JP4306858B2 - Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery - Google Patents

Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4306858B2
JP4306858B2 JP04256699A JP4256699A JP4306858B2 JP 4306858 B2 JP4306858 B2 JP 4306858B2 JP 04256699 A JP04256699 A JP 04256699A JP 4256699 A JP4256699 A JP 4256699A JP 4306858 B2 JP4306858 B2 JP 4306858B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
solute
electrolyte battery
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04256699A
Other languages
Japanese (ja)
Other versions
JP2000243437A (en
Inventor
精司 吉村
俊之 能間
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04256699A priority Critical patent/JP4306858B2/en
Publication of JP2000243437A publication Critical patent/JP2000243437A/en
Application granted granted Critical
Publication of JP4306858B2 publication Critical patent/JP4306858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
この発明は、正極と負極と非水電解液とを備えた非水電解質電池及びこの非水電解質電池における非水電解液に使用する溶質に係り、この非水電解液に用いる溶質を改善し、特に、高温下においてこの溶質が解離して電極と反応するのを抑制し、非水電解質電池の高温での保存特性を向上させるようにした点に特徴を有するものである。
【0002】
【従来の技術】
近年、高出力,高エネルギー密度の新型電池として、非水電解液を用い、リチウムの酸化,還元を利用した高起電力の非水電解質電池が利用されるようになった。
【0003】
ここで、このような非水電解質電池においては、その非水電解液として、一般にプロピレンカーボネートやジメチルカーボネート等の溶媒に、ヘキサフルオロリン酸リチウムLiPF6 や過塩素酸リチウムLiClO4 等の溶質を溶解させたものが使用されていたが、過塩素酸リチウムLiClO4 等の溶質は安全性等の点で問題があり、また高温下において、このような溶質が電極と反応して自己放電が生じ、非水電解質電池を充電した状態で高温下で保存した場合に容量が低下するという問題があった。
【0004】
また、近年においては、特開昭61−214375号公報に示されるように、非水電解液の溶質に、有機溶媒中で再結晶させて精製したテトラフェニルホウ酸リチウムを用いるようにしたものが提案されている。
【0005】
しかし、このように非水電解液の溶質にテトラフェニルホウ酸リチウムを用いた場合においても、この溶質が非水電解液中において解離しやすく、特に、高温下においてこの溶質が解離し、これが電極と反応して自己放電が生じ、依然として、非水電解質電池を充電した状態で高温下で保存した場合に容量が低下するという問題があった。
【0006】
【発明が解決しようとする課題】
この発明は、正極と負極と非水電解液とを備えた非水電解質電池における上記のような問題を解決することを課題とするものであり、非水電解液に用いる溶質として、高温下において解離して電極と反応するということが少ない溶質を提供し、またこのような溶質を非水電解質電池に使用し、非水電解質電池を充電した状態で高温下で保存した場合に、この非水電解質電池の容量が低下するのを防止し、高温での保存特性に優れた非水電解質電池が得られるようにすることを課題とするものである。
【0007】
【課題を解決するための手段】
この発明の請求項1における非水電解質電池においては、上記のような課題を解決するため、正極と負極と非水電解液とを備えた非水電解質電池において、上記の負極における負極材料として、炭素材料が用いられ、上記の非水電解液における溶質として、アルコキシ基がホウ酸リチウムに結合されてなり、アルコキシ基における水素の少なくとも一部がフッ素で置換されてなることを特徴とする非水電解質電池用溶質を用いるようにしたのである。
【0008】
そして、この請求項1における非水電解質電池用溶質においては、アルコキシ基がホウ素にしっかりと結合し、これにより、この溶質が非水電解液中において解離するのが抑制され、特に高温下においてもこの溶質が非水電解液中において安定に存在し、電極と反応するということが少なくなる。
【0009】
また、上記のアルコキシ基において、その水素の少なくとも一部がフッ素で置換されたものを用いると、この溶質が還元されにくくなり、溶質が充電状態における負極と反応するのが一層抑制されるようになる。
【0010】
