JP7388936B2 - Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode material for nonaqueous electrolyte secondary batteries, and lithium ion secondary batteries - Google Patents

Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode material for nonaqueous electrolyte secondary batteries, and lithium ion secondary batteries Download PDF

Info

Publication number
JP7388936B2
JP7388936B2 JP2020012476A JP2020012476A JP7388936B2 JP 7388936 B2 JP7388936 B2 JP 7388936B2 JP 2020012476 A JP2020012476 A JP 2020012476A JP 2020012476 A JP2020012476 A JP 2020012476A JP 7388936 B2 JP7388936 B2 JP 7388936B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
particles
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020012476A
Other languages
Japanese (ja)
Other versions
JP2021118149A (en
Inventor
浩一朗 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020012476A priority Critical patent/JP7388936B2/en
Publication of JP2021118149A publication Critical patent/JP2021118149A/en
Application granted granted Critical
Publication of JP7388936B2 publication Critical patent/JP7388936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質二次電池用負極活物質、非水電解質二次電池用負極材、及び、リチウムイオン二次電池に関する。 The present invention relates to a negative electrode active material for a nonaqueous electrolyte secondary battery, a negative electrode material for a nonaqueous electrolyte secondary battery, and a lithium ion secondary battery.

近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。 In recent years, small electronic devices such as mobile terminals have become widespread, and there is a strong demand for further miniaturization, weight reduction, and longer life. In response to such market demands, development of secondary batteries that are particularly small, lightweight, and capable of obtaining high energy density is progressing. This secondary battery is being considered for application not only to small electronic devices, but also to large electronic devices such as automobiles, and power storage systems such as houses.

その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。 Among these, lithium ion secondary batteries are highly anticipated because they are easy to make small and have a high capacity, and can provide higher energy density than lead batteries and nickel cadmium batteries.

上記のリチウムイオン二次電池は、正極及び負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。 The above-mentioned lithium ion secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the negative electrode contains a negative electrode active material involved in charge/discharge reactions.

この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。 While carbon-based active materials are widely used as negative electrode active materials, recent market demands require further improvement in battery capacity. In order to improve battery capacity, the use of silicon as a negative electrode active material is being considered. This is because the theoretical capacity of silicon (4199 mAh/g) is more than 10 times larger than the theoretical capacity of graphite (372 mAh/g), so a significant improvement in battery capacity can be expected. In the development of silicon materials as negative electrode active materials, not only silicon alone but also alloys and compounds such as oxides are being considered. In addition, the shape of the active material is being considered, from the standard coating type for carbon-based active materials to the integrated type in which it is directly deposited on a current collector.

しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張及び収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。 However, when silicon is used as the main raw material for the negative electrode active material, the negative electrode active material expands and contracts during charging and discharging, making it easy to crack mainly near the surface layer of the negative electrode active material. In addition, an ionic substance is generated inside the active material, and the negative electrode active material becomes a material that is easily broken. When the surface layer of the negative electrode active material is cracked, a new surface is created thereby increasing the reaction area of the active material. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a film that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, cycle characteristics tend to deteriorate.

これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。 To date, various studies have been conducted on negative electrode materials and electrode configurations for lithium-ion secondary batteries that are mainly made of silicon materials in order to improve initial battery efficiency and cycle characteristics.

具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。 Specifically, for the purpose of obtaining good cycle characteristics and high safety, silicon and amorphous silicon dioxide are deposited simultaneously using a gas phase method (see, for example, Patent Document 1). Furthermore, in order to obtain high battery capacity and safety, a carbon material (electronic conductive material) is provided on the surface layer of silicon oxide particles (see, for example, Patent Document 2). Furthermore, in order to improve cycle characteristics and obtain high input/output characteristics, an active material containing silicon and oxygen is produced, and an active material layer with a high oxygen ratio near the current collector is formed ( For example, see Patent Document 3). In addition, in order to improve cycle characteristics, oxygen is contained in the silicon active material so that the average oxygen content is 40 at% or less, and the oxygen content is increased near the current collector. (For example, see Patent Document 4).

また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。 Moreover, in order to improve the initial charge/discharge efficiency, a nanocomposite containing a Si phase, SiO 2 , and MyO metal oxide is used (see, for example, Patent Document 5). Furthermore, in order to improve cycle characteristics, SiO x (0.8≦x≦1.5, particle size range = 1 μm to 50 μm) and a carbon material are mixed and fired at a high temperature (for example, see Patent Document 6). In addition, in order to improve cycle characteristics, the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum value and the minimum value of the molar ratio near the interface between the active material and the current collector is The active material is controlled within a range where the value is 0.4 or less (see, for example, Patent Document 7). Furthermore, in order to improve battery load characteristics, a metal oxide containing lithium is used (see, for example, Patent Document 8). Furthermore, in order to improve cycle characteristics, a hydrophobic layer such as a silane compound is formed on the surface layer of the silicon material (see, for example, Patent Document 9).

また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。 Furthermore, in order to improve cycle characteristics, silicon oxide is used and a graphite film is formed on its surface layer to impart electrical conductivity (for example, see Patent Document 10). In Patent Document 10, regarding the shift value obtained from the RAMAN spectrum regarding the graphite coating, broad peaks appear at 1330 cm -1 and 1580 cm -1 , and their intensity ratio I 1330 /I 1580 is 1.5<I 1330 /I 1580 <3. Furthermore, in order to increase battery capacity and improve cycle characteristics, particles having a silicon microcrystalline phase dispersed in silicon dioxide are used (see, for example, Patent Document 11). Furthermore, in order to improve overcharge and overdischarge characteristics, silicon oxide is used in which the atomic ratio of silicon to oxygen is controlled to 1:y (0<y<2) (see, for example, Patent Document 12).

特開2001-185127号公報Japanese Patent Application Publication No. 2001-185127 特開2002-042806号公報JP2002-042806A 特開2006-164954号公報Japanese Patent Application Publication No. 2006-164954 特開2006-114454号公報Japanese Patent Application Publication No. 2006-114454 特開2009-070825号公報JP2009-070825A 特開2008-282819号公報JP2008-282819A 特開2008-251369号公報Japanese Patent Application Publication No. 2008-251369 特開2008-177346号公報Japanese Patent Application Publication No. 2008-177346 特開2007-234255号公報Japanese Patent Application Publication No. 2007-234255 特開2009-212074号公報Japanese Patent Application Publication No. 2009-212074 特開2009-205950号公報Japanese Patent Application Publication No. 2009-205950 特開平6-325765号公報Japanese Patent Application Publication No. 6-325765

上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近いサイクル特性が望まれているが、サイクル初期に表面層における電解液の分解が促進されるため、十分でなかった。 As mentioned above, in recent years, small electronic devices such as mobile terminals have become more sophisticated and multifunctional, and the lithium-ion secondary batteries that are their main power source are required to have increased battery capacity. ing. As one method to solve this problem, it is desired to develop a lithium ion secondary battery consisting of a negative electrode using silicon material as the main material. In addition, lithium-ion secondary batteries using silicon materials are expected to have cycle characteristics similar to those of lithium-ion secondary batteries using carbon-based active materials, but the decomposition of the electrolyte in the surface layer occurs at the beginning of the cycle. It was not enough to be promoted.

本発明は、上記事情に鑑みてなされたもので、優れた充放電容量及びサイクル特性を有する、特にリチウムイオン二次電池用として有効な非水電解質二次電池用負極活物質及び負極材、ならびにこれを含む負極を有するリチウムイオン二次電池を提供することを目的とする。 The present invention was made in view of the above circumstances, and provides a negative electrode active material and negative electrode material for non-aqueous electrolyte secondary batteries, which have excellent charge/discharge capacity and cycle characteristics and are particularly effective for lithium ion secondary batteries; An object of the present invention is to provide a lithium ion secondary battery having a negative electrode including this.

