池容量から算出した電流値を用い、放電レートとした。充電レートは前述したように2サイクル目に得られた放電容量の1/5で行った。
電池塗布面積は電池を解体し算出可能である。購入後0.7mA/cm2で放電を行い2回目の放電容量を算出した(なお、市販品の場合は1回目の充放電はなされていると仮定した)。得られた放電容量の1/5に相当する電流量(ここでは一般的にCレートと表現し、0.2C相当である)で放電を行う。その時得られる容量から1サイクル目以降のサイクルに伴う放電電流量を定義する。
The cycle characteristics were examined as follows. First, in order to stabilize the battery, charging and discharging were performed twice in an atmosphere at 25 ° C. Next, a third discharge was performed at a current value corresponding to 1/5 of the second discharge capacity. In the battery cycle test, the current value was doubled with respect to the numerical value (about 1 A in this experiment) obtained at the third discharge capacity, and the cycle test was performed. At this time, the first discharge in which the current value was increased was regarded as the first cycle. The current value during charging was 1/5 of the discharge capacity obtained in the second cycle.
Subsequently, charging / discharging was performed until the total number of cycles reached 500 (500 cycles excluding initial charge / discharge, second charge, and third charge / discharge), and the discharge capacity was measured each time. Finally, the discharge capacity at the 500th cycle was divided by the discharge capacity at the first cycle in which the current value was increased, and multiplied by 100 for% display to calculate the capacity maintenance rate. As the first and second charging / discharging conditions, the battery was charged at a constant current density of 0.7 mA / cm 2 until 4.2 V was reached, and when the voltage reached 4.2 V, the current density was 0.25 mA / cm at 4.2 V constant voltage. Charged until 2 was reached. During discharge, the battery was discharged at a constant current density of 0.7 mA / cm 2 until the battery voltage reached 2.0V.
For the cycle characteristics, the current value calculated from the obtained battery capacity was used as the discharge rate. The charge rate was 1/5 of the discharge capacity obtained in the second cycle as described above.
The battery application area can be calculated by disassembling the battery. After the purchase, discharge was performed at 0.7 mA / cm 2 to calculate the second discharge capacity (in the case of a commercial product, it was assumed that the first charge / discharge was performed). Discharging is performed with a current amount equivalent to 1/5 of the obtained discharge capacity (generally expressed as a C rate and corresponding to 0.2 C here). The amount of discharge current accompanying the first and subsequent cycles is defined from the capacity obtained at that time.

ケイ素系活物質の初回充放電特性を調べる場合には、初回効率(%)=(初回放電容量/初回充電容量)×100を算出した。雰囲気温度は、サイクル特性を調べた場合と同様にした。ケイ素系活物質の電極はケイ素系活物質とポリアクリル酸を85:15wt%の比率で混合し、塗布を行った後、90℃で1時間乾燥した。電極はφ15で打ち抜き、対極Liで0VまでCCCV充電を行った。この時の電流密度は0.2mA/cm2であり、終止は電流値が0.1mAとした。その後、CC放電を行い1.2V時における容量からケイ素系活物質の初期効率を算出した。When examining the initial charge / discharge characteristics of the silicon-based active material, the initial efficiency (%) = (initial discharge capacity / initial charge capacity) × 100 was calculated. The ambient temperature was the same as when the cycle characteristics were examined. The silicon-based active material electrode was prepared by mixing a silicon-based active material and polyacrylic acid in a ratio of 85:15 wt%, coating, and drying at 90 ° C. for 1 hour. The electrode was punched with φ15, and CCCV charging was performed to 0 V with the counter electrode Li. The current density at this time was 0.2 mA / cm 2 , and the current value was 0.1 mA at the end. Thereafter, CC discharge was performed, and the initial efficiency of the silicon-based active material was calculated from the capacity at 1.2 V.

