JP2011108498A - Positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and device including nonaqueous secondary battery - Google Patents

Positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and device including nonaqueous secondary battery Download PDF

Info

Publication number
JP2011108498A
JP2011108498A JP2009262457A JP2009262457A JP2011108498A JP 2011108498 A JP2011108498 A JP 2011108498A JP 2009262457 A JP2009262457 A JP 2009262457A JP 2009262457 A JP2009262457 A JP 2009262457A JP 2011108498 A JP2011108498 A JP 2011108498A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
nonaqueous secondary
lithium
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009262457A
Other languages
Japanese (ja)
Other versions
JP5464652B2 (en
Inventor
Yuji Sasaki
勇治 佐々木
Katsunori Kojima
克典 児島
Fusaji Kita
房次 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009262457A priority Critical patent/JP5464652B2/en
Publication of JP2011108498A publication Critical patent/JP2011108498A/en
Application granted granted Critical
Publication of JP5464652B2 publication Critical patent/JP5464652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery which can exhibit excellent charge/discharge cycle characteristics even when charged at a high voltage, to provide a positive electrode for structuring the nonaqueous secondary battery, and to provide a device including the nonaqueous secondary battery. <P>SOLUTION: The positive electrode for the nonaqueous secondary battery includes a positive electrode mixture layer containing lithium-containing composite oxide as a positive electrode active material and polyvalent organic lithium salt on one surface or both surfaces of a collector. The nonaqueous secondary battery includes at least the positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte. The nonaqueous secondary battery includes the positive electrode which is the positive electrode for a nonaqueous secondary battery of this invention, and the device includes the nonaqueous secondary battery of this invention so as to solve problems. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高電圧に充電しても優れた充放電サイクル特性を発揮し得る非水二次電池、該非水二次電池を構成し得る正極、および前記非水二次電池を有する機器に関するものである。   The present invention relates to a non-aqueous secondary battery that can exhibit excellent charge / discharge cycle characteristics even when charged to a high voltage, a positive electrode that can constitute the non-aqueous secondary battery, and a device having the non-aqueous secondary battery. It is.

近年、携帯電話、ノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型・軽量でかつ高容量の二次電池が必要とされるようになってきた。現在、この要求に応え得る高容量二次電池として、正極活物質にLiCoOなどの含リチウム複合酸化物を用い、負極活物質に炭素系材料などを用いた非水二次電池(リチウムイオン二次電池)が商品化されている。そして、非水二次電池の適用機器の更なる発達に伴って、例えば、非水二次電池の更なる高容量化・高エネルギー密度化が求められている。 In recent years, with the development of portable electronic devices such as mobile phones and laptop computers, and the practical application of electric vehicles, secondary batteries with small size, light weight and high capacity have been required. Currently, as a high-capacity secondary battery that can meet this demand, a non-aqueous secondary battery (lithium ion secondary battery) that uses a lithium-containing composite oxide such as LiCoO 2 as a positive electrode active material and a carbon-based material as a negative electrode active material. Secondary battery) has been commercialized. And with the further development of the application apparatus of a non-aqueous secondary battery, for example, further higher capacity and higher energy density of a non-aqueous secondary battery are required.

電池の高エネルギー密度化を図るには、例えば、高容量の正極活物質を用いる方法や、高電位で作動できる正極活物質を用いる方法が考えられる。現在、後者の観点から、終止電圧を高めたリチウムコバルト酸化物や、高電位作動タイプのスピネル型リチウムマンガン酸化物が検討されている。   In order to increase the energy density of the battery, for example, a method using a positive electrode active material having a high capacity or a method using a positive electrode active material capable of operating at a high potential can be considered. Currently, from the latter point of view, lithium cobalt oxide having a higher end voltage and spinel type lithium manganese oxide of high potential operation type are being studied.

例えば、LiCoOは、通常、リチウム基準で4.3V以下の電圧で充電して使用されるが、LiCoOのCoの一部を他の金属元素で置換した酸化物では、4.4V以上の電圧でも充放電が可能になることが報告されている。また、例えば、一般式LiNiMn2−x−y(ただし、Mは、NiおよびMn以外の少なくとも1種の遷移金属元素で、0.4≦x≦0.6、0≦y≦0.1)で表される含リチウム複合酸化物では、リチウム基準で4.5V以上の電位で作動し得ることが確認されている(特許文献1、2など)。 For example, LiCoO 2 is usually used by charging at a voltage of 4.3 V or less on the basis of lithium, but in an oxide in which a part of Co of LiCoO 2 is replaced with another metal element, 4.4 V or more is used. It has been reported that charging and discharging are possible even with voltage. Further, for example, the general formula LiNi x M y Mn 2-x -y O 4 ( provided that, M is at least one transition metal element other than Ni and Mn, 0.4 ≦ x ≦ 0.6,0 ≦ It has been confirmed that the lithium-containing composite oxide represented by y ≦ 0.1) can operate at a potential of 4.5 V or more on the basis of lithium (Patent Documents 1 and 2).

特開平9−147867号公報JP-A-9-147867 特開平11−73962号公報Japanese Patent Application Laid-Open No. 11-73962

しかしながら、一般式LiNiMn2−x−yで示される前記の含リチウム複合酸化物や、その他の正極活物質を用いて電池を構成した場合、高電圧充電を行うと、正極活物質と非水電解質とが反応して充放電サイクル特性が低下する虞がある。このような充放電サイクル特性の低下は、リチウム基準で4.4V以上に充電した場合により生じやすく、リチウム基準で4.5V以上に充電した場合に更に生じやすくなり、リチウム基準で5V以上に充電した場合に特に顕著となる。 However, the general formula LiNi x M y Mn 2-x -y O 4 wherein the lithium-containing composite oxide represented by or, in the case of constituting the batteries using other positive electrode active material, when a high voltage charge, the positive electrode The active material and the non-aqueous electrolyte may react to deteriorate charge / discharge cycle characteristics. Such deterioration of charge / discharge cycle characteristics is more likely to occur when charged to 4.4 V or higher on the lithium basis, more likely to occur when charged to 4.5 V or higher on the lithium basis, and charged to 5 V or higher on the lithium basis. This is particularly noticeable.

本発明は前記事情に鑑みてなされたものであり、その目的は、高電圧で充電しても優れた充放電サイクル特性を発揮し得る非水二次電池、該非水二次電池を構成し得る正極、および前記非水二次電池を有する機器を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to constitute a non-aqueous secondary battery that can exhibit excellent charge / discharge cycle characteristics even when charged at a high voltage, and the non-aqueous secondary battery. It is providing the apparatus which has a positive electrode and the said non-aqueous secondary battery.

前記目的を達成し得た本発明の非水二次電池用正極は、集電体の片面または両面に、正極活物質である含リチウム複合酸化物と、多価の有機リチウム塩とを含有する正極合剤層を有することを特徴とするものである。   The positive electrode for a non-aqueous secondary battery of the present invention that has achieved the above object contains a lithium-containing composite oxide as a positive electrode active material and a polyvalent organic lithium salt on one side or both sides of a current collector. It has a positive electrode mixture layer.

また、本発明の非水二次電池は、正極、負極、セパレータおよび非水電解質を少なくとも有しており、前記正極が、本発明の非水二次電池用正極であることを特徴とするものである。   The nonaqueous secondary battery of the present invention has at least a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte, and the positive electrode is the positive electrode for a nonaqueous secondary battery of the present invention. It is.

更に、本発明の機器は、本発明の非水二次電池を有することを特徴とするものである。   Furthermore, the device of the present invention is characterized by having the non-aqueous secondary battery of the present invention.

本発明によれば、高電圧で充電しても優れた充放電サイクル特性を発揮し得る非水二次電池、該非水二次電池を構成し得る正極、および前記非水二次電池を有する機器を提供することができる。   According to the present invention, a non-aqueous secondary battery that can exhibit excellent charge / discharge cycle characteristics even when charged at a high voltage, a positive electrode that can constitute the non-aqueous secondary battery, and an apparatus having the non-aqueous secondary battery Can be provided.

本発明の非水二次電池用正極(以下、単に「正極」という場合がある。)は、集電体の片面または両面に、正極活物質である含リチウム複合酸化物と、多価の有機リチウム塩とを含有する正極合剤層を有している。   The positive electrode for a non-aqueous secondary battery of the present invention (hereinafter sometimes simply referred to as “positive electrode”) includes a lithium-containing composite oxide as a positive electrode active material and a polyvalent organic compound on one or both sides of a current collector. A positive electrode mixture layer containing a lithium salt is included.