ここで、上記のようにホウ酸リチウムに結合されるアルコキシ基における水素の少なくとも一部がフッ素で置換された非水電解質電池用溶質としては、例えば、テトラキス(トリフルオロメトキシ)ホウ酸リチウム、テトラキス(2,2,2−トリフルオロエトキシ)ホウ酸リチウム、テトラキス(ペンタフルオロエトキシ)ホウ酸リチウム、ビス(トリフルオロメトキシ)ビス(ペンタフルオロエトキシ)ホウ酸リチウム等のアルコキシ基における水素の少なくとも一部がフッ素で置換されたものが挙げられる。
【0012】
ここで、この発明の請求項における非水電解質電池のように、非水電解液における溶質として、上記の請求項1に記載した非水電解質電池用溶質を用いると、上記のように溶質が非水電解液中において解離するのが抑制され、特に、高温下においてもこの溶質が非水電解液中において安定に存在し、この溶質が電極と反応して自己放電するのが防止され、この非水電解質電池を充電状態で高温下で保存した場合に容量が低下するのが抑制され、高温下における保存特性が向上する。
【0013】
なお、この発明の非水電解質電池は、上記のように非水電解液に用いる溶質に特徴を有するものであり、非水電解液に用いる溶媒、正極や負極を構成する材料等については特に限定されず、非水電解質電池において一般に使用されているものを用いることができる。
【0014】
ここで、上記の非水電解液に用いる溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状炭酸エステルや、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の非環状炭酸エステルや、1,2−ジエトキシエタン、1,2−ジメトキシエタン、エトキシメトキシエタン等の溶媒を単独若しくは2種以上混合させて用いることができる。特に、非水電解液における溶媒に、上記の環状炭酸エステルと非環状炭酸エステルとを混合させた混合溶媒を用いると、この非水電解液におけるイオン伝導率が向上すると共に、非水電解液中において前記の溶質が解離するのがさらに抑制され、高温下における保存特性がさらに向上する。
【0015】
また、この発明における非水電解質電池においては、上記の溶質を上記のような溶媒に溶解させた非水電解液をポリマーに含浸させ、ゲル状のポリマー電解質にして用いることも可能である。
【0016】
また、この発明の非水電解質電池において、その正極を構成する正極材料としては、例えば、二酸化マンガン、リチウム含有マンガン酸化物、リチウム含有コバルト酸化物、リチウム含有バナジウム酸化物、リチウム含有ニッケル酸化物、リチウム含有鉄酸化物、リチウム含有クロム酸化物、リチウム含有チタン酸化物等が使用される。
【0017】
また、この発明の非水電解液電池において、その負極を構成する負極材料としては、金属リチウム、Li−Al,Li−In,Li−Sn,Li−Pb,Li−Bi,Li−Ga,Li−Sr,Li−Si,Li−Zn,Li−Cd,Li−Ca,Li−Ba等のリチウム合金、リチウムイオンの吸蔵,放出が可能な黒鉛,コークス,有機物焼成体等の炭素を含む材料、SnO2 ,SnO,TiO,Nb2 3 等の電位が正極材料よりも低い金属酸化物等を用いることができ、特に、請求項に示すように、負極材料に炭素材料を用いると、上記の溶質を含む非水電解液により炭素材料の表面にイオン伝導性に優れた被膜が形成され、この被膜によって負極が非水電解液と反応するのが一層抑制され、負極材料に炭素材料を用いた非水電解質電池における高温での保存特性が著しく向上する。
【0018】
【実施例】
以下、この発明に係る非水電解質電池用溶質及びこの溶質を用いた非水電解質電池について実施例を挙げて具体的に説明すると共に、この実施例における非水電解質電池においては、高温下で保存した場合における容量の低下が少なくなって、高温下における保存特性が向上することを比較例を挙げて明らかにする。なお、この発明に係る非水電解質電池用溶質及び非水電解質電池は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0019】
参考例1
この参考例1においては、正極と負極を下記のようにして作製すると共に、非水系電解液を下記のようにして調製し、図1に示すように、直径が14mm、高さが50mm、電池容量が400mAhになった円筒型のリチウム二次電池を作製した。
【0020】
[正極の作製]
正極を作製するにあたっては、正極材料にLiCoO2 粉末を用い、このLiCoO2 粉末と、導電剤であるアセチレンブラック粉末とを90:6の重量比になるように混合して正極合剤を調製した。
【0021】
そして、この正極合剤に結着剤であるポリフッ化ビニリデン(以下、PVdFと略す。)をN−メチル−2−ピロリドン(以下、NMPと略す。)に溶解させた溶液を加えて、上記の正極合剤とPVdFとが96:4の重量比になるようにし、これらを混練してスラリーを調製し、このスラリーをアルミニウム箔からなる正極集電体の両面にドクターブレード法により塗布し、これを150℃で2時間真空乾燥させて正極を作製した。
【0022】
[負極の作製]
負極を作製するにあたっては、負極材料に天然黒鉛粉末を用い、この天然黒鉛粉末に結着剤であるPVdFをNMPに溶解させた溶液を加えて、天然黒鉛粉末とPVdFとが96:4の重量比になるようにし、これを混練してスラリーを調製し、このスラリーを負極集電体である銅箔の両面にドクターブレード法により塗布し、これを150℃で2時間真空乾燥させて負極を作製した。
【0023】
[非水電解液の調製]
非水電解液を調製するにあたっては、環状炭酸エステルであるエチレンカーボネート(以下、ECと略す。)と非環状炭酸エステルであるジエチルカーボネート(以下、DECと略す。)とを1:1の体積比で混合させた混合溶媒に、テトラメトキシホウ酸リチウムLiB(OCH3 4 を1mol/lの割合で溶解させて非水電解液を調製した。