上記目的を解決するために、本発明は、負極活物質粒子を含む非水電解質二次電池用負極活物質であって、前記負極活物質粒子は、リチウムイオンを吸蔵及び放出することが可能な珪素を含有する粉末であり、前記負極活物質粒子は、レーザー回折散乱式粒度分布測定法によって得られる粒度分布に基づいて、ある粒径をD(μm)、その粒径よりも大きい粒子の全粒子に対する質量百分率をR(%)とした時、x軸にlogD、y軸にlog{log(100/R)}の目盛りをつけたロジン・ラムラー線図にプロットした直線の勾配nが2.5以上であり、かつ前記負極活物質粒子において、粒径1μm未満の粒子の割合が前記負極活物質粒子全体に対して5質量%以下であることを特徴とする非水電解質二次電池用負極活物質を提供する。 In order to solve the above object, the present invention provides a negative electrode active material for a non-aqueous electrolyte secondary battery that includes negative electrode active material particles, wherein the negative electrode active material particles are capable of occluding and releasing lithium ions. The negative electrode active material particles are powders containing silicon, and the negative electrode active material particles are determined to have a certain particle size D (μm) and the total amount of particles larger than that particle size based on the particle size distribution obtained by laser diffraction scattering particle size distribution measuring method. When the mass percentage of particles is R (%), the slope n of a straight line plotted on a Rosin-Rammler diagram with logD on the x-axis and log{log(100/R)} on the y-axis is 2. 5 or more, and the proportion of particles with a particle size of less than 1 μm in the negative electrode active material particles is 5% by mass or less based on the entire negative electrode active material particles. Provide active material.

本発明の負極活物質は、珪素を含有することで優れた充放電容量を有し、かつ、負極活物質粒子の粒度分布をロジン・ラムラー線図にプロットした直線の勾配nが2.5以上であり、かつ粒径1μm未満の粒子の割合が負極活物質粒子全体に対して5質量%以下とすることで、粒子の大きさが適度に揃っており負極活物質粒子からのLiの溶け出しを抑制でき、サイクル特性を向上させることが可能なものとなる。 The negative electrode active material of the present invention has excellent charge/discharge capacity by containing silicon, and the slope n of the straight line plotted on the Rosin-Rammler diagram of the particle size distribution of the negative electrode active material particles is 2.5 or more. By setting the proportion of particles with a particle size of less than 1 μm to 5% by mass or less based on the entire negative electrode active material particles, the particle sizes are appropriately uniform and Li is dissolved from the negative electrode active material particles. This makes it possible to suppress and improve cycle characteristics.

この場合、前記負極活物質粒子のモード径(最頻値)は0.1μm以上15.0μm以下であることが好ましい。 In this case, the mode diameter (mode) of the negative electrode active material particles is preferably 0.1 μm or more and 15.0 μm or less.

このモード径が0.1μm以上の場合、電解液との反応が促進されないため、電池特性の低下を防止できる。このモード径が15.0μm以下の場合、充放電に伴う活物質の膨張を抑制することができるため、電子コンタクトの欠落を防止することができる。 When this mode diameter is 0.1 μm or more, the reaction with the electrolyte is not promoted, so deterioration of battery characteristics can be prevented. When this mode diameter is 15.0 μm or less, expansion of the active material due to charging and discharging can be suppressed, and therefore, loss of electronic contacts can be prevented.

また、前記負極活物質粒子のD99.9径が40μm以下であることが好ましい。 Further, it is preferable that the D 99.9 diameter of the negative electrode active material particles is 40 μm or less.

このD99.9径が40μm以下であれば、電極の中の負極活物質径の局所的なばらつきを小さくすることができ、サイクル特性を向上することができる。 If this D99.9 diameter is 40 μm or less, local variations in the diameter of the negative electrode active material in the electrode can be reduced, and cycle characteristics can be improved.

また、前記負極活物質粒子は酸素が含まれるケイ素化合物を含有するケイ素化合物粒子を含むことが好ましい。 Moreover, it is preferable that the negative electrode active material particles include silicon compound particles containing a silicon compound containing oxygen.

酸素が含まれるケイ素化合物を含有することで、より初回充放電効率を高めることができる。 By containing a silicon compound containing oxygen, the initial charge/discharge efficiency can be further improved.

また、前記ケイ素化合物を構成するケイ素と酸素の比は、SiO:0.5≦x≦1.6の範囲であることが好ましい。 Further, the ratio of silicon and oxygen constituting the silicon compound is preferably in the range of SiO x :0.5≦x≦1.6.

このようにxが0.5以上であれば、ケイ素単体よりも酸素比が高められたものであるためサイクル特性が良好となる。xが1.6以下であれば、ケイ素酸化物の抵抗が高くなりすぎない。 In this way, when x is 0.5 or more, the oxygen ratio is higher than that of simple silicon, and therefore the cycle characteristics are good. If x is 1.6 or less, the resistance of silicon oxide will not become too high.

また、前記負極活物質粒子の表面の少なくとも一部が炭素材で被覆されていることが好ましい。 Further, it is preferable that at least a portion of the surface of the negative electrode active material particles is coated with a carbon material.

このように、負極活物質粒子が炭素材で被覆されていることで、導電性に優れた負極活物質とすることができる。 By coating the negative electrode active material particles with the carbon material in this manner, the negative electrode active material can have excellent conductivity.

また、上記目的を達成するために、本発明は、上記の非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池用負極材を提供する。 Moreover, in order to achieve the above object, the present invention provides a negative electrode material for a non-aqueous electrolyte secondary battery, which is characterized by containing the above-described negative electrode active material for a non-aqueous electrolyte secondary battery.

このようなものであれば、優れた充放電容量及びサイクル特性を有する非水電解質二次電池用負極材となる。 If such a material is used, it becomes a negative electrode material for a non-aqueous electrolyte secondary battery having excellent charge/discharge capacity and cycle characteristics.

また、上記目的を達成するために、本発明は、上記の非水電解質二次電池用負極材を含む負極を有することを特徴とするリチウムイオン二次電池を提供する。 Moreover, in order to achieve the above object, the present invention provides a lithium ion secondary battery characterized by having a negative electrode containing the above negative electrode material for a non-aqueous electrolyte secondary battery.

このようなものであれば、優れた充放電容量及びサイクル特性を有するリチウムイオン二次電池となる。 Such a lithium ion secondary battery has excellent charge/discharge capacity and cycle characteristics.

本発明の負極活物質は、二次電池の負極活物質として用いた際に、高容量で、高サイクル特性を得る事ができる。 The negative electrode active material of the present invention can provide high capacity and high cycle characteristics when used as a negative electrode active material of a secondary battery.

本発明の負極活物質を含む非水電解質二次電池用負極の構成の一例を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an example of the structure of a negative electrode for a non-aqueous electrolyte secondary battery containing the negative electrode active material of the present invention. 実施例1におけるCVDによる炭素被覆を行う前のケイ素化合物粒子の粒度分布チャートである。1 is a particle size distribution chart of silicon compound particles before being coated with carbon by CVD in Example 1. 実施例2におけるCVDによる炭素被覆を行う前のケイ素化合物粒子の粒度分布チャートである。2 is a particle size distribution chart of silicon compound particles before being coated with carbon by CVD in Example 2. 実施例3におけるCVDによる炭素被覆を行う前のケイ素化合物粒子の粒度分布チャートである。3 is a particle size distribution chart of silicon compound particles before being coated with carbon by CVD in Example 3. 比較例1におけるCVDによる炭素被覆を行う前のケイ素化合物粒子の粒度分布チャートである。2 is a particle size distribution chart of silicon compound particles before carbon coating by CVD in Comparative Example 1. 比較例2におけるCVDによる炭素被覆を行う前のケイ素化合物粒子の粒度分布チャートである。2 is a particle size distribution chart of silicon compound particles before being coated with carbon by CVD in Comparative Example 2. 実施例1~3、比較例1、2におけるCVDによる炭素被覆を行う前のケイ素化合物粒子の粒度分布をプロットしたロジン・ラムラー線図である。FIG. 2 is a Rosin-Rammler diagram plotting the particle size distribution of silicon compound particles before carbon coating by CVD in Examples 1 to 3 and Comparative Examples 1 and 2.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。 Embodiments of the present invention will be described below, but the present invention is not limited thereto.