多価の有機リチウム塩を正極合剤層に含有させた正極を用いて構成した非水二次電池では、高電圧(例えば、4.3V以上、好ましくは4.4V以上、より好ましくは4.5V以上、更に好ましくは5V以上)に充電しても、充放電サイクル特性の低下を抑制することができる。   In a non-aqueous secondary battery configured using a positive electrode containing a polyvalent organic lithium salt in a positive electrode mixture layer, a high voltage (eg, 4.3 V or higher, preferably 4.4 V or higher, more preferably 4. Even if it is charged to 5 V or higher, more preferably 5 V or higher, it is possible to suppress deterioration of the charge / discharge cycle characteristics.

前記の充放電サイクル特性の低下を抑制する効果は、多価の有機リチウム塩が、電池内において正極活物質と非水電解質との反応抑制に寄与しているために確保できると推測される。   It is presumed that the effect of suppressing the deterioration of the charge / discharge cycle characteristics can be ensured because the polyvalent organic lithium salt contributes to the suppression of the reaction between the positive electrode active material and the nonaqueous electrolyte in the battery.

多価の有機リチウム塩は、例えば1価の有機リチウム塩に比べて、正極活物質表面や正極合剤層表面(集電体側とは反対側の表面。特に断らない限り、以下同じ。)に対する被着性が高く、正極合剤層内において、正極活物質表面や正極合剤層表面を良好に被覆して、正極活物質と非水電解質との反応を抑制しているものと考えられる。   The polyvalent organic lithium salt is, for example, more than the monovalent organic lithium salt with respect to the surface of the positive electrode active material and the surface of the positive electrode mixture layer (the surface opposite to the current collector side; the same applies hereinafter unless otherwise specified). It is considered that the adherence is high, and the positive electrode active material surface and the positive electrode mixture layer surface are satisfactorily coated in the positive electrode mixture layer to suppress the reaction between the positive electrode active material and the nonaqueous electrolyte.

なお、正極活物質の表面における有機リチウム塩の被着量が多いと、正極活物質表面でのイオンの移動が妨げられて必要な電池反応が十分に進まず、電池特性が低下する懸念があるが、本発明の正極を用いた電池(本発明の非水二次電池)では、こうした電池特性の低下も抑制される。これは、正極合剤層に含有させる有機リチウム塩が多価であるために、正極活物質表面でのイオンの移動がスムーズであり、また、被着性が優れていることから、正極活物質表面や正極合剤層表面での被着量を少なくしても、これらを良好に被覆できており、これらの理由によって必要な電池反応が十分に進行し得るからであると推測される。   If the amount of the organic lithium salt deposited on the surface of the positive electrode active material is large, the movement of ions on the surface of the positive electrode active material is hindered and the required battery reaction does not proceed sufficiently, and there is a concern that the battery characteristics may deteriorate. However, in the battery using the positive electrode of the present invention (non-aqueous secondary battery of the present invention), such deterioration in battery characteristics is also suppressed. This is because the organic lithium salt contained in the positive electrode mixture layer is multivalent, so that the movement of ions on the surface of the positive electrode active material is smooth and the adherence is excellent. Even if the amount of deposition on the surface or the surface of the positive electrode mixture layer is reduced, it can be presumed that these can be coated satisfactorily and the necessary battery reaction can proceed sufficiently for these reasons.

本発明の正極においては、正極合剤層が多価の有機リチウム塩を含有していればよいが、特に高い効果が確保できる点で、正極活物質である含リチウム複合酸化物の表面を多価の有機リチウム塩で被覆したり、正極合剤層の表面を多価の有機リチウム塩で被覆したりすることが好ましく、含リチウム複合酸化物の表面を多価の有機リチウム塩で被覆するとともに、正極合剤層の表面を多価の有機リチウム塩で被覆することがより好ましい。   In the positive electrode of the present invention, the positive electrode mixture layer only needs to contain a polyvalent organic lithium salt. However, the surface of the lithium-containing composite oxide, which is a positive electrode active material, can be increased in that a particularly high effect can be secured. It is preferable to cover the surface of the positive electrode mixture layer with a polyvalent organic lithium salt, or to coat the surface of the lithium-containing composite oxide with a polyvalent organic lithium salt. It is more preferable to coat the surface of the positive electrode mixture layer with a polyvalent organic lithium salt.

本発明に係る有機リチウム塩は、多価であればよく、2価、3価、4価などの有機リチウム塩が挙げられる。   The organic lithium salt according to the present invention may be polyvalent, and examples thereof include divalent, trivalent, and tetravalent organic lithium salts.

多価の有機リチウム塩の具体例としては、例えば、一般式R−(R−(RY)−Rで表されるものが挙げられる。なお、前記一般式中、RおよびRは、例えば、水素原子やアルキル基(アルキル基の有する水素原子の一部または全部がフッ素原子で置換されていてもよい)で、RとRとは、同じであっても、それぞれ異なっていてもよい。また、RおよびRは、例えば、アルキレンなどの有機鎖(その水素原子の一部または全部がフッ素原子で置換されていてもよい)で、aは0以上の整数、bは2以上の整数である。更に、Yは、例えば、酸のリチウム塩基であり、具体的には、−SOLi、−COLi、−PFRf5−dLi[Rfは、フッ素置換したアルキル基(以下同じ)で、dは5以下の整数(以下同じ)]、−BFRf3−eLi(eは3以下の整数、以下同じ)、−R3−gPOLi[Rは有機残基(以下同じ)で、gは3以下の整数(以下同じ)]などが挙げられる。多価の有機リチウム塩の有するYは、前記例示のもののうちの1種のみであってもよく、2種以上であってもよい。 Specific examples of the polyvalent organic lithium salt include those represented by the general formula R 1- (R 2 ) a- (R 3 Y) b -R 4 . In the general formula, R 1 and R 4 are, for example, a hydrogen atom or an alkyl group (a part or all of the hydrogen atoms of the alkyl group may be substituted with fluorine atoms), and R 1 and R 4 4 may be the same or different from each other. R 2 and R 3 are, for example, an organic chain such as alkylene (a part or all of the hydrogen atoms may be substituted with fluorine atoms), a is an integer of 0 or more, and b is 2 or more. It is an integer. Furthermore, Y is, for example, a lithium base of an acid. Specifically, —SO 3 Li, —CO 2 Li, —PF d Rf 5-d Li [Rf is a fluorine-substituted alkyl group (the same applies hereinafter) D is an integer of 5 or less (hereinafter the same)], -BF e Rf 3-e Li (e is an integer of 3 or less, the same shall apply hereinafter), -R 3-g PO 4 Li g [R is an organic residue ( The same shall apply hereinafter, and g is an integer of 3 or less (hereinafter the same)]. Y which polyvalent organic lithium salt has may be only 1 type in the said illustration, and 2 or more types may be sufficient as it.

なお、前記一般式で表される多価の有機リチウム塩は、水酸基や酸基を含んでいてもよいが、これらの基は電池内において反応を起こす虞があるため、酸のリチウム塩基よりも少ないことが好ましく、酸のリチウム塩基の数の、1/10以下であることがより好ましい。   The polyvalent organic lithium salt represented by the above general formula may contain a hydroxyl group or an acid group, but these groups may cause a reaction in the battery. The amount is preferably small, and more preferably 1/10 or less of the number of lithium bases of the acid.

より具体的には、アルキレンの両末端に、−SOLi、−COLiまたは−R3−gPOLiを有する有機リチウム塩や、一般式R−(CHCH−(CHCHY−R[RおよびRは、水素原子やアルキル基(アルキル基の有する水素原子の一部または全部がフッ素原子で置換されていてもよい)で、RとR6とは、同じであっても、それぞれ異なっていてもよい。Yは、−SOLi、または−COLiである。nは0以上の整数であり、mは2以上の整数である。]で表される有機リチウム塩が挙げられる。 More specifically, at both ends of the alkylene, -SO 3 Li, organic lithium salt and having a -CO 2 Li or -R 3-g PO 4 Li g , formula R 5 - (CH 2 CH 2 ) n — (CH 2 CHY 1 ) m —R 6 [R 5 and R 6 are each a hydrogen atom or an alkyl group (a part or all of the hydrogen atoms of the alkyl group may be substituted with a fluorine atom); 5 and R 6 may be the same or different. Y 1 is —SO 3 Li or —CO 2 Li. n is an integer of 0 or more, and m is an integer of 2 or more. ] The organic lithium salt represented by this is mentioned.

