JP2017188319A - Negative electrode active substance, mixed negative electrode active substance material, and method for manufacturing negative electrode active substance - Google Patents

Negative electrode active substance, mixed negative electrode active substance material, and method for manufacturing negative electrode active substance Download PDF

Info

Publication number
JP2017188319A
JP2017188319A JP2016076406A JP2016076406A JP2017188319A JP 2017188319 A JP2017188319 A JP 2017188319A JP 2016076406 A JP2016076406 A JP 2016076406A JP 2016076406 A JP2016076406 A JP 2016076406A JP 2017188319 A JP2017188319 A JP 2017188319A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
particles
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016076406A
Other languages
Japanese (ja)
Other versions
JP7019284B2 (en
Inventor
粟野 英和
Hidekazu Awano
英和 粟野
拓史 松野
Takumi Matsuno
拓史 松野
博道 加茂
Hiromichi KAMO
博道 加茂
貴一 廣瀬
Kiichi Hirose
貴一 廣瀬
古屋 昌浩
Masahiro Furuya
昌浩 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2016076406A priority Critical patent/JP7019284B2/en
Publication of JP2017188319A publication Critical patent/JP2017188319A/en
Application granted granted Critical
Publication of JP7019284B2 publication Critical patent/JP7019284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active substance which can enhance initial charge and discharge characteristics and cycle characteristics when used as a negative electrode active substance of a secondary battery.SOLUTION: A negative electrode active substance comprises negative electrode active substance particles. The negative electrode active substance particles include silicon compound particles including a silicon compound (SiO: 0.5≤x≤1.6). The silicon compound particles include at least one of LiSiOand LiSiO. The negative electrode active substance particles are 1.0 to 15 μm in median diameter. When a particle size distribution of the negative electrode active substance particles is represented by the formula 1 of Rosin-Rammler's distribution below, the value of a distribution constant n is 5.0 or less. R=100exp(-ad) Formula 1, (In the formula 1, R represents a plus sieve (mass%) of a distribution amount cumulative value, d represents a particle diameter (μm) of the negative electrode active substance particles, a is a constant, and n represents a distribution constant).SELECTED DRAWING: Figure 1

Description

本発明は、負極活物質、混合負極活物質材料、及び負極活物質の製造方法に関する。   The present invention relates to a negative electrode active material, a mixed negative electrode active material, and a method for producing a negative electrode active material.

近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。   In recent years, small electronic devices typified by mobile terminals have been widely used, and further downsizing, weight reduction, and long life have been strongly demanded. In response to such market demands, development of secondary batteries capable of obtaining a high energy density, in particular, being small and light is underway. This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.

その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。   Among them, lithium ion secondary batteries are highly expected because they are small and easy to increase in capacity, and can obtain higher energy density than lead batteries and nickel cadmium batteries.

上記のリチウムイオン二次電池は、正極および負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。   Said lithium ion secondary battery is equipped with the electrolyte solution with the positive electrode, the negative electrode, and the separator, and the negative electrode contains the negative electrode active material in connection with charging / discharging reaction.

この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。   As this negative electrode active material, a carbon-based active material is widely used, but further improvement in battery capacity is required due to recent market requirements. In order to improve battery capacity, use of silicon as a negative electrode active material has been studied. This is because the theoretical capacity of silicon (4199 mAh / g) is 10 times or more larger than the theoretical capacity of graphite (372 mAh / g), so that significant improvement in battery capacity can be expected. The development of a siliceous material as a negative electrode active material has been examined not only for silicon itself but also for compounds represented by alloys and oxides. In addition, the active material shape has been studied from a standard coating type in a carbon-based active material to an integrated type directly deposited on a current collector.

しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。   However, when silicon is used as the negative electrode active material as the main raw material, the negative electrode active material expands and contracts during charge / discharge, and therefore, it tends to break mainly near the surface of the negative electrode active material. Further, an ionic material is generated inside the active material, and the negative electrode active material is easily broken. When the negative electrode active material surface layer is cracked, a new surface is generated thereby increasing the reaction area of the active material. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a coating that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.

これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。   To date, various studies have been made on negative electrode materials and electrode configurations for lithium ion secondary batteries mainly composed of a siliceous material in order to improve battery initial efficiency and cycle characteristics.

具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。   Specifically, for the purpose of obtaining good cycle characteristics and high safety, silicon and amorphous silicon dioxide are deposited simultaneously using a vapor phase method (see, for example, Patent Document 1). Further, in order to obtain a high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (see, for example, Patent Document 2). Furthermore, in order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed ( For example, see Patent Document 3). Further, in order to improve cycle characteristics, oxygen is contained in the silicon active material, the average oxygen content is 40 at% or less, and the oxygen content is increased at a location close to the current collector. (For example, refer to Patent Document 4).

また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm〜50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1〜1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するラマンスペクトルから得られるシフト値に関して、1330cm−1及び1580cm−1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。 Further, Si phase, (for example, see Patent Document 5) by using a nanocomposite containing SiO 2, M y O metal oxide in order to improve the initial charge and discharge efficiency. In order to improve cycle characteristics, SiO x (0.8 ≦ x ≦ 1.5, particle size range = 1 μm to 50 μm) and a carbon material are mixed and fired at a high temperature (see, for example, Patent Document 6). Further, in order to improve cycle characteristics, the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum value and the minimum value of the molar ratio in the vicinity of the active material and current collector interface The active material is controlled within a range of 0.4 or less (see, for example, Patent Document 7). Moreover, in order to improve battery load characteristics, the metal oxide containing lithium is used (for example, refer patent document 8). Further, in order to improve cycle characteristics, a hydrophobic layer such as a silane compound is formed on the surface layer of the siliceous material (see, for example, Patent Document 9). Further, in order to improve cycle characteristics, conductivity is imparted by using silicon oxide and forming a graphite film on the surface layer (see, for example, Patent Document 10). In Patent Document 10, with respect to the shift value obtained from the Raman spectra for graphite coating, with broad peaks appearing at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 1.5 <I 1330 / I 1580 <3. In addition, particles having a silicon microcrystalline phase dispersed in silicon dioxide are used in order to improve high battery capacity and cycle characteristics (see, for example, Patent Document 11). Further, in order to improve overcharge and overdischarge characteristics, silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1: y (0 <y <2) is used (see, for example, Patent Document 12).

特開2001−185127号公報JP 2001-185127 A 特開2002−042806号公報JP 2002-042806 A 特開2006−164954号公報JP 2006-164955 A 特開2006−114454号公報JP 2006-114454 A 特開2009−070825号公報JP 2009-070825 A 特開2008−282819号公報JP 2008-282819 A 特開2008−251369号公報JP 2008-251369 A 特開2008−177346号公報JP 2008-177346 A 特開2007−234255号公報JP 2007-234255 A 特開2009−212074号公報JP 2009-212074 A 特開2009−205950号公報JP 2009-205950 A 特許第2997741号明細書Japanese Patent No. 2,997,741

上述したように、近年、電子機器に代表される小型のモバイル機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初回効率及びサイクル特性が望まれている。しかしながら、炭素系活物質を用いたリチウムイオン二次電池と同等の初回効率及びサイクル安定性を示す負極活物質を提案するには至っていなかった。   As described above, in recent years, small mobile devices typified by electronic devices have been improved in performance and multifunction, and lithium ion secondary batteries, which are the main power sources, are required to have an increased battery capacity. Yes. As one method for solving this problem, development of a lithium ion secondary battery composed of a negative electrode using a siliceous material as a main material is desired. In addition, lithium ion secondary batteries using a siliceous material are desired to have initial efficiency and cycle characteristics that are close to those of a lithium ion secondary battery using a carbon-based active material. However, a negative electrode active material that exhibits the same initial efficiency and cycle stability as a lithium ion secondary battery using a carbon-based active material has not been proposed.

本発明は前述のような問題に鑑みてなされたもので、二次電池の負極活物質として用いた際に、初期充放電特性及びサイクル特性を向上させることが可能な負極活物質、この負極活物質を含む混合負極活物質材料、この負極活物質材料で形成した負極活物質層を有する負極電極、及び、本発明の負極活物質を用いたリチウムイオン二次電池を提供することを目的とする。また、初期充放電特性及びサイクル特性を向上させることが可能な本発明の負極活物質を製造する方法を提供することも目的とする。   The present invention has been made in view of the above-described problems. When used as a negative electrode active material for a secondary battery, the present invention provides a negative electrode active material capable of improving initial charge / discharge characteristics and cycle characteristics, and the negative electrode active material. It is an object to provide a mixed negative electrode active material containing a material, a negative electrode having a negative electrode active material layer formed of the negative electrode active material, and a lithium ion secondary battery using the negative electrode active material of the present invention. . It is another object of the present invention to provide a method for producing the negative electrode active material of the present invention capable of improving the initial charge / discharge characteristics and cycle characteristics.

上記目的を達成するために、本発明は、負極活物質粒子を含む負極活物質であって、前記負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上を含有し、前記負極活物質粒子は、メジアン径が1.0μm以上15μm以下であり、前記負極活物質粒子の粒度分布を下記のロジンラムラー分布(Rosin−Rammler’s distribution)の式1で表したとき、分布定数nの値が5.0以下のものであることを特徴とする負極活物質を提供する。
R=100exp(−ad) ・・・式1
(但し、式1中のRは分布量累積値の篩上(質量%)、dは前記負極活物質粒子の粒径(μm)、aは定数、nは分布定数を示す。)
In order to achieve the above object, the present invention provides a negative electrode active material including negative electrode active material particles, wherein the negative electrode active material particles include a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6). Containing silicon compound particles, wherein the silicon compound particles contain at least one of Li 2 SiO 3 and Li 4 SiO 4 , and the negative electrode active material particles have a median diameter of 1.0 μm or more and 15 μm or less. When the particle size distribution of the negative electrode active material particles is expressed by the following formula 1 of the Rosin-Ramler's distribution, the value of the distribution constant n is 5.0 or less. Provide active material.
R = 100exp (−ad n ) Equation 1
(However, R in Formula 1 is on the sieve of the cumulative amount of distribution (% by mass), d is the particle size (μm) of the negative electrode active material particles, a is a constant, and n is a distribution constant.)

このように、負極活物質粒子のメジアン径が1.0μm以上であれば、質量当たりの表面積の増加により電池不可逆容量が増加することを抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。これに加え、負極活物質粒子がロジンラムラー分布の式1における分布定数nの値が5.0以下のものであれば、粒子の大きさが適度に揃っており負極活物質粒子からのLiの溶け出しを抑制でき、なおかつ、負極活物質粒子の粒度分布が適当な範囲で広がっているため、負極活物質粒子の中でも特に粒径が小さい微粒子が負極活物質粒子同士の接点となり、導電性及びLiの脱着性が向上する。その結果、本発明の負極活物質は非水電解質二次電池に用いた場合に、初期効率及びサイクル特性を向上させることが可能なものとなる。   Thus, if the median diameter of the negative electrode active material particles is 1.0 μm or more, it is possible to suppress an increase in battery irreversible capacity due to an increase in surface area per mass. On the other hand, when the median diameter is set to 15 μm or less, the particles are difficult to break and a new surface is difficult to appear. In addition, if the negative electrode active material particles have a distribution constant n of 5.0 or less in the Rosin-Lambler distribution, the sizes of the particles are appropriately aligned and Li dissolution from the negative electrode active material particles In addition, since the particle size distribution of the negative electrode active material particles is spread within an appropriate range, fine particles having a particularly small particle size become contact points between the negative electrode active material particles among the negative electrode active material particles. The detachability of the is improved. As a result, the negative electrode active material of the present invention can improve initial efficiency and cycle characteristics when used in a non-aqueous electrolyte secondary battery.

このとき、前記負極活物質粒子の粒度分布を前記ロジンラムラー分布の式1で表したとき、分布定数nの値が3.0以下のものであることが好ましい。   At this time, when the particle size distribution of the negative electrode active material particles is expressed by Formula 1 of the Rosin-Rammler distribution, the value of the distribution constant n is preferably 3.0 or less.

式1における分布定数nの値が3.0以下の負極活物質粒子を含めば、初期効率及びサイクル特性をより向上させることが可能な負極活物質となる。   If negative electrode active material particles having a distribution constant n in Formula 1 of 3.0 or less are included, the negative electrode active material can be further improved in initial efficiency and cycle characteristics.

また、本発明の負極活物質は、前記負極活物質粒子10質量%と炭素活物質材90質量%との混合物と純水とを1:10の質量比で混合した混合液において、該混合液を作製してから一時間経過した後のpHが13.0以下となるものであることが好ましい。   Further, the negative electrode active material of the present invention is a mixed solution in which a mixture of 10% by mass of the negative electrode active material particles and 90% by mass of the carbon active material and pure water is mixed at a mass ratio of 1:10. It is preferable that the pH after 1 hour has passed is 13.0 or less.

上記条件で測定したpHが13.0以下であれば、電極作製時に作製する負極活物質を分散させた水系スラリーにおける結着性がより向上するため、サイクル特性をより向上させることができる。   If pH measured on the said conditions is 13.0 or less, since the binding property in the aqueous | water-based slurry in which the negative electrode active material produced at the time of electrode preparation was disperse | distributed improves more, cycling characteristics can be improved more.

また、前記負極活物質粒子はBJH(Barrett−Joyner−Halenda)法に基づく細孔分布において、1〜100nmの細孔径にピークを有し、全細孔容量が0.005cm/g以上のものであることが好ましい。 The negative electrode active material particles have a pore distribution based on a BJH (Barrett-Joyner-Halenda) method and have a peak at a pore diameter of 1 to 100 nm and a total pore volume of 0.005 cm 3 / g or more. It is preferable that

このような負極活物質は、細孔径が適切な範囲に調整されたものであるため、水分脱離がスムーズであり、かつ、高温で化学結合しているような水分も脱離しやすいものとなる。また、全細孔容量が0.005cm/g以上であれば、電解液の含浸がスムーズになる。よって、サイクル特性がより向上する。 Since such a negative electrode active material has a pore diameter adjusted to an appropriate range, moisture desorption is smooth, and moisture that is chemically bonded at a high temperature is easily desorbed. . In addition, when the total pore volume is 0.005 cm 3 / g or more, the impregnation with the electrolytic solution becomes smooth. Therefore, cycle characteristics are further improved.

また、前記負極活物質粒子は、真密度が2.20g/cm以上2.50g/cm以下のものであることが好ましい。 Further, the negative active material particles are preferably a true density is of 2.20 g / cm 3 or more 2.50 g / cm 3 or less.

真密度が上記範囲であれば、ケイ素化合物粒子とLiの反応率が所望の範囲内であり、ケイ素化合物粒子へのLiの挿入が適切に行われた負極活物質粒子である。よって、サイクル特性がより向上する。   When the true density is in the above range, the reaction rate of the silicon compound particles and Li is within a desired range, and the anode active material particles are appropriately inserted with Li into the silicon compound particles. Therefore, cycle characteristics are further improved.

また、前記負極活物質粒子は、LiCO及びLiOHを表面に含み、前記LiCOの含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、前記LiOHの含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下のものであることが好ましい。 The negative electrode active material particles include Li 2 CO 3 and LiOH on the surface, and the content of the Li 2 CO 3 is 0.01% by mass or more and 5.00% by mass with respect to the mass of the negative electrode active material particles. It is preferable that the LiOH content is 0.01% by mass or more and 5.00% by mass or less with respect to the mass of the negative electrode active material particles.