[実施例1−1〜1−7、比較例1−1〜1−3]
SiOx(x=1.0)10wt%
Si(111)結晶面に起因する回折ピークの半値幅(2θ)=1.845°、結晶面に起因する結晶子サイズ=4.62nm
終止負極律束
EC:DMC(3.7vol%)
LiPF6 1.0mol/kg
FEC 2wt%、VC 1wt%
正極NCM
A>B
負極利用率93%
dQ/dV=あり
SiO初期効率80%
Liシリケートあり

Figure 2017056932
[Examples 1-1 to 1-7, Comparative Examples 1-1 to 1-3]
SiO x (x = 1.0) 10 wt%
Half width (2θ) of diffraction peak due to Si (111) crystal plane = 1.845 °, crystallite size due to crystal plane = 4.62 nm
End negative electrode regulation EC: DMC (3.7 vol%)
LiPF 6 1.0 mol / kg
FEC 2wt%, VC 1wt%
Positive electrode NCM
A> B
Negative electrode utilization rate 93%
dQ / dV = Yes SiO initial efficiency 80%
Li silicate available
Figure 2017056932

電池放電電流を増加させて電池サイクル特性を評価した。
ケイ素系活物質は高電位側にリチウムシリケートの容量を持ち、低レート時は高電位側へシフトするため、一部リチウムシリケートが分解することで電池特性が悪化した。
放電電流を増加させることで、負極放電電位が上昇し、リチウムシリケートが分解する電位まで上昇しづらくなる。その結果、電池サイクル特性が向上する結果となった。
The battery cycle characteristics were evaluated by increasing the battery discharge current.
Since the silicon-based active material has a lithium silicate capacity on the high potential side and shifts to the high potential side at low rates, the battery characteristics deteriorated due to partial decomposition of the lithium silicate.
By increasing the discharge current, the negative electrode discharge potential rises, and it becomes difficult to rise to a potential at which lithium silicate decomposes. As a result, the battery cycle characteristics were improved.

[実施例2−1〜2−5、比較例2−1,2−2]
SiOx10wt%
Si(111)結晶面に起因する回折ピークの半値幅(2θ)=1.845°、結晶面に起因する結晶子サイズ=4.62nm
終止負極律束
EC:DMC(3.7vol%)
LiPF6 1.0mol/kg
FEC 2wt%、VC 1wt%
正極NCM
A>B
負極利用率93%
dQ/dV=あり
SiO初期効率80%
Liシリケートあり
電流量倍率50倍

Figure 2017056932
[Examples 2-1 to 2-5, Comparative examples 2-1 and 2-2]
SiO x 10wt%
Half width (2θ) of diffraction peak due to Si (111) crystal plane = 1.845 °, crystallite size due to crystal plane = 4.62 nm
End negative electrode regulation EC: DMC (3.7 vol%)
LiPF 6 1.0 mol / kg
FEC 2wt%, VC 1wt%
Positive electrode NCM
A> B
Negative electrode utilization rate 93%
dQ / dV = Yes SiO initial efficiency 80%
Li silicate with current magnification 50 times
Figure 2017056932

酸素が十分にない場合、容量維持率が著しく悪化する。また、酸素量が多すぎる場合、導電性の低下が生じ、SiO材の容量が設計通り発現しなかった。炭素材のみ充放電を行ったが、容量増加が得られず、評価を中断している。このように、SiOx(0.5≦x≦1.6)の範囲で、良好な電池特性を得られることが確認された。When there is not enough oxygen, the capacity retention rate is significantly deteriorated. Moreover, when there was too much oxygen amount, electroconductivity fall occurred and the capacity | capacitance of SiO material did not express as designed. Only the carbon material was charged / discharged, but the capacity increase was not obtained and the evaluation was interrupted. Thus, it was confirmed that good battery characteristics can be obtained in the range of SiO x (0.5 ≦ x ≦ 1.6).

[実施例3−1,3−2]
SiOx(x=1.0)10wt%
Si(111)結晶面に起因する回折ピークの半値幅(2θ)=1.845°、結晶面に起因する結晶子サイズ=4.62nm
EC:DMC(3.7vol%)
LiPF6 1.0mol/kg
FEC 2wt%、VC 1wt%
正極NCM
A>B
負極利用率93%
dQ/dV=あり
Liシリケートあり
電流量倍率50倍

Figure 2017056932
[Examples 3-1 and 3-2]
SiO x (x = 1.0) 10 wt%
Half width (2θ) of diffraction peak due to Si (111) crystal plane = 1.845 °, crystallite size due to crystal plane = 4.62 nm
EC: DMC (3.7 vol%)
LiPF 6 1.0 mol / kg
FEC 2wt%, VC 1wt%
Positive electrode NCM
A> B
Negative electrode utilization rate 93%
dQ / dV = Yes Li silicate Yes Current amount magnification 50 times
Figure 2017056932