また、多価の有機リチウム塩は、フッ素原子を含有していることがより好ましい。このような多価の有機リチウム塩としては、例えば、水素原子の一部または全部をフッ素原子で置換したアルキレンの両末端に、−SOLi、−COLi、−PFRf5−dLi、−BFRf3−eLi、−R3−gPOLiなどを有する有機リチウム塩が挙げられる。 Moreover, it is more preferable that the polyvalent organic lithium salt contains a fluorine atom. Examples of such a polyvalent organic lithium salt include —SO 3 Li, —CO 2 Li, and —PF d Rf 5-d at both ends of alkylene in which part or all of hydrogen atoms are substituted with fluorine atoms. Li, -BF e Rf 3-e Li, include organic lithium salts with such -R 3-g PO 4 Li g .

また、一般式R−(R−(C−R[RおよびRは、水素原子やアルキル基(アルキル基の有する水素原子の一部または全部がフッ素原子で置換されていてもよい)で、RとRとは、同じであっても、それぞれ異なっていてもよい。Yは、−SOLi、−COLi、−PFRf5−dLi、−BFRf3−eLi、−R3−gPOLi、−N(RfSO)Li、または−C(RfSOLiである。o、q、rsは0以上の整数で、pは2以上の整数である。]で表される有機リチウム塩も使用することができる。 Moreover, the general formula R 7 - (R 8) o - (C q F r H s Y 2) p -R 9 [R 7 and R 9 are part of a hydrogen atom or an alkyl group (the hydrogen atom of the alkyl group Or all of them may be substituted with fluorine atoms), and R 7 and R 9 may be the same or different. Y 2 is, -SO 3 Li, -CO 2 Li , -PF d Rf 5-d Li, -BF e Rf 3-e Li, -R 3-g PO 4 Li g, -N (RfSO 2) Li, or -C (RfSO 2) is 2 Li. o, q, and rs are integers of 0 or more, and p is an integer of 2 or more. An organic lithium salt represented by the following formula can also be used.

多価の有機リチウム塩のより好ましいものとしては、LiSO−Rf’−SOLi、LiCO−Rf’−COLi、LiPF−Rf’−PFLi、LiBF−Rf’−BFLi(前記の各有機リチウム塩において、Rf’は、水素原子の一部または全部が水素置換されたアルキレンなどの有機鎖である。)などが挙げられる。 More preferred are polyvalent organic lithium salts, LiSO 3 -Rf'-SO 3 Li , LiCO 2 -Rf'-CO 2 Li, LiPF 5 -Rf'-PF 5 Li, LiBF 3 -Rf'-BF 3 Li (in each of the above organic lithium salts, Rf ′ is an organic chain such as alkylene in which some or all of the hydrogen atoms are hydrogen-substituted).

正極合剤層に含有させる多価の有機リチウム塩の量は、多価の有機リチウム塩を使用することによる前記の効果をより良好に確保する観点から、正極活物質100質量部に対して、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることが更に好ましい。ただし、正極合剤層中における多価の有機リチウム塩の量が多すぎると、正極活物質の量が減って容量低下を引き起こす虞がある。よって、正極合剤層に含有させる多価の有機リチウム塩の量は、正極活物質100質量部に対して、5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。   The amount of the polyvalent organic lithium salt to be contained in the positive electrode mixture layer is based on 100 parts by mass of the positive electrode active material from the viewpoint of better securing the above-described effect by using the polyvalent organic lithium salt. The content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more. However, if the amount of the polyvalent organic lithium salt in the positive electrode mixture layer is too large, the amount of the positive electrode active material may be reduced, causing a decrease in capacity. Therefore, the amount of the polyvalent organic lithium salt to be contained in the positive electrode mixture layer is preferably 5% by mass or less, more preferably 2% by mass or less, with respect to 100 parts by mass of the positive electrode active material. More preferably, it is 1 mass% or less.

本発明の正極に使用する正極活物質としては、例えば、リチウム基準で4.3V以下の電圧で使用されるLiCoO;、リチウム基準で4.4V以上の電圧で使用し得る含リチウム複合酸化物(例えば、LiCoOのCoの一部を、Ti、Zr、Mg、Alなどの他の金属元素で置換したもの);リチウム基準で5V以上の電圧でも使用し得る含リチウム複合酸化物、例えば、マンガンサイトを他の金属元素で置換したリチウムマンガン酸化物[例えば、一般式LiNiMn2−x−y(ただし、Mは、Ni、MnおよびLi以外の少なくとも1種の金属元素で、0.4≦x≦0.6、0≦y≦0.1である)で表される複合酸化物];などの含リチウム複合酸化物が挙げられる。前記一般式における金属元素Mは、例えば、Cr、Fe、Co、Cu、Zn、Ti、Al、Mg、Ca、Baなどが好ましく、これらの中でも、Fe、Coを用いたものが、より良好な特性が得られることからより好ましい。本発明の正極には、これらの含リチウム複合酸化物のうちの1種のみを使用してもよく、2種以上を併用してもよい。これらの正極活物質の中でも、より高い電圧でも構造が安定で、より高い電圧まで充電できる含リチウム複合酸化物の方が、電池の高容量化を図り得る点で好ましい。 Examples of the positive electrode active material used for the positive electrode of the present invention include LiCoO 2 used at a voltage of 4.3 V or less on the basis of lithium; and a lithium-containing composite oxide that can be used at a voltage of 4.4 V or more on the basis of lithium (For example, a part of Co in LiCoO 2 is replaced with another metal element such as Ti, Zr, Mg, Al); lithium-containing composite oxide that can be used even at a voltage of 5 V or more based on lithium, for example, lithium manganese oxides obtained by substituting manganese sites other metal elements [for example, the general formula LiNi x M y Mn 2-x -y O 4 ( provided that, M is, Ni, at least one metal element other than Mn and Li And a lithium-containing composite oxide such as 0.4 ≦ x ≦ 0.6 and 0 ≦ y ≦ 0.1. The metal element M in the general formula is preferably, for example, Cr, Fe, Co, Cu, Zn, Ti, Al, Mg, Ca, Ba, etc. Among these, those using Fe and Co are better. It is more preferable because the characteristics can be obtained. Only one of these lithium-containing composite oxides may be used in the positive electrode of the present invention, or two or more thereof may be used in combination. Among these positive electrode active materials, a lithium-containing composite oxide that is stable in structure even at a higher voltage and can be charged up to a higher voltage is preferable in that the capacity of the battery can be increased.

電池内における正極活物質と非水電解質の反応による充放電サイクル特性の低下は、充電電圧が高くなるほど顕著に発現するが、本発明の正極では、多価の有機リチウム塩による前記の作用によって、喩え充電電圧が5V以上の場合であっても、充放電サイクル特性の低下を良好に抑制できる。よって、本発明においては、より高い電圧で使用できる含リチウム複合酸化物を使用した場合に、その効果が顕著に発現する。   The decrease in charge / discharge cycle characteristics due to the reaction between the positive electrode active material and the non-aqueous electrolyte in the battery is more pronounced as the charging voltage is higher, but in the positive electrode of the present invention, due to the above action by the polyvalent organic lithium salt, Even if the charge voltage is 5 V or more, the deterioration of the charge / discharge cycle characteristics can be satisfactorily suppressed. Therefore, in the present invention, when a lithium-containing composite oxide that can be used at a higher voltage is used, the effect is remarkably exhibited.

本発明の正極の有する正極合剤層には、通常、導電助剤を含有させる。正極の導電助剤には、通常の非水二次電池と同様に、黒鉛;カーボンブラック(アセチレンブラック、ケッチェンブラックなど)や、表面に非晶質炭素を生成させた炭素材料などの非晶質炭素材料;繊維状炭素(気相成長炭素繊維、ピッチを紡糸した後に炭化処理して得られる炭素繊維など);カーボンナノチューブ(各種の多層または単層のカーボンナノチューブ)などを用いることができる。正極の導電助剤には、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。   The positive electrode mixture layer of the positive electrode of the present invention usually contains a conductive additive. As a normal non-aqueous secondary battery, the conductive additive for the positive electrode is non-crystalline such as graphite; carbon black (acetylene black, ketjen black, etc.) or a carbon material with amorphous carbon formed on the surface. Carbonaceous materials (fibre-grown carbon fibers, carbon fibers obtained by carbonizing after spinning a pitch), carbon nanotubes (various multi-layer or single-wall carbon nanotubes), and the like can be used. As the conductive additive for the positive electrode, those exemplified above may be used alone or in combination of two or more.

前記例示の導電助剤の中でも、非晶質炭素材料と、繊維状炭素またはカーボンナノチューブとを併用することが好ましい。このような導電助剤を用いた正極であれば、充放電サイクル特性および負荷特性をより高めた非水二次電池を構成することができる。   Among the conductive aids exemplified above, it is preferable to use an amorphous carbon material in combination with fibrous carbon or carbon nanotubes. If it is a positive electrode using such a conductive support agent, the non-aqueous secondary battery which improved the charge / discharge cycle characteristic and load characteristic more can be comprised.