負極活物質粒子の表面のLiCO及びLiOHの含有量が、負極活物質の質量に対してそれぞれ0.01質量%以上であれば、Liが拡散する際に媒体とするLiの量が十分に存在しているため、電子伝導性がより向上する。また、LiCO及びLiOHの含有量がそれぞれ5.00質量%以下であれば、これらのLi化合物の量が適切な量であるため、電子伝導性の向上効果を確実に得られる。このような本発明の負極活物質は、サイクル特性をより向上させることができるものとなる。 If the content of Li 2 CO 3 and LiOH on the surface of the negative electrode active material particles is 0.01% by mass or more with respect to the mass of the negative electrode active material, respectively, the amount of Li used as a medium when Li diffuses is Since it exists sufficiently, the electron conductivity is further improved. Further, if each less 5.00 wt% the content of Li 2 CO 3 and LiOH, since the amount of these Li compounds are suitable amount, it is reliably obtained effect of improving electron conductivity. Such a negative electrode active material of the present invention can further improve cycle characteristics.

また、前記ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。   The silicon compound particles have a half-value width (2θ) of a diffraction peak caused by an Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more and a crystallite size corresponding to the crystal plane. Is preferably 7.5 nm or less.

ケイ素化合物粒子が上記のケイ素結晶性を有する負極活物質をリチウムイオン二次電池の負極活物質として用いれば、より良好なサイクル特性及び初期充放電特性が得られる。   If the negative electrode active material in which the silicon compound particles have the above-described silicon crystallinity is used as the negative electrode active material of the lithium ion secondary battery, better cycle characteristics and initial charge / discharge characteristics can be obtained.

また、本発明の負極活物質は、前記ケイ素化合物粒子において、29Si−MAS−NMR スペクトルから得られる、ケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として−96〜−150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすものであることが好ましい。 Moreover, the negative electrode active material of the present invention is the above-mentioned silicon compound particles, wherein the maximum peak intensity value A in the Si and Li silicate regions given by the chemical shift value of −60 to −95 ppm obtained from the 29 Si-MAS-NMR spectrum And, it is preferable that the peak intensity value B of the SiO 2 region given by −96 to −150 ppm as the chemical shift value satisfies the relationship of A> B.

ケイ素化合物粒子において、SiO成分を基準としてSi及びLiSiOの量がより多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる負極活物質となる。 If the silicon compound particles have a larger amount of Si and Li 2 SiO 3 based on the SiO 2 component, a negative electrode active material that can sufficiently obtain an effect of improving battery characteristics by inserting Li is obtained.

また、前記負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、前記負極活物質にリチウムを挿入するよう電流を流す充電と、前記負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、前記負極電極の電位Vが0.40V〜0.55Vの範囲にピークを有するものであることが好ましい。   In addition, a test cell comprising a negative electrode containing a mixture of the negative electrode active material and the carbon-based active material and counter lithium is prepared, and in the test cell, charging is performed such that current is inserted so that lithium is inserted into the negative electrode active material. 30 times of charge / discharge consisting of discharge through which current flows so as to desorb lithium from the negative electrode active material, and the discharge capacity Q in each charge / discharge is differentiated by the potential V of the negative electrode with respect to the counter lithium. When the graph showing the relationship between the differentiated differential value dQ / dV and the potential V is drawn, the potential V of the negative electrode during the Xth and subsequent discharges (1 ≦ X ≦ 30) is 0.40 V to. It is preferable to have a peak in the range of 55V.

V−dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。また、上記ピークが30回以内の充放電で発現するものであれば、安定したバルクが形成される負極活物質となる。   The above peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery. Moreover, if the said peak expresses by charge / discharge within 30 times, it will become a negative electrode active material in which a stable bulk is formed.

また、前記負極活物質粒子は、表層部に炭素材を含むことが好ましい。   Moreover, it is preferable that the negative electrode active material particles include a carbon material in a surface layer portion.

このように、負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られる。   Thus, electroconductivity improvement is acquired because the negative electrode active material particle contains a carbon material in the surface layer part.

また、前記炭素材の平均厚さは10nm以上5000nm以下であることが好ましい。   The average thickness of the carbon material is preferably 10 nm or more and 5000 nm or less.

炭素材の平均厚さが10nm以上であれば導電性向上が得られる。また、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池に用いることにより、ケイ素化合物粒子を十分な量確保できるので、電池容量の低下を抑制することができる。   If the average thickness of the carbon material is 10 nm or more, conductivity can be improved. Moreover, if the average thickness of the carbon material to be coated is 5000 nm or less, a sufficient amount of silicon compound particles can be secured by using a negative electrode active material including such negative electrode active material particles in a lithium ion secondary battery. , Battery capacity reduction can be suppressed.

上記の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料を提供する。   Provided is a mixed negative electrode active material comprising the negative electrode active material and a carbon-based active material.

このように、負極活物質層を形成する材料として、本発明の負極活物質(ケイ素系負極活物質)とともに炭素系活物質を含むことで、負極活物質層の導電性を向上させることができるとともに、充電に伴う膨張応力を緩和することが可能となる。また、ケイ素系負極活物質を炭素系活物質に混合することで電池容量を増加させることができる。   Thus, as a material for forming the negative electrode active material layer, the conductivity of the negative electrode active material layer can be improved by including the carbon-based active material together with the negative electrode active material (silicon-based negative electrode active material) of the present invention. At the same time, the expansion stress associated with charging can be relaxed. Further, the battery capacity can be increased by mixing the silicon-based negative electrode active material with the carbon-based active material.

また、上記目的を達成するために、本発明は、上記の混合負極活物質材料を含み、前記負極活物質と前記炭素系活物質の質量の合計に対する、前記負極活物質の質量の割合が6質量%以上である非水電解質二次電池用負極を提供する。   In order to achieve the above object, the present invention includes the above mixed negative electrode active material, and the ratio of the mass of the negative electrode active material to the total mass of the negative electrode active material and the carbon-based active material is 6 Provided is a negative electrode for a non-aqueous electrolyte secondary battery having a mass% or more.

上記の負極活物質(ケイ素系負極活物質)と炭素系活物質の質量の合計に対する、負極活物質(ケイ素系負極活物質)の質量の割合が6質量%以上であれば、電池容量をより向上させることが可能となる。   If the ratio of the mass of the negative electrode active material (silicon-based negative electrode active material) to the total mass of the negative electrode active material (silicon-based negative electrode active material) and the carbon-based active material is 6% by mass or more, the battery capacity is further increased. It becomes possible to improve.

また、上記目的を達成するために、本発明は、上記の混合負極活物質材料で形成された負極活物質層と、負極集電体とを有し、前記負極活物質層は前記負極集電体上に形成されており、前記負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下である非水電解質二次電池用負極を提供する。   In order to achieve the above object, the present invention includes a negative electrode active material layer formed of the above mixed negative electrode active material and a negative electrode current collector, and the negative electrode active material layer includes the negative electrode current collector. Provided is a negative electrode for a non-aqueous electrolyte secondary battery, wherein the negative electrode current collector contains carbon and sulfur, and the content thereof is 100 ppm by mass or less.

このように、負極電極を構成する負極集電体が、炭素及び硫黄を上記のような量で含むことで、充電時の負極電極の変形を抑制することができる。   As described above, the negative electrode current collector constituting the negative electrode includes carbon and sulfur in the above amounts, whereby deformation of the negative electrode during charging can be suppressed.

また、上記目的を達成するために、本発明は、上記の負極活物質を含む負極を用いたものであるリチウムイオン二次電池を提供する。   Moreover, in order to achieve the said objective, this invention provides the lithium ion secondary battery which uses the negative electrode containing said negative electrode active material.

このような負極活物質を含む負極を用いたリチウムイオン二次電池であれば、高容量であるとともに良好なサイクル特性及び初期充放電特性が得られる。   If it is a lithium ion secondary battery using the negative electrode containing such a negative electrode active material, while being high capacity | capacitance, favorable cycling characteristics and initial stage charge / discharge characteristics will be obtained.

また、上記目的を達成するために、本発明は、ケイ素化合物粒子を含有する負極活物質粒子を含む負極活物質を製造する方法であって、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、前記ケイ素化合物粒子にリチウムを挿入し、LiSiO及びLiSiOのうち少なくとも1種以上を含有させる工程と、により負極活物質粒子を作製し、前記負極活物質粒子から、メジアン径が1.0μm以上15μm以下であり、前記負極活物質粒子の粒度分布を下記のロジンラムラー分布の式1で表したとき、分布定数nの値が5.0以下のものを選別する工程とを含み、該選別した前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法を提供する。
R=100exp(−ad) ・・・式1
(但し、式1中のRは分布量累積値の篩上(質量%)、dは前記負極活物質粒子の粒径(μm)、aは定数、nは分布定数を示す。)
In order to achieve the above object, the present invention provides a method for producing a negative electrode active material including negative electrode active material particles containing silicon compound particles, wherein the silicon compound (SiO x : 0.5 ≦ x ≦ 1). .6), and a step of inserting lithium into the silicon compound particles to contain at least one of Li 2 SiO 3 and Li 4 SiO 4. When the median diameter is 1.0 μm or more and 15 μm or less from the negative electrode active material particles, and the particle size distribution of the negative electrode active material particles is expressed by the following Rosin-Rammler distribution formula 1, the value of the distribution constant n is A method of producing a negative electrode active material, comprising producing a negative electrode active material using the selected negative electrode active material particles.
R = 100exp (−ad n ) Equation 1
(However, R in Formula 1 is on the sieve of the cumulative amount of distribution (% by mass), d is the particle size (μm) of the negative electrode active material particles, a is a constant, and n is a distribution constant.)

ケイ素系活物質粒子をこのように選別して、負極活物質を製造することで、リチウムイオン二次電池の負極活物質として使用した際に高容量であるとともに良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。   By selecting the silicon-based active material particles in this way to produce the negative electrode active material, the high capacity and good cycle characteristics and initial charge / discharge characteristics when used as the negative electrode active material of a lithium ion secondary battery The negative electrode active material which has can be manufactured.

また、上記目的を達成するために、本発明は、上記の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造するリチウムイオン二次電池の製造方法を提供する。   In order to achieve the above object, the present invention produces a negative electrode using the negative electrode active material produced by the method for producing a negative electrode active material, and produces a lithium ion secondary battery using the produced negative electrode. A method for manufacturing a lithium ion secondary battery is provided.

上記のように製造された負極活物質を用いることにより、高容量であるとともに良好なサイクル特性及び初期充放電特性を有するリチウムイオン二次電池を製造することができる。   By using the negative electrode active material manufactured as described above, it is possible to manufacture a lithium ion secondary battery having high capacity and good cycle characteristics and initial charge / discharge characteristics.

本発明の負極活物質は、二次電池の負極活物質として用いた際に、高容量で良好なサイクル特性及び初期充放電特性が得られる。また、この負極活物質を含む混合負極活物質材料、負極、及びリチウムイオン二次電池においても同様の効果が得られる。また、本発明の負極活物質の製造方法であれば、二次電池の負極活物質として用いた際に、良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。   When the negative electrode active material of the present invention is used as a negative electrode active material for a secondary battery, high capacity and good cycle characteristics and initial charge / discharge characteristics can be obtained. Moreover, the same effect is acquired also in the mixed negative electrode active material material containing this negative electrode active material, a negative electrode, and a lithium ion secondary battery. Moreover, if it is a manufacturing method of the negative electrode active material of this invention, when it uses as a negative electrode active material of a secondary battery, the negative electrode active material which has a favorable cycling characteristic and an initial stage charge / discharge characteristic can be manufactured.

本発明の非水電解質二次電池用負極の構成を示す断面図である。It is sectional drawing which shows the structure of the negative electrode for nonaqueous electrolyte secondary batteries of this invention. 電気化学的ドープ法に用いることができるバルク内改質装置の一例を示す概略図である。It is the schematic which shows an example of the reformer in a bulk which can be used for an electrochemical dope method. 電気化学的ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si−MAS−NMRスペクトルの一例である。It is an example of the 29 Si-MAS-NMR spectrum measured from silicon compound particle | grains when modification | reformation is performed by the electrochemical doping method. 熱ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si−MAS−NMRスペクトルの一例である。It is an example of 29 Si-MAS-NMR spectra measured from the silicon compound particles in the case of performing the reforming by thermal doping. 本発明のリチウム二次電池の構成例(ラミネートフィルム型)を表す図である。It is a figure showing the structural example (laminate film type) of the lithium secondary battery of this invention. 負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフである。It is a graph showing the relationship between the ratio of the silicon type active material particle with respect to the total amount of a negative electrode active material, and the increase rate of the battery capacity of a secondary battery.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.

前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。このケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初期充放電特性及びサイクル特性が望まれているが、炭素系活物質を用いたリチウムイオン二次電池と同等の初期充放電特性及びサイクル特性を有する負極活物質を提案するには至っていなかった。   As described above, as one method for increasing the battery capacity of a lithium ion secondary battery, the use of a negative electrode using a silicon material as a main material as a negative electrode of a lithium ion secondary battery has been studied. The lithium ion secondary battery using this siliceous material is desired to have initial charge / discharge characteristics and cycle characteristics similar to those of a lithium ion secondary battery using a carbon-based active material, but the carbon-based active material is used. A negative electrode active material having initial charge / discharge characteristics and cycle characteristics equivalent to those of a lithium ion secondary battery has not been proposed.

そこで、本発明者らは、二次電池に用いた場合、高電池容量となるとともに、サイクル特性及び初回効率が良好となる負極活物質を得るために鋭意検討を重ね、本発明に至った。   Therefore, the present inventors have made extensive studies to obtain a negative electrode active material that has a high battery capacity and good cycle characteristics and initial efficiency when used in a secondary battery, and has reached the present invention.

本発明の負極活物質は、負極活物質粒子を含む。そして、この負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有する。このケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上のリチウムシリケートを含有している。そして、負極活物質粒子は、メジアン径が1.0μm以上15μm以下である。さらに、負極活物質粒子は、その粒度分布を下記のロジンラムラー分布の式1で表したとき、分布定数nの値が5.0以下である。
R=100exp(−ad) ・・・式1
(但し、式1中のRは分布量累積値の篩上(質量%)、dは前記負極活物質粒子の粒径(μm)、aは定数、nは分布定数を示す。)
The negative electrode active material of the present invention includes negative electrode active material particles. Then, the anode active material particles, silicon compound: containing a silicon compound particles containing (SiO x 0.5 ≦ x ≦ 1.6 ). The silicon compound particles contain at least one lithium silicate of Li 2 SiO 3 and Li 4 SiO 4 . The negative electrode active material particles have a median diameter of 1.0 μm or more and 15 μm or less. Furthermore, the negative electrode active material particles have a distribution constant n of 5.0 or less when the particle size distribution is expressed by the following Rosin-Rammler distribution formula 1.
R = 100exp (−ad n ) Equation 1
(However, R in Formula 1 is on the sieve of the cumulative amount of distribution (% by mass), d is the particle size (μm) of the negative electrode active material particles, a is a constant, and n is a distribution constant.)