【0024】
[電池の作製]
電池を作製するにあたっては、図1に示すように、上記のようにして作製した正極1と負極2との間に、セパレータ3としてポリエチレン製の微多孔膜を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させ、この電池缶4内に上記の非水電解液を注液して封口し、上記の正極1を正極リード1aを介して正極蓋5に接続させる一方、上記の負極2を負極リード2aを介して電池缶4に接続させ、電池缶4と正極蓋5とを絶縁パッキン6により電気的に絶縁させてリチウム二次電池を得た。
【0025】
参考例2〜7、実施例1〜4、参考例8〜13
参考例2〜7、実施例1〜4、参考例8〜13のリチウム二次電池においては、上記の参考例1のリチウム二次電池の場合と、非水電解液の調製において使用する溶質だけを変更させ、それ以外については、上記の参考例1の場合と同様にして円筒型のリチウム二次電池を作製した。
【0026】
ここで、参考例2〜7、実施例1〜4、参考例8〜13においては、非水電解液における溶質に、下記の表1に示すように、参考例2においてはLiB(CH3 )(OCH3 3 を、参考例3においてはLiB(CH3 2 (OCH3 2 を、参考例4においてはLiB(CH3 3 (OCH3 )を、参考例5においてはLiB(OC2 5 4 を、参考例6においてはLiB(OC3 7 4 を、参考例7においてはLiB(OC4 9 4 を、実施例1においてはLiB(OCF3 4 を、実施例2においてはLiB(OCH2 CF3 4 を、実施例においてはLiB(OC2 5 4 を、実施例4においてはLiB(OCF3 2 (OC2 5 2 を、参考例8においてはLiB(OC6 5 4 を、参考例9においてはLiB(OC6 4 CH3 4 を、参考例10においてはLiB(OC6 3 (CH3 2 4 を、参考例11においてはLiB(OC6 5 4 を、参考例12においてはLiB(OC6 4 CF3 4 を、参考例13においてはLiB(OC6 3 (CF3 2 4 を用いるようにした。
【0027】
(比較例1〜3)
比較例1〜3のリチウム二次電池においても、上記の参考例1のリチウム二次電池の場合と、非水電解液の調製において使用する溶質だけを変更させ、それ以外については、上記の参考例1の場合と同様にして円筒型のリチウム二次電池を作製した。
【0028】
ここで、比較例1〜3においては、非水電解液における溶質に、下記の表1に示すように、比較例1においてはLiPF6 を、比較例2においてはLiB(CH3 4 を、比較例3においてはLiB(C6 5 4 を用いるようにした。
【0029】
そして、上記の参考例1〜7、実施例1〜4、参考例8〜13及び比較例1〜3の各リチウム二次電池をそれぞれ1mA/cm2 の充電電流で充電終止電圧4.2Vまで充電した後、1mA/cm2 の放電電流で放電終止電圧3Vまで放電させて、保存前における放電容量Q0を測定し、また上記の各リチウム二次電池を1mA/cm2 の充電電流で充電終止電圧4.2Vまで充電させた後、各リチウム二次電池を60℃の温度雰囲気下において1ヶ月保存し、その後、放電電流1mA/cm2 で放電終止電圧3Vまで放電を行い、保存後における放電容量Q1を測定し、保存後における放電容量の低下率(容量低下率)を下記の式によって求め、その結果を下記の表1に示した。
容量低下率(%)=[(Q0−Q1)/Q0]×100
【0030】
表1
【0031】
この結果から明らかなように、非水電解液における溶質としてホウ酸リチウムにアルコキシ基が結合された溶質を用いた参考例1〜7の各リチウム二次電池は、この発明の要件を満たさない溶質を使用した比較例1〜3の各リチウム二次電池に比べて、60℃の温度雰囲気下において1ヶ月保存した場合における容量低下率が低くなっており、高温下における保存特性が向上していた。また、ホウ酸リチウムに結合される上記のアルコキシ基における水素の少なくとも一部がフッ素で置換された実施例1〜4の各リチウム二次電池は、それぞれ対応するアルコキシ基及びこの誘導基における水素がフッ素で置換されていないものに比べて、高温下における保存特性が一層向上していた。
【0032】
実施例5〜14
実施例5〜14のリチウム二次電池においては、上記の参考例1における非水電解液の調製において、その溶質に上記の実施例1の場合と同じLiB(OCF3 4 を用いると共に、非水電解液における溶媒を下記の表2に示すように変更し、それ以外については、上記の参考例1の場合と同様にして円筒型のリチウム二次電池を作製した。
【0033】
ここで、非水電解液における溶媒として、実施例5〜8においては環状炭酸エステルと非環状炭酸エステルとの混合溶媒を用いるようにし、実施例5においてはプロピレンカーボネート(以下、PCと略す。)とDECとを1:1の体積比で混合した混合溶媒を、実施例6においてはブチレンカーボネート(以下、BCと略す。)とDECとを1:1の体積比で混合した混合溶媒を、実施例7においてはECとジメチルカーボネート(以下、DMCと略す。)とを1:1の体積比で混合した混合溶媒を、実施例8においてはECとエチルメチルカーボネート(以下、EMCと略す。)とを1:1の体積比で混合した混合溶媒を用いるようにした。一方、実施例9においてはECだけを、実施例10においてはDECだけを、実施例11においては1,2−ジメトキシエタン(以下、DMEと略す。)だけを、実施例12においてはECとDMEとを1:1の体積比で混合した混合溶媒を、実施例13においてはECとテトラヒドロフラン(以下、THFと略す。)とを1:1の体積比で混合した混合溶媒を、実施例14においてはγ−ブチロラクトン(以下、γ−BLと略す。)とDECとを1:1の体積比で混合した混合溶媒を用いるようにした。