[非水電解質二次電池用負極活物質]
前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。このケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近いサイクル特性が望まれているが、炭素系活物質を用いたリチウムイオン二次電池と同等のサイクル特性を有する負極活物質を提案するには至っていなかった。
[Non-aqueous electrolyte secondary battery negative electrode active material]
As mentioned above, as one method for increasing the battery capacity of a lithium ion secondary battery, the use of a negative electrode using a silicon material as a main material as the negative electrode of a lithium ion secondary battery is being considered. Lithium ion secondary batteries using this silicon material are expected to have cycle characteristics similar to those of lithium ion secondary batteries using carbon-based active materials; However, it has not yet been possible to propose a negative electrode active material with cycle characteristics equivalent to that of .

そこで、本発明者は、二次電池に用いた場合、サイクル特性が良好となる負極活物質を得るために鋭意検討を重ね、負極活物質粒子のレーザー回折散乱式粒度分布測定法による粒度分布に基づいて、ある粒径をD(μm)、その粒径よりも大きい粒子の全粒子に対する質量百分率をR(%)とした時、x軸にlogD、y軸にlog{log(100/R)}の目盛りをつけたロジン・ラムラー線図にプロットした直線の勾配nが2.5以上であり、かつ前記負極活物質粒子において、粒径1μm未満の粒子の割合が前記負極活物質粒子全体に対して5質量%以下である時に、サイクル特性が向上することを知見し、本発明に至った。 Therefore, in order to obtain a negative electrode active material that has good cycle characteristics when used in a secondary battery, the present inventor conducted extensive research and determined the particle size distribution of negative electrode active material particles measured by a laser diffraction scattering particle size distribution measurement method. Based on this, when a certain particle size is D (μm) and the mass percentage of particles larger than that particle to all particles is R (%), the x axis is logD, and the y axis is log{log(100/R). } The slope n of the straight line plotted on a Rosin-Rammler diagram with graduations is 2.5 or more, and in the negative electrode active material particles, the proportion of particles with a particle size of less than 1 μm is It has been found that the cycle characteristics are improved when the amount is 5% by mass or less, and the present invention has been achieved.

すなわち、本発明は、負極活物質粒子を含む非水電解質二次電池用負極活物質であって、前記負極活物質粒子は、リチウムイオンを吸蔵及び放出することが可能な珪素を含有する粉末であり、前記負極活物質粒子は、レーザー回折散乱式粒度分布測定法によって得られる粒度分布に基づいて、ある粒径をD(μm)、その粒径よりも大きい粒子の全粒子に対する質量百分率をR(%)とした時、x軸にlogD、y軸にlog{log(100/R)}の目盛りをつけたロジン・ラムラー線図にプロットした直線の勾配nが2.5以上であり、かつ前記負極活物質粒子において、粒径1μm未満の粒子の割合が前記負極活物質粒子全体に対して5質量%以下であることを特徴とする非水電解質二次電池用負極活物質を提供する。 That is, the present invention provides a negative electrode active material for a non-aqueous electrolyte secondary battery that includes negative electrode active material particles, wherein the negative electrode active material particles are powder containing silicon that is capable of occluding and releasing lithium ions. Based on the particle size distribution obtained by a laser diffraction scattering particle size distribution measurement method, the negative electrode active material particles have a certain particle size D (μm), and the mass percentage of particles larger than that particle size relative to the total particles is R. (%), the slope n of the straight line plotted on a Rosin-Ramler diagram with logD on the x-axis and log{log(100/R)} on the y-axis is 2.5 or more, and The present invention provides a negative electrode active material for a non-aqueous electrolyte secondary battery, characterized in that, in the negative electrode active material particles, the proportion of particles with a particle size of less than 1 μm is 5% by mass or less based on the entire negative electrode active material particles.

上記のように、本発明における粒子の粒度分布の規定は、レーザー回折散乱式粒度分布測定法に基づく。レーザー回折散乱式粒度分布測定装置としては、例えば、島津製作所製のSALD-3100Sを用いることができる。 As described above, the definition of the particle size distribution of particles in the present invention is based on the laser diffraction scattering particle size distribution measuring method. As the laser diffraction scattering particle size distribution measuring device, for example, SALD-3100S manufactured by Shimadzu Corporation can be used.

ロジン・ラムラー線図にプロットした直線の勾配nの求め方は、例えば、粒径1μm幅などで粒度分布を測定してプロットし、この分布に基づいて回帰直線を求めることができる。粒径の幅は一定でなくてもよく、20-30点程度をプロットすればよい。 The gradient n of the straight line plotted on the Rosin-Rammler diagram can be determined by, for example, measuring and plotting the particle size distribution with a particle size width of 1 μm, and then determining the regression line based on this distribution. The width of the particle size does not have to be constant, and it is sufficient to plot about 20 to 30 points.

また勾配nは、例えば、粒径1μm未満の微粉含有量を変更することで調整可能である。 Further, the slope n can be adjusted, for example, by changing the content of fine powder with a particle size of less than 1 μm.

後述のように、本発明の負極活物質における負極活物質粒子には、炭素被膜を形成してもよい。本発明の負極活物質における負極活物質粒子の規定の基準であるレーザー回折散乱式粒度分布測定法によって得られる粒径及び粒度分布は、炭素被膜を形成しない状態で測定したものである。このことは負極活物質粒子のモード径やD99.9径でも同様である。 As described below, a carbon film may be formed on the negative electrode active material particles in the negative electrode active material of the present invention. The particle size and particle size distribution obtained by the laser diffraction scattering particle size distribution measurement method, which is the standard standard for negative electrode active material particles in the negative electrode active material of the present invention, were measured without forming a carbon film. This also applies to the mode diameter and D99.9 diameter of the negative electrode active material particles.

また、本発明の負極活物質における負極活物質粒子のモード径(最頻値)は0.1μm以上15.0μm以下であることが好ましい。このモード径が0.1μm以上の場合、電解液との反応が促進されないため、電池特性の低下を防止できる。このモード径が15.0μm以下の場合、充放電に伴う活物質の膨張を抑制することができるため、電子コンタクトの欠落を防止することができる。また、このモード径は、3.0μm以上12.0μm以下であればより好ましい。 Moreover, it is preferable that the mode diameter (mode) of the negative electrode active material particles in the negative electrode active material of the present invention is 0.1 μm or more and 15.0 μm or less. When this mode diameter is 0.1 μm or more, the reaction with the electrolyte is not promoted, so deterioration of battery characteristics can be prevented. When this mode diameter is 15.0 μm or less, expansion of the active material due to charging and discharging can be suppressed, and therefore, loss of electronic contacts can be prevented. Moreover, this mode diameter is more preferably 3.0 μm or more and 12.0 μm or less.

また、本発明の負極活物質における負極活物質粒子のD99.9径が40μm以下であることが好ましい。このD99.9径が40μm以下であれば、電極の中の負極活物質径の局所的なばらつきを小さくすることができ、サイクル特性を向上することができる。 Further, it is preferable that the D 99.9 diameter of the negative electrode active material particles in the negative electrode active material of the present invention is 40 μm or less. If this D99.9 diameter is 40 μm or less, local variations in the diameter of the negative electrode active material in the electrode can be reduced, and cycle characteristics can be improved.

<非水電解質二次電池用負極>
次に、本発明の負極活物質を含む非水電解質二次電池用負極(以下、「負極」とも呼称する)について説明する。図1は本発明の負極活物質を含む非水電解質二次電池用負極の構成の一例を示す断面図である。
<Negative electrode for non-aqueous electrolyte secondary battery>
Next, a negative electrode for a non-aqueous electrolyte secondary battery (hereinafter also referred to as "negative electrode") containing the negative electrode active material of the present invention will be described. FIG. 1 is a cross-sectional view showing an example of the structure of a negative electrode for a non-aqueous electrolyte secondary battery containing the negative electrode active material of the present invention.