例えば、正極の導電助剤に黒鉛を用いて構成した電池を、4.5V以上に充電した場合には、非水電解質のアニオンの、黒鉛の層間への挿入反応、例えば、下記式に示されるようなPF錯イオンの黒鉛層間への挿入反応が生じる。
24 + PF → C24(PF) + e
For example, when a battery constituted by using graphite as a conductive additive for the positive electrode is charged to 4.5 V or higher, an insertion reaction of a nonaqueous electrolyte anion between graphite layers, for example, is represented by the following formula: An insertion reaction of such PF 6 complex ions between the graphite layers occurs.
C 24 + PF 6 → C 24 (PF 6 ) + e

前記の反応が生じると、黒鉛の層間距離が拡げられ、黒鉛の粒子が膨張して正極活物質との間に隙間が生じ、導電助剤としての機能が失われて、正極の充放電サイクル特性が低下する虞がある。しかしながら、導電助剤として、非晶質炭素材料を併用した場合には、例えばPF錯イオンが挿入されても、結晶のサイズ変化が起こり難いため、正極合剤層中の導電性を良好に保つことができる。 When the above reaction occurs, the interlayer distance of the graphite is expanded, the graphite particles expand and a gap is formed between the positive electrode active material, the function as a conductive additive is lost, and the charge / discharge cycle characteristics of the positive electrode May decrease. However, when an amorphous carbon material is used in combination as a conductive aid, for example, even if PF 6 complex ions are inserted, the crystal size hardly changes, so that the conductivity in the positive electrode mixture layer is improved. Can keep.

ただし、非晶質炭素材料は、一般に、比表面積が大きく嵩高いため、これを使用した正極合剤層では、その密度を高め難く、電池の高容量化の妨げとなる虞がある。しかし、繊維状炭素またはカーボンナノチューブを非晶質炭素材料とともに使用することで、正極合剤層での導電助剤の充填性を高めることが可能であり、非晶質炭素材料による前記効果を確保しつつ、電池をより高容量とすることができる。   However, since the amorphous carbon material generally has a large specific surface area and is bulky, it is difficult to increase the density of the positive electrode mixture layer using the amorphous carbon material, which may hinder the increase in battery capacity. However, by using fibrous carbon or carbon nanotubes together with an amorphous carbon material, it is possible to improve the filling property of the conductive auxiliary agent in the positive electrode mixture layer, and the above-mentioned effect by the amorphous carbon material is ensured. However, the capacity of the battery can be increased.

なお、非晶質炭素材料は、その平均粒径が、1μm以下であることが好ましく、100nm以下であることがより好ましい。このような平均粒径の非晶質炭素材料であれば、正極合剤層を形成する際に、非晶質炭素材料の粒子が正極活物質粒子の間隙に入り込みやすく、充填性が高くなるからである。この非晶質炭素材料は、その平均粒径が小さいほど液状の非水電解質(非水電解液)の保持能力が高く、正極の特性を高め得るが、あまり小さなものは製造が困難であるため、平均粒径が1nm程度のものまでが実用的である。   The amorphous carbon material preferably has an average particle size of 1 μm or less, and more preferably 100 nm or less. With such an amorphous carbon material having an average particle diameter, when the positive electrode mixture layer is formed, the amorphous carbon material particles easily enter the gaps between the positive electrode active material particles, and the filling property is improved. It is. This amorphous carbon material has a higher ability to hold a liquid non-aqueous electrolyte (non-aqueous electrolyte) as its average particle size is smaller, and can improve the characteristics of the positive electrode. It is practical that the average particle size is about 1 nm.

また、繊維状炭素やカーボンナノチューブは、正極合剤層における充填性を向上させて充填率を高めやすくする観点から、その平均粒径が、10μm以下であることが好ましく、1μm以下であることがより好ましく、100nm以下であることが更に好ましい。また、繊維状炭素やカーボンナノチューブは、その平均粒径が、10nm以上であることが好ましい。   In addition, the fibrous carbon and carbon nanotubes have an average particle size of preferably 10 μm or less, preferably 1 μm or less, from the viewpoint of improving the filling property in the positive electrode mixture layer and facilitating an increase in the filling rate. More preferably, it is 100 nm or less. Moreover, it is preferable that the average particle diameter of fibrous carbon and a carbon nanotube is 10 nm or more.

なお、本明細書でいう非晶質炭素材料や繊維状炭素、カーボンナノチューブ、後述する含リチウム複合酸化物の平均粒径は、レーザー回折・散乱式粒度分布計により測定される体積基準の積算分率50%における粒子直径の値であるD50である。   The average particle size of the amorphous carbon material, fibrous carbon, carbon nanotube, and lithium-containing composite oxide described later in this specification is the volume-based integrated value measured by a laser diffraction / scattering particle size distribution meter. D50 is the value of the particle diameter at a rate of 50%.

なお、非晶質炭素材料と繊維状炭素材料またはカーボンナノチューブとを併用する場合、正極に用いる全導電助剤中における非晶質炭素材料の量を、15質量%以上とすることが好ましく、30質量%以上とすることがより好ましく、50質量%以上とすることがより好ましい。このような量で非晶質炭素材料を使用することにより、例えばPF錯イオンの炭素材料への挿入反応が生じても、格子サイズの変化を抑制して良好な導電性を保つことができる。ただし、非晶質炭素材料の量が多くなりすぎると正極合剤層の密度が低下する虞があるため、正極に用いる全導電助剤中における非晶質炭素材料の量を、85質量%以下とすることが好ましい。 When the amorphous carbon material and the fibrous carbon material or the carbon nanotube are used in combination, the amount of the amorphous carbon material in all the conductive aids used for the positive electrode is preferably 15% by mass or more, 30 It is more preferable to set it as mass% or more, and it is more preferable to set it as 50 mass% or more. By using an amorphous carbon material in such an amount, even if an insertion reaction of PF 6 complex ions into the carbon material occurs, for example, it is possible to suppress a change in lattice size and maintain good conductivity. . However, since the density of the positive electrode mixture layer may decrease if the amount of the amorphous carbon material is excessively large, the amount of the amorphous carbon material in the total conductive additive used for the positive electrode is 85% by mass or less. It is preferable that

なお、正極容量を高めるために正極合剤層の密度を大きくするには、正極活物質である含リチウム複合酸化物の平均粒径が0.05〜30μmであることが好ましく、導電助剤の平均粒径が、含リチウム複合酸化物の平均粒径以下であることが好ましい[すなわち、含リチウム複合酸化物の平均粒径をRm(nm)、導電助剤のRg(nm)としたとき、Rg≦Rmであることが好ましい]。   In order to increase the density of the positive electrode mixture layer in order to increase the positive electrode capacity, the average particle size of the lithium-containing composite oxide that is the positive electrode active material is preferably 0.05 to 30 μm. The average particle size is preferably equal to or less than the average particle size of the lithium-containing composite oxide [that is, when the average particle size of the lithium-containing composite oxide is Rm (nm), and Rg (nm) of the conductive auxiliary agent, Rg ≦ Rm is preferable].

本発明の正極は、例えば、正極活物質である含リチウム複合酸化物と導電助剤と高分子バインダーなどとを混合して正極合剤とし、これを溶剤に分散させて正極合剤含有ペーストを調製し(この場合、高分子バインダーはあらかじめ溶剤に溶解または分散させておいてもよい)、この正極合剤含有ペーストを金属箔などからなる集電体の表面に塗布し、乾燥して正極合剤層を形成し、必要に応じて加圧する工程を経て製造することが好ましい。また、導電助剤に、前記の非晶質炭素材料と繊維状炭素またはカーボンナノチューブとを併用する場合には、正極合剤の混合に先立って、非晶質炭素材料と繊維状炭素またはカーボンナノチューブとを混合しておくことが好ましく、これにより非晶質炭素材量と繊維状炭素またはカーボンナノチューブとを併用することによる前記の効果がより良好に確保できる。なお、本発明の正極の製造方法は前記例示の方法に限定されず、他の方法で製造してもよい。   The positive electrode of the present invention is prepared, for example, by mixing a lithium-containing composite oxide that is a positive electrode active material, a conductive additive, a polymer binder, and the like into a positive electrode mixture, which is dispersed in a solvent to obtain a positive electrode mixture-containing paste. (In this case, the polymer binder may be dissolved or dispersed in a solvent in advance), and this positive electrode mixture-containing paste is applied to the surface of a current collector made of a metal foil or the like and dried to obtain a positive electrode composite. It is preferable to manufacture through a process of forming an agent layer and applying pressure as necessary. Further, when the amorphous carbon material and fibrous carbon or carbon nanotube are used in combination as the conductive assistant, the amorphous carbon material and fibrous carbon or carbon nanotube are mixed prior to mixing the positive electrode mixture. Is preferably mixed, and thereby, the above-described effect can be ensured better by using the amount of amorphous carbon material and fibrous carbon or carbon nanotubes in combination. In addition, the manufacturing method of the positive electrode of this invention is not limited to the method of the said illustration, You may manufacture with another method.