【0034】
そして、これらの実施例5〜14の各リチウム二次電池についても、上記の参考例1〜7、実施例1〜4、参考例8〜13及び比較例1〜3の各リチウム二次電池の場合と同様にして、保存前における放電容量Q0と、各リチウム二次電池を60℃の温度雰囲気下において1ヶ月保存した後の放電容量Q1とを測定して上記の容量低下率を求め、その結果を上記の実施例1と合わせて下記の表2に示した。
【0035】
表2
【0036】
この結果から明らかなように、非水電解液の溶質に、この発明の要件を満たすLiB(OCF3 4 を用いると共に、溶媒に環状炭酸エステルと非環状炭酸エステルとの混合溶媒を用いた実施例1,5〜8の各リチウム二次電池は、環状炭酸エステルと非環状炭酸エステルとの混合溶媒以外の溶媒を使用した実施例9〜14の各リチウム二次電池に比べて、60℃の温度雰囲気下において1ヶ月保存した場合における容量低下率がさらに低くなっており、高温下における保存特性が一層向上していた。
【0037】
参考例14,15及び比較例4,5)
参考例14,15においては、非水電解液における溶質に上記の実施例1の場合と同じLiB(OCF3 4 を用い、また負極における負極材料として、下記の表3に示すように、参考例14においてはリチウム金属を、参考例15においてはLi−Al合金を用いるようにし、それ以外については、上記の参考例1の場合と同様にして円筒型のリチウム二次電池を作製した。
【0038】
また、比較例4,5においては、非水電解液における溶質に上記の比較例1の場合と同じLiPF6 を用い、また負極における負極材料として、下記の表3に示すように、比較例4においてはリチウム金属を、比較例5においてはLi−Al合金を用いるようにし、それ以外については、上記の参考例1の場合と同様にして円筒型のリチウム二次電池を作製した。
【0039】
そして、これらの参考例14,15及び比較例4,5の各リチウム二次電池についても、上記の参考例1〜7、実施例1〜4、参考例8〜13及び比較例1〜3の各リチウム二次電池の場合と同様にして、保存前における放電容量Q0と、各リチウム二次電池を60℃の温度雰囲気下において1ヶ月保存した後の放電容量Q1とを測定して上記の容量低下率を求め、その結果を上記の実施例1及び比較例1と合わせて下記の表3に示した。
【0040】
【表3】
【0041】
この結果から明らかなように、参考例14,15及び比較例4,5に示すように負極材料に黒鉛以外のリチウム金属やLi−Al合金を用いた場合において、非水電解液における溶質にこの発明の要件を満たすLiB(OCF3 4 を用いた参考例14,15の各リチウム二次電池は、溶質にLIPF6 を使用した比較例4,5の各リチウム二次電池に比べて、60℃の温度雰囲気下において1ヶ月保存した場合における容量低下率が低くなっており、高温下における保存特性が向上していた。
【0042】
また、実施例1と参考例14,15の各リチウム二次電池とを比較した場合、負極材料に黒鉛を用いた実施例1のリチウム二次電池の方が、黒鉛以外のリチウム金属やLi−Al合金を用いた参考例14,15の各リチウム二次電池よりも高温下における保存特性の向上が大きくなっていた。
【0043】
【発明の効果】
以上詳述したように、この発明における非水電解質電池用溶質のように、アルコキシ基がホウ酸リチウムに結合されてなり、アルコキシ基における水素の少なくとも一部がフッ素で置換されたものを用いると、この溶質が非水電解液中において解離するのが抑制され、特に高温下においてもこの溶質が非水電解液中において安定に存在し、電極と反応するということが少なくなった。
【0044】
そして、上記のような非水電解質電池用溶質を非水電解質電池の溶質に使用すると、上記のようにこの溶質が非水電解液中において解離するのが抑制され、特に、高温下においてもこの溶質が非水電解液中において安定に存在して、この溶質が電極と反応して自己放電するのが防止されるようになり、この非水電解質電池を充電状態で高温下で保存した場合においても容量が低下するということが少なく、高温下における保存特性が向上した。
【図面の簡単な説明】
【図1】 この発明の実施例及び比較例において作製したリチウム二次電池の内部構造を示した概略断面図である。
【符号の説明】
1 正極
2 負極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, and a solute used in the non-aqueous electrolyte in the non-aqueous electrolyte battery. The solute used in the non-aqueous electrolyte is improved. In particular, it is characterized by suppressing the dissociation of the solute at high temperatures and reacting with the electrode, thereby improving the storage characteristics of the nonaqueous electrolyte battery at high temperatures.