[負極の構成]
図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていてもよい。さらに、本発明の負極活物質から作製された負極であれば、負極集電体11はなくてもよい。
[Configuration of negative electrode]
As shown in FIG. 1, the negative electrode 10 has a negative electrode active material layer 12 on a negative electrode current collector 11. This negative electrode active material layer 12 may be provided on both sides of the negative electrode current collector 11 or only on one side. Furthermore, if the negative electrode is made from the negative electrode active material of the present invention, the negative electrode current collector 11 may not be provided.

[負極集電体]
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)が挙げられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
[Negative electrode current collector]
The negative electrode current collector 11 is made of an excellent conductive material and has excellent mechanical strength. Examples of conductive materials that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).

負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。このような変形抑制効果によりサイクル特性をより向上できる。 It is preferable that the negative electrode current collector 11 contains carbon (C) and sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved. In particular, when the battery has an active material layer that expands during charging, if the current collector contains the above elements, it has the effect of suppressing deformation of the electrode including the current collector. Although the content of the above-mentioned contained elements is not particularly limited, it is preferably 100 mass ppm or less, respectively. This is because a higher deformation suppressing effect can be obtained. Such a deformation suppressing effect can further improve cycle characteristics.

また、負極集電体11の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。粗化されていない負極集電体は、例えば、圧延金属箔などである。 Further, the surface of the negative electrode current collector 11 may or may not be roughened. The roughened negative electrode current collector is, for example, a metal foil that has been subjected to electrolytic treatment, embossing treatment, or chemical etching treatment. The non-roughened negative electrode current collector is, for example, rolled metal foil.

[負極活物質層]
負極活物質層12は、リチウムイオンを吸蔵、放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含む。さらに、負極活物質粒子は酸素が含まれるケイ素化合物を含有するケイ素化合物粒子を含むことが好ましい。
[Negative electrode active material layer]
The negative electrode active material layer 12 contains the negative electrode active material of the present invention that is capable of intercalating and releasing lithium ions, and from the viewpoint of battery design, it also contains other materials such as a negative electrode binder and a conductive additive. May contain. The negative electrode active material includes negative electrode active material particles. Furthermore, it is preferable that the negative electrode active material particles include silicon compound particles containing a silicon compound containing oxygen.

また、負極活物質層12は、本発明の負極活物質(ケイ素系負極活物質)と炭素系活物質とを含む混合負極活物質材料を含んでいても良い。これにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。 Further, the negative electrode active material layer 12 may include a mixed negative electrode active material material containing the negative electrode active material of the present invention (silicon-based negative electrode active material) and a carbon-based active material. This reduces the electrical resistance of the negative electrode active material layer and makes it possible to alleviate expansion stress associated with charging. As the carbon-based active material, for example, pyrolytic carbons, cokes, glassy carbon fibers, fired organic polymer compounds, carbon blacks, etc. can be used.

また、上記のように本発明の負極活物質は、リチウムイオンを吸蔵及び放出することが可能な珪素を含有する負極活物質粒子を含む。この負極活物質粒子は、ケイ素化合物粒子を含み、ケイ素化合物粒子は酸素が含まれるケイ素化合物を含有する酸化ケイ素材であることが好ましい。このケイ素化合物を構成するケイ素と酸素の比は、SiO:0.5≦x≦1.6の範囲であることが好ましい。xが0.5以上であれば、ケイ素単体よりも酸素比が高められたものであるためサイクル特性が良好となる。xが1.6以下であれば、ケイ素酸化物の抵抗が高くなりすぎないため好ましい。中でも、SiOの組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。 Further, as described above, the negative electrode active material of the present invention includes negative electrode active material particles containing silicon that can insert and release lithium ions. The negative electrode active material particles include silicon compound particles, and the silicon compound particles are preferably a silicon oxide material containing a silicon compound containing oxygen. The ratio of silicon and oxygen constituting this silicon compound is preferably in the range of SiO x :0.5≦x≦1.6. If x is 0.5 or more, the oxygen ratio will be higher than that of silicon alone, and the cycle characteristics will be good. If x is 1.6 or less, the resistance of the silicon oxide will not become too high, which is preferable. Among these, it is preferable for the composition of SiO x that x is close to 1. This is because high cycle characteristics can be obtained. Note that the composition of the silicon compound in the present invention does not necessarily mean 100% purity, and may contain trace amounts of impurity elements.

また、負極活物質層に含まれる負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。 Further, as the negative electrode binder contained in the negative electrode active material layer, for example, one or more of polymer materials, synthetic rubber, etc. can be used. Examples of the polymeric material include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, sodium polyacrylate, and carboxymethyl cellulose. Examples of the synthetic rubber include styrene-butadiene rubber, fluorine-based rubber, and ethylene propylene diene.

負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。 As the negative electrode conductive additive, for example, one or more of carbon materials such as carbon black, acetylene black, graphite, Ketjen black, carbon nanotubes, and carbon nanofibers can be used.

負極活物質層は、例えば、塗布法で形成される。塗布法とは、ケイ素系負極活物質と上記の結着剤など、また、必要に応じて導電助剤、炭素系活物質を混合した後に、有機溶剤や水などに分散させ、負極集電体などに塗布する方法である。 The negative electrode active material layer is formed, for example, by a coating method. The coating method involves mixing a silicon-based negative electrode active material, the above-mentioned binder, etc., and if necessary, a conductive agent and a carbon-based active material, and then dispersing it in an organic solvent or water to form a negative electrode current collector. This is a method of applying it to etc.

[負極の製造方法]
まず、負極活物質粒子を作製する。以下では、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を作製する例、特に、酸素が含まれるケイ素化合物として、SiO(0.5≦x≦1.6)で表される酸化珪素を使用した場合を説明する。
[Manufacturing method of negative electrode]
First, negative electrode active material particles are produced. In the following, an example of producing silicon compound particles containing an oxygen-containing silicon compound, in particular, silicon oxide represented by SiO x (0.5≦x≦1.6) is used as the oxygen-containing silicon compound. Let me explain the case.

まず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃~1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。このとき、原料は金属珪素粉末と二酸化珪素粉末の混合物を用いることができる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。 First, a raw material for generating silicon oxide gas is heated in the presence of an inert gas under reduced pressure in a temperature range of 900° C. to 1600° C. to generate silicon oxide gas. At this time, a mixture of metal silicon powder and silicon dioxide powder can be used as the raw material. Considering the presence of surface oxygen of the metal silicon powder and trace oxygen in the reactor, it is desirable that the mixing molar ratio is in the range of 0.8<metal silicon powder/silicon dioxide powder<1.3.

発生した酸化珪素ガスは吸着板上で固体化され堆積される。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕し、粉末化を行う。以上のようにして、ケイ素化合物粒子を作製することができる。なお、ケイ素化合物粒子中のSi結晶子は、酸化珪素ガスを発生する原料の気化温度の変更、又は、ケイ素化合物粒子生成後の熱処理で制御できる。 The generated silicon oxide gas is solidified and deposited on the adsorption plate. Next, while the temperature inside the reactor is lowered to 100° C. or less, the silicon oxide deposit is taken out and pulverized using a ball mill, jet mill, etc., to form a powder. Silicon compound particles can be produced in the manner described above. Note that the Si crystallites in the silicon compound particles can be controlled by changing the vaporization temperature of the raw material that generates silicon oxide gas or by heat treatment after the silicon compound particles are produced.