ケイ素系活物質の初期効率を変化させ、正極律束で終止電位がかかるように評価した。
正極側の放電カーブは緩やかな傾斜をもっているため、電池インピーダンスの影響を受けやすく、高出力サイクルを行った際、十分な電池容量が得られにくいこととなる。また放電末期の変曲点より低い電位まで正極を引っ張るため正極が劣化しやすくなる。
The initial efficiency of the silicon-based active material was changed, and evaluation was made so that the end potential was applied by positive electrode regulation.
Since the discharge curve on the positive electrode side has a gentle slope, it is easily influenced by the battery impedance, and it is difficult to obtain a sufficient battery capacity when performing a high output cycle. Further, since the positive electrode is pulled to a potential lower than the inflection point at the end of discharge, the positive electrode is likely to deteriorate.

[実施例1−4,4−1〜4−5]
SiOx(x=1.0)10wt%
Si(111)結晶面に起因する回折ピークの半値幅(2θ)=1.845°、結晶面に起因する結晶子サイズ=4.62nm
終止負極律束
EC:DMC(3.7vol%)
LiPF6 1.0mol/kg
FEC 2wt%、VC 1wt%
正極NCM
A>B
dQ/dV=あり
SiO初期効率80%
Liシリケートあり
電流量倍率50倍

Figure 2017056932
[Examples 1-4, 4-1 to 4-5]
SiO x (x = 1.0) 10 wt%
Half width (2θ) of diffraction peak due to Si (111) crystal plane = 1.845 °, crystallite size due to crystal plane = 4.62 nm
End negative electrode regulation EC: DMC (3.7 vol%)
LiPF 6 1.0 mol / kg
FEC 2wt%, VC 1wt%
Positive electrode NCM
A> B
dQ / dV = Yes SiO initial efficiency 80%
Li silicate with current magnification 50 times
Figure 2017056932

負極利用率が90%未満の場合、維持率は増加するが、負極として使用しない部位が多く存在する設計となり、電池容量向上がしづらくなる。
また、負極利用率を100%とした場合は電池容量が増加すると考えられるが、設計上Li析出が懸念されるため最大利用率を99%とすることが望ましい。以上より、電池容量増加を考慮した場合、負極利用率は90%以上99%以下であることが望ましいことが分かった。
When the negative electrode utilization rate is less than 90%, the maintenance rate increases, but there are many parts that are not used as the negative electrode, which makes it difficult to improve the battery capacity.
Further, when the negative electrode utilization rate is set to 100%, the battery capacity is considered to increase. However, since there is a concern about Li precipitation in design, it is desirable to set the maximum utilization rate to 99%. From the above, it was found that the negative electrode utilization rate is desirably 90% or more and 99% or less in consideration of an increase in battery capacity.

[実施例1−4,5−1]
SiOx(x=1.0)10wt%
Si(111)結晶面に起因する回折ピークの半値幅(2θ)=1.845°、結晶面に起因する結晶子サイズ=4.62nm
終止負極律束
EC:DMC(3.7vol%)
LiPF6 1.0mol/kg
FEC 2wt%、VC 1wt%
正極NCM
負極利用率93%
dQ/dV=あり
電流量倍率50倍

Figure 2017056932
[Examples 1-4 and 5-1]
SiO x (x = 1.0) 10 wt%
Half width (2θ) of diffraction peak due to Si (111) crystal plane = 1.845 °, crystallite size due to crystal plane = 4.62 nm
End negative electrode regulation EC: DMC (3.7 vol%)
LiPF 6 1.0 mol / kg
FEC 2wt%, VC 1wt%
Positive electrode NCM
Negative electrode utilization rate 93%
dQ / dV = current amount magnification 50 times
Figure 2017056932

ケイ素酸化物の改質を行わない場合、Liシリケートが生成せず、またSi−MAS−NMRから得られるケミカルシフトピーク比も逆転することとなる。
この場合、電池維持率は大きく低下することはないが、不可逆容量の多い、ケイ素酸化物を使用した系では電池の容量向上に繋がりにくい。
When the silicon oxide is not modified, Li silicate is not generated, and the chemical shift peak ratio obtained from Si-MAS-NMR is also reversed.
In this case, the battery retention rate does not greatly decrease, but a system using silicon oxide having a large irreversible capacity is unlikely to increase the capacity of the battery.