正極に使用する高分子バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリアクリル酸、スチレンブタジエンゴムなどが挙げられる。   Examples of the polymer binder used for the positive electrode include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyacrylic acid, and styrene butadiene rubber.

なお、多価の有機リチウム塩を、例えば、正極活物質である含リチウム複合酸化物の表面被覆に用いる場合には、正極合剤の混合に先立って、多価の有機リチウム塩を水などの溶媒に溶解させた溶液を調製し、含リチウム複合酸化物を前記溶液に浸漬し、取り出して乾燥しておくことが好ましい。また、多価の有機リチウム塩で正極合剤層表面(集電体側の反対側の表面)を被覆する場合には、正極合剤層の形成後に、その表面に、多価の有機リチウム塩を水などに溶解させて溶液を塗布し、乾燥するなどすればよい。   In addition, when the polyvalent organic lithium salt is used for, for example, the surface coating of the lithium-containing composite oxide that is the positive electrode active material, the polyvalent organic lithium salt is added to water or the like prior to mixing of the positive electrode mixture. It is preferable to prepare a solution dissolved in a solvent, immerse the lithium-containing composite oxide in the solution, take it out and dry it. In addition, when the surface of the positive electrode mixture layer (the surface on the side opposite to the current collector side) is coated with a polyvalent organic lithium salt, the polyvalent organic lithium salt is coated on the surface after the formation of the positive electrode mixture layer. What is necessary is just to melt | dissolve in water etc., apply | coat a solution, and dry.

更に、含リチウム複合酸化物の表面や正極合剤層の表面を、多価の有機リチウム塩に加えて、その他の有機化合物やAl、AlPO、ZrO、AlOOHなどの無機化合物も用いて被覆してもよい。 Furthermore, in addition to the polyvalent organic lithium salt, the surface of the lithium-containing composite oxide and the surface of the positive electrode mixture layer are also added to other organic compounds and inorganic compounds such as Al 2 O 3 , AlPO 4 , ZrO 2 and AlOOH. May be used.

本発明の正極に係る正極合剤層においては、例えば、正極活物質である含リチウム複合酸化物が70〜99質量%であり、高分子バインダーが1〜30質量%であることが好ましい。また、導電助剤を使用する場合には、正極合剤層における導電助剤の量は、1〜20質量%であることが好ましい。更に、正極合剤層の厚みは、集電体の片面あたり、1〜100μmであることが好ましい。   In the positive electrode mixture layer according to the positive electrode of the present invention, for example, the lithium-containing composite oxide as the positive electrode active material is preferably 70 to 99% by mass, and the polymer binder is preferably 1 to 30% by mass. Moreover, when using a conductive support agent, it is preferable that the quantity of the conductive support agent in a positive mix layer is 1-20 mass%. Furthermore, the thickness of the positive electrode mixture layer is preferably 1 to 100 μm per one side of the current collector.

正極の集電体には、例えば、アルミニウム、ステンレス鋼、ニッケル、チタンまたはそれらの合金からなる箔、パンチドメタル、エキスパンドメタル、網などを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   For the positive electrode current collector, for example, a foil made of aluminum, stainless steel, nickel, titanium, or an alloy thereof, a punched metal, an expanded metal, a net, or the like can be used. Usually, an aluminum foil having a thickness of 10 to 30 μm is used. Are preferably used.

本発明の非水二次電池は、本発明の正極を有していればよく、その他の構成および構造については、従来から知られている非水二次電池で採用されている構成および構造を適用することができる。   The non-aqueous secondary battery of the present invention only needs to have the positive electrode of the present invention, and other configurations and structures are the same as those employed in conventionally known non-aqueous secondary batteries. Can be applied.

負極には、負極活物質や高分子バインダーなどを含有する負極合剤層を、集電体の片面または両面に形成した構成のものを使用することができる。   As the negative electrode, one having a configuration in which a negative electrode mixture layer containing a negative electrode active material, a polymer binder, or the like is formed on one side or both sides of a current collector can be used.

負極活物質としては、リチウムイオンをドープ・脱ドープできるものであればよく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素質材料が挙げられる。また、リチウムまたはリチウム含有化合物なども負極活物質として使用することができる。前記のリチウム含有化合物としては、例えば、錫酸化物、ケイ素酸化物、ニッケル−ケイ素系合金、マグネシウム−ケイ素系合金、タングステン酸化物、リチウム鉄複合酸化物などの他、リチウム−アルミニウム、リチウム−鉛、リチウム−インジウム、リチウム−ガリウム、リチウム−インジウム−ガリウムなどのリチウム合金が挙げられる。これら例示の負極活物質の中には、製造時にはリチウムを含んでいないものもあるが、充電時にはリチウムを含んだ状態になる。   The negative electrode active material may be any material that can be doped / undoped with lithium ions. For example, graphite, pyrolytic carbons, cokes, glassy carbon, fired organic polymer compound, mesocarbon microbeads, carbon Examples thereof include carbonaceous materials such as fibers and activated carbon. Moreover, lithium or a lithium-containing compound can also be used as the negative electrode active material. Examples of the lithium-containing compound include tin oxide, silicon oxide, nickel-silicon alloy, magnesium-silicon alloy, tungsten oxide, lithium iron composite oxide, lithium-aluminum, and lithium-lead. Lithium alloys such as lithium-indium, lithium-gallium, and lithium-indium-gallium. Some of these exemplary negative electrode active materials do not contain lithium at the time of manufacture, but are in a state containing lithium at the time of charging.

負極は、例えば、前記負極活物質と、必要に応じて添加される導電助剤(正極の場合と同様のもの)や前記正極の場合と同様の高分子バインダーとを混合して負極合剤とし、これを溶剤に分散させて負極合剤含有ペーストを調製し(高分子バインダーはあらかじめ溶剤に溶解または分散させておいてから用いてもよい)、この負極合剤含有ペーストを集電体の表面に塗布し、乾燥して負極合剤層を形成し、必要に応じて加圧成形する工程を経ることによって作製される。なお、負極の製造方法は前記例示の方法に限定されず、他の方法で製造してもよい。   The negative electrode is prepared, for example, by mixing the negative electrode active material with a conductive additive (same as in the case of the positive electrode) that is added as necessary, or a polymer binder similar to that of the positive electrode. The negative electrode mixture-containing paste is prepared by dispersing it in a solvent (the polymer binder may be used after being dissolved or dispersed in a solvent in advance), and the negative electrode mixture-containing paste is applied to the surface of the current collector. The negative electrode mixture layer is formed by coating, drying, and then subjected to pressure molding as necessary. In addition, the manufacturing method of a negative electrode is not limited to the said illustrated method, You may manufacture by another method.

負極の負極合剤層においては、例えば、負極活物質が70〜99質量%であり、高分子バインダーが1〜30質量%であることが好ましい。また、導電助剤を使用する場合には、負極合剤層における導電助剤の量は、1〜20質量%であることが好ましい。更に、負極合剤層の厚みは、集電体の片面あたり、1〜100μmであることが好ましい。   In the negative electrode mixture layer of the negative electrode, for example, the negative electrode active material is preferably 70 to 99% by mass, and the polymer binder is preferably 1 to 30% by mass. Moreover, when using a conductive support agent, it is preferable that the quantity of the conductive support agent in a negative mix layer is 1-20 mass%. Furthermore, the thickness of the negative electrode mixture layer is preferably 1 to 100 μm per one side of the current collector.

負極の集電体には、例えば、銅、ステンレス鋼、ニッケル、チタンまたはそれらの合金などからなる箔、パンチドメタル、エキスパンドメタル、網などを用い得るが、通常、厚みが5〜30μmの銅箔が好適に用いられる。   The negative electrode current collector may be, for example, a foil, punched metal, expanded metal, net, or the like made of copper, stainless steel, nickel, titanium, or an alloy thereof. Usually, copper having a thickness of 5 to 30 μm is used. A foil is preferably used.