このような負極活物質は、ケイ素化合物粒子を含む負極活物質粒子(ケイ素系活物質粒子とも呼称する)を含むため、電池容量を向上できる。また、ケイ素化合物中の、電池の充放電時のリチウムの挿入、脱離時に不安定化するSiO成分部を予めリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。さらに、負極活物質粒子のメジアン径が1.0μm以上であれば、質量当たりの表面積の増加により電池不可逆容量が増加することを抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。また、式1で表されるロジンラムラー分布の式は、破砕・粉砕等で生じた粒子径分布をよく表すと言われている。このロジンラムラー分布の式では、nの値が大きいほど粒子径範囲が狭く、粒子の大きさが比較的揃っていることを表す。負極活物質粒子がロジンラムラー分布の式1における分布定数nの値が5.0以下のものであれば、粒子の大きさが適度に揃っており負極活物質粒子からのLiの溶け出しを抑制でき、なおかつ、負極活物質粒子の粒度分布が適当な範囲で広がっているため、負極活物質粒子の中でも特に粒径が小さい微粒子が負極活物質粒子同士の接点となり、導電性及びLiの脱着性が向上する。その結果、本発明の負極活物質は非水電解質二次電池に用いた場合に、初期効率及びサイクル特性を向上させることが可能となる。 Since such a negative electrode active material includes negative electrode active material particles (also referred to as silicon-based active material particles) containing silicon compound particles, the battery capacity can be improved. In addition, the SiO 2 component, which is destabilized during the insertion and removal of lithium during battery charging / discharging in the silicon compound, has been modified to lithium silicate in advance, reducing the irreversible capacity generated during charging. can do. Furthermore, if the median diameter of the negative electrode active material particles is 1.0 μm or more, an increase in battery irreversible capacity due to an increase in surface area per mass can be suppressed. On the other hand, when the median diameter is set to 15 μm or less, the particles are difficult to break and a new surface is difficult to appear. In addition, it is said that the rosin Ramler distribution expression represented by Expression 1 well represents the particle size distribution generated by crushing and pulverization. This Rosin-Rammler distribution equation indicates that the larger the value of n, the narrower the particle size range and the relatively uniform particle size. If the negative electrode active material particles have a distribution constant n value of 5.0 or less in the rosin Ramler distribution, the sizes of the particles are moderately aligned and Li dissolution from the negative electrode active material particles can be suppressed. In addition, since the particle size distribution of the negative electrode active material particles is spread within an appropriate range, among the negative electrode active material particles, fine particles having a particularly small particle diameter serve as contact points between the negative electrode active material particles, and conductivity and Li desorption properties are improved. improves. As a result, the negative electrode active material of the present invention can improve the initial efficiency and cycle characteristics when used in a non-aqueous electrolyte secondary battery.

また、特に、負極活物質粒子の粒度分布を前記ロジンラムラー分布の式1で表したとき、分布定数nの値が3.0以下であることが好ましい。このようなものであれば、初期効率及びサイクル特性を一層向上させることが可能となる。   In particular, when the particle size distribution of the negative electrode active material particles is expressed by Formula 1 of the rosin Ramler distribution, the value of the distribution constant n is preferably 3.0 or less. With such a configuration, it is possible to further improve the initial efficiency and cycle characteristics.

<非水電解質二次電池用負極>
まず、非水電解質二次電池用負極について説明する。図1は本発明の一実施形態における非水電解質二次電池用負極(以下、「負極」とも呼称する)の断面構成を表している。
<Negative electrode for non-aqueous electrolyte secondary battery>
First, the negative electrode for nonaqueous electrolyte secondary batteries will be described. FIG. 1 shows a cross-sectional configuration of a negative electrode for a nonaqueous electrolyte secondary battery (hereinafter also referred to as “negative electrode”) according to an embodiment of the present invention.

[負極の構成]
図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[Configuration of negative electrode]
As shown in FIG. 1, the negative electrode 10 is configured to have a negative electrode active material layer 12 on a negative electrode current collector 11. The negative electrode active material layer 12 may be provided on both surfaces or only one surface of the negative electrode current collector 11. Furthermore, the negative electrode current collector 11 may be omitted as long as the negative electrode active material of the present invention is used.

[負極集電体]
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
[Negative electrode current collector]
The negative electrode current collector 11 is an excellent conductive material and is made of a material that is excellent in mechanical strength. Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).

負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。このような変形抑制効果によりサイクル特性をより向上できる。   The negative electrode current collector 11 preferably contains carbon (C) or sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved. In particular, in the case of having an active material layer that expands during charging, if the current collector contains the above-described element, there is an effect of suppressing electrode deformation including the current collector. Although content of said content element is not specifically limited, Especially, it is preferable that it is 100 mass ppm or less, respectively. This is because a higher deformation suppressing effect can be obtained. Such a deformation suppressing effect can further improve the cycle characteristics.

また、負極集電体11の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。粗化されていない負極集電体は、例えば、圧延金属箔などである。   Further, the surface of the negative electrode current collector 11 may be roughened or may not be roughened. The roughened negative electrode current collector is, for example, a metal foil subjected to electrolytic treatment, embossing treatment, or chemical etching treatment. The non-roughened negative electrode current collector is, for example, a rolled metal foil.

[負極活物質層]
負極活物質層12は、リチウムイオンを吸蔵、放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含み、負極活物質粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有するケイ素化合物粒子を含む。
[Negative electrode active material layer]
The negative electrode active material layer 12 contains the negative electrode active material of the present invention capable of occluding and releasing lithium ions, and from the viewpoint of battery design, further, other materials such as a negative electrode binder (binder) and a conductive aid. May be included. The negative electrode active material includes negative electrode active material particles, and the negative electrode active material particles include silicon compound particles containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6).

また、負極活物質層12は、本発明の負極活物質(ケイ素系負極活物質)と炭素系活物質とを含む混合負極活物質材料を含んでいても良い。これにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。   The negative electrode active material layer 12 may include a mixed negative electrode active material containing the negative electrode active material (silicon-based negative electrode active material) of the present invention and a carbon-based active material. As a result, the electrical resistance of the negative electrode active material layer is reduced, and the expansion stress associated with charging can be reduced. Examples of the carbon-based active material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, carbon blacks, and the like.

また、本発明の負極は、本発明の負極活物質(ケイ素系負極活物質)と炭素系活物質の質量の合計に対する、負極活物質(ケイ素系負極活物質)の質量の割合が6質量%以上であることが好ましい。本発明の負極活物質と炭素系活物質の質量の合計に対する、本発明の負極活物質の質量の割合が6質量%以上であれば、電池容量を確実に向上させることが可能となる。   In the negative electrode of the present invention, the ratio of the mass of the negative electrode active material (silicon-based negative electrode active material) to the total mass of the negative electrode active material (silicon-based negative electrode active material) of the present invention and the carbon-based active material is 6% by mass. The above is preferable. If the ratio of the mass of the negative electrode active material of the present invention to the total mass of the negative electrode active material and the carbon-based active material of the present invention is 6% by mass or more, the battery capacity can be reliably improved.

また、上記のように本発明の負極活物質は、ケイ素化合物粒子を含み、ケイ素化合物粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有する酸化ケイ素材であるが、その組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。 Further, as described above, the negative electrode active material of the present invention contains silicon compound particles, and the silicon compound particles are a silicon oxide material containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6). The composition is preferably such that x is close to 1. This is because high cycle characteristics can be obtained. Note that the composition of the silicon compound in the present invention does not necessarily mean a purity of 100%, and may contain a trace amount of impurity elements.

また、本発明の負極活物質において、ケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上を含有している。ケイ素化合物粒子のバルク内部にLiSiO、LiSiOは少なくとも1種以上存在することで電池特性が向上するが、上記2種類のリチウムシリケートを共存させる場合に電池特性がより向上する。なお、これらのリチウムシリケートは、NMR(Nuclear Magnetic Resonance:核磁気共鳴)又はXPS(X−ray photoelectron spectroscopy:X線光電子分光)で定量可能である。XPSとNMRの測定は、例えば、以下の条件により行うことができる。 In the negative electrode active material of the present invention, the silicon compound particles contain at least one of Li 2 SiO 3 and Li 4 SiO 4 . When at least one of Li 4 SiO 4 and Li 2 SiO 3 is present in the bulk of the silicon compound particles, the battery characteristics are improved. However, when the two types of lithium silicate are present together, the battery characteristics are further improved. Note that these lithium silicates can be quantified by NMR (Nuclear Magnetic Resonance) or XPS (X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy). The XPS and NMR measurements can be performed, for example, under the following conditions.

XPS
・装置: X線光電子分光装置、
・X線源: 単色化Al Kα線、
・X線スポット径: 100μm、
・Arイオン銃スパッタ条件: 0.5kV/2mm×2mm。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR−MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
XPS
・ Device: X-ray photoelectron spectrometer,
・ X-ray source: Monochromatic Al Kα ray,
・ X-ray spot diameter: 100 μm,
Ar ion gun sputtering conditions: 0.5 kV / 2 mm × 2 mm.
29 Si MAS NMR (magic angle rotating nuclear magnetic resonance)
Apparatus: 700 NMR spectrometer manufactured by Bruker,
Probe: 4 mm HR-MAS rotor 50 μL,
Sample rotation speed: 10 kHz,
-Measurement environment temperature: 25 ° C.

また、ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。ケイ素化合物粒子におけるケイ素化合物のケイ素結晶性は低いほどよく、特に、Si結晶の存在量が少なければ、電池特性を向上でき、さらに、安定的なLi化合物が生成できる。   In addition, the silicon compound particles have a half-value width (2θ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more, and the crystallite size corresponding to the crystal plane is It is preferable that it is 7.5 nm or less. The silicon crystallinity of the silicon compound in the silicon compound particles is preferably as low as possible. In particular, if the amount of Si crystal is small, battery characteristics can be improved, and a stable Li compound can be generated.

また、本発明の負極活物質は、ケイ素化合物粒子において、29Si−MAS−NMRスペクトルから得られる、ケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として−96〜−150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすことが好ましい。ケイ素化合物粒子において、SiO成分を基準とした場合にケイ素成分又はLiSiOの量が比較的多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる。なお、29Si−MAS−NMRの測定条件は上記と同様でよい。 Further, the negative electrode active material of the present invention is obtained from the 29 Si-MAS-NMR spectrum in the silicon compound particles, and has a maximum peak intensity value A in the Si and Li silicate regions given by −60 to −95 ppm as a chemical shift value. It is preferable that the peak intensity value B in the SiO 2 region given by −96 to −150 ppm as the chemical shift value satisfies the relationship of A> B. If the silicon compound particles have a relatively large amount of silicon component or Li 2 SiO 3 when the SiO 2 component is used as a reference, the effect of improving battery characteristics due to insertion of Li can be sufficiently obtained. The measurement conditions for 29 Si-MAS-NMR may be the same as described above.

また、本発明の負極活物質において、負極活物質粒子は、表層部に炭素材を含むことが好ましい。負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られるため、このような負極活物質粒子を含む負極活物質を二次電池の負極活物質として用いた際に、電池特性を向上させることができる。   In the negative electrode active material of the present invention, the negative electrode active material particles preferably include a carbon material in the surface layer portion. When the negative electrode active material particles include a carbon material in the surface layer portion, the conductivity can be improved. Therefore, when the negative electrode active material containing such negative electrode active material particles is used as the negative electrode active material of a secondary battery. Battery characteristics can be improved.

また、負極活物質粒子の表層部の炭素材の平均厚さは、10nm以上5000nm以下であることが好ましい。炭素材の平均厚さが10nm以上であれば導電性向上が得られ、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、電池容量の低下を抑制することができる。   Moreover, it is preferable that the average thickness of the carbon material of the surface layer part of negative electrode active material particles is 10 nm or more and 5000 nm or less. If the average thickness of the carbon material is 10 nm or more, conductivity can be improved, and if the average thickness of the carbon material to be coated is 5000 nm or less, the negative electrode active material containing such negative electrode active material particles is converted into lithium ion When used as a negative electrode active material for a secondary battery, a decrease in battery capacity can be suppressed.

この炭素材の平均厚さは、例えば、以下の手順により算出できる。先ず、TEM(透過型電子顕微鏡)により任意の倍率で負極活物質粒子を観察する。この倍率は、厚さを測定できるように、目視で炭素材の厚さを確認できる倍率が好ましい。続いて、任意の15点において、炭素材の厚さを測定する。この場合、できるだけ特定の場所に集中せず、広くランダムに測定位置を設定することが好ましい。最後に、上記の15点の炭素材の厚さの平均値を算出する。   The average thickness of the carbon material can be calculated by the following procedure, for example. First, negative electrode active material particles are observed at an arbitrary magnification using a TEM (transmission electron microscope). This magnification is preferably a magnification capable of visually confirming the thickness of the carbon material so that the thickness can be measured. Subsequently, the thickness of the carbon material is measured at any 15 points. In this case, it is preferable to set the measurement position widely and randomly without concentrating on a specific place as much as possible. Finally, the average value of the thicknesses of the 15 carbon materials is calculated.

炭素材の被覆率は特に限定されないが、できるだけ高い方が望ましい。被覆率が30%以上であれば、電気伝導性がより向上するため好ましい。炭素材の被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。なぜならば、被覆率を向上させることができるからである。   The coverage of the carbon material is not particularly limited, but is preferably as high as possible. A coverage of 30% or more is preferable because electric conductivity is further improved. The method for coating the carbon material is not particularly limited, but a sugar carbonization method and a pyrolysis method of hydrocarbon gas are preferable. This is because the coverage can be improved.

また、本発明の負極活物質は、負極活物質粒子(ケイ素系活物質粒子)10質量%と炭素活物質材90質量%との混合物と純水とを1:10の質量比で混合した混合液において、該混合液を作製してから一時間経過した後のpHが13.0以下となるものであることが好ましい。上記条件で測定したpHが13.0以下であれば、電極作製時に作製する負極活物質を分散させた水系スラリーにおける結着性がより向上するため、サイクル特性をより向上させることができる。   The negative electrode active material of the present invention is a mixture in which a mixture of 10% by mass of negative electrode active material particles (silicon-based active material particles) and 90% by mass of carbon active material and pure water is mixed at a mass ratio of 1:10. The liquid preferably has a pH of 13.0 or less after one hour has elapsed since the liquid mixture was prepared. If pH measured on the said conditions is 13.0 or less, since the binding property in the aqueous | water-based slurry in which the negative electrode active material produced at the time of electrode preparation was disperse | distributed improves more, cycling characteristics can be improved more.

また、負極活物質粒子(ケイ素系活物質粒子)と純水とを1:4の質量比で混合した混合液において、該混合液を作製してから一時間経過した後のpHが13.0以下となるものであることが好ましい。このようなものであっても、電極作製時に作製する負極活物質を分散させた水系スラリーにおける結着性がより向上するため、サイクル特性をより向上させることができる。   Further, in a mixed solution in which negative electrode active material particles (silicon-based active material particles) and pure water are mixed at a mass ratio of 1: 4, the pH after 1 hour has elapsed since the preparation of the mixed solution is 13.0. The following is preferable. Even if it is such, since the binding property in the aqueous slurry in which the negative electrode active material produced at the time of electrode production is dispersed is further improved, the cycle characteristics can be further improved.