[実施例1−4,6−1〜6−6、比較例6−1]
SiOx(x=1.0)
Si(111)結晶面に起因する回折ピークの半値幅(2θ)=1.845°、結晶面に起因する結晶子サイズ=4.62nm
終止負極律束
EC:DMC(3.7vol%)
LiPF6 1.0mol/kg
FEC 2wt%、VC 1wt%
正極NCM
A>B
負極利用率93%
dQ/dV=あり
SiO初期効率80%
Liシリケートあり
電流量倍率50倍

Figure 2017056932
[Examples 1-4, 6-1 to 6-6, Comparative Example 6-1]
SiO x (x = 1.0)
Half width (2θ) of diffraction peak due to Si (111) crystal plane = 1.845 °, crystallite size due to crystal plane = 4.62 nm
End negative electrode regulation EC: DMC (3.7 vol%)
LiPF 6 1.0 mol / kg
FEC 2wt%, VC 1wt%
Positive electrode NCM
A> B
Negative electrode utilization rate 93%
dQ / dV = Yes SiO initial efficiency 80%
Li silicate with current magnification 50 times
Figure 2017056932

負極活物質中に占めるケイ素系活物質の割合を変化させ維持率を評価した。
ケイ素系活物質を導入しない炭素負極は最も電池特性が向上する結果となったが、負極容量が向上しないため電池容量向上につながらない。
ケイ素系活物質量が6wt%を超えたあたりで維持率が安定する結果となった。
特に負極中に存在するケイ素系活物質は対極である正極に対して微視的な電位上昇をもたらすため、できる限り均一に分散することが望ましい。均一分散を実現するために必要なケイ素系活物質の割合は6wt%以上であると考えられる。
The maintenance rate was evaluated by changing the proportion of the silicon-based active material in the negative electrode active material.
The carbon negative electrode without introducing the silicon-based active material has the result that the battery characteristics are most improved. However, since the negative electrode capacity is not improved, the battery capacity is not improved.
As a result, the maintenance rate was stabilized when the amount of the silicon-based active material exceeded 6 wt%.
In particular, since the silicon-based active material present in the negative electrode brings about a microscopic potential increase with respect to the positive electrode as the counter electrode, it is desirable to disperse as uniformly as possible. It is considered that the proportion of the silicon-based active material necessary for realizing uniform dispersion is 6 wt% or more.

[実施例1−4,7−1〜7−9]
SiOx(x=1.0)10wt%
終止負極律束
EC:DMC(3.7vol%)
LiPF6 1.0mol/kg
FEC 2wt%、VC 1wt%
正極NCM
A>B
負極利用率93%
dQ/dV=あり
SiO初期効率80%
Liシリケートあり
電流量倍率50倍

Figure 2017056932
[Examples 1-4, 7-1 to 7-9]
SiO x (x = 1.0) 10 wt%
End negative electrode regulation EC: DMC (3.7 vol%)
LiPF 6 1.0 mol / kg
FEC 2wt%, VC 1wt%
Positive electrode NCM
A> B
Negative electrode utilization rate 93%
dQ / dV = Yes SiO initial efficiency 80%
Li silicate with current magnification 50 times
Figure 2017056932

結晶性に応じて容量維持率が変化した。
特に半値幅(2θ)が1.2°以上で、なおかつSi(111)面に起因する結晶子サイズが7.5nm以下の低結晶性材料で高い容量維持率が得られた。特に、非結晶領域では最もよい電池特性が得られた。
The capacity retention rate changed according to the crystallinity.
In particular, a high capacity retention ratio was obtained with a low crystalline material having a half width (2θ) of 1.2 ° or more and a crystallite size attributable to the Si (111) plane of 7.5 nm or less. In particular, the best battery characteristics were obtained in the non-crystalline region.