[0002]
[Prior art]
In recent years, high-electromotive force non-aqueous electrolyte batteries using a non-aqueous electrolyte and utilizing oxidation and reduction of lithium have come into use as new batteries with high output and high energy density.
[0003]
Here, in such a nonaqueous electrolyte battery, a solute such as lithium hexafluorophosphate LiPF 6 or lithium perchlorate LiClO 4 is generally dissolved in a solvent such as propylene carbonate or dimethyl carbonate as the nonaqueous electrolyte. However, solutes such as lithium perchlorate LiClO 4 have problems in terms of safety and the like, and at high temperatures, such solutes react with electrodes to cause self-discharge, When the nonaqueous electrolyte battery is charged and stored at a high temperature, there is a problem that the capacity decreases.
[0004]
In recent years, as disclosed in Japanese Patent Application Laid-Open No. 61-214375, lithium tetraphenylborate purified by recrystallization in an organic solvent has been used as a solute of a nonaqueous electrolytic solution. Proposed.
[0005]
However, even when lithium tetraphenylborate is used as the solute of the non-aqueous electrolyte, the solute is easily dissociated in the non-aqueous electrolyte. When the nonaqueous electrolyte battery is stored in a charged state, the capacity is reduced.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems in a non-aqueous electrolyte battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and as a solute used in the non-aqueous electrolyte at a high temperature. It provides a solute that rarely dissociates and reacts with the electrode, and when such a solute is used in a non-aqueous electrolyte battery and the non-aqueous electrolyte battery is charged and stored at high temperature, the non-aqueous electrolyte An object of the present invention is to prevent a decrease in the capacity of an electrolyte battery and to obtain a nonaqueous electrolyte battery excellent in storage characteristics at high temperatures.
[0007]
[Means for Solving the Problems]
Oite the non-aqueous electrolyte batteries in the first aspect of the present invention, in order to solve the above problems, in the non-aqueous electrolyte battery comprising a positive electrode, a negative electrode and a nonaqueous electrolyte, the negative electrode in the negative electrode As a material, a carbon material is used, and as a solute in the above non-aqueous electrolyte, an alkoxy group is bonded to lithium borate, and at least a part of hydrogen in the alkoxy group is substituted with fluorine. The solute for non-aqueous electrolyte batteries is used.
[0008]
In the solute for a non-aqueous electrolyte battery according to claim 1, the alkoxy group is firmly bonded to boron, and this prevents the solute from being dissociated in the non-aqueous electrolyte, particularly at high temperatures. This solute is stably present in the non-aqueous electrolyte and is less likely to react with the electrode.
[0009]
Further, Oite the alkoxy group described above, the use of which at least part of the hydrogen is substituted with fluorine, the solute is difficult to be reduced, is further inhibited from the solute to react with the negative electrode in charged state It becomes like this.
[0010]
Here, as the nonaqueous electrolyte battery solute at least a part of hydrogen definitive alkoxy group attached to the lithium borate is substituted with fluorine as described above, for example, tetrakis (trifluoromethoxy) lithium borate, At least one hydrogen in an alkoxy group such as lithium tetrakis (2,2,2-trifluoroethoxy) borate, lithium tetrakis (pentafluoroethoxy) borate, lithium bis (trifluoromethoxy) bis (pentafluoroethoxy) borate The part is substituted with fluorine.
[0012]
Here, when the solute for a non-aqueous electrolyte battery described in claim 1 is used as the solute in the non-aqueous electrolyte solution as in the non-aqueous electrolyte battery according to claim 1 of the present invention, the solute is obtained as described above. Dissociation in the non-aqueous electrolyte is suppressed, and in particular, this solute is stably present in the non-aqueous electrolyte even at high temperatures, and this solute is prevented from reacting with the electrode and self-discharging. When the nonaqueous electrolyte battery is stored in a charged state at a high temperature, the capacity is prevented from decreasing, and the storage characteristics at a high temperature are improved.
[0013]
The non-aqueous electrolyte battery of the present invention is characterized by the solute used in the non-aqueous electrolyte as described above, and the solvent used in the non-aqueous electrolyte and the materials constituting the positive electrode and the negative electrode are particularly limited. What is generally used in the nonaqueous electrolyte battery can be used.