また、負極活物質粒子はBJH法に基づく細孔分布において、1〜100nmの細孔径にピークを有し、全細孔容量が0.005cm/g以上のものであることが好ましい。このような負極活物質は、細孔径が適切な範囲に調整されたものであるため、水分脱離がスムーズであり、かつ、高温で化学結合しているような水分も脱離しやすいものとなる。また、全細孔容量が0.005cm/g以上であれば、電解液の含浸がスムーズになる。よって、サイクル特性がより向上する。 The negative electrode active material particles preferably have a peak in the pore diameter of 1 to 100 nm and the total pore volume of 0.005 cm 3 / g or more in the pore distribution based on the BJH method. Since such a negative electrode active material has a pore diameter adjusted to an appropriate range, moisture desorption is smooth, and moisture that is chemically bonded at a high temperature is easily desorbed. . In addition, when the total pore volume is 0.005 cm 3 / g or more, the impregnation with the electrolytic solution becomes smooth. Therefore, cycle characteristics are further improved.

また、負極活物質粒子は、真密度が2.20g/cm以上2.50g/cm以下のものであることが好ましい。真密度が上記範囲であれば、ケイ素化合物粒子とLiの反応率が所望の範囲内であり、ケイ素化合物粒子へのLiの挿入が適切に行われた負極活物質粒子である。よって、サイクル特性がより向上する。 Further, the anode active material particles are preferably a true density is of 2.20 g / cm 3 or more 2.50 g / cm 3 less. When the true density is in the above range, the reaction rate of the silicon compound particles and Li is within a desired range, and the anode active material particles are appropriately inserted with Li into the silicon compound particles. Therefore, cycle characteristics are further improved.

また、負極活物質粒子は、LiOH及びLiCOを表面に含み、LiOHの含有量が負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、LiCOの含有量が負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下を満たすものであることが好ましい。このような含有量で負極活物質粒子が表面にLiCO及びLiOHを含めば、電子伝導性がより向上する。その結果、二次電池のサイクル特性をより向上させることができる。 The negative electrode active material particles include LiOH and Li 2 CO 3 on the surface, the LiOH content is 0.01% by mass or more and 5.00% by mass or less with respect to the mass of the negative electrode active material particles, and It is preferable that the content of Li 2 CO 3 satisfies 0.01% by mass or more and 5.00% by mass or less with respect to the mass of the negative electrode active material particles. When the negative electrode active material particles include Li 2 CO 3 and LiOH on the surface with such a content, the electron conductivity is further improved. As a result, the cycle characteristics of the secondary battery can be further improved.

また、本発明の負極活物質(ケイ素系活物質)は、該ケイ素系活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、ケイ素系活物質にリチウムを挿入するよう電流を流す充電と、ケイ素系活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを対極リチウムを基準とする負極電極の電位Vで微分した微分値dQ/dVと電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、負極電極の電位Vが0.40V〜0.55Vの範囲にピークを有するものであることが好ましい。V−dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。また、30回以内の充放電で上記ピークが発現する負極活物質であれば、安定したバルクが形成されるものであると判断できる。   Moreover, the negative electrode active material (silicon-based active material) of the present invention is a test cell comprising a negative electrode containing a mixture of the silicon-based active material and a carbon-based active material and counter electrode lithium, and in the test cell, Charging / discharging consisting of charging in which current is inserted to insert lithium into the silicon-based active material and discharging in which current is discharged to detach lithium from the silicon-based active material is performed 30 times, and the discharge capacity Q in each charging / discharging is determined. When a graph showing the relationship between the differential value dQ / dV differentiated by the potential V of the negative electrode with respect to the counter electrode lithium and the potential V is drawn, the negative electrode during the Xth and subsequent discharges (1 ≦ X ≦ 30) The electrode potential V preferably has a peak in the range of 0.40V to 0.55V. The above peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery. Moreover, if it is a negative electrode active material which the said peak expresses by charge / discharge within 30 times, it can be judged that the stable bulk is formed.

また、負極活物質層に含まれる負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。   Moreover, as a negative electrode binder contained in a negative electrode active material layer, any one or more types, such as a polymeric material and a synthetic rubber, can be used, for example. Examples of the polymer material include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, and carboxymethylcellulose. Examples of the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.

負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。   As a negative electrode conductive support agent, any 1 or more types of carbon materials, such as carbon black, acetylene black, graphite, ketjen black, a carbon nanotube, carbon nanofiber, can be used, for example.

負極活物質層は、例えば、塗布法で形成される。塗布法とは、負極活物質粒子と上記の結着剤など、また、必要に応じて導電助剤、炭素材料を混合した後に、有機溶剤や水などに分散させ塗布する方法である。   The negative electrode active material layer is formed by, for example, a coating method. The coating method is a method in which negative electrode active material particles and the above-mentioned binder, and the like, and a conductive additive and a carbon material are mixed as necessary, and then dispersed and applied in an organic solvent or water.

[負極の製造方法]
負極は、例えば、以下の手順により製造できる。まず、負極に使用する負極活物質の製造方法を説明する。最初に、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する。次に、ケイ素化合物粒子にリチウムを挿入し、LiSiO及びLiSiOのうち少なくとも1種以上を含有させる。これにより、負極活物質粒子を作製する。また、ケイ素化合物粒子に炭素材を被覆してからケイ素化合物粒子にリチウムを挿入しても良い。
[Production method of negative electrode]
The negative electrode can be produced, for example, by the following procedure. First, the manufacturing method of the negative electrode active material used for a negative electrode is demonstrated. First, silicon compound particles containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6) are prepared. Next, lithium is inserted into the silicon compound particles to contain at least one of Li 2 SiO 3 and Li 4 SiO 4 . Thereby, negative electrode active material particles are produced. Alternatively, lithium may be inserted into the silicon compound particles after the silicon compound particles are coated with a carbon material.

次に、負極活物質粒子から、メジアン径が1.0μm以上15μm以下であり、負極活物質粒子の粒度分布を下記のロジンラムラー分布の式1で表したとき、分布定数nの値が5.0以下のものを選別する。そして、選別した負極活物質粒子を用いて、負極活物質を製造する。   Next, when the median diameter is 1.0 μm or more and 15 μm or less from the negative electrode active material particles, and the particle size distribution of the negative electrode active material particles is expressed by the following formula 1 of Rosin-Rammler distribution, the value of the distribution constant n is 5.0. Select the following: And the negative electrode active material is manufactured using the selected negative electrode active material particles.

より具体的には以下のように負極活物質を製造できる。先ず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃〜1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。   More specifically, the negative electrode active material can be produced as follows. First, a raw material that generates silicon oxide gas is heated in a temperature range of 900 ° C. to 1600 ° C. under reduced pressure in the presence of an inert gas to generate silicon oxide gas. Considering the surface oxygen of the metal silicon powder and the presence of a trace amount of oxygen in the reaction furnace, the mixing molar ratio is preferably in the range of 0.8 <metal silicon powder / silicon dioxide powder <1.3.

発生した酸化珪素ガスは吸着板上で固体化され堆積される。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。以上のようにして、ケイ素化合物粒子を作製することができる。なお、ケイ素化合物粒子中のSi結晶子は、気化温度の変更、又は、生成後の熱処理で制御できる。   The generated silicon oxide gas is solidified and deposited on the adsorption plate. Next, a silicon oxide deposit is taken out in a state where the temperature in the reactor is lowered to 100 ° C. or lower, and pulverized and powdered using a ball mill, a jet mill or the like. As described above, silicon compound particles can be produced. Note that the Si crystallites in the silicon compound particles can be controlled by changing the vaporization temperature or by heat treatment after generation.

ここで、ケイ素化合物粒子の表層に炭素材の層を生成しても良い。炭素材の層を生成する方法としては、熱分解CVD法が望ましい。熱分解CVD法で炭素材の層を生成する方法について説明する。   Here, a carbon material layer may be formed on the surface layer of the silicon compound particles. As a method for generating the carbon material layer, a thermal decomposition CVD method is desirable. A method for generating a carbon material layer by pyrolytic CVD will be described.

先ず、ケイ素化合物粒子を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、1200℃以下が望ましく、より望ましいのは950℃以下である。分解温度を1200℃以下にすることで、活物質粒子の意図しない不均化を抑制することができる。所定の温度まで炉内温度を昇温させた後に、ケイ素化合物粒子の表面に炭素層を生成する。また、炭素材の原料となる炭化水素ガスは、特に限定しないが、C組成においてn≦3であることが望ましい。n≦3であれは、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。 First, silicon compound particles are set in a furnace. Next, hydrocarbon gas is introduced into the furnace to raise the temperature in the furnace. The decomposition temperature is not particularly limited, but is preferably 1200 ° C. or lower, and more preferably 950 ° C. or lower. By setting the decomposition temperature to 1200 ° C. or lower, unintended disproportionation of the active material particles can be suppressed. After raising the furnace temperature to a predetermined temperature, a carbon layer is generated on the surface of the silicon compound particles. The hydrocarbon gas used as the raw material for the carbon material is not particularly limited, but it is desirable that n ≦ 3 in the C n H m composition. If n ≦ 3, the production cost can be reduced, and the physical properties of the decomposition product can be improved.

次に、上記のように作製したケイ素活物質粒子を含む負極活物質粒子に、Liを挿入し、LiSiO、LiSiOのうち少なくとも1種以上を含有させる。Liの挿入は、熱ドープ法により行うことが好ましい。 Next, Li is inserted into the negative electrode active material particles including the silicon active material particles produced as described above, and at least one of Li 2 SiO 3 and Li 4 SiO 4 is contained. Li is preferably inserted by a thermal doping method.

熱ドープ法による改質では、例えば、ケイ素化合物粒子をLiHと混合し、不活性雰囲気下で加熱をすることで改質可能である。不活性雰囲気としては、例えば、Ar雰囲気若しくはN雰囲気又はArとNの混合雰囲気などが使用できる。より具体的には、まず、Ar若しくはN雰囲気下でLiH粉と酸化珪素粉末を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、700℃〜800℃の範囲で加熱、焼成し改質を行う。なお、N雰囲気下で改質を行った場合、得られた負極活物質粒子の表面にはLiNが含まれる。その後、負極活物質粒子を純水等で洗浄すればLiCO及びLiOHを表面に生成することができる。純水の量は、例えば、粉体に対して4倍当量とすることができる。洗浄時間は、粉体に応じて調整できる。その後、乾燥を行うことで、適切なイオン量を有するケイ素化合物粒子が得られる。 In the modification by the thermal doping method, for example, the modification can be performed by mixing silicon compound particles with LiH and heating in an inert atmosphere. As the inert atmosphere, for example, an Ar atmosphere, an N 2 atmosphere, or a mixed atmosphere of Ar and N 2 can be used. More specifically, first, LiH powder and silicon oxide powder are sufficiently mixed in an Ar or N 2 atmosphere, sealed, and homogenized by stirring the sealed container. Thereafter, heating and baking are performed in the range of 700 ° C. to 800 ° C. to perform modification. When the modification is performed in an N 2 atmosphere, the surface of the obtained negative electrode active material particles contains Li 3 N. Thereafter, if the negative electrode active material particles are washed with pure water or the like, Li 2 CO 3 and LiOH can be generated on the surface. The amount of pure water can be, for example, 4 times equivalent to the powder. The cleaning time can be adjusted according to the powder. Thereafter, by drying, silicon compound particles having an appropriate amount of ions can be obtained.

また、電気化学的ドープ法により改質を行っても良い。この時、挿入電位、脱離電位の調整や電流密度、浴槽温度、挿入脱離回数を変化させることでバルク内生成物質を制御することができる。例えば、図2に示すバルク内改質装置20を用いて、バルク内改質を行うことができる。なお、装置構造はバルク内改質装置20の構造に特に限定されない。   Further, the modification may be performed by an electrochemical doping method. At this time, the substance generated in the bulk can be controlled by adjusting the insertion potential and the desorption potential, changing the current density, the bath temperature, and the number of times of insertion and desorption. For example, in-bulk reforming can be performed using the in-bulk reforming apparatus 20 shown in FIG. The device structure is not particularly limited to the structure of the in-bulk reforming device 20.

図2に示すバルク内改質装置20は、電解液23で満たされた浴槽27と、浴槽27内に配置され、電源26の一方に接続された対極21と、浴槽27内に配置され、電源26の他方に接続された粉末格納容器25と、対極21と粉末格納容器25との間に設けられたセパレータ24とを有している。粉末格納容器25には、ケイ素化合物粒子22が格納される。   The in-bulk reforming apparatus 20 shown in FIG. 2 is disposed in the bathtub 27 filled with the electrolytic solution 23, the counter electrode 21 disposed in the bathtub 27 and connected to one side of the power supply 26, and disposed in the bathtub 27. 26, and a separator 24 provided between the counter electrode 21 and the powder storage container 25. Silicon compound particles 22 are stored in the powder storage container 25.

電気化学的ドープ法による改質では、例えば、電解液23にリチウム塩を溶解するか、又は、Liを含む化合物を対極21に組み、電源26で粉末格納容器25と対極21との間に電圧をかけて、電流を流す事でケイ素化合物粒子にリチウムを挿入できる。   In the modification by the electrochemical doping method, for example, a lithium salt is dissolved in the electrolytic solution 23 or a compound containing Li is assembled in the counter electrode 21, and a voltage is applied between the powder container 25 and the counter electrode 21 by the power source 26. The lithium can be inserted into the silicon compound particles by applying an electric current.

電気化学的にLiを挿入することで、熱的方法で挿入したLiと異なったサイトにLiが挿入される。そのため、例えば、熱ドープ後に更に電気化学的ドープを行えば、さらなる初回効率の向上が可能になるとともに、熱的方法でのケイ素結晶子の成長を緩和することが可能である。   By inserting Li electrochemically, Li is inserted at a site different from Li inserted by a thermal method. Therefore, for example, if the electrochemical doping is further performed after the thermal doping, the initial efficiency can be further improved and the growth of silicon crystallites by the thermal method can be reduced.

電気化学的ドープ法に用いるリチウム源としては、金属リチウム、遷移金属リチウムリン酸塩、Niのリチウム酸化物、Coのリチウム酸化物、Mnのリチウム酸化物、硝酸リチウム、ハロゲン化リチウムのうちの少なくとも一つを用いることができる。なお、リチウム塩の形態は問わない。即ち、リチウム塩を対極21として用いてもよく、電解液23の電解質として用いてもよい。   The lithium source used in the electrochemical doping method includes at least one of metal lithium, transition metal lithium phosphate, lithium oxide of Ni, lithium oxide of Co, lithium oxide of Mn, lithium nitrate, and lithium halide. One can be used. The form of the lithium salt is not limited. That is, a lithium salt may be used as the counter electrode 21 or may be used as an electrolyte of the electrolytic solution 23.

このとき、電解液23の溶媒としては、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジオキサン、ジグリム、トリグリム、テトラグリム、及びこれらの混合物などを用いることができる。また、電解液23の電解質として、LiBF、LiPF、LiClO及びこれらの誘導体も用いることができ、Li源も兼ねる電解質としては、特に、LiNO、LiClなども用いることができる。また、電気化学的ドープ法において、Liの挿入後、ケイ素化合物粒子からのLiの脱離過程を含んでもよい。これによってケイ素化合物粒子に挿入されるLi量を調整することが可能である。 At this time, as a solvent of the electrolytic solution 23, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, dioxane, diglyme, triglyme, tetraglyme, and a mixture thereof can be used. Further, LiBF 4 , LiPF 6 , LiClO 4 and derivatives thereof can also be used as the electrolyte of the electrolytic solution 23. In particular, LiNO 3 , LiCl, and the like can also be used as the electrolyte that also serves as the Li source. Further, in the electrochemical doping method, after the insertion of Li, a desorption process of Li from the silicon compound particles may be included. This makes it possible to adjust the amount of Li inserted into the silicon compound particles.