[実施例1−4,8−1,8−2]
SiOx(x=1.0)10wt%
終止負極律束
EC:DMC(3.7vol%)
LiPF6 1.0mol/kg
FEC 2wt%、VC 1wt%
正極NCM
A>B
負極利用率93%
dQ/dV=あり
SiO初期効率80%
Liシリケートあり
電流量倍率50倍

Figure 2017056932
[Examples 1-4, 8-1, 8-2]
SiO x (x = 1.0) 10 wt%
End negative electrode regulation EC: DMC (3.7 vol%)
LiPF 6 1.0 mol / kg
FEC 2wt%, VC 1wt%
Positive electrode NCM
A> B
Negative electrode utilization rate 93%
dQ / dV = Yes SiO initial efficiency 80%
Li silicate with current magnification 50 times
Figure 2017056932

改質法を電気化学法、酸化還元法を用いて作製した結果、熱をかけずに改質する場合、ケイ素の結晶が進まないため、低結晶状態の改質が可能となる。その結果、電池サイクル維持率は向上する結果となった。   As a result of producing the modification method using an electrochemical method or an oxidation-reduction method, when the modification is performed without applying heat, the crystal of silicon does not advance, so that the modification in a low crystalline state is possible. As a result, the battery cycle maintenance rate was improved.

[実施例8−2,9−1]
Siの結晶性が低い材料を使用して、実施例8−2と同様の手法でドープ処理を行った。

Figure 2017056932
[Examples 8-2 and 9-1]
Using a material having low crystallinity of Si, doping was performed in the same manner as in Example 8-2.
Figure 2017056932

放電カーブ形状がより鋭く立ち上がるためには、ケイ素化合物(SiOx)において、ケイ素(Si)と同様の放電挙動を示す必要がある。30回の充放電で上記の範囲(0.40〜0.55V)にピークが発現しないケイ素化合物は、比較的緩やかな放電カーブとなるため、二次電池にした際に、若干初期効率が低下する結果となった。ピークが30回以内の充放電で発現するものであれば、安定したバルクが形成され、容量維持率及び初期効率が向上した。   In order for the discharge curve shape to rise more sharply, the silicon compound (SiOx) needs to exhibit a discharge behavior similar to that of silicon (Si). A silicon compound that does not exhibit a peak in the above range (0.40 to 0.55 V) after 30 charge / discharge cycles has a relatively gentle discharge curve, so the initial efficiency is slightly reduced when a secondary battery is used. As a result. If the peak appears within 30 charge / discharge cycles, a stable bulk was formed, and the capacity retention rate and initial efficiency were improved.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

10 負極
11 負極集電体
12 負極活物質層
20 バルク内改質装置
21 陽電極
22 酸化ケイ素の粉末
23 有機溶媒
24 セパレータ
25 粉末格納容器
26 電源
27 浴槽
DESCRIPTION OF SYMBOLS 10 Negative electrode 11 Negative electrode collector 12 Negative electrode active material layer 20 In-bulk reformer 21 Positive electrode 22 Silicon oxide powder 23 Organic solvent 24 Separator 25 Powder storage container 26 Power supply 27 Bathtub

Claims (13)