ここで、負極活物質粒子(ケイ素化合物粒子)の表層に炭素材の層を生成しても良い。ただし、本発明の負極活物質における粒径の規定について、前述したように、負極活物質粒子の粒径及び粒度分布は、炭素材の層を生成しない状態で測定したものである。炭素材の層を生成する方法としては、熱分解CVD法が望ましい。熱分解CVD法で炭素材の層を生成する方法の一例について以下に説明する。 Here, a layer of carbon material may be formed on the surface layer of the negative electrode active material particles (silicon compound particles). However, regarding the definition of the particle size in the negative electrode active material of the present invention, as described above, the particle size and particle size distribution of the negative electrode active material particles were measured without forming a layer of carbon material. A pyrolytic CVD method is preferable as a method for producing the carbon material layer. An example of a method for producing a carbon material layer using the pyrolysis CVD method will be described below.

まず、負極活物質粒子(ケイ素化合物粒子)を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、1100℃以下が望ましく、より望ましいのは900℃以下である。分解温度を1100℃以下にすることで、活物質粒子の意図しない不均化を抑制することができる。所定の温度まで炉内温度を昇温させた後に、ケイ素化合物粒子の表面に炭素層を生成する。また、炭素材の原料となる炭化水素ガスは、特に限定しないが、C組成においてn≦3であることが望ましい。n≦3であれば、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。 First, negative electrode active material particles (silicon compound particles) are set in a furnace. Next, hydrocarbon gas is introduced into the furnace and the temperature inside the furnace is raised. The decomposition temperature is not particularly limited, but is preferably 1100°C or lower, more preferably 900°C or lower. By setting the decomposition temperature to 1100° C. or lower, unintended disproportionation of the active material particles can be suppressed. After raising the temperature in the furnace to a predetermined temperature, a carbon layer is generated on the surface of the silicon compound particles. Furthermore, the hydrocarbon gas that is the raw material for the carbon material is not particularly limited, but it is desirable that n≦3 in the C n H m composition. If n≦3, the manufacturing cost can be lowered and the physical properties of the decomposition product can be improved.

また、導電性を与えるために生成した炭素層と、その上に電解液との反応性を低減させる目的で作製した炭素層の2層構造を有する事でより良くなる。導電性を与える層よりも低い温度で生成する反応抑制層の影響で電池サイクル特性が向上する。 Further, it is better to have a two-layer structure consisting of a carbon layer formed to provide conductivity and a carbon layer formed above the carbon layer for the purpose of reducing reactivity with the electrolytic solution. Battery cycle characteristics are improved due to the effect of the reaction suppression layer, which is generated at a lower temperature than the layer that provides conductivity.

炭素層の合計膜厚は、より薄く均一が求められるが、5nm以上の厚みがあれば、導電性と反応抑制層の両立が可能となる。 The total thickness of the carbon layer is required to be thinner and more uniform, but if the carbon layer has a thickness of 5 nm or more, both conductivity and reaction suppression layer can be achieved.

また、ケイ素化合物は結晶性Siを極力含まない事が望ましい。電解液との反応性が高く、電池特性を悪化させるからである。Siの結晶子サイズは7.5nm以下が望ましく、実質的にアモルファスが望ましい。この結晶子サイズは、Cu-Kα線を用いたX線回折により測定したSi(111)面に由来するピークの半値幅からシェラーの式を用いて得ることができる。 Further, it is desirable that the silicon compound contains as little crystalline Si as possible. This is because it has high reactivity with the electrolyte and deteriorates battery characteristics. The crystallite size of Si is preferably 7.5 nm or less, and is preferably substantially amorphous. This crystallite size can be obtained using the Scherrer equation from the half-value width of a peak derived from the Si (111) plane measured by X-ray diffraction using Cu-Kα radiation.

以上のようにして作製した負極活物質を、負極結着剤、導電助剤などの他の材料と混合して、負極合剤とした後に、有機溶剤又は水などを加えてスラリーとする。次に、負極集電体の表面に、上記のスラリーを塗布し、乾燥させて、負極活物質層を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。以上のようにして、負極を作製できる。 The negative electrode active material produced as described above is mixed with other materials such as a negative electrode binder and a conductive additive to form a negative electrode mixture, and then an organic solvent or water is added to form a slurry. Next, the above slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, heating pressing or the like may be performed as necessary. A negative electrode can be manufactured in the manner described above.

[正極]
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
[Positive electrode]
For example, the positive electrode has a positive electrode active material layer on both sides or one side of a positive electrode current collector, similar to the negative electrode 10 in FIG. 1 .

正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。 The positive electrode current collector is made of, for example, a conductive material such as aluminum.

正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいてもよい。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。 The positive electrode active material layer contains one or more types of positive electrode materials capable of intercalating and deintercalating lithium ions, and may also contain other materials such as a binder, a conductive aid, and a dispersant depending on the design. It's okay to stay. In this case, the details regarding the binder and the conductive aid are the same as, for example, the negative electrode binder and the negative conductive aid described above.

正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又は、リチウムと遷移金属元素を有するリン酸化合物があげられる。これら記述される正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiM1OあるいはLiM2POで表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。 As the positive electrode material, a lithium-containing compound is desirable. Examples of the lithium-containing compound include a composite oxide containing lithium and a transition metal element, or a phosphoric acid compound containing lithium and a transition metal element. Among these positive electrode materials, compounds containing at least one of nickel, iron, manganese, and cobalt are preferred. These chemical formulas are represented by, for example, Li x M1O 2 or Li y M2PO 4 . In the formula, M1 and M2 represent at least one transition metal element. The values of x and y vary depending on the charging/discharging state of the battery, but are generally expressed as 0.05≦x≦1.10 and 0.05≦y≦1.10.

リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)などが挙げられる。リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。 Examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and the like. Examples of phosphoric acid compounds containing lithium and a transition metal element include lithium iron phosphate compounds (LiFePO 4 ) and lithium iron manganese phosphate compounds (LiFe 1-u Mn u PO 4 (0<u<1)). can be mentioned. This is because by using these positive electrode materials, not only high battery capacity can be obtained, but also excellent cycle characteristics can be obtained.

[負極]
負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、負極集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
[Negative electrode]
The negative electrode has the same configuration as the negative electrode 10 for a lithium ion secondary battery shown in FIG. It is preferable that the negative electrode has a larger negative electrode charging capacity than the electric capacity (charging capacity as a battery) obtained from the positive electrode active material. This is because precipitation of lithium metal on the negative electrode can be suppressed.

正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。 The positive electrode active material layer is provided on a portion of both surfaces of the positive electrode current collector, and the negative electrode active material layer is also provided on a portion of both surfaces of the negative electrode current collector. In this case, for example, the negative electrode active material layer provided on the negative electrode current collector has a region where the opposing positive electrode active material layer does not exist. This is to ensure stable battery design.

非対向領域、すなわち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。 The non-opposed region, that is, the region where the negative electrode active material layer and the positive electrode active material layer do not face each other, is hardly affected by charging and discharging. Therefore, the state of the negative electrode active material layer is maintained as it is immediately after formation. This makes it possible to accurately investigate the composition of the negative electrode active material with good reproducibility, regardless of the presence or absence of charging and discharging.

[セパレータ]
セパレータはリチウムメタル、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[Separator]
The separator isolates the lithium metal and the negative electrode, and allows lithium ions to pass through while preventing current short circuits caused by contact between the two electrodes. The separator is formed of a porous membrane made of, for example, synthetic resin or ceramic, and may have a laminated structure in which two or more types of porous membranes are laminated. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.

[電解液]
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
[Electrolyte]
At least a portion of the active material layer or the separator is impregnated with a liquid electrolyte (electrolyte solution). This electrolytic solution has an electrolyte salt dissolved in a solvent, and may also contain other materials such as additives.

溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。 For example, a non-aqueous solvent can be used as the solvent. Examples of the nonaqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran. Among these, it is desirable to use at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate. This is because better characteristics can be obtained. Further, in this case, more superior properties can be obtained by combining a high viscosity solvent such as ethylene carbonate or propylene carbonate with a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate. This is because the dissociation properties and ion mobility of the electrolyte salt are improved.