本発明の正極と前記の負極とは、例えば、セパレータを介在させつつ積層した積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形で用いられる。   The positive electrode of the present invention and the negative electrode are used, for example, in the form of a laminated electrode body laminated with a separator interposed therebetween, or a wound electrode body obtained by winding the separator in a spiral shape.

セパレータとしては、強度が十分で且つ電解液を多く保持できるものがよく、そのような観点から、厚さが10〜50μmで開口率が30〜70%の、ポリエチレン、ポリプロピレン、またはエチレン−プロピレン共重合体を含む微多孔フィルムや不織布などが好ましい。   As the separator, it is preferable that the separator has sufficient strength and can hold a large amount of the electrolytic solution. From such a viewpoint, a polyethylene, polypropylene, or ethylene-propylene copolymer having a thickness of 10 to 50 μm and an aperture ratio of 30 to 70% is used. A microporous film or a nonwoven fabric containing a polymer is preferable.

本発明の非水二次電池において用いる非水電解質には、通常、非水系の液状電解質(以下、これを「電解液」という)が用いられる。そして、その電解液としては有機溶媒にリチウム塩などの電解質塩を溶解させたものが用いられる。その有機溶媒としては、特に限定されることはないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネートなどの鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの誘電率の高い環状エステル;鎖状エステルと環状エステルとの混合溶媒;などが挙げられ、特に鎖状エステルを主溶媒とした環状エステルとの混合溶媒が適している。   As the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention, a non-aqueous liquid electrolyte (hereinafter referred to as “electrolytic solution”) is usually used. As the electrolytic solution, a solution obtained by dissolving an electrolyte salt such as a lithium salt in an organic solvent is used. The organic solvent is not particularly limited. For example, chain esters such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate; dielectrics such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate. A cyclic ester having a high rate; a mixed solvent of a chain ester and a cyclic ester; and the like. Particularly, a mixed solvent with a cyclic ester having a chain ester as a main solvent is suitable.

電解液の調製にあたって上記有機溶媒に溶解させる電解質塩としては、例えば、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiC2n+1SO(n≧2)、LiN(RfSO)(Rf’SO)、LiC(RfSO、LiN(RfOSO〔ここでRf、Rf’はフルオロアルキル基〕などが単独でまたは2種以上混合して用いられる。電解液中における電解質塩の濃度は、特に限定されることはないが、0.3mol/l以上であることが好ましく、0.4mol/l以上であることがより好ましく、また、1.7mol/l以下であることが好ましく、1.5mol/l以下であることがより好ましい。 As the electrolyte salt to be dissolved in the organic solvent when preparing the electrolytic solution, for example, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfSO 2 ) (Rf′SO 2 ), LiC (RfSO 2 ) 3 , LiN (RfOSO 2 ) 2 [where Rf , Rf ′ is a fluoroalkyl group] or the like may be used alone or in combination. The concentration of the electrolyte salt in the electrolytic solution is not particularly limited, but is preferably 0.3 mol / l or more, more preferably 0.4 mol / l or more, and 1.7 mol / l. It is preferably 1 or less, and more preferably 1.5 mol / l or less.

本発明の電池において、非水電解質としては、前記電解液以外にも、前記電解液をポリマーなどからなるゲル化剤でゲル化したゲル状の電解質や、固体状の電解質も用いることができる。そのような固体状電解質としては、無機系電解質のほか、有機系電解質なども用いることができる。   In the battery of the present invention, as the non-aqueous electrolyte, in addition to the electrolyte solution, a gel electrolyte obtained by gelling the electrolyte solution with a gelling agent made of a polymer or a solid electrolyte can be used. As such a solid electrolyte, in addition to an inorganic electrolyte, an organic electrolyte can also be used.

また、本発明の電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。   Moreover, as a form of the battery of this invention, the cylinder shape (square cylinder shape, cylindrical shape, etc.) etc. which used a steel can, an aluminum can, etc. as an exterior can are mentioned. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.

本発明の非水二次電池は、高電圧充電を行っても充放電サイクル特性の低下を抑え得ることから、高容量で、かつ充放電サイクル特性が良好である。本発明の電池は、このような特性を生かして、電子機器(特に携帯電話やノート型パソコンなどのポータブル電子機器)、電源システム、乗り物(電気自動車、電動自転車など)などの各種機器の電源用途などに、好ましく用いることができる。   Since the non-aqueous secondary battery of the present invention can suppress a decrease in charge / discharge cycle characteristics even when high voltage charging is performed, it has a high capacity and good charge / discharge cycle characteristics. The battery of the present invention makes use of such characteristics, and uses it as a power source for various devices such as electronic devices (especially portable electronic devices such as mobile phones and laptop computers), power supply systems, vehicles (electric cars, electric bicycles, etc.). For example, it can be preferably used.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。なお、本実施例で使用した含リチウム複合酸化物(LiNi0.5Mn1.5)、非晶質炭素材料およびカーボンナノチューブの平均粒径は、Honeywell社製のレーザー式回折・散乱式粒度分布計「MICROTRAC HRA 9320−X100」によって測定したD50である。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention. The average particle size of the lithium-containing composite oxide (LiNi 0.5 Mn 1.5 O 4 ), amorphous carbon material, and carbon nanotube used in this example is a laser diffraction / scattering type manufactured by Honeywell. It is D50 measured by the particle size distribution analyzer “MICROTRAC HRA 9320-X100”.

実施例1
<正極の作製>
LiNi0.5Mn1.5(平均粒径5μm)を、多価の有機リチウム塩であるLiSOCFCFCFSOLiを溶解させた水溶液に浸漬し、乾燥させて、LiNi0.5Mn1.5の表面をLiSOCFCFCFSOLiで被覆した(以下、これを「表面被覆LiNi0.5Mn1.5」という)。なお、前記表面被覆LiNi0.5Mn1.5において、LiSOCFCFCFSOLiの被覆量は、LiNi0.5Mn1.5:100質量部に対して0.2質量部であった。なお、前記のLiNi0.5Mn1.5は、前記一般式LiNiMn2−x−yで表したとき、x=0.5、y=0の含リチウム複合酸化物に該当するものである。
Example 1
<Preparation of positive electrode>
LiNi 0.5 Mn 1.5 O 4 (average particle diameter 5 μm) was immersed in an aqueous solution in which LiSO 3 CF 2 CF 2 CF 2 SO 3 Li, which is a polyvalent organic lithium salt, was dissolved, dried, The surface of LiNi 0.5 Mn 1.5 O 4 was coated with LiSO 3 CF 2 CF 2 CF 2 SO 3 Li (hereinafter referred to as “surface-coated LiNi 0.5 Mn 1.5 O 4 ”). In the above surface coating LiNi 0.5 Mn 1.5 O 4, the coverage of LiSO 3 CF 2 CF 2 CF 2 SO 3 Li is, LiNi 0.5 Mn 1.5 O 4: relative to 100 parts by weight The amount was 0.2 parts by mass. The LiNi 0.5 Mn 1.5 O 4 is a lithium-containing composite oxide having x = 0.5 and y = 0 when expressed by the general formula LiNi x M y Mn 2- xyO 4. It corresponds to a thing.

次に、非晶質炭素材料(層間距離0.363nm、比表面積50m/g、平均粒径50nm):2質量部と、平均粒径が10μm以下のカーボンナノチューブ(層間距離0.343nm、比表面積270m/g):1質量部とを混合して炭素材料混合物(導電助剤)を得た。 Next, an amorphous carbon material (interlayer distance 0.363 nm, specific surface area 50 m 2 / g, average particle diameter 50 nm): 2 parts by mass, carbon nanotubes having an average particle diameter of 10 μm or less (interlayer distance 0.343 nm, ratio Surface area 270 m 2 / g): 1 part by mass was mixed to obtain a carbon material mixture (conducting aid).

前記表面被覆LiNi0.5Mn1.5:93質量部と、前記炭素材料混合物:3質量部と、PVDF:4質量部とを混合して正極合剤とし、これをN−メチル−2−ピロリドン(NMP)に分散させて、正極合剤含有ペーストを調製した。この正極合剤含有ペーストを、厚みが15μmのアルミニウム箔からなる集電体の片面に塗布し、乾燥して正極合剤層を形成し、プレスした後120℃で乾燥して正極を得た。この正極を裁断し、アルミニウム箔の露出部にリードを溶接した。得られた正極は、正極合剤層の厚みが55μmであった。 The surface-coated LiNi 0.5 Mn 1.5 O 4 : 93 parts by mass, the carbon material mixture: 3 parts by mass, and PVDF: 4 parts by mass are mixed into a positive electrode mixture, and this is mixed with N-methyl- A paste containing a positive electrode mixture was prepared by dispersing in 2-pyrrolidone (NMP). This positive electrode mixture-containing paste was applied to one side of a current collector made of an aluminum foil having a thickness of 15 μm, dried to form a positive electrode mixture layer, pressed, and dried at 120 ° C. to obtain a positive electrode. The positive electrode was cut and a lead was welded to the exposed portion of the aluminum foil. In the positive electrode obtained, the thickness of the positive electrode mixture layer was 55 μm.