正極と、SiOx(但し、0.5≦x≦1.6)で示されるケイ素酸化物を主成分とするケイ素系活物質を含む負極活物質を用いた負極と、非水電解質とを具備する非水電解質二次電池の使用方法であって、前記電池について負極の単位面積あたり0.7mA/cm2の電流量で2回目の放電を行って得られる電池容量の1/5に相当する電流量で3回目の電池放電を行ったときの20倍以上の電流量で放電サイクルを行うことを特徴とする非水電解質二次電池の使用方法。A positive electrode, a negative electrode using a negative electrode active material containing a silicon-based active material whose main component is a silicon oxide represented by SiO x (where 0.5 ≦ x ≦ 1.6), and a non-aqueous electrolyte The non-aqueous electrolyte secondary battery is used and corresponds to 1/5 of the battery capacity obtained by performing a second discharge with a current amount of 0.7 mA / cm 2 per unit area of the negative electrode for the battery. A method for using a non-aqueous electrolyte secondary battery, characterized in that a discharge cycle is performed with a current amount 20 times or more that when a third battery discharge is performed with a current amount. 3回目の電池放電時における電流量の40倍以上80倍以下の電流量で放電サイクルを行う請求項1記載の使用方法。   The method according to claim 1, wherein the discharge cycle is performed with a current amount of 40 times or more and 80 times or less of a current amount during the third battery discharge. 前記放電サイクルの3サイクル目に得られる放電容量の50%放電時における正負極電位に対し、終止電位時の正負極電位変化率が正極よりも負極が大きいものである請求項1又は2記載の使用方法。   The negative electrode has a larger rate of positive / negative electrode potential change at the end potential than that of the positive electrode with respect to the positive / negative electrode potential at the time of 50% discharge of the discharge capacity obtained in the third cycle of the discharge cycle. how to use. 負極利用率が90%以上99%以下である請求項1〜3のいずれか1項に記載の使用方法。   The usage method according to any one of claims 1 to 3, wherein the utilization factor of the negative electrode is 90% or more and 99% or less. ケイ素系活物質が、ケイ素酸化物の内部にLi2SiO3及びLi4SiO4のうち少なくとも1種を含むものであり、負極活物質の総量に対するケイ素系活物質の比が6質量%以上である請求項1〜4のいずれか1項に記載の使用方法。The silicon-based active material contains at least one of Li 2 SiO 3 and Li 4 SiO 4 inside the silicon oxide, and the ratio of the silicon-based active material to the total amount of the negative electrode active material is 6% by mass or more. The usage method of any one of Claims 1-4. 前記ケイ素系活物質が、29Si−MAS−NMRスペクトルから得られるケミカルシフト値として−75ppm付近に与えられるLi2SiO3に由来するピークの強度Aと、−95〜−150ppmに与えられるSiO2領域に由来するピークの強度Bとが、A>Bの関係を満たす請求項1〜5のいずれか1項に記載の使用方法。The silicon-based active material has a peak intensity A derived from Li 2 SiO 3 given in the vicinity of −75 ppm as a chemical shift value obtained from a 29 Si-MAS-NMR spectrum, and SiO 2 given to −95 to −150 ppm. The use method according to claim 1, wherein the intensity B of the peak derived from the region satisfies a relationship of A> B. 前記ケイ素系活物質が、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下である請求項1〜6のいずれか1項に記載の使用方法。   The silicon-based active material has a half-width (2θ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more, and a crystallite size due to the crystal plane is It is 7.5 nm or less, The usage method of any one of Claims 1-6. 前記ケイ素系活物質が、導電性炭素で被覆されている請求項1〜7のいずれか1項に記載の使用方法。   The use method according to any one of claims 1 to 7, wherein the silicon-based active material is coated with conductive carbon. SiOx(但し、0.5≦x≦1.6)で示されるケイ素酸化物の内部にLi2SiO3及びLi4SiO4のうち少なくとも1種を含むケイ素系活物質の表層が炭素にて被覆され、前記ケイ素系活物質を2質量%以上含有することを特徴とする非水電解質二次電池用負極活物質。The surface layer of the silicon-based active material containing at least one of Li 2 SiO 3 and Li 4 SiO 4 inside the silicon oxide represented by SiO x (where 0.5 ≦ x ≦ 1.6) is carbon. A negative electrode active material for a non-aqueous electrolyte secondary battery, which is coated and contains 2% by mass or more of the silicon-based active material. 前記ケイ素系活物質が、29Si−MAS−NMRスペクトルから得られるケミカルシフト値として−75ppm付近に与えられるLi2SiO3に由来するピークの強度Aと、−95〜−150ppmに与えられるSiO2領域に由来するピークの強度Bとが、A>Bの関係を満たす請求項9記載の負極活物質。The silicon-based active material has a peak intensity A derived from Li 2 SiO 3 given in the vicinity of −75 ppm as a chemical shift value obtained from a 29 Si-MAS-NMR spectrum, and SiO 2 given to −95 to −150 ppm. The negative electrode active material according to claim 9, wherein the intensity B of the peak derived from the region satisfies a relationship of A> B. 前記ケイ素系活物質と炭素系活物質とを混合した負極活物質を使用して作製した負極電極と対極リチウムとからなる試験セルを充放電し、放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、前記ケイ素系活物質がリチウムを脱離するよう電流を流す放電時における前記負極電極の電位Vが、0.40〜0.55Vの範囲にピークを有するものである請求項9又は10記載の負極活物質。   Charge and discharge a test cell composed of a negative electrode prepared using a negative electrode active material obtained by mixing the silicon-based active material and the carbon-based active material and a counter electrode lithium, and the discharge capacity Q is based on the counter electrode lithium. The negative electrode during discharge in which a current flows so that the silicon-based active material desorbs lithium when a graph showing the relationship between the differential value dQ / dV differentiated by the potential V of the negative electrode and the potential V is drawn. The negative electrode active material according to claim 9 or 10, wherein the potential V has a peak in the range of 0.40 to 0.55V. 前記ケイ素系活物質が、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下である請求項9〜11のいずれか1項に記載の負極活物質。   The silicon-based active material has a half-width (2θ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more, and a crystallite size due to the crystal plane is It is 7.5 nm or less, The negative electrode active material of any one of Claims 9-11. 前記ケイ素系活物質が、導電性炭素で被覆されている請求項9〜12のいずれか1項に記載の負極活物質。   The negative electrode active material according to claim 9, wherein the silicon-based active material is coated with conductive carbon.
JP2017543082A 2015-09-30 2016-09-12 Usage of non-aqueous electrolyte secondary battery Active JP6365785B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015193262 2015-09-30
JP2015193262 2015-09-30
PCT/JP2016/076735 WO2017056932A1 (en) 2015-09-30 2016-09-12 Method for using nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte secondary batteries