[0014]
Here, examples of the solvent used for the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, and butylene carbonate, and non-cyclic carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. Alternatively, solvents such as 1,2-diethoxyethane, 1,2-dimethoxyethane, ethoxymethoxyethane and the like can be used alone or in admixture of two or more. In particular, when a mixed solvent obtained by mixing the above cyclic carbonate and acyclic carbonate is used as the solvent in the non-aqueous electrolyte, the ionic conductivity in the non-aqueous electrolyte is improved and the non-aqueous electrolyte is In the above, the dissociation of the solute is further suppressed, and the storage characteristics at a high temperature are further improved.
[0015]
In the non-aqueous electrolyte battery according to the present invention, a polymer can be impregnated with a non-aqueous electrolyte solution in which the above-described solute is dissolved in the solvent as described above to be used as a gel polymer electrolyte.
[0016]
In the nonaqueous electrolyte battery of the present invention, examples of the positive electrode material constituting the positive electrode include manganese dioxide, lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing vanadium oxide, lithium-containing nickel oxide, Lithium-containing iron oxide, lithium-containing chromium oxide, lithium-containing titanium oxide and the like are used.
[0017]
In the non-aqueous electrolyte battery of the present invention, the negative electrode material constituting the negative electrode may be metal lithium, Li—Al, Li—In, Li—Sn, Li—Pb, Li—Bi, Li—Ga, Li -Sr, Li-Si, Li-Zn, Li-Cd, Li-Ca, Li-Ba, and other lithium alloys; Lithium ion occlusion and release-capable graphite, coke, organic-containing materials such as organic fired bodies, Metal oxides such as SnO 2 , SnO, TiO, Nb 2 O 3 and the like having a lower potential than the positive electrode material can be used. In particular, as shown in claim 1, when a carbon material is used as the negative electrode material, A non-aqueous electrolyte containing a solute of the above forms a coating with excellent ionic conductivity on the surface of the carbon material, and this coating further suppresses the negative electrode from reacting with the non-aqueous electrolyte. Non-aqueous electrolyte Storage characteristics at high temperature in the pond is remarkably improved.
[0018]
【Example】
Hereinafter, the solute for a nonaqueous electrolyte battery according to the present invention and the nonaqueous electrolyte battery using the solute will be specifically described with reference to examples, and the nonaqueous electrolyte battery in this example is stored at high temperature. It will be clarified by a comparative example that the decrease in capacity in this case is reduced and the storage characteristics at high temperature are improved. In addition, the solute for nonaqueous electrolyte battery and the nonaqueous electrolyte battery according to the present invention are not limited to those shown in the following examples, and can be implemented with appropriate modifications within the scope not changing the gist thereof. is there.
[0019]
( Reference Example 1 )
In Reference Example 1 , a positive electrode and a negative electrode were prepared as follows, and a non-aqueous electrolyte was prepared as follows. As shown in FIG. 1, the diameter was 14 mm, the height was 50 mm, the battery A cylindrical lithium secondary battery with a capacity of 400 mAh was produced.
[0020]
[Production of positive electrode]
In producing the positive electrode, LiCoO 2 powder was used as a positive electrode material, and this LiCoO 2 powder and acetylene black powder as a conductive agent were mixed at a weight ratio of 90: 6 to prepare a positive electrode mixture. .
[0021]
Then, a solution in which polyvinylidene fluoride (hereinafter abbreviated as PVdF) as a binder is dissolved in N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is added to the positive electrode mixture, The positive electrode mixture and PVdF were made to have a weight ratio of 96: 4, kneaded to prepare a slurry, and this slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil by a doctor blade method. Was vacuum dried at 150 ° C. for 2 hours to produce a positive electrode.
[0022]
[Production of negative electrode]
In producing the negative electrode, natural graphite powder was used as the negative electrode material, and a solution obtained by dissolving PVdF as a binder in NMP was added to the natural graphite powder, so that the weight of the natural graphite powder and PVdF was 96: 4. The slurry is kneaded to prepare a slurry, and this slurry is applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, and this is vacuum-dried at 150 ° C. for 2 hours to obtain a negative electrode. Produced.
[0023]
[Preparation of non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, a 1: 1 volume ratio of ethylene carbonate (hereinafter abbreviated as EC) which is a cyclic carbonate and diethyl carbonate (hereinafter abbreviated as DEC) which is a non-cyclic carbonate. Lithium tetramethoxyborate LiB (OCH 3 ) 4 was dissolved at a rate of 1 mol / l in the mixed solvent mixed in step 1 to prepare a non-aqueous electrolyte.