なお、熱ドープ法によって改質を行った場合、ケイ素化合物粒子から得られる29Si−MAS−NMRスペクトルは電気化学的ドープ法を用いた場合とは異なる。図3に電気化学的ドープ法のみにより改質を行った場合にケイ素化合物粒子から測定される29Si−MAS−NMRスペクトルの一例を示す。図3において、−75ppm近辺に与えられるピークがLiSiOに由来するピークであり、−80〜−100ppmに与えられるピークがSiに由来するピークである。なお、−80〜−100ppmにかけて、LiSiO、LiSiO以外のLiシリケートのピークを有する場合もある。 When the modification is performed by the thermal doping method, the 29 Si-MAS-NMR spectrum obtained from the silicon compound particles is different from the case where the electrochemical doping method is used. FIG. 3 shows an example of a 29 Si-MAS-NMR spectrum measured from silicon compound particles when the modification is performed only by the electrochemical doping method. In FIG. 3, the peak given in the vicinity of −75 ppm is a peak derived from Li 2 SiO 3, and the peak given from −80 to −100 ppm is a peak derived from Si. Note that over the -80 to-100 ppm, in some cases having a peak of Li 2 SiO 3, Li 4 SiO 4 other Li silicate.

また、図4に熱ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si−MAS−NMRスペクトルの一例を示す。図4において、−75ppm近辺に与えられるピークがLiSiOに由来するピークであり、−80〜−100ppmに与えられるピークがSiに由来するピークである。なお、−80〜−100ppmにかけて、LiSiO、LiSiO以外のLiシリケートのピークを有する場合もある。なお、XPSスペクトルから、LiSiOのピークを確認できる。 FIG. 4 shows an example of a 29 Si-MAS-NMR spectrum measured from silicon compound particles when modification is performed by a thermal doping method. In FIG. 4, the peak given in the vicinity of −75 ppm is a peak derived from Li 2 SiO 3, and the peak given from −80 to −100 ppm is a peak derived from Si. Note that over the -80 to-100 ppm, in some cases having a peak of Li 2 SiO 3, Li 4 SiO 4 other Li silicate. Note that the peak of Li 4 SiO 4 can be confirmed from the XPS spectrum.

次に、負極活物質粒子から、メジアン径が1.0μm以上15μm以下であり、負極活物質粒子の粒度分布を下記のロジンラムラー分布の式1で表したとき、分布定数nの値が5.0以下のものを選別する。メジアン径及び粒度分布は、例えば、レーザー回折法などで測定できる。   Next, when the median diameter is 1.0 μm or more and 15 μm or less from the negative electrode active material particles, and the particle size distribution of the negative electrode active material particles is expressed by the following formula 1 of Rosin-Rammler distribution, the value of the distribution constant n is 5.0. Select the following: The median diameter and particle size distribution can be measured by, for example, a laser diffraction method.

尚、負極活物質粒子の選別は、必ずしも負極活物質の製造の都度行う必要はなく、メジアン径が1.0μm以上15μm以下であり、負極活物質粒子の粒度分布を下記のロジンラムラー分布の式1で表したとき、分布定数nの値が5.0以下を満たす負極活物質粒子が得られる製造条件を見出して選択すれば、その後は、その選択された条件と同じ条件で負極活物質を製造することができる。   The selection of the negative electrode active material particles is not necessarily performed every time the negative electrode active material is produced. The median diameter is 1.0 μm or more and 15 μm or less, and the particle size distribution of the negative electrode active material particles is expressed by the following rosin Ramler distribution formula 1. If the production conditions for obtaining negative electrode active material particles satisfying a distribution constant n value of 5.0 or less are found and selected, then the negative electrode active material is produced under the same conditions as the selected conditions. can do.

以上のようにして作製した負極活物質を、負極結着剤、導電助剤などの他の材料と混合して、負極合剤とした後に、有機溶剤又は水などを加えてスラリーとする。次に負極集電体の表面に、上記のスラリーを塗布し、乾燥させて、負極活物質層を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。以上のようにして、負極を作製できる。   The negative electrode active material produced as described above is mixed with other materials such as a negative electrode binder and a conductive additive to form a negative electrode mixture, and then an organic solvent or water is added to obtain a slurry. Next, the above slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, you may perform a heat press etc. as needed. A negative electrode can be produced as described above.

<リチウムイオン二次電池>
次に、本発明のリチウムイオン二次電池について説明する。本発明のリチウムイオン二次電池は、本発明の負極活物質を含む負極を用いたものである。ここでは具体例として、ラミネートフィルム型のリチウムイオン二次電池を例に挙げる。
<Lithium ion secondary battery>
Next, the lithium ion secondary battery of the present invention will be described. The lithium ion secondary battery of the present invention uses a negative electrode containing the negative electrode active material of the present invention. Here, as a specific example, a laminated film type lithium ion secondary battery is taken as an example.

[ラミネートフィルム型のリチウムイオン二次電池の構成]
図5に示すラミネートフィルム型のリチウムイオン二次電池30は、主にシート状の外装部材35の内部に巻回電極体31が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体の最外周部は保護テープにより保護されている。
[Configuration of laminated film type lithium ion secondary battery]
A laminated film type lithium ion secondary battery 30 shown in FIG. 5 is one in which a wound electrode body 31 is accommodated mainly in a sheet-like exterior member 35. This wound body has a separator between a positive electrode and a negative electrode and is wound. There is also a case where a separator is provided between the positive electrode and the negative electrode and a laminate is accommodated. In both electrode bodies, the positive electrode lead 32 is attached to the positive electrode, and the negative electrode lead 33 is attached to the negative electrode. The outermost peripheral part of the electrode body is protected by a protective tape.

正負極リードは、例えば、外装部材35の内部から外部に向かって一方向で導出されている。正極リード32は、例えば、アルミニウムなどの導電性材料により形成され、負極リード33は、例えば、ニッケル、銅などの導電性材料により形成される。   The positive and negative electrode leads are led out in one direction from the inside of the exterior member 35 to the outside, for example. The positive electrode lead 32 is formed of a conductive material such as aluminum, and the negative electrode lead 33 is formed of a conductive material such as nickel or copper.

外装部材35は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体31と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。   The exterior member 35 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order. This laminate film is formed of two films so that the fusion layer faces the electrode body 31. The outer peripheral edges of the fusion layer are bonded together with an adhesive or an adhesive. The fused part is, for example, a film such as polyethylene or polypropylene, and the metal part is aluminum foil or the like. The protective layer is, for example, nylon.

外装部材35と正負極リードとの間には、外気侵入防止のため密着フィルム34が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。   An adhesion film 34 is inserted between the exterior member 35 and the positive and negative electrode leads to prevent intrusion of outside air. This material is, for example, polyethylene, polypropylene, or polyolefin resin.

[正極]
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
[Positive electrode]
The positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, similarly to the negative electrode 10 of FIG.

正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。   The positive electrode current collector is formed of, for example, a conductive material such as aluminum.

正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいても良い。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。   The positive electrode active material layer includes one or more positive electrode materials capable of occluding and releasing lithium ions, and includes other materials such as a binder, a conductive additive, and a dispersant depending on the design. You can leave. In this case, details regarding the binder and the conductive additive are the same as, for example, the negative electrode binder and the negative electrode conductive additive already described.

正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これら記述される正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiM1OあるいはLiM2POで表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。 As the positive electrode material, a lithium-containing compound is desirable. Examples of the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element. Among these described positive electrode materials, compounds having at least one of nickel, iron, manganese, and cobalt are preferable. These chemical formulas are represented by, for example, Li x M1O 2 or Li y M2PO 4 . In the formula, M1 and M2 represent at least one or more transition metal elements. The values of x and y vary depending on the battery charge / discharge state, but are generally expressed as 0.05 ≦ x ≦ 1.10 and 0.05 ≦ y ≦ 1.10.

リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)などが挙げられる。リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1−uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。 Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ) and lithium nickel composite oxide (Li x NiO 2 ). Examples of the phosphate compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 <u <1)). Is mentioned. This is because, when these positive electrode materials are used, a high battery capacity can be obtained and excellent cycle characteristics can be obtained.

[負極]
負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
[Negative electrode]
The negative electrode has the same configuration as the above-described negative electrode 10 for a lithium ion secondary battery in FIG. 1. For example, the negative electrode has negative electrode active material layers 12 on both surfaces of the current collector 11. The negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. This is because the deposition of lithium metal on the negative electrode can be suppressed.

正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。   The positive electrode active material layer is provided on part of both surfaces of the positive electrode current collector, and the negative electrode active material layer is also provided on part of both surfaces of the negative electrode current collector. In this case, for example, the negative electrode active material layer provided on the negative electrode current collector is provided with a region where there is no opposing positive electrode active material layer. This is to perform a stable battery design.

非対向領域、すなわち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。   In the non-opposing region, that is, the region where the negative electrode active material layer and the positive electrode active material layer are not opposed to each other, there is almost no influence of charge / discharge. Therefore, the state of the negative electrode active material layer is maintained as it is immediately after formation. This makes it possible to accurately examine the composition with good reproducibility without depending on the presence or absence of charge / discharge, such as the composition of the negative electrode active material.

[セパレータ]
セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[Separator]
The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing current short-circuiting due to bipolar contact. This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.

[電解液]
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
[Electrolyte]
At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution). This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.

溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2−ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。   For example, a non-aqueous solvent can be used as the solvent. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran. Among these, it is desirable to use at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. This is because better characteristics can be obtained. In this case, more advantageous characteristics can be obtained by combining a high viscosity solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.

合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。   In the case of using an alloy-based negative electrode, it is preferable that at least one of a halogenated chain carbonate ester or a halogenated cyclic carbonate ester is contained as a solvent. Thereby, a stable film is formed on the surface of the negative electrode active material during charging and discharging, particularly during charging. Here, the halogenated chain carbonate ester is a chain carbonate ester having halogen as a constituent element (at least one hydrogen is replaced by halogen). The halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is replaced by a halogen).

ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。   The type of halogen is not particularly limited, but fluorine is preferred. This is because a film having a better quality than other halogens is formed. Further, the larger the number of halogens, the better. This is because the resulting coating is more stable and the decomposition reaction of the electrolyte is reduced.

ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4−フルオロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オンなどが挙げられる。   Examples of the halogenated chain carbonate include fluoromethyl methyl carbonate and difluoromethyl methyl carbonate. Examples of the halogenated cyclic carbonate include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one, and the like.

溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。   The solvent additive preferably contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed. Examples of the unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.

また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。   The solvent additive preferably contains sultone (cyclic sulfonic acid ester). This is because the chemical stability of the battery is improved. Examples of sultone include propane sultone and propene sultone.

さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。   Furthermore, it is preferable that the solvent contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved. Examples of the acid anhydride include propanedisulfonic acid anhydride.

電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。 The electrolyte salt can contain, for example, any one or more of light metal salts such as lithium salts. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).

電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。   The content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.

[ラミネートフィルム型二次電池の製造方法]
本発明では、上記の本発明の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造する。
[Production method of laminated film type secondary battery]
In this invention, a negative electrode is produced using the negative electrode active material manufactured with the manufacturing method of said negative electrode active material of this invention, and a lithium ion secondary battery is manufactured using this produced negative electrode.

最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また加熱又は圧縮を複数回繰り返しても良い。   First, a positive electrode is manufactured using the positive electrode material described above. First, a positive electrode active material and, if necessary, a binder, a conductive additive and the like are mixed to form a positive electrode mixture, and then dispersed in an organic solvent to form a positive electrode mixture slurry. Subsequently, the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer. Finally, the positive electrode active material layer is compression molded with a roll press or the like. At this time, heating may be performed, or heating or compression may be repeated a plurality of times.

次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。   Next, a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector, using the same operation procedure as the production of the negative electrode 10 for a lithium ion secondary battery described above.

正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図1を参照)。   When producing the positive electrode and the negative electrode, respective active material layers are formed on both surfaces of the positive electrode and the negative electrode current collector. At this time, the active material application length of both surface portions may be shifted in either electrode (see FIG. 1).

続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード32を取り付けると共に、負極集電体に負極リード33を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体31を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材35の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型のリチウムイオン二次電池30を製造することができる。   Subsequently, the electrolytic solution is adjusted. Subsequently, the positive electrode lead 32 is attached to the positive electrode current collector and the negative electrode lead 33 is attached to the negative electrode current collector by ultrasonic welding or the like. Subsequently, the positive electrode and the negative electrode are laminated or wound via a separator to produce a wound electrode body 31, and a protective tape is bonded to the outermost periphery. Next, the wound body is molded so as to have a flat shape. Subsequently, after sandwiching the wound electrode body between the folded film-shaped exterior member 35, the insulating portions of the exterior member are bonded to each other by a thermal fusion method, and the wound electrode body is released in only one direction. Enclose. An adhesion film is inserted between the positive electrode lead and the negative electrode lead and the exterior member. A predetermined amount of the adjusted electrolytic solution is introduced from the release portion, and vacuum impregnation is performed. After impregnation, the release part is bonded by a vacuum heat fusion method. As described above, the laminated film type lithium ion secondary battery 30 can be manufactured.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples.

(実施例1−1)
以下の手順により、図5に示したラミネートフィルム型のリチウムイオン二次電池30を作製した。
(Example 1-1)
The laminate film type lithium ion secondary battery 30 shown in FIG. 5 was produced by the following procedure.

最初に正極を作製した。正極活物質はリチウムニッケルコバルト複合酸化物であるLiNi0.7Co0.25Al0.05Oを95質量%と、正極導電助剤2.5質量%と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量%とを混合し、正極合剤とした。続いて正極合剤を有機溶剤(N−メチル−2−ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。 First, a positive electrode was produced. The positive electrode active material is 95% by mass of LiNi 0.7 Co 0.25 Al 0.05 O, which is a lithium nickel cobalt composite oxide, 2.5% by mass of a positive electrode conductive additive, and a positive electrode binder (polyvinylidene fluoride). : PVDF) 2.5% by mass was mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste slurry. Subsequently, the slurry was applied to both surfaces of the positive electrode current collector with a coating apparatus having a die head, and dried with a hot air drying apparatus. At this time, a positive electrode current collector having a thickness of 15 μm was used. Finally, compression molding was performed with a roll press.

次に負極を作製した。まず、負極活物質を以下のようにして作製した。金属ケイ素と二酸化ケイ素を混合した原料を反応炉に導入し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素化合物粒子のSiOのxの値は0.5であった。続いて、ケイ素化合物粒子の粒径を分級により調整した。その後、熱分解CVDを行うことで、ケイ素化合物粒子の表面に炭素材を被覆した。 Next, a negative electrode was produced. First, a negative electrode active material was produced as follows. A raw material in which metallic silicon and silicon dioxide are mixed is introduced into a reaction furnace, and vaporized in a vacuum atmosphere of 10 Pa is deposited on an adsorption plate. After sufficiently cooling, the deposit is taken out and pulverized by a ball mill. . The value x of SiO x of the silicon compound particles thus obtained was 0.5. Subsequently, the particle size of the silicon compound particles was adjusted by classification. Then, the carbon material was coat | covered on the surface of silicon compound particle | grains by performing pyrolysis CVD.