<負極の作製>
負極活物質である黒鉛:92質量部と、PVDF:8質量部とを混合して負極合剤とし、これをNMPに分散させて負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、厚みが10μmの銅箔からなる集電体の両面に塗布し、乾燥して負極合剤層を形成し、プレスして負極を得た。この負極を裁断し、銅箔の露出部にリードを溶接した後、120℃で15時間真空乾燥した。得られた負極は、負極合剤層の厚みが、集電体の片面あたり60μmであった。
<Production of negative electrode>
A negative electrode active material containing graphite: 92 parts by mass and PVDF: 8 parts by mass were mixed to prepare a negative electrode mixture, which was dispersed in NMP to prepare a negative electrode mixture-containing paste. This negative electrode mixture-containing paste was applied to both sides of a current collector made of a copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer, and pressed to obtain a negative electrode. The negative electrode was cut and a lead was welded to the exposed portion of the copper foil, followed by vacuum drying at 120 ° C. for 15 hours. In the obtained negative electrode, the thickness of the negative electrode mixture layer was 60 μm per one surface of the current collector.

<電池の組み立て>
前記の正極2枚と前記の負極1枚とを、両正極が外側になるように、かつ微孔性ポリエチレンフィルム(厚み16μm)を介して正極合剤層と負極合剤層とが対向するように重ね、テープで固定して積層電極体とした。この積層電極体と、電位測定のための参照極としてのLi箔とを、ラミネートフィルム外装体内に装填し、一部を残して外装体の外周を溶着封止した。次に、外装体の外周のうち、封止していない箇所から、非水電解質(エチレンカーボネートとジエチルカーボネートとの体積比2:5の混合溶媒に、LiPFを1.2mol/lの濃度で溶解させ、1質量%のプロパンスルトンと1質量%のビニレンカーボネートとを添加したもの)を注入し、その後外装体を完全に溶着封止し、非水二次電池を得た。
<Battery assembly>
The positive electrode mixture layer and the negative electrode mixture layer are opposed to each other with the two positive electrodes and the negative electrode facing each other, with both positive electrodes facing outside, and a microporous polyethylene film (thickness: 16 μm). And laminated with a tape to obtain a laminated electrode body. This laminated electrode body and Li foil as a reference electrode for measuring the potential were loaded into the laminate film exterior body, and the outer periphery of the exterior body was welded and sealed, leaving a part. Next, from a portion of the outer periphery of the exterior body that is not sealed, LiPF 6 is added at a concentration of 1.2 mol / l to a nonaqueous electrolyte (a mixed solvent having a volume ratio of ethylene carbonate to diethyl carbonate of 2: 5). 1% by mass of propane sultone and 1% by mass of vinylene carbonate) were injected, and then the outer package was completely welded and sealed to obtain a non-aqueous secondary battery.

実施例2
導電助剤を、前記炭素材料混合物に代えて、非晶質炭素材料(実施例1で用いたものと同じもの):3質量部とした以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 2
A positive electrode was produced in the same manner as in Example 1 except that the conductive auxiliary was changed to 3 parts by mass of an amorphous carbon material (the same as that used in Example 1) instead of the carbon material mixture. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.

実施例3
導電助剤を、前記炭素材料混合物に代えて、非晶質炭素材料(実施例1で用いたものと同じもの):2質量部および黒鉛:1質量部とした以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 3
The conductive auxiliary agent was the same as in Example 1 except that the carbon material mixture was replaced with an amorphous carbon material (same as that used in Example 1): 2 parts by mass and graphite: 1 part by mass. A non-aqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.

実施例4
LiNi0.5Mn1.5の表面を被覆する多価の有機リチウム塩を、LiCOCHCHCHCOLiに変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 4
A positive electrode was produced in the same manner as in Example 1 except that the polyvalent organic lithium salt covering the surface of LiNi 0.5 Mn 1.5 O 4 was changed to LiCO 2 CH 2 CH 2 CH 2 CO 2 Li. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.

実施例5
LiSOCFCFCFSOLiの被覆量を、LiNi0.5Mn1.5:100質量部に対して2質量部に変更して作製した表面被覆LiNi0.5Mn1.5を用いた以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 5
Surface-coated LiNi 0.5 Mn 1 produced by changing the coating amount of LiSO 3 CF 2 CF 2 CF 2 SO 3 Li to 2 parts by mass with respect to 100 parts by mass of LiNi 0.5 Mn 1.5 O 4 : A positive electrode was produced in the same manner as in Example 1 except that 0.5 O 4 was used, and a nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.

実施例6
LiNi0.5Mn1.5の表面をLiSOCFCFCFSOLiで被覆せずに用いた以外は、実施例1と同様にして正極を作製した。その後、LiSOCFCFCFSOLiを溶解させた水溶液に前記の正極を浸漬し、乾燥させて正極の表面をLiSOCFCFCFSOLiで被覆した。そして、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Example 6
A positive electrode was produced in the same manner as in Example 1 except that the surface of LiNi 0.5 Mn 1.5 O 4 was used without being covered with LiSO 3 CF 2 CF 2 CF 2 SO 3 Li. Thereafter, the positive electrode was immersed in an aqueous solution in which LiSO 3 CF 2 CF 2 CF 2 SO 3 Li was dissolved, dried, and the surface of the positive electrode was coated with LiSO 3 CF 2 CF 2 CF 2 SO 3 Li. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.

比較例1
LiNi0.5Mn1.5の表面をLiSOCFCFCFSOLiで被覆せずにそのまま用いた以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水二次電池を作製した。
Comparative Example 1
A positive electrode was produced in the same manner as in Example 1 except that the surface of LiNi 0.5 Mn 1.5 O 4 was used without being covered with LiSO 3 CF 2 CF 2 CF 2 SO 3 Li. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that it was used.

実施例1〜6および比較例1の非水二次電池の充放電サイクル特性を、次の方法で評価した。まず、各電池について、電池電圧が5Vになるまで0.2Cの定電流で充電し、その後、0.2Cの定電流で、終止電圧を3.5Vとして放電する一連の操作を1サイクルとして、20サイクルの充放電を行った。その後、各電池について、参照極に対する正極の電位が5Vになるまで0.2Cの定電流で充電し、続いて1Cの定電流で終止電圧を3.5Vとして放電を行い、放電容量(充放電20サイクル経過後の1C放電容量)を求めた。これらの結果を、正極の構成とともに表1に示すが、表1では、前記放電容量について、比較例1の電池の放電容量を100とした場合の相対値で示している。   The charge / discharge cycle characteristics of the nonaqueous secondary batteries of Examples 1 to 6 and Comparative Example 1 were evaluated by the following methods. First, for each battery, a series of operations of charging at a constant current of 0.2 C until the battery voltage reaches 5 V, and then discharging at a constant current of 0.2 C with a final voltage of 3.5 V is defined as one cycle. 20 cycles of charge and discharge were performed. Thereafter, each battery is charged with a constant current of 0.2 C until the potential of the positive electrode with respect to the reference electrode reaches 5 V, and then discharged with a constant current of 1 C with a final voltage of 3.5 V, and a discharge capacity (charge / discharge) 1C discharge capacity after 20 cycles). These results are shown in Table 1 together with the configuration of the positive electrode. In Table 1, the discharge capacity is shown as a relative value when the discharge capacity of the battery of Comparative Example 1 is set to 100.

Figure 2011108498
Figure 2011108498

なお、表1中、「多価の有機リチウム塩」の「正極での被着方式」の欄における「A]は、多価の有機リチウム塩で含リチウム複合酸化物の表面を被覆したことを、「B」は、多価の有機リチウム塩で正極(正極合剤層)の表面を被覆したことを、それぞれ意味している。   In Table 1, “A” in the column of “Positive electrodeposition method” of “Polyvalent organic lithium salt” indicates that the surface of the lithium-containing composite oxide was coated with the polyvalent organic lithium salt. , “B” means that the surface of the positive electrode (positive electrode mixture layer) was coated with a polyvalent organic lithium salt.