[0024]
[Production of battery]
In producing a battery, as shown in FIG. 1, a polyethylene microporous film is interposed as a separator 3 between the positive electrode 1 and the negative electrode 2 produced as described above, and these are wound in a spiral shape. In the battery can 4, the nonaqueous electrolyte solution is injected into the battery can 4 and sealed, and the positive electrode 1 is connected to the positive electrode lid 5 through the positive electrode lead 1 a, while The negative electrode 2 was connected to the battery can 4 via the negative electrode lead 2a, and the battery can 4 and the positive electrode lid 5 were electrically insulated by the insulating packing 6 to obtain a lithium secondary battery.
[0025]
( Reference Examples 2-7, Examples 1-4, Reference Examples 8-13 )
In the lithium secondary batteries of Reference Examples 2 to 7, Examples 1 to 4, and Reference Examples 8 to 13 , only the solute used in the case of the lithium secondary battery of Reference Example 1 and the preparation of the nonaqueous electrolyte solution. Otherwise, a cylindrical lithium secondary battery was produced in the same manner as in Reference Example 1 above.
[0026]
Here, in Reference Examples 2 to 7, Examples 1 to 4, and Reference Examples 8 to 13 , the solute in the non-aqueous electrolyte solution is LiB (CH 3 ) in Reference Example 2 as shown in Table 1 below. the (OCH 3) 3, and LiB (CH 3) 2 (OCH 3) 2 in reference example 3, the LiB (CH 3) 3 (OCH 3) in reference example 4, in the reference example 5 LiB (OC the 2 H 5) 4, the LiB (OC 3 H 7) 4 in reference example 6, the LiB (OC 4 H 9) 4 in reference example 7, the LiB (OCF 3) 4 in example 1, the LiB (OCH 2 CF 3) 4 in example 2, the LiB (OC 2 F 5) 4 in example 3, example in 4 LiB (OCF 3) 2 ( OC 2 F 5) 2, In Reference Example 8 , LiB (OC 6 H 5 ) 4 is used. In Reference Example 9 , LiB (OC 6 H 4 is used. CH 3) 4, and Reference Example 10 LiB (OC 6 H 3 (CH 3) 2) 4 and the LiB (OC 6 F 5) 4 in Reference Example 11, LiB in Reference Example 12 (OC 6 H 4 CF 3 ) 4 was used as LiB (OC 6 H 3 (CF 3 ) 2 ) 4 in Reference Example 13 .
[0027]
(Comparative Examples 1-3)
Also in the lithium secondary batteries of Comparative Examples 1 to 3, only the solute used in the preparation of the non-aqueous electrolyte in the case of the lithium secondary battery of Reference Example 1 above was changed, and for the other cases, the above-mentioned Reference A cylindrical lithium secondary battery was produced in the same manner as in Example 1 .
[0028]
Here, in Comparative Examples 1-3, as shown in Table 1 below, LiPF 6 in Comparative Example 1, LiB (CH 3 ) 4 in Comparative Example 2, In Comparative Example 3, LiB (C 6 H 5 ) 4 was used.
[0029]
Each of the lithium secondary batteries of Reference Examples 1 to 7, Examples 1 to 4, Reference Examples 8 to 13, and Comparative Examples 1 to 3 is charged to 1 V / cm 2 with a charging current of 1 mA / cm 2. After charging, the battery is discharged at a discharge current of 1 mA / cm 2 to a discharge end voltage of 3 V, the discharge capacity Q0 before storage is measured, and each lithium secondary battery is charged at a charge current of 1 mA / cm 2. After charging to a voltage of 4.2 V, each lithium secondary battery is stored in a 60 ° C. temperature atmosphere for 1 month, and then discharged to a discharge end voltage of 3 V at a discharge current of 1 mA / cm 2 to discharge after storage. The capacity Q1 was measured, the reduction rate of the discharge capacity after storage (capacity reduction rate) was determined by the following formula, and the results are shown in Table 1 below.
Capacity reduction rate (%) = [(Q0−Q1) / Q0] × 100
[0030]
[ Table 1 ]
[0031]
As is clear from these results, each of the lithium secondary batteries of Reference Examples 1 to 7 using a solute in which an alkoxy group is bonded to lithium borate as a solute in the nonaqueous electrolytic solution does not satisfy the requirements of the present invention. Compared to each of the lithium secondary batteries of Comparative Examples 1 to 3 using a low capacity reduction rate when stored for 1 month in a 60 ° C. temperature atmosphere, the storage characteristics at high temperatures were improved. . Further, each of the lithium secondary batteries of Examples 1 to 4 in which at least a portion of the hydrogen definitive alkoxy groups above attached to the lithium borate is substituted with fluorine, hydrogen in the corresponding alkoxy and this induction group The storage characteristics at high temperatures were further improved compared to those in which is not substituted with fluorine.