続いて、ケイ素化合物粒子に熱ドープ法によりリチウムを挿入し、改質した。まず、炭素材の被覆後のケイ素化合物粒子を、N雰囲気下でLiH粉と十分に混ぜ、封止を行い、封止した容器ごと撹拌して均一化した。その後、700℃〜800℃の範囲で加熱、焼成した。以上の処理により、ケイ素化合物粒子にリチウムを挿入した。このようにして、負極活物質粒子を作製した。また、この熱ドープの際に、負極活物質粒子の表面には窒化リチウムが生成された。次に、この負極活物質粒子を、負極活物質粒子に対して4倍当量の純水で洗浄を行った。この洗浄により、負極活物質粒子の表面にLiOH及びLiCOが生成された。その後、負極活物質粒子を乾燥させた。 Subsequently, lithium was inserted into the silicon compound particles by a thermal doping method and modified. First, the silicon compound particles coated with the carbon material were sufficiently mixed with LiH powder in an N 2 atmosphere, sealed, and stirred together to homogenize the sealed container. Then, it heated and baked in the range of 700 to 800 degreeC. Through the above treatment, lithium was inserted into the silicon compound particles. In this way, negative electrode active material particles were produced. Further, during this thermal doping, lithium nitride was generated on the surface of the negative electrode active material particles. Next, the negative electrode active material particles were washed with 4 times equivalent of pure water with respect to the negative electrode active material particles. By this cleaning, LiOH and Li 2 CO 3 were generated on the surface of the negative electrode active material particles. Thereafter, the negative electrode active material particles were dried.

負極活物質粒子のメジアン径は4.0μm、ロジンラムラー分布の式1の分布定数nは3.2であった。   The median diameter of the negative electrode active material particles was 4.0 μm, and the distribution constant n of Formula 1 of the rosin Ramler distribution was 3.2.

次に、この負極活物質粒子(ケイ素系活物質粒子)と、炭素系活物質を1:9の質量比で配合し、混合負極活物質を作製した。ここで、炭素系活物質としては、ピッチ層で被覆した天然黒鉛及び人造黒鉛を5:5の質量比で混合したものを使用した。また、炭素系活物質のメジアン径は20μmであった。   Next, the negative electrode active material particles (silicon-based active material particles) and the carbon-based active material were blended at a mass ratio of 1: 9 to prepare a mixed negative electrode active material. Here, as the carbon-based active material, a mixture of natural graphite and artificial graphite coated with a pitch layer at a mass ratio of 5: 5 was used. The median diameter of the carbon-based active material was 20 μm.

次に、作製した混合負極活物質、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)92.5:1:1:2.5:3の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。尚、上記のSBR、CMCは負極バインダー(負極結着剤)である。   Next, the prepared mixed negative electrode active material, conductive additive 1 (carbon nanotube, CNT), conductive additive 2 (carbon fine particles having a median diameter of about 50 nm), styrene butadiene rubber (styrene butadiene copolymer, hereinafter referred to as SBR). And carboxymethylcellulose (hereinafter referred to as CMC) 92.5: 1: 1: 2.5: 3, and then mixed with a dry mass ratio, and diluted with pure water to obtain a negative electrode mixture slurry. In addition, said SBR and CMC are negative electrode binders (negative electrode binder).

また、負極集電体としては、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ70質量ppmの濃度で含まれていた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は5mg/cmであった。 As the negative electrode current collector, an electrolytic copper foil having a thickness of 15 μm was used. This electrolytic copper foil contained carbon and sulfur at a concentration of 70 mass ppm. Finally, the negative electrode mixture slurry was applied to the negative electrode current collector and dried in a vacuum atmosphere at 100 ° C. for 1 hour. The amount of deposition (also referred to as area density) of the negative electrode active material layer per unit area on one side of the negative electrode after drying was 5 mg / cm 2 .

次に、溶媒(4−フルオロ−1,3−ジオキソラン−2−オン(FEC)、エチレンカーボネート(EC)およびジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を堆積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.2mol/kgとした。 Next, after mixing a solvent (4-fluoro-1,3-dioxolan-2-one (FEC), ethylene carbonate (EC) and dimethyl carbonate (DMC)), an electrolyte salt (lithium hexafluorophosphate: LiPF) 6 ) was dissolved to prepare an electrolytic solution. In this case, the composition of the solvent was FEC: EC: DMC = 10: 20: 70 as a deposition ratio, and the content of the electrolyte salt was 1.2 mol / kg with respect to the solvent.

次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体の一端にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に倦回させ倦回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム(厚さ12μm)を用いた。続いて、外装部材間に電極体を挟んだ後、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し、封止した。   Next, a secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to one end of the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order, and wound in the longitudinal direction to obtain a wound electrode body. The end portion was fixed with a PET protective tape. As the separator, a laminated film (thickness: 12 μm) sandwiched between a film mainly composed of porous polyethylene and a film mainly composed of porous polypropylene was used. Subsequently, after sandwiching the electrode body between the exterior members, the outer peripheral edges excluding one side were heat-sealed, and the electrode body was housed inside. As the exterior member, a nylon film, an aluminum foil, and an aluminum laminate film in which a polypropylene film was laminated were used. Subsequently, an electrolytic solution prepared from the opening was injected, impregnated in a vacuum atmosphere, heat-sealed, and sealed.

以上のようにして作製した二次電池のサイクル特性及び初回充放電特性を評価した。   The cycle characteristics and initial charge / discharge characteristics of the secondary batteries produced as described above were evaluated.

サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて、総サイクル数が499サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に、0.2C充放電で得られた500サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率(以下、単に維持率ともいう)を算出した。通常サイクル、すなわち3サイクル目から499サイクル目までは、充電0.7C、放電0.5Cで充放電を行った。   The cycle characteristics were examined as follows. First, in order to stabilize the battery, charge and discharge was performed for 2 cycles at 0.2 C in an atmosphere at 25 ° C., and the discharge capacity at the second cycle was measured. Subsequently, charge and discharge were performed until the total number of cycles reached 499 cycles, and the discharge capacity was measured each time. Finally, the discharge capacity at the 500th cycle obtained by 0.2 C charge / discharge was divided by the discharge capacity at the second cycle to calculate a capacity retention rate (hereinafter also simply referred to as a maintenance rate). In the normal cycle, that is, from the 3rd cycle to the 499th cycle, charging and discharging were performed with a charge of 0.7 C and a discharge of 0.5 C.

初回充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。雰囲気温度は、サイクル特性を調べた場合と同様にした。   When examining the initial charge / discharge characteristics, the initial efficiency (hereinafter sometimes referred to as initial efficiency) was calculated. The initial efficiency was calculated from an equation represented by initial efficiency (%) = (initial discharge capacity / initial charge capacity) × 100. The ambient temperature was the same as when the cycle characteristics were examined.

(実施例1−2〜実施例1−3、比較例1−1〜1−2)
ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1−1と同様に、二次電池の製造を行った。この場合、ケイ素化合物の原料中の金属ケイ素と二酸化ケイ素との比率や加熱温度を変化させることで、酸素量を調整した。実施例1−1〜1−3、比較例1−1、1−2における、SiOで表されるケイ素化合物のxの値を表1中に示した。
(Example 1-2 to Example 1-3, Comparative Example 1-1 to 1-2)
A secondary battery was manufactured in the same manner as Example 1-1 except that the amount of oxygen in the bulk of the silicon compound was adjusted. In this case, the amount of oxygen was adjusted by changing the ratio of metal silicon and silicon dioxide in the raw material of the silicon compound and the heating temperature. The values of x of the silicon compounds represented by SiO x in Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2 are shown in Table 1.

このとき、実施例1−1〜1−3及び比較例1−1、1−2の負極活物質粒子(ケイ素系負極活物質粒子)は以下のような性質を有していた。負極活物質粒子のメジアン径は4μmであり、ロジンラムラー分布の式1の分布定数nは3.2であった。ケイ素化合物粒子の内部には、LiSiO及びLiSiOが含まれていた。また、負極活物質粒子(ケイ素活物質粒子)10質量%と上記炭素活物質90質量%との混合物と純水とを1:10の質量比で混合した混合液において、混合液を作製してから一時間経過した後のpHが10.8であった。また、負極活物質粒子はBJH法に基づく細孔分布において、1〜100nmの細孔径にピークを有し、全細孔容量が0.045cm/gであった。また、負極活物質粒子の真密度が2.24g/cmであった。また、LiOHの含有量が、負極活物質粒子の質量に対して0.65質量%であり、LiCOの含有量が、負極活物質粒子の質量に対して0.45質量%であった。また、ケイ素化合物は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.755°であり、そのSi(111)結晶面に起因する結晶子サイズは4.86nmであった。 At this time, the negative electrode active material particles (silicon-based negative electrode active material particles) of Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2 had the following properties. The median diameter of the negative electrode active material particles was 4 μm, and the distribution constant n of Formula 1 of the Rosin-Lambler distribution was 3.2. Li 2 SiO 3 and Li 4 SiO 4 were contained inside the silicon compound particles. Further, in a mixed solution in which a mixture of 10% by mass of negative electrode active material particles (silicon active material particles) and 90% by mass of the carbon active material and pure water was mixed at a mass ratio of 1:10, a mixed solution was prepared. 1 hour later, the pH was 10.8. The negative electrode active material particles had a peak in the pore diameter of 1 to 100 nm in the pore distribution based on the BJH method, and the total pore volume was 0.045 cm 3 / g. Further, the true density of the negative electrode active material particles was 2.24 g / cm 3 . Further, the LiOH content was 0.65% by mass with respect to the mass of the negative electrode active material particles, and the Li 2 CO 3 content was 0.45% by mass with respect to the mass of the negative electrode active material particles. It was. Further, the silicon compound has a half-value width (2θ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.755 °, and a crystallite size due to the Si (111) crystal plane. Was 4.86 nm.

また、上記の全ての実施例及び比較例において、29Si−MAS−NMR スペクトルから得られるケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域のピークが発現した。また、上記全ての実施例、比較例で、29Si−MAS−NMR スペクトルから得られるケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、−96〜−150ppmで与えられるSiO領域のピーク強度値Bとの関係がA>Bであった。 Moreover, in all the above Examples and Comparative Examples, peaks of Si and Li silicate regions given by −60 to −95 ppm as chemical shift values obtained from 29 Si-MAS-NMR spectra were developed. In all of the above Examples and Comparative Examples, the maximum peak intensity values A in the Si and Li silicate regions given by −60 to −95 ppm as chemical shift values obtained from 29 Si-MAS-NMR spectra, and −96 to The relationship with the peak intensity value B in the SiO 2 region given at −150 ppm was A> B.

また、負極活物質粒子に含まれる炭素材の平均厚さは100nmであった。   The average thickness of the carbon material contained in the negative electrode active material particles was 100 nm.

また、上記のように作製した負極と対極リチウムとから、2032サイズのコイン電池型の試験セルを作製し、その放電挙動を評価した。より具体的には、まず、対極Liで0Vまで定電流定電圧充電を行い、電流密度が0.05mA/cmに達した時点で充電を終止させた。その後、1.2Vまで定電流放電を行った。この時の電流密度は0.2mA/cmであった。この充放電を30回繰り返し、各充放電において得られたデータから、縦軸を容量の変化率(dQ/dV)、横軸を電圧(V)としてグラフを描き、Vが0.4〜0.55(V)の範囲にピークが得られるかを確認した。その結果、SiOxのxが0.5以下である実施例1−1及び比較例1−1では、上記ピークが得られなかった。その他の実施例、比較例では、30回以内の充放電において上記ピークは得られ、上記ピークが初めて発現した充放電から30回目の充放電まで、全ての充放電において上記ピークが得られた。 Further, a 2032 size coin cell type test cell was prepared from the negative electrode and the counter electrode lithium prepared as described above, and the discharge behavior was evaluated. More specifically, first, constant current and constant voltage charging was performed up to 0 V with the counter electrode Li, and the charging was terminated when the current density reached 0.05 mA / cm 2 . Then, constant current discharge was performed to 1.2V. The current density at this time was 0.2 mA / cm 2 . This charge / discharge was repeated 30 times, and from the data obtained in each charge / discharge, a graph was drawn with the vertical axis representing the rate of change in capacity (dQ / dV) and the horizontal axis representing the voltage (V), where V was 0.4-0. It was confirmed whether a peak was obtained in the range of .55 (V). As a result, in Example 1-1 and Comparative Example 1-1 in which x of SiOx was 0.5 or less, the peak was not obtained. In the other Examples and Comparative Examples, the peak was obtained in charge / discharge within 30 times, and the peak was obtained in all charge / discharge from the charge / discharge where the peak first appeared until the 30th charge / discharge.

Figure 2017188319
Figure 2017188319

表1に示すように、SiOxで表わされるケイ素化合物において、xの値が、0.5≦x≦1.6の範囲外の場合、電池特性が悪化した。例えば、比較例1−1に示すように、酸素が十分にない場合(x=0.3)、初回効率が向上するが、容量維持率が著しく悪化する。一方、比較例1−2に示すように、酸素量が多い場合(x=1.8)は導電性の低下が生じ実質的にケイ素酸化物の容量が発現しないため、評価を停止した。   As shown in Table 1, in the silicon compound represented by SiOx, when the value of x was outside the range of 0.5 ≦ x ≦ 1.6, the battery characteristics deteriorated. For example, as shown in Comparative Example 1-1, when there is not enough oxygen (x = 0.3), the initial efficiency is improved, but the capacity retention rate is significantly deteriorated. On the other hand, as shown in Comparative Example 1-2, when the amount of oxygen was large (x = 1.8), the conductivity was lowered and the silicon oxide capacity was not substantially exhibited, so the evaluation was stopped.

(実施例2−1、実施例2−2)
ケイ素化合物粒子の内部に含ませるリチウムシリケートの種類を表2のように変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Example 2-1 and Example 2-2)
A secondary battery was produced under the same conditions as in Example 1-2 except that the type of lithium silicate contained in the silicon compound particles was changed as shown in Table 2, and cycle characteristics and initial efficiency were evaluated.

(比較例2−1)
ケイ素化合物粒子にリチウムの挿入を行わなかったこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Comparative Example 2-1)
A secondary battery was produced under the same conditions as Example 1-2 except that lithium was not inserted into the silicon compound particles, and the cycle characteristics and initial efficiency were evaluated.

Figure 2017188319
Figure 2017188319

ケイ素化合物がLiSiO、LiSiOのような安定したリチウムシリケートを含むことで、容量維持率、初期効率が向上した。特に、LiSiOとLiSiOの両方のリチウムシリケートを含む場合に、容量維持率、初期効率がより向上した。一方で、改質を行わず、ケイ素化合物にリチウムを含ませなかった比較例2−1では容量維持率、初期効率が低下した。 Since the silicon compound contains stable lithium silicate such as Li 2 SiO 3 and Li 4 SiO 4 , the capacity retention ratio and the initial efficiency were improved. In particular, when both Li 2 SiO 3 and Li 4 SiO 4 lithium silicates were included, the capacity retention ratio and the initial efficiency were further improved. On the other hand, the capacity retention ratio and the initial efficiency were lowered in Comparative Example 2-1, which was not modified and lithium was not included in the silicon compound.

(実施例3−1〜実施例3−4)
負極活物質粒子のメジアン径及びロジンラムラー分布の式1の分布定数nの値を表3に示す値にしたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。分布定数nの値は、ケイ素化合物粒子の粉砕時間と分級時間を変更することで調整できる。
(Example 3-1 to Example 3-4)
A secondary battery was fabricated under the same conditions as in Example 1-2 except that the median diameter of the negative electrode active material particles and the value of the distribution constant n of Formula 1 of the Rosin Ramler distribution were changed to the values shown in Table 3, and the cycle characteristics and initial Efficiency was evaluated. The value of the distribution constant n can be adjusted by changing the grinding time and classification time of the silicon compound particles.