表1に示すように、実施例1〜6の非水二次電池は、比較例1の電池に比べて、充放電20サイクル経過後の1C放電容量が大きく、優れた充放電サイクル特性を有している。   As shown in Table 1, the non-aqueous secondary batteries of Examples 1 to 6 have a large 1C discharge capacity after 20 cycles of charge and discharge compared to the battery of Comparative Example 1, and have excellent charge and discharge cycle characteristics. is doing.

なお、正極活物質である含リチウム複合酸化物の表面を、フッ素を含有するLiSOCFCFCFSOLiで被覆して用い、また、正極の導電助剤に、非晶質炭素材料とカーボンナノチューブとを併用した実施例1の電池は、カーボンナノチューブを使用しなかった実施例2、3の電池や、含リチウム複合酸化物の表面を、フッ素を含有しないLiCOCHCHCHCOLiで被覆して用いた実施例4の電池に比べて、充放電20サイクル経過後の1C放電容量が大きい。
Note that the surface of the lithium-containing composite oxide that is the positive electrode active material is used by being coated with LiSO 3 CF 2 CF 2 CF 2 SO 3 Li containing fluorine, and amorphous carbon is used as the conductive auxiliary of the positive electrode. The battery of Example 1 using both the material and the carbon nanotube is the same as that of Examples 2 and 3 in which no carbon nanotube is used, or the surface of the lithium-containing composite oxide is LiCO 2 CH 2 CH 2 containing no fluorine. Compared with the battery of Example 4 used by being coated with CH 2 CO 2 Li, the 1C discharge capacity after 20 cycles of charge / discharge is large.

Claims (9)

集電体の片面または両面に、正極活物質である含リチウム複合酸化物と、多価の有機リチウム塩とを含有する正極合剤層を有することを特徴とする非水二次電池用正極。   A positive electrode for a non-aqueous secondary battery comprising a positive electrode mixture layer containing a lithium-containing composite oxide as a positive electrode active material and a polyvalent organic lithium salt on one or both surfaces of a current collector. 含リチウム複合酸化物の表面の一部または全部が、多価の有機リチウム塩で被覆されている請求項1に記載の非水二次電池用正極。   The positive electrode for a non-aqueous secondary battery according to claim 1, wherein a part or all of the surface of the lithium-containing composite oxide is coated with a polyvalent organic lithium salt. 正極合剤層の集電体側とは反対側の表面が、多価の有機リチウム塩で被覆されている請求項1または2に記載の非水二次電池用正極。   The positive electrode for a non-aqueous secondary battery according to claim 1 or 2, wherein the surface of the positive electrode mixture layer opposite to the current collector side is coated with a polyvalent organic lithium salt. 正極合剤層が、導電助剤として、平均粒径が1μm以下の非晶質炭素材料と、平均粒径が10μm以下の繊維状炭素またはカーボンナノチューブとを更に含有している請求項1〜3のいずれかに記載の非水二次電池用正極。   The positive electrode mixture layer further contains an amorphous carbon material having an average particle diameter of 1 μm or less and fibrous carbon or carbon nanotubes having an average particle diameter of 10 μm or less as a conductive additive. The positive electrode for nonaqueous secondary batteries in any one of. 多価の有機リチウム塩が、多価のフッ素含有有機リチウム塩である請求項1〜4のいずれかに記載の非水二次電池用正極。   The positive electrode for a nonaqueous secondary battery according to claim 1, wherein the polyvalent organic lithium salt is a polyvalent fluorine-containing organic lithium salt. 含リチウム複合酸化物が、リチウム基準で4.4V以上の電圧に充電して使用し得るものである請求項1〜5のいずれかに記載の非水二次電池用正極。   The positive electrode for a non-aqueous secondary battery according to any one of claims 1 to 5, wherein the lithium-containing composite oxide can be used by being charged to a voltage of 4.4 V or higher on the basis of lithium. 含リチウム複合酸化物が、一般式LiNiMn2−x−y(ただし、Mは、Ni、MnおよびLi以外の少なくとも1種の金属元素で、0.4≦x≦0.6、0≦y≦0.1である)で表される複合酸化物である請求項1〜6のいずれかに記載の非水二次電池用正極。 Lithium-containing composite oxide is represented by the general formula LiNi x M y Mn 2-x -y O 4 ( provided that, M is, Ni, at least one metal element other than Mn and Li, 0.4 ≦ x ≦ 0. The positive electrode for a non-aqueous secondary battery according to claim 1, wherein the composite oxide is represented by: 6; 0 ≦ y ≦ 0.1. 正極、負極、セパレータおよび非水電解質を少なくとも有する非水二次電池であって、
前記正極が、請求項1〜7のいずれかに記載の非水二次電池用正極であることを特徴とする非水二次電池。
A non-aqueous secondary battery having at least a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
The said positive electrode is a positive electrode for nonaqueous secondary batteries in any one of Claims 1-7, The nonaqueous secondary battery characterized by the above-mentioned.
請求項8に記載の非水二次電池を有することを特徴とする機器。   An apparatus comprising the non-aqueous secondary battery according to claim 8.
JP2009262457A 2009-11-18 2009-11-18 Non-aqueous secondary battery positive electrode, non-aqueous secondary battery, and device having the non-aqueous secondary battery Active JP5464652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009262457A JP5464652B2 (en) 2009-11-18 2009-11-18 Non-aqueous secondary battery positive electrode, non-aqueous secondary battery, and device having the non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262457A JP5464652B2 (en) 2009-11-18 2009-11-18 Non-aqueous secondary battery positive electrode, non-aqueous secondary battery, and device having the non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2011108498A true JP2011108498A (en) 2011-06-02
JP5464652B2 JP5464652B2 (en) 2014-04-09

Family

ID=44231753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262457A Active JP5464652B2 (en) 2009-11-18 2009-11-18 Non-aqueous secondary battery positive electrode, non-aqueous secondary battery, and device having the non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5464652B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572268B1 (en) * 2012-08-24 2014-08-13 三井金属鉱業株式会社 Spinel-type lithium manganese nickel-containing composite oxide
JP2014203804A (en) * 2013-04-10 2014-10-27 日本ゼオン株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2017159267A1 (en) * 2016-03-18 2017-09-21 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2019169286A (en) * 2018-03-22 2019-10-03 Tdk株式会社 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213375A (en) * 1996-02-05 1997-08-15 Sony Corp Non-aqueous electrolyte secondary battery
JP2002279998A (en) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same
JP2004259680A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous lithium secondary battery
WO2009136589A1 (en) * 2008-05-07 2009-11-12 日立マクセル株式会社 Nonaqueous secondary battery and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213375A (en) * 1996-02-05 1997-08-15 Sony Corp Non-aqueous electrolyte secondary battery
JP2002279998A (en) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same
JP2004259680A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous lithium secondary battery
WO2009136589A1 (en) * 2008-05-07 2009-11-12 日立マクセル株式会社 Nonaqueous secondary battery and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572268B1 (en) * 2012-08-24 2014-08-13 三井金属鉱業株式会社 Spinel-type lithium manganese nickel-containing composite oxide
JP2014203804A (en) * 2013-04-10 2014-10-27 日本ゼオン株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2021061256A (en) * 2013-04-10 2021-04-15 日本ゼオン株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2017159267A1 (en) * 2016-03-18 2017-09-21 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
CN108701859A (en) * 2016-03-18 2018-10-23 Nec能源元器件株式会社 Nonaqueous electrolytic solution secondary battery and preparation method thereof
JP2019169286A (en) * 2018-03-22 2019-10-03 Tdk株式会社 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5464652B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP6511222B2 (en) Lithium battery
JP6559412B2 (en) Negative electrode active material, negative electrode and lithium battery employing the same, and method for producing the negative electrode active material
JP5629645B2 (en) Non-aqueous secondary battery
JP6253411B2 (en) Lithium secondary battery
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP6654793B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof
JP7113248B2 (en) Negative electrode for secondary battery, manufacturing method thereof, and secondary battery
JP2006253081A (en) Non-aqueous electrolyte battery
JP7223980B2 (en) Cathode materials and secondary batteries
JP6304746B2 (en) Lithium ion secondary battery
WO2014010476A1 (en) Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
JP2009245940A (en) Nonaqueous electrolyte secondary battery
KR20130129819A (en) Lithium ion secondary battery
JP2014010977A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JP2017103024A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2014022328A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5464652B2 (en) Non-aqueous secondary battery positive electrode, non-aqueous secondary battery, and device having the non-aqueous secondary battery
JP7215331B2 (en) Method for manufacturing non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
JP2011070802A (en) Nonaqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP7103344B2 (en) Non-aqueous electrolyte power storage element
JP2017152223A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP5647069B2 (en) Non-aqueous secondary battery
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP7318344B2 (en) NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5464652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250