[0032]
( Examples 5 to 14 )
In the lithium secondary batteries of Examples 5 to 14 , in the preparation of the non-aqueous electrolyte in Reference Example 1 above, the same LiB (OCF 3 ) 4 as in Example 1 was used as the solute, The solvent in the aqueous electrolyte was changed as shown in Table 2 below, and a cylindrical lithium secondary battery was produced in the same manner as in Reference Example 1 except that.
[0033]
Here, as a solvent in the nonaqueous electrolytic solution, to use a mixed solvent of a cyclic carbonate and a non-cyclic carbonic ester in Examples 5-8 In Example 5 Propylene carbonate (hereinafter, abbreviated as PC.) and a DEC 1: a mixed solvent obtained by mixing at a volume ratio of butylene carbonate (hereinafter, abbreviated as BC.) in example 6 and the DEC 1: a mixed solvent obtained by mixing at a volume ratio, implemented In Example 7 , a mixed solvent in which EC and dimethyl carbonate (hereinafter abbreviated as DMC) were mixed at a volume ratio of 1: 1. In Example 8 , EC and ethyl methyl carbonate (hereinafter abbreviated as EMC) were used. Were mixed in a volume ratio of 1: 1. On the other hand, only EC in Example 9 , only DEC in Example 10 , only 1,2-dimethoxyethane (hereinafter abbreviated as DME) in Example 11 , and EC and DME in Example 12 were used. In Example 14 , a mixed solvent in which EC and tetrahydrofuran (hereinafter abbreviated as THF) were mixed in a 1: 1 volume ratio was mixed in Example 14 . Is a mixed solvent in which γ-butyrolactone (hereinafter abbreviated as γ-BL) and DEC are mixed at a volume ratio of 1: 1.
[0034]
And also about each lithium secondary battery of these Examples 5-14 , said lithium secondary battery of said reference examples 1-7, Examples 1-4, Reference examples 8-13, and Comparative Examples 1-3. Similarly to the case, the discharge capacity Q0 before storage and the discharge capacity Q1 after storing each lithium secondary battery in a temperature atmosphere at 60 ° C. for 1 month are measured to obtain the above capacity reduction rate. The results are shown in Table 2 below together with the above Example 1.
[0035]
[ Table 2 ]
[0036]
As is apparent from this result, the solute of the non-aqueous electrolyte, with the LiB (OCF 3) 4 satisfying the requirements of this invention is used, it performed using a mixed solvent of a cyclic carbonate and a non-cyclic carbonate in the solvent Each lithium secondary battery of Examples 1 to 5-8 is 60 ° C. in comparison with each lithium secondary battery of Examples 9 to 14 using a solvent other than a mixed solvent of a cyclic carbonate and an acyclic carbonate. The capacity reduction rate when stored for 1 month in a temperature atmosphere was further reduced, and the storage characteristics at high temperatures were further improved.
[0037]
( Reference Examples 14 and 15 and Comparative Examples 4 and 5)
In the reference example 14 and 15, solute used when the same LiB (OCF 3) 4 in the example 1 in the non-aqueous electrolytic solution, also as a negative electrode material in the anode, as shown in Table 3 below, reference In Example 14 , lithium metal was used, and in Reference Example 15 , a Li—Al alloy was used. Otherwise, a cylindrical lithium secondary battery was produced in the same manner as in Reference Example 1 above.
[0038]
In Comparative Examples 4 and 5, the same LiPF 6 as in Comparative Example 1 was used as the solute in the nonaqueous electrolytic solution, and as the negative electrode material in the negative electrode, Comparative Example 4 was used as shown in Table 3 below. In Example 5, a lithium metal was used, and in Comparative Example 5, a Li—Al alloy was used. Otherwise, a cylindrical lithium secondary battery was fabricated in the same manner as in Reference Example 1 above.
[0039]
And also about each lithium secondary battery of these reference examples 14 and 15 and comparative examples 4 and 5, said reference examples 1-7, Examples 1-4, reference examples 8-13, and comparative examples 1-3. Similarly to the case of each lithium secondary battery, the discharge capacity Q0 before storage and the discharge capacity Q1 after storage of each lithium secondary battery in a temperature atmosphere at 60 ° C. for one month are measured, and the above capacity is obtained. The reduction rate was determined, and the results are shown in Table 3 below together with the above Example 1 and Comparative Example 1.
[0040]
[Table 3]
[0041]
As is clear from this result, as shown in Reference Examples 14 and 15 and Comparative Examples 4 and 5, when a lithium metal other than graphite or a Li-Al alloy was used as the negative electrode material, the solute in the nonaqueous electrolyte solution Each of the lithium secondary batteries of Reference Examples 14 and 15 using LiB (OCF 3 ) 4 satisfying the requirements of the invention is 60 % as compared with each of the lithium secondary batteries of Comparative Examples 4 and 5 using LIPF 6 as a solute. The capacity reduction rate when stored for 1 month in a temperature atmosphere of ° C. was low, and the storage characteristics at