(実施例3−5〜実施例3−6)
ケイ素化合物粒子の改質方法を電気化学的ドープ法に変更し、負極活物質粒子のメジアン径及びロジンラムラー分布の式1の分布定数nの値を表3に示す値にしたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。電気化学的ドープ法では、図2に示したバルク内改質装置を用いた。
(Example 3-5 to Example 3-6)
Example 1 except that the modification method of the silicon compound particles was changed to the electrochemical doping method, and the median diameter of the negative electrode active material particles and the value of the distribution constant n in the formula 1 of the rosin Ramler distribution were changed to the values shown in Table 3. A secondary battery was produced under the same conditions as -2, and cycle characteristics and initial efficiency were evaluated. In the electrochemical doping method, the in-bulk reformer shown in FIG. 2 was used.

(比較例3−1)
ケイ素化合物粒子の改質方法を電気化学的ドープ法に変更し、負極活物質粒子のメジアン径及びロジンラムラー分布の式1の分布定数nの値を表3に示す値にしたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。電気化学的ドープ法では、図2に示したバルク内改質装置を用いた。
(Comparative Example 3-1)
Example 1 except that the modification method of the silicon compound particles was changed to the electrochemical doping method, and the median diameter of the negative electrode active material particles and the value of the distribution constant n in the formula 1 of the rosin Ramler distribution were changed to the values shown in Table 3. A secondary battery was produced under the same conditions as -2, and cycle characteristics and initial efficiency were evaluated. In the electrochemical doping method, the in-bulk reformer shown in FIG. 2 was used.

(比較例3−2〜比較例3−4)
負極活物質粒子のメジアン径及びロジンラムラー分布の式1の分布定数nの値を表3に示す値にしたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Comparative Example 3-2 to Comparative Example 3-4)
A secondary battery was fabricated under the same conditions as in Example 1-2 except that the median diameter of the negative electrode active material particles and the value of the distribution constant n of Formula 1 of the Rosin Ramler distribution were changed to the values shown in Table 3, and the cycle characteristics and initial Efficiency was evaluated.

Figure 2017188319
Figure 2017188319

表3から分かるように、メジアン径が1.0μm以上15μm以下を満たし、尚且つ、分布定数nが5.0以下を満たす実施例では、容量維持率及び初回効率が向上した。特に、分散定数nが3.0以下である実施例3−1、3−4では容量維持率及び初回効率がより向上した。その一方で、メジアン径が1.0μm未満の比較例3−3及びメジアン径が15μmより大きい実施例3−4では容量維持率及び初回効率が低下した。また、分散定数nが5.0より大きい比較例3−1、3−2でも容量維持率及び初回効率が低下した。   As can be seen from Table 3, in the examples where the median diameter satisfies 1.0 μm or more and 15 μm or less and the distribution constant n satisfies 5.0 or less, the capacity retention ratio and the initial efficiency are improved. In particular, in Examples 3-1 and 3-4 in which the dispersion constant n was 3.0 or less, the capacity retention ratio and the initial efficiency were further improved. On the other hand, in Comparative Example 3-3 in which the median diameter is less than 1.0 μm and in Example 3-4 in which the median diameter is greater than 15 μm, the capacity retention ratio and the initial efficiency are lowered. Moreover, also in Comparative Examples 3-1 and 3-2 in which the dispersion constant n is larger than 5.0, the capacity retention ratio and the initial efficiency were lowered.

(実施例4−1〜実施例4−2)
負極活物質粒子(ケイ素系活物質粒子)10質量%と炭素活物質材90質量%との混合物と純水とを1:10の質量比で混合した混合液の、混合液を作製してから一時間経過した後のpHを表4のように変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Example 4-1 to Example 4-2)
After preparing a liquid mixture of a mixed liquid in which a mixture of 10% by mass of negative electrode active material particles (silicon-based active material particles) and 90% by mass of carbon active material and pure water was mixed at a mass ratio of 1:10. A secondary battery was fabricated under the same conditions as in Example 1-2 except that the pH after one hour had elapsed was changed as shown in Table 4, and the cycle characteristics and initial efficiency were evaluated.

Figure 2017188319
Figure 2017188319

表4から分かるように、pHが13.0以下である場合に容量維持率が向上した。   As can be seen from Table 4, the capacity retention rate was improved when the pH was 13.0 or less.

(実施例5−1〜実施例5−4)
負極活物質粒子の真密度及びBJH法に基づく細孔分布を表5のように、変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。負極活物質粒子の真密度、細孔分布は、ケイ素化合物粒子作製時の加熱温度を変更することで調整した。
(Example 5-1 to Example 5-4)
A secondary battery was fabricated under the same conditions as in Example 1-2 except that the true density of the negative electrode active material particles and the pore distribution based on the BJH method were changed as shown in Table 5, and the cycle characteristics and initial efficiency were evaluated. did. The true density and pore distribution of the negative electrode active material particles were adjusted by changing the heating temperature at the time of preparing the silicon compound particles.

Figure 2017188319
Figure 2017188319

表5からわかるように、真密度が2.20g/cm以上2.50g/cm以下であり、かつ、BJH法に基づく細孔分布において、1〜100nmの細孔径にピークを有し、全細孔容量が0.005cm/g以上という条件をすべて満たす実施例1−2、5−2は、上記の条件の少なくとも1つを満たさない実施例5−1、5−3、5−4よりも高い容量維持率となった。 As can be seen from Table 5, the true density is at 2.20 g / cm 3 or more 2.50 g / cm 3 or less, and, in a pore distribution based on the BJH method has a peak in the pore diameter of 1 to 100 nm, Examples 1-2 and 5-2 that satisfy all the conditions that the total pore volume is 0.005 cm 3 / g or more are Examples 5-1, 5-2, and 5-5 that do not satisfy at least one of the above conditions. The capacity retention rate was higher than 4.

(実施例6−1〜実施例6−6)
負極活物質粒子の表面のLiOH及びLiCOの含有量を表6のように変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Example 6-1 to Example 6-6)
A secondary battery was fabricated under the same conditions as in Example 1-2 except that the contents of LiOH and Li 2 CO 3 on the surface of the negative electrode active material particles were changed as shown in Table 6, and cycle characteristics and initial efficiency were evaluated. did.

Figure 2017188319
Figure 2017188319

表6に示すように、LiCOの含有量及びLiOHの含有量がいずれも負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下という条件を満たす実施例6−2〜6−5では、この条件を満たさない実施例6−1、6−6に比べ、容量維持率が向上した。 As shown in Table 6, Example 6 where the content of Li 2 CO 3 and the content of LiOH both satisfy the condition of 0.01% by mass or more and 5.00% by mass or less with respect to the mass of the negative electrode active material particles. In the case of −2 to 6-5, the capacity retention rate was improved as compared with Examples 6-1 and 6-6 that did not satisfy this condition.

(実施例7−1〜7−6)
ケイ素化合物粒子の結晶性を表5のように変化させたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。なお、ケイ素化合物粒子中の結晶性は、原料の気化温度の変更、ケイ素化合物粒子の生成後の熱処理で制御できる。
(Examples 7-1 to 7-6)
A secondary battery was fabricated under the same conditions as in Example 1-2 except that the crystallinity of the silicon compound particles was changed as shown in Table 5, and the cycle characteristics and initial efficiency were evaluated. The crystallinity in the silicon compound particles can be controlled by changing the vaporization temperature of the raw material, or by heat treatment after the formation of the silicon compound particles.

Figure 2017188319
Figure 2017188319

特に半値幅が1.2°以上で、尚且つSi(111)面に起因する結晶子サイズが7.5nm以下の低結晶性材料で高い容量維持率が得られた。   In particular, a high capacity retention ratio was obtained with a low crystalline material having a half width of 1.2 ° or more and a crystallite size attributable to the Si (111) plane of 7.5 nm or less.

(実施例8−1)
ケイ素化合物をSi及びLiシリケート領域の最大ピーク強度値Aと上記SiO領域に由来するピーク強度値Bとの関係がA<Bのものとしたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。この場合、改質時にリチウムの挿入量を減らすことで、LiSiOの量を減らし、LiSiOに由来するピークの強度Aを小さくした。
(Example 8-1)
The silicon compound was prepared under the same conditions as in Example 1-2 except that the relationship between the maximum peak intensity value A in the Si and Li silicate regions and the peak intensity value B derived from the SiO 2 region was A <B. A secondary battery was prepared and the cycle characteristics and initial efficiency were evaluated. In this case, by reducing the amount of insertion of lithium during reforming to reduce the amount of Li 2 SiO 3, it has a small intensity A of a peak derived from the Li 2 SiO 3.

Figure 2017188319
Figure 2017188319

表8から分かるように、ピーク強度の関係がA>Bである場合の方が、電池特性が向上した。   As can be seen from Table 8, the battery characteristics improved when the peak intensity relationship was A> B.

(実施例9−1)
上記試験セルにおける30回の充放電で得られたV−dQ/dV曲線において、いずれの充放電でもVが0.40V〜0.55Vの範囲にピークが得られなかった負極活物質を用いた以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Example 9-1)
In the V-dQ / dV curve obtained by charging and discharging 30 times in the test cell, a negative electrode active material in which no peak was obtained in the range of 0.40 V to 0.55 V in any charging / discharging was used. A secondary battery was manufactured under the same conditions as in Example 1-2, and the cycle characteristics and initial efficiency were evaluated.

Figure 2017188319
Figure 2017188319

放電カーブ形状がより鋭く立ち上がるためには、ケイ素化合物(SiOx)において、ケイ素(Si)と同様の放電挙動を示す必要がある。30回の充放電で上記の範囲にピークが発現しない、ケイ素化合物は比較的緩やかな放電カーブとなるため、二次電池にした際に、若干初期効率が低下する結果となった。ピークが30回以内の充放電で発現するものであれば、安定したバルクが形成され、容量維持率及び初期効率が向上した。   In order for the discharge curve shape to rise more sharply, the silicon compound (SiOx) needs to exhibit a discharge behavior similar to that of silicon (Si). Since the silicon compound that does not exhibit a peak in the above-described range after 30 charge / discharge cycles has a relatively gentle discharge curve, the initial efficiency is slightly lowered when a secondary battery is obtained. If the peak appears within 30 charge / discharge cycles, a stable bulk was formed, and the capacity retention rate and initial efficiency were improved.

(実施例10−1〜10−5)
ケイ素系活物質粒子の表面に被覆された炭素材の平均厚さを変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。炭素材の平均厚さは、CVD条件を変更することで調整できる。
(Examples 10-1 to 10-5)
A secondary battery was produced under the same conditions as in Example 1-2, except that the average thickness of the carbon material coated on the surface of the silicon-based active material particles was changed, and the cycle characteristics and initial efficiency were evaluated. The average thickness of the carbon material can be adjusted by changing the CVD conditions.

Figure 2017188319
Figure 2017188319

表10からわかるように、炭素層の膜厚が10nm以上で導電性が特に向上するため、容量維持率及び初期効率を向上させることができる。一方、炭素層の膜厚が5000nm以下であれば、電池設計上、ケイ素化合物粒子の量を十分に確保できるため、電池容量が低下することが無い。   As can be seen from Table 10, since the conductivity is particularly improved when the thickness of the carbon layer is 10 nm or more, the capacity retention ratio and the initial efficiency can be improved. On the other hand, if the film thickness of the carbon layer is 5000 nm or less, the amount of silicon compound particles can be sufficiently secured in battery design, and the battery capacity does not decrease.

(実施例11−1)
負極活物質中のケイ素系活物質粒子の質量の割合を変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、電池容量の増加率を評価した。
(Example 11-1)
A secondary battery was produced under the same conditions as in Example 1-2 except that the mass ratio of the silicon-based active material particles in the negative electrode active material was changed, and the rate of increase in battery capacity was evaluated.

図6に、負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフを示す。図6中のAで示すグラフは、本発明の負極の負極活物質において、ケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している。一方、図6中のBで示すグラフは、Liをドープしていないケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している。図6から分かるように、ケイ素化合物の割合が6質量%以上となると、電池容量の増加率は従来に比べて大きくなり、体積エネルギー密度が、特に顕著に増加する。   FIG. 6 is a graph showing the relationship between the ratio of the silicon-based active material particles to the total amount of the negative electrode active material and the increase rate of the battery capacity of the secondary battery. The graph indicated by A in FIG. 6 shows the rate of increase in battery capacity when the proportion of silicon compound particles is increased in the negative electrode active material of the negative electrode of the present invention. On the other hand, the graph indicated by B in FIG. 6 shows the increase rate of the battery capacity when the ratio of the silicon compound particles not doped with Li is increased. As can be seen from FIG. 6, when the ratio of the silicon compound is 6% by mass or more, the increase rate of the battery capacity is increased as compared with the conventional case, and the volume energy density is particularly remarkably increased.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

10…負極、 11…負極集電体、 12…負極活物質層、
20…バルク内改質装置、 21…対極、
22…酸化珪素粒子、 23…電解液、 24…セパレータ、
25…粉末格納容器、 26…電源、 27…浴槽、
30…リチウム二次電池(ラミネートフィルム型)、 31…巻回電極体、
32…正極リード、 33…負極リード、 34…密着フィルム、
35…外装部材。
10 ... negative electrode, 11 ... negative electrode current collector, 12 ... negative electrode active material layer,
20 ... reformer in bulk, 21 ... counter electrode,
22 ... Silicon oxide particles, 23 ... Electrolyte, 24 ... Separator,
25 ... Powder storage container, 26 ... Power supply, 27 ... Bathtub,
30 ... lithium secondary battery (laminated film type), 31 ... wound electrode body,
32 ... Positive electrode lead, 33 ... Negative electrode lead, 34 ... Adhesion film,
35 ... exterior member.