合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。 When using an alloy-based negative electrode, it is particularly desirable that the solvent contains at least one of a halogenated chain carbonate ester and a halogenated cyclic carbonate ester. As a result, a stable film is formed on the surface of the negative electrode active material during charging and discharging, particularly during charging. Here, the halogenated chain carbonate ester is a chain carbonate ester having a halogen as a constituent element (at least one hydrogen is replaced with a halogen). Further, the halogenated cyclic carbonate ester is a cyclic carbonate ester having a halogen as a constituent element (that is, at least one hydrogen is replaced with a halogen).

ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。 The type of halogen is not particularly limited, but fluorine is preferred. This is because it forms a film of better quality than other halogens. Further, the greater the number of halogens, the more desirable. This is because the resulting coating is more stable and the decomposition reaction of the electrolyte is reduced.

ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。 Examples of the halogenated chain carbonate ester include fluoromethylmethyl carbonate and difluoromethylmethyl carbonate. Examples of the halogenated cyclic carbonate ester include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.

溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。 It is preferable that an unsaturated carbon-bonded cyclic carbonate ester is included as a solvent additive. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and decomposition reactions of the electrolytic solution can be suppressed. Examples of the unsaturated carbon-bonded cyclic carbonate include vinylene carbonate and vinylethylene carbonate.

また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。 Moreover, it is preferable that sultone (cyclic sulfonic acid ester) is included as a solvent additive. This is because the chemical stability of the battery is improved. Examples of the sultone include propane sultone and propene sultone.

さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。 Furthermore, it is preferable that the solvent contains an acid anhydride. This is because the chemical stability of the electrolyte is improved. Examples of acid anhydrides include propane disulfonic anhydride.

電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。 The electrolyte salt can include, for example, one or more types of light metal salts such as lithium salts. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and the like.

電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。 The content of the electrolyte salt is preferably 0.5 mol/kg or more and 2.5 mol/kg or less relative to the solvent. This is because high ionic conductivity can be obtained.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail by showing Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples.

(実施例1)
まず、負極活物質粒子(ケイ素化合物粒子)を以下のようにして作製した。金属ケイ素と二酸化ケイ素を混合した原料を反応炉に導入し、10Paの真空度の雰囲気中で気化させたものを析出板上に堆積させ、十分に冷却した後、堆積物を取出しジョークラッシャーで粗砕後、栗本鐡工所製ジェットミルKJ-200で粉砕した。この時の粉砕条件は粉砕圧0.6MPa、セパレーターの回転数7700rpmとした。
(Example 1)
First, negative electrode active material particles (silicon compound particles) were produced as follows. A raw material mixture of metallic silicon and silicon dioxide was introduced into a reactor, vaporized in a vacuum atmosphere of 10 Pa, and deposited on a precipitation plate. After cooling sufficiently, the deposit was taken out and coarsened with a jaw crusher. After crushing, it was pulverized using a jet mill KJ-200 manufactured by Kurimoto. The pulverizing conditions at this time were a pulverizing pressure of 0.6 MPa and a separator rotation speed of 7,700 rpm.

図2にサイクロンで回収した粉体を島津製作所製SALD-3100Sで粒度分布測定を行った結果を示す。この粉体(負極活物質粒子)は、体積分布でモード径7μm、1μm未満の粒径の微粉含有量は0質量%であった。この粒度分布に基づいて、ある粒径をD(μm)、その粒径よりも大きい粒子の全粒子に対する質量百分率をR(%)とした時、x軸にlogD、y軸にlog{log(100/R)}の目盛りをつけたロジン・ラムラー線図にプロットした直線の勾配nは4.4であった。図7中にその結果を示す。 Figure 2 shows the results of particle size distribution measurement of the powder collected by the cyclone using SALD-3100S manufactured by Shimadzu Corporation. This powder (negative electrode active material particles) had a mode diameter of 7 μm in volume distribution, and the content of fine powder with a particle size of less than 1 μm was 0% by mass. Based on this particle size distribution, when a certain particle size is D (μm) and the mass percentage of particles larger than that particle to all particles is R (%), logD is plotted on the x-axis and log{log() is plotted on the y-axis. The slope n of the straight line plotted on the Rosin-Rammler diagram with a scale of 100/R) was 4.4. The results are shown in FIG.

その後、熱分解CVDを1000℃で行うことで、負極活物質粒子(ケイ素化合物粒子)の表面に炭素材を被覆した。炭素材の被覆量は3.4質量%であった。 Thereafter, thermal decomposition CVD was performed at 1000° C. to coat the surface of the negative electrode active material particles (silicon compound particles) with a carbon material. The amount of carbon material covered was 3.4% by mass.

(実施例2)
実施例1と同様に粗砕した負極活物質粒子(ケイ素化合物粒子)を、粉砕圧0.5MPa、セパレーターの回転数7500rpmで粉砕した。
(Example 2)
Negative electrode active material particles (silicon compound particles) coarsely crushed in the same manner as in Example 1 were crushed at a crushing pressure of 0.5 MPa and a separator rotation speed of 7500 rpm.

実施例1と同様に、粒度分布測定を行った。図3にその結果を示す。サイクロンで回収した粉体はモード径7μm、1μm未満の粒径の微粉含有量は0.7質量%であった。また、この粒度分布のロジン・ラムラー線図にプロットした直線の勾配nは4.1であった。図7中にその結果を示す。 Particle size distribution measurement was performed in the same manner as in Example 1. Figure 3 shows the results. The powder collected by the cyclone had a mode diameter of 7 μm, and the content of fine powder with a particle size of less than 1 μm was 0.7% by mass. Further, the slope n of the straight line plotted on the Rosin-Rammler diagram of this particle size distribution was 4.1. The results are shown in FIG.

(実施例3)
実施例1で得られた負極活物質粒子(ケイ素化合物粒子)に、ジェットミルのバグフィルターで回収した微粉を混合した。これにより混合後の負極活物質粒子(ケイ素化合物粒子)における1μm未満の粒径の微粉含有量が約3質量%になるように混合した。
(Example 3)
The negative electrode active material particles (silicon compound particles) obtained in Example 1 were mixed with fine powder collected by a bag filter of a jet mill. In this way, the content of fine powder having a particle size of less than 1 μm in the mixed negative electrode active material particles (silicon compound particles) was about 3% by mass.

この粉末について、実施例1と同様に粒度分布測定を行った。図4にその結果を示す。この粉末はモード径7μm、1μm未満の粒径の微粉含有量は3.2質量%であった。また、この粒度分布のロジン・ラムラー線図にプロットした直線の勾配nは2.6であった。図7中にその結果を示す。 Regarding this powder, particle size distribution measurement was performed in the same manner as in Example 1. Figure 4 shows the results. This powder had a mode diameter of 7 μm, and a content of fine powder with a particle size of less than 1 μm was 3.2% by mass. Further, the slope n of the straight line plotted on the Rosin-Rammler diagram of this particle size distribution was 2.6. The results are shown in FIG.

(比較例1)
実施例3と同様に、実施例1で得られた負極活物質粒子(ケイ素化合物粒子)に、ジェットミルのバグフィルターで回収した微粉を混合したが、その際混合後の負極活物質粒子(ケイ素化合物粒子)における1μm未満の粒径の微粉含有量が約6質量%になるように混合した。
(Comparative example 1)
In the same manner as in Example 3, the negative electrode active material particles (silicon compound particles) obtained in Example 1 were mixed with the fine powder collected by the bag filter of a jet mill. The mixture was mixed so that the content of fine powder with a particle size of less than 1 μm in the compound particles was about 6% by mass.

この粉末について、実施例1と同様に粒度分布測定を行った。図5にその結果を示す。この粉末はモード径7μm、1μm未満の粒径の微粉含有量は6.5質量%であった。また、この粒度分布のロジン・ラムラー線図にプロットした直線の勾配nは2.0であった。図7中にその結果を示す。 Regarding this powder, particle size distribution measurement was performed in the same manner as in Example 1. Figure 5 shows the results. This powder had a mode diameter of 7 μm and a content of fine powder with a particle size of less than 1 μm of 6.5% by mass. Further, the slope n of the straight line plotted on the Rosin-Rammler diagram of this particle size distribution was 2.0. The results are shown in FIG.