Publications (2)

Publication Number Publication Date
JPWO2017056932A1 true JPWO2017056932A1 (en) 2017-12-21
JP6365785B2 JP6365785B2 (en) 2018-08-01

Family

ID=58423730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017543082A Active JP6365785B2 (en) 2015-09-30 2016-09-12 Usage of non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP6365785B2 (en)
WO (1) WO2017056932A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012864A1 (en) * 2017-07-10 2019-01-17 株式会社村田製作所 Lithium ion secondary battery
CN111602275B (en) * 2018-01-19 2023-06-09 三洋电机株式会社 Nonaqueous electrolyte secondary battery
US11811255B2 (en) 2018-02-28 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Charging method of non-aqueous electrolyte secondary battery, and charging system of non-aqueous electrolyte secondary battery
CN115528206B (en) * 2022-09-26 2023-07-14 欣旺达电动汽车电池有限公司 Secondary battery and electrochemical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243696A (en) * 2011-05-24 2012-12-10 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2015002036A (en) * 2013-06-14 2015-01-05 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, manufacturing method thereof, nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2015156355A (en) * 2013-08-21 2015-08-27 信越化学工業株式会社 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, method of manufacturing negative electrode, method of manufacturing negative electrode active substance, and method of manufacturing lithium ion secondary battery
JP2015165482A (en) * 2014-02-07 2015-09-17 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243696A (en) * 2011-05-24 2012-12-10 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2015002036A (en) * 2013-06-14 2015-01-05 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, manufacturing method thereof, nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2015156355A (en) * 2013-08-21 2015-08-27 信越化学工業株式会社 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, method of manufacturing negative electrode, method of manufacturing negative electrode active substance, and method of manufacturing lithium ion secondary battery
JP2015165482A (en) * 2014-02-07 2015-09-17 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6365785B2 (en) 2018-08-01
WO2017056932A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6407804B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP6474548B2 (en) Non-aqueous electrolyte secondary battery negative electrode material and method for producing negative electrode active material particles
JP6196192B2 (en) Negative electrode active material, method for producing negative electrode active material, and lithium ion secondary battery
JP6268049B2 (en) Non-aqueous electrolyte secondary battery negative electrode material, non-aqueous electrolyte secondary battery, and method for producing negative electrode active material particles
JP6181590B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6082355B2 (en) Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2017061073A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing negative electrode material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP6386414B2 (en) Anode active material for nonaqueous electrolyte secondary battery, method for producing the same, nonaqueous electrolyte secondary battery using the anode active material, and method for producing anode material for nonaqueous electrolyte secondary battery
JP2018078114A (en) Negative electrode material for nonaqueous electrolyte secondary batteries
JP2015111547A5 (en)
JP6445956B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP2015149224A (en) Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery
WO2017085911A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP2016066529A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016066508A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2017119031A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary batteries, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary batteries
JP2017188319A (en) Negative electrode active substance, mixed negative electrode active substance material, and method for manufacturing negative electrode active substance
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
JP6365785B2 (en) Usage of non-aqueous electrolyte secondary battery
JP6460960B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6215804B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode active material particles
JP6484503B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2017147058A (en) Negative electrode active material, mixed negative electrode active material material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode active material
JP6746526B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
WO2017110040A1 (en) Negative electrode active material, negative electrode, lithium ion secondary battery, manufacturing method for negative electrode active material, and manufacturing method for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6365785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150