Claims (13)

負極活物質粒子を含む負極活物質であって、
前記負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、
前記ケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上を含有し、
前記負極活物質粒子は、メジアン径が1.0μm以上15μm以下であり、
前記負極活物質粒子の粒度分布を下記のロジンラムラー分布の式1で表したとき、分布定数nの値が5.0以下のものであることを特徴とする負極活物質。
R=100exp(−ad) ・・・式1
(但し、式1中のRは分布量累積値の篩上(質量%)、dは前記負極活物質粒子の粒径(μm)、aは定数、nは分布定数を示す。)
A negative electrode active material comprising negative electrode active material particles,
The negative electrode active material particles contain silicon compound particles containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6),
The silicon compound particles contain at least one of Li 2 SiO 3 and Li 4 SiO 4 ,
The negative electrode active material particles have a median diameter of 1.0 μm or more and 15 μm or less,
A negative electrode active material having a distribution constant n of 5.0 or less when the particle size distribution of the negative electrode active material particles is expressed by the following formula 1 of rosin Ramler distribution.
R = 100exp (−ad n ) Equation 1
(However, R in Formula 1 is on the sieve of the cumulative amount of distribution (% by mass), d is the particle size (μm) of the negative electrode active material particles, a is a constant, and n is a distribution constant.)
前記負極活物質粒子の粒度分布を前記ロジンラムラー分布の式1で表したとき、分布定数nの値が3.0以下のものであることを特徴とする請求項1に記載の負極活物質。   2. The negative electrode active material according to claim 1, wherein when the particle size distribution of the negative electrode active material particles is expressed by Formula 1 of the Rosin-Lambler distribution, the value of the distribution constant n is 3.0 or less. 前記負極活物質粒子10質量%と炭素活物質材90質量%との混合物と純水とを1:10の質量比で混合した混合液において、該混合液を作製してから一時間経過した後のpHが13.0以下となるものであることを特徴とする請求項1又は請求項2に記載の負極活物質。   In a mixed solution obtained by mixing a mixture of 10% by mass of the negative electrode active material particles and 90% by mass of the carbon active material and pure water at a mass ratio of 1:10, after one hour has elapsed since the mixed solution was prepared. The negative electrode active material according to claim 1, wherein the pH of the negative electrode is 13.0 or less. 前記負極活物質粒子はBJH法に基づく細孔分布において、1〜100nmの細孔径にピークを有し、全細孔容量が0.005cm/g以上のものであることを特徴とする請求項1から請求項3のいずれか1項に記載の負極活物質。 The negative electrode active material particles have a peak in a pore diameter of 1 to 100 nm in a pore distribution based on a BJH method, and have a total pore volume of 0.005 cm 3 / g or more. The negative electrode active material according to any one of claims 1 to 3. 前記負極活物質粒子は、真密度が2.20g/cm以上2.50g/cm以下のものであることを特徴とする請求項1から請求項4のいずれか1項に記載の負極活物質。 The negative active material particles, the negative electrode active according to any one of claims 1 to 4, wherein the true density is of 2.20 g / cm 3 or more 2.50 g / cm 3 or less material. 前記負極活物質粒子は、LiCO及びLiOHを表面に含み、
前記LiCOの含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下であり、かつ、前記LiOHの含有量が、前記負極活物質粒子の質量に対して0.01質量%以上5.00質量%以下のものであることを特徴とする請求項1から請求項5のいずれか1項に記載の負極活物質。
The negative electrode active material particles include Li 2 CO 3 and LiOH on the surface,
The content of Li 2 CO 3 is 0.01% by mass or more and 5.00% by mass or less with respect to the mass of the negative electrode active material particles, and the content of LiOH is that of the negative electrode active material particles. The negative electrode active material according to claim 1, wherein the negative electrode active material is 0.01% by mass or more and 5.00% by mass or less with respect to the mass.
前記ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることを特徴とする請求項1から請求項6のいずれか1項に記載の負極活物質。   The silicon compound particles have a half-width (2θ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more, and a crystallite size corresponding to the crystal plane is 7 The negative electrode active material according to claim 1, wherein the negative electrode active material is 5 nm or less. 前記ケイ素化合物粒子において、29Si−MAS−NMR スペクトルから得られる、ケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として−96〜−150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすものであることを特徴とする請求項1から請求項7のいずれか1項に記載の負極活物質。 In the silicon compound particles, the maximum peak intensity value A in the Si and Li silicate regions given by the chemical shift value of −60 to −95 ppm obtained from the 29 Si-MAS-NMR spectrum, and the chemical shift value of −96 to − 8. The negative electrode active material according to claim 1, wherein a peak intensity value B of the SiO 2 region given at 150 ppm satisfies a relationship of A> B. 9. 前記負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、前記負極活物質にリチウムを挿入するよう電流を流す充電と、前記負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、前記負極電極の電位Vが0.40V〜0.55Vの範囲にピークを有するものであることを特徴とする請求項1から請求項8のいずれか1項に記載の負極活物質。   A negative electrode containing a mixture of the negative electrode active material and the carbon-based active material, and a test cell comprising a counter lithium, and charging the current to insert lithium into the negative electrode active material in the test cell; A charge / discharge process comprising 30 discharges through which a current is passed so as to desorb lithium from the negative electrode active material, and the discharge capacity Q in each charge / discharge is differentiated by the potential V of the negative electrode with respect to the counter lithium. When a graph showing the relationship between the value dQ / dV and the potential V is drawn, the potential V of the negative electrode is 0.40 V to 0.55 V at the time of discharge after the Xth (1 ≦ X ≦ 30). The negative electrode active material according to claim 1, wherein the negative electrode active material has a peak in the range. 前記負極活物質粒子は、表層部に炭素材を含むことを特徴とする請求項1から請求項9のいずれか1項に記載の負極活物質。   The negative electrode active material according to any one of claims 1 to 9, wherein the negative electrode active material particles include a carbon material in a surface layer portion. 前記炭素材の平均厚さは10nm以上5000nm以下であることを特徴とする請求項10に記載の負極活物質。   The negative active material according to claim 10, wherein an average thickness of the carbon material is 10 nm or more and 5000 nm or less. 請求項1から請求項11のいずれか1項に記載の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料。   A mixed negative electrode active material comprising the negative electrode active material according to claim 1 and a carbon-based active material. ケイ素化合物粒子を含有する負極活物質粒子を含む負極活物質を製造する方法であって、
ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、
前記ケイ素化合物粒子にリチウムを挿入し、LiSiO及びLiSiOのうち少なくとも1種以上を含有させる工程と、
により負極活物質粒子を作製し、
前記負極活物質粒子から、メジアン径が1.0μm以上15μm以下であり、
前記負極活物質粒子の粒度分布を下記のロジンラムラー分布の式1で表したとき、分布定数nの値が5.0以下のものを選別する工程とを含み、
該選別した前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法。
R=100exp(−ad) ・・・式1
(但し、式1中のRは分布量累積値の篩上(質量%)、dは前記負極活物質粒子の粒径(μm)、aは定数、nは分布定数を示す。)
A method for producing a negative electrode active material comprising negative electrode active material particles containing silicon compound particles,
Producing silicon compound particles containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6);
Inserting lithium into the silicon compound particles and containing at least one of Li 2 SiO 3 and Li 4 SiO 4 ;
To produce negative electrode active material particles,
From the negative electrode active material particles, the median diameter is 1.0 μm or more and 15 μm or less,
A step of selecting particles having a distribution constant n of 5.0 or less when the particle size distribution of the negative electrode active material particles is expressed by the following formula 1 of the rosin Ramler distribution:
A method for producing a negative electrode active material, wherein a negative electrode active material is produced using the selected negative electrode active material particles.
R = 100exp (−ad n ) Equation 1
(However, R in Formula 1 is on the sieve of the cumulative amount of distribution (% by mass), d is the particle size (μm) of the negative electrode active material particles, a is a constant, and n is a distribution constant.)
JP2016076406A 2016-04-06 2016-04-06 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material Active JP7019284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076406A JP7019284B2 (en) 2016-04-06 2016-04-06 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076406A JP7019284B2 (en) 2016-04-06 2016-04-06 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material

Publications (2)

Publication Number Publication Date
JP2017188319A true JP2017188319A (en) 2017-10-12
JP7019284B2 JP7019284B2 (en) 2022-02-15

Family

ID=60044977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076406A Active JP7019284B2 (en) 2016-04-06 2016-04-06 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material

Country Status (1)

Country Link
JP (1) JP7019284B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240496A1 (en) * 2018-06-12 2019-12-19 주식회사 엘지화학 Anode active material for lithium secondary battery and lithium secondary battery comprising same
CN110783527A (en) * 2018-07-26 2020-02-11 丰田自动车株式会社 Negative electrode, nonaqueous electrolyte secondary battery, and method for producing negative electrode
KR20200090643A (en) * 2019-01-21 2020-07-29 주식회사 엘지화학 Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same
WO2021065200A1 (en) * 2019-10-03 2021-04-08 信越化学工業株式会社 Negative electrode active material, negative electrode, and method for manufacturing negative electrode active material
JP2021118149A (en) * 2020-01-29 2021-08-10 信越化学工業株式会社 Negative electrode active substance for nonaqueous electrolyte secondary battery, negative electrode material for nonaqueous electrolyte secondary battery, and lithium ion secondary battery
US11139464B2 (en) 2018-06-27 2021-10-05 Toyota Jidosha Kabushiki Kaisha Method of producing negative electrode, negative electrode, and non-aqueous electrolyte secondary battery
KR20220128333A (en) 2019-12-25 2022-09-20 주식회사 엘지에너지솔루션 Negative active material, negative electrode and secondary battery including the negative active material
WO2023044866A1 (en) * 2021-09-26 2023-03-30 宁德时代新能源科技股份有限公司 Silicon-carbon negative electrode material, negative electrode plate, secondary battery, battery module, battery pack, and electrical apparatus
US11962003B2 (en) 2019-01-21 2024-04-16 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery, and negative electrode and lithium secondary battery including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192326A (en) * 2001-12-26 2003-07-09 Shin Etsu Chem Co Ltd Porous silicon oxide powder and its production method
JP2009205950A (en) * 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2009224322A (en) * 2008-02-21 2009-10-01 Nippon Steel Chem Co Ltd Lithium secondary battery negative electrode active material, and manufacturing method of lithium secondary battery negative electrode active material
WO2012165049A1 (en) * 2011-05-27 2012-12-06 日本電気株式会社 Method for doping and dedoping lithium into and from negative electrode and method for manufacturing negative electrode for lithium secondary battery
JP2014011072A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
WO2014188654A1 (en) * 2013-05-24 2014-11-27 株式会社大阪チタニウムテクノロジーズ Lithium-containing silicon oxide powder
JP2015149224A (en) * 2014-02-07 2015-08-20 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2015165482A (en) * 2014-02-07 2015-09-17 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192326A (en) * 2001-12-26 2003-07-09 Shin Etsu Chem Co Ltd Porous silicon oxide powder and its production method
JP2009224322A (en) * 2008-02-21 2009-10-01 Nippon Steel Chem Co Ltd Lithium secondary battery negative electrode active material, and manufacturing method of lithium secondary battery negative electrode active material
JP2009205950A (en) * 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2012165049A1 (en) * 2011-05-27 2012-12-06 日本電気株式会社 Method for doping and dedoping lithium into and from negative electrode and method for manufacturing negative electrode for lithium secondary battery
JP2014011072A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
WO2014188654A1 (en) * 2013-05-24 2014-11-27 株式会社大阪チタニウムテクノロジーズ Lithium-containing silicon oxide powder
JP2015149224A (en) * 2014-02-07 2015-08-20 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2015165482A (en) * 2014-02-07 2015-09-17 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518044A (en) * 2018-06-12 2021-07-29 エルジー・ケム・リミテッド Negative electrode active material for lithium secondary batteries and lithium secondary batteries containing them
KR20190140610A (en) * 2018-06-12 2019-12-20 주식회사 엘지화학 Anode Active Material of Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
KR102321503B1 (en) * 2018-06-12 2021-11-02 주식회사 엘지에너지솔루션 Anode Active Material of Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
JP7128290B2 (en) 2018-06-12 2022-08-30 エルジー エナジー ソリューション リミテッド Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
CN111919316A (en) * 2018-06-12 2020-11-10 株式会社Lg化学 Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
CN111919316B (en) * 2018-06-12 2023-07-18 株式会社Lg新能源 Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
WO2019240496A1 (en) * 2018-06-12 2019-12-19 주식회사 엘지화학 Anode active material for lithium secondary battery and lithium secondary battery comprising same
US11139464B2 (en) 2018-06-27 2021-10-05 Toyota Jidosha Kabushiki Kaisha Method of producing negative electrode, negative electrode, and non-aqueous electrolyte secondary battery
CN110783527A (en) * 2018-07-26 2020-02-11 丰田自动车株式会社 Negative electrode, nonaqueous electrolyte secondary battery, and method for producing negative electrode
CN110783527B (en) * 2018-07-26 2022-05-31 丰田自动车株式会社 Negative electrode, nonaqueous electrolyte secondary battery, and method for producing negative electrode
US11424437B2 (en) 2018-07-26 2022-08-23 Toyota Jidosha Kabushiki Kaisha Negative electrode, non-aqueous electrolyte secondary battery, and method of producing negative electrode
US11962003B2 (en) 2019-01-21 2024-04-16 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery, and negative electrode and lithium secondary battery including the same
KR20200090643A (en) * 2019-01-21 2020-07-29 주식회사 엘지화학 Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same
KR102530678B1 (en) * 2019-01-21 2023-05-09 주식회사 엘지에너지솔루션 Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same
JP2021061101A (en) * 2019-10-03 2021-04-15 信越化学工業株式会社 Anode active material, anode and method for producing anode active material
JP7186156B2 (en) 2019-10-03 2022-12-08 信越化学工業株式会社 Negative electrode active material, negative electrode, and method for producing negative electrode active material
JP2023015403A (en) * 2019-10-03 2023-01-31 信越化学工業株式会社 Non-aqueous electrolyte secondary battery
CN114503302A (en) * 2019-10-03 2022-05-13 信越化学工业株式会社 Negative electrode active material, negative electrode, and method for producing negative electrode active material
JP7410259B2 (en) 2019-10-03 2024-01-09 信越化学工業株式会社 Non-aqueous electrolyte secondary battery
WO2021065200A1 (en) * 2019-10-03 2021-04-08 信越化学工業株式会社 Negative electrode active material, negative electrode, and method for manufacturing negative electrode active material
KR20220128333A (en) 2019-12-25 2022-09-20 주식회사 엘지에너지솔루션 Negative active material, negative electrode and secondary battery including the negative active material
JP2021118149A (en) * 2020-01-29 2021-08-10 信越化学工業株式会社 Negative electrode active substance for nonaqueous electrolyte secondary battery, negative electrode material for nonaqueous electrolyte secondary battery, and lithium ion secondary battery
JP7388936B2 (en) 2020-01-29 2023-11-29 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode material for nonaqueous electrolyte secondary batteries, and lithium ion secondary batteries
WO2023044866A1 (en) * 2021-09-26 2023-03-30 宁德时代新能源科技股份有限公司 Silicon-carbon negative electrode material, negative electrode plate, secondary battery, battery module, battery pack, and electrical apparatus

Also Published As

Publication number Publication date
JP7019284B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
JP6457590B2 (en) Negative electrode active material, negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP7265668B2 (en) Lithium-ion secondary batteries, mobile terminals, automobiles and power storage systems
JP6592603B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6445956B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP6535581B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
US11005095B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP2017073302A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP7019284B2 (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
JP2016009550A (en) Negative electrode material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode active material particles
WO2017145853A1 (en) Negative electrode active material, negative electrode active material mixed material, negative electrode for nonaqueous electrolyte secondary batteries, lithium ion secondary battery, method for producing negative electrode active material, and method for manufacturing lithium ion secondary battery
JP6507106B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
US10862122B2 (en) Negative electrode active material, mixed negative electrode active material, method for producing negative electrode active material
WO2017141661A1 (en) Anode active material, mixed anode active material ingredient, anode for nonaqueous electrolytic secondary battery, lithium ion secondary battery, and method for manufacturing anode active material
JP2017199657A (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
WO2017085908A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6365785B2 (en) Usage of non-aqueous electrolyte secondary battery
JP2016066506A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode active material particles
JP6467031B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6862091B2 (en) Method for manufacturing negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and negative electrode active material
JP6746526B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP2017147055A (en) Negative electrode active material, mixed negative electrode active material material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for manufacturing negative electrode active material, and method for manufacturing lithium ion secondary battery
JP6634398B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200317

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200324

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200529

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200602

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210112

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210406

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210720

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210824

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211221

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220201

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220202

R150 Certificate of patent or registration of utility model

Ref document number: 7019284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150