(比較例2)
実施例3と同様に、実施例1で得られた負極活物質粒子(ケイ素化合物粒子)に、ジェットミルのバグフィルターで回収した微粉を混合したが、その際混合後の1μm未満の粒径の微粉含有量が約12質量%になるように混合した。
(Comparative example 2)
In the same manner as in Example 3, the fine powder collected by the bag filter of a jet mill was mixed with the negative electrode active material particles (silicon compound particles) obtained in Example 1. The mixture was mixed so that the fine powder content was approximately 12% by mass.

この粉末について、実施例1と同様に粒度分布測定を行った。図6にその結果を示す。この粉末はモード径7μm、1μm未満の粒径の微粉含有量は12.2質量%であった。また、この粒度分布のロジン・ラムラー線図にプロットした直線の勾配nは0.9であった。図7中にその結果を示す。 Regarding this powder, particle size distribution measurement was performed in the same manner as in Example 1. Figure 6 shows the results. This powder had a mode diameter of 7 μm and a content of fine powder with a particle size of less than 1 μm of 12.2% by mass. Further, the slope n of the straight line plotted on the Rosin-Rammler diagram of this particle size distribution was 0.9. The results are shown in FIG.

実施例2、3、比較例1、2の粉末も実施例1と同様に熱分解CVDを施し、炭素被覆量を3から4質量%に調整した。 The powders of Examples 2 and 3 and Comparative Examples 1 and 2 were also subjected to pyrolytic CVD in the same manner as in Example 1, and the carbon coating amount was adjusted to 3 to 4% by mass.

次に、作製した負極活物質粒子(酸化ケイ素化合物粒子)、黒鉛粒子、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、ポリアクリル酸ナトリウム、カルボキシメチルセルロース(以下、CMCと称する)を9.3:83.7:1:1:4:1の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。 Next, the produced negative electrode active material particles (silicon oxide compound particles), graphite particles, conductive aid 1 (carbon nanotubes, CNTs), conductive aid 2 (carbon fine particles with a median diameter of about 50 nm), sodium polyacrylate, Carboxymethyl cellulose (hereinafter referred to as CMC) was mixed at a dry mass ratio of 9.3:83.7:1:1:4:1, and then diluted with pure water to obtain a negative electrode mixture slurry.

また、負極集電体としては、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ70質量ppmの濃度で含まれていた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は7.0mg/cmであった。 Further, as the negative electrode current collector, an electrolytic copper foil with a thickness of 15 μm was used. This electrolytic copper foil contained carbon and sulfur each at a concentration of 70 mass ppm. Finally, the negative electrode mixture slurry was applied to the negative electrode current collector and dried at 100° C. for 1 hour in a vacuum atmosphere. After drying, the amount of negative electrode active material layer deposited per unit area (also referred to as area density) on one side of the negative electrode was 7.0 mg/cm 2 .

次に、溶媒エチレンカーボネート(EC)及びジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でEC:DMC=30:70とし、電解質塩の含有量を溶媒に対して1mol/kgとした。添加剤として、ビニレンカーボネート(VC)とフルオロエチレンカーボネート(FEC)をそれぞれ、1.0質量%、2.0質量%添加した。 Next, after mixing solvents ethylene carbonate (EC) and dimethyl carbonate (DMC), an electrolyte salt (lithium hexafluorophosphate: LiPF 6 ) was dissolved to prepare an electrolytic solution. In this case, the composition of the solvent was EC:DMC=30:70 in volume ratio, and the content of the electrolyte salt was 1 mol/kg with respect to the solvent. As additives, vinylene carbonate (VC) and fluoroethylene carbonate (FEC) were added in amounts of 1.0% by mass and 2.0% by mass, respectively.

次に、以下のようにしてコイン電池を組み立てた。最初に対極として厚さ1mmのLi箔を直径16mmに打ち抜き、アルミクラッドに張り付けた。続けて、セパレータとして厚さ20μmのポリエチレンをLi箔に重ね、電解液を注液した。続けて、直径15mmに打ち抜いた負極、スペーサ(厚さ1.0mm)をセパレータに重ね電解液を注液後、スプリング、コイン電池の上ブタの順にくみ上げ、自動コインセルカシメ機でかしめることで、2032コイン電池を作製した。 Next, the coin battery was assembled as follows. First, as a counter electrode, a Li foil with a thickness of 1 mm was punched out to a diameter of 16 mm and attached to an aluminum cladding. Subsequently, polyethylene with a thickness of 20 μm was layered on the Li foil as a separator, and an electrolytic solution was poured into it. Next, the negative electrode punched out to a diameter of 15 mm, the spacer (thickness 1.0 mm) are stacked on the separator, and the electrolyte is injected, then the spring and the top cover of the coin battery are pumped up in that order, and crimped with an automatic coin cell crimping machine. A 2032 coin battery was produced.

初回効率は以下の条件で測定した。まず充電レートを0.03C相当、CCCVモードで充電を行った。CVは0Vで終止電流は0.04mAとした。放電レートは同様に0.03C、放電電圧は1.2Vとし、CC放電を行った。 The initial efficiency was measured under the following conditions. First, charging was performed in CCCV mode at a charging rate equivalent to 0.03C. The CV was 0V and the final current was 0.04mA. Similarly, CC discharge was performed at a discharge rate of 0.03C and a discharge voltage of 1.2V.

初期充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。得られた初期データから、対正極を設計し、電池評価を行った。 When examining the initial charge/discharge characteristics, initial efficiency (hereinafter sometimes referred to as initial efficiency) was calculated. The initial efficiency was calculated from the formula expressed as initial efficiency (%)=(initial discharge capacity/initial charge capacity)×100. Based on the initial data obtained, a counter-positive electrode was designed and the battery was evaluated.

以上のようにして作製した二次電池のサイクル特性を評価した。サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて総サイクル数が300サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に200サイクル目及び300サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率を算出した。通常サイクル、すなわち3サイクル目から299サイクル目までは、充電0.7C、放電0.5Cで充放電を行った。 The cycle characteristics of the secondary battery produced as described above were evaluated. The cycle characteristics were investigated as follows. First, in order to stabilize the battery, two cycles of charging and discharging were performed at 0.2C in an atmosphere of 25C, and the discharge capacity of the second cycle was measured. Subsequently, charging and discharging were performed until the total number of cycles reached 300 cycles, and the discharge capacity was measured each time. Finally, the capacity retention rate was calculated by dividing the discharge capacity at the 200th cycle and the 300th cycle by the discharge capacity at the 2nd cycle. In the normal cycle, that is, from the 3rd cycle to the 299th cycle, charging and discharging were performed at 0.7 C for charging and 0.5 C for discharging.

充電電圧は4.3V、放電終止電圧は2.5V、充電終止レートは0.07Cとした。 The charging voltage was 4.3V, the end-of-discharge voltage was 2.5V, and the end-of-charge rate was 0.07C.

実施例1~3、比較例1、2の充放電試験結果を表1に示す。 Table 1 shows the charging and discharging test results of Examples 1 to 3 and Comparative Examples 1 and 2.

Figure 0007388936000001
Figure 0007388936000001

表1に示すように、負極活物質粒子の粒度分布において、n値が2.5以上であり、かつ1μm未満の粒径の微粉含有量が5質量%以下の実施例1~3では、300サイクル後の容量維持率が80%以上となっていることから、高いサイクル特性を有すると言える。 As shown in Table 1, in the particle size distribution of the negative electrode active material particles, in Examples 1 to 3 in which the n value was 2.5 or more and the content of fine powder with a particle size of less than 1 μm was 5% by mass or less, 300 Since the capacity retention rate after cycling is 80% or more, it can be said that it has high cycle characteristics.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any embodiment having substantially the same configuration as the technical idea stated in the claims of the present invention and having similar effects may be included in the present invention. covered within the technical scope of.

10…負極、 11…負極集電体、 12…負極活物質層。 10...Negative electrode, 11...Negative electrode current collector, 12...Negative electrode active material layer.

Claims (7)

負極活物質粒子を含む非水電解質二次電池用負極活物質であって、
前記負極活物質粒子は、リチウムイオンを吸蔵及び放出することが可能な珪素を含有する粉末であり、
前記負極活物質粒子は酸素が含まれるケイ素化合物を含有するケイ素化合物粒子(ただし、前記ケイ素化合物粒子は、Li SiO 及びLi SiO のうち少なくとも1種以上を含有するものを除く。)を含み、
前記負極活物質粒子は、レーザー回折散乱式粒度分布測定法によって得られる粒度分布に基づいて、ある粒径をD(μm)、その粒径よりも大きい粒子の全粒子に対する質量百分率をR(%)とした時、x軸にlogD、y軸にlog{log(100/R)}の目盛りをつけたロジン・ラムラー線図にプロットした直線の勾配nが2.5以上であり、かつ前記負極活物質粒子において、粒径1μm未満の粒子の割合が前記負極活物質粒子全体に対して5質量%以下であることを特徴とする非水電解質二次電池用負極活物質。
A negative electrode active material for a non-aqueous electrolyte secondary battery comprising negative electrode active material particles,
The negative electrode active material particles are powders containing silicon that are capable of intercalating and deintercalating lithium ions,
The negative electrode active material particles are silicon compound particles containing a silicon compound containing oxygen (however, the silicon compound particles exclude those containing at least one of Li 2 SiO 3 and Li 4 SiO 4 ) . including;
The negative electrode active material particles have a certain particle size D (μm) and a mass percentage of particles larger than that particle size relative to all particles based on the particle size distribution obtained by laser diffraction scattering particle size distribution measuring method. ), the slope n of the straight line plotted on a Rosin-Ramler diagram with logD on the x-axis and log{log(100/R)} on the y-axis is 2.5 or more, and the negative electrode A negative electrode active material for a non-aqueous electrolyte secondary battery, characterized in that, in the active material particles, the proportion of particles with a particle size of less than 1 μm is 5% by mass or less based on the entire negative electrode active material particles.
前記負極活物質粒子のモード径が0.1μm以上15μm以下であることを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。 The negative electrode active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the mode diameter of the negative electrode active material particles is 0.1 μm or more and 15 μm or less. 前記負極活物質粒子のD99.9径が40μm以下であることを特徴とする請求項1又は請求項2に記載の非水電解質二次電池用負極活物質。 The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the negative electrode active material particles have a D 99.9 diameter of 40 μm or less. 前記ケイ素化合物を構成するケイ素と酸素の比は、SiO:0.5≦x≦1.6の範囲であることを特徴とする請求項1から請求項3のいずれか1項に記載の非水電解質二次電池用負極活物質。 The silicon compound according to any one of claims 1 to 3, wherein the ratio of silicon and oxygen constituting the silicon compound is in the range of SiO x :0.5≦x≦1.6. Negative electrode active material for water electrolyte secondary batteries. 前記負極活物質粒子の表面の少なくとも一部が炭素材で被覆されていることを特徴とする請求項1から請求項のいずれか1項に記載の非水電解質二次電池用負極活物質。 The negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4 , wherein at least a part of the surface of the negative electrode active material particles is coated with a carbon material. 請求項1から請求項のいずれか1項に記載の非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池用負極材。 A negative electrode material for a non-aqueous electrolyte secondary battery, comprising the negative electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5 . 請求項に記載の非水電解質二次電池用負極材を含む負極を有することを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery comprising a negative electrode comprising the negative electrode material for a nonaqueous electrolyte secondary battery according to claim 6 .
JP2020012476A 2020-01-29 2020-01-29 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode material for nonaqueous electrolyte secondary batteries, and lithium ion secondary batteries Active JP7388936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020012476A JP7388936B2 (en) 2020-01-29 2020-01-29 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode material for nonaqueous electrolyte secondary batteries, and lithium ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012476A JP7388936B2 (en) 2020-01-29 2020-01-29 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode material for nonaqueous electrolyte secondary batteries, and lithium ion secondary batteries

Publications (2)

Publication Number Publication Date
JP2021118149A JP2021118149A (en) 2021-08-10
JP7388936B2 true JP7388936B2 (en) 2023-11-29

Family

ID=77175163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012476A Active JP7388936B2 (en) 2020-01-29 2020-01-29 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode material for nonaqueous electrolyte secondary batteries, and lithium ion secondary batteries

Country Status (1)

Country Link
JP (1) JP7388936B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115049926B (en) * 2022-06-10 2023-10-24 安徽农业大学 Wheat lodging loss evaluation method and device based on deep learning
KR20240031578A (en) * 2022-09-01 2024-03-08 에스케이온 주식회사 Anode active material for lithium secondary battery and lithium secondary battery including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069197A1 (en) 2011-11-11 2013-05-16 株式会社豊田自動織機 Negative-electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2016091649A (en) 2014-10-30 2016-05-23 信越化学工業株式会社 Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017188319A (en) 2016-04-06 2017-10-12 信越化学工業株式会社 Negative electrode active substance, mixed negative electrode active substance material, and method for manufacturing negative electrode active substance
JP2017199657A (en) 2016-04-21 2017-11-02 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069197A1 (en) 2011-11-11 2013-05-16 株式会社豊田自動織機 Negative-electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2016091649A (en) 2014-10-30 2016-05-23 信越化学工業株式会社 Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017188319A (en) 2016-04-06 2017-10-12 信越化学工業株式会社 Negative electrode active substance, mixed negative electrode active substance material, and method for manufacturing negative electrode active substance
JP2017199657A (en) 2016-04-21 2017-11-02 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material

Also Published As

Publication number Publication date
JP2021118149A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
TWI697148B (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
KR102367610B1 (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
JP7265668B2 (en) Lithium-ion secondary batteries, mobile terminals, automobiles and power storage systems
JP6386414B2 (en) Anode active material for nonaqueous electrolyte secondary battery, method for producing the same, nonaqueous electrolyte secondary battery using the anode active material, and method for producing anode material for nonaqueous electrolyte secondary battery
WO2015063979A1 (en) Negative electrode active material, production method for negative electrode active material, and lithium ion secondary battery
JP6240375B2 (en) Negative electrode active material, negative electrode and lithium battery employing the same, and method for producing the same
US11005095B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP2015111547A5 (en)
JP6535581B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP6613250B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP3407409A1 (en) Negative electrode active material, negative electrode active material mixed material, negative electrode for nonaqueous electrolyte secondary batteries, lithium ion secondary battery, method for producing negative electrode active material, and method for manufacturing lithium ion secondary battery
KR102307067B1 (en) A negative electrode active material, a negative electrode, a lithium ion secondary battery, a method of using a lithium ion secondary battery, a manufacturing method of a negative electrode active material, and a manufacturing method of a lithium ion secondary battery
JP6507106B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
US10862122B2 (en) Negative electrode active material, mixed negative electrode active material, method for producing negative electrode active material
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP6297991B2 (en) Nonaqueous electrolyte secondary battery
JP2017188319A (en) Negative electrode active substance, mixed negative electrode active substance material, and method for manufacturing negative electrode active substance
JP7410259B2 (en) Non-aqueous electrolyte secondary battery
US20180323424A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, production method of negative electrode active material, and production method of lithium ion secondary battery
JP7388936B2 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode material for nonaqueous electrolyte secondary batteries, and lithium ion secondary batteries
US20190140271A1 (en) Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode material for non-aqueous electrolyte secondary battery and method for producing lithium ion secondary battery
US11594716B2 (en) Negative electrode active material, mixed negative electrode active material, and method of producing negative electrode active material
JP6746526B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP7465672B2 (en) Negative electrode materials for power storage devices
TW202319348A (en) Negative electrode active material and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231116

R150 Certificate of patent or registration of utility model

Ref document number: 7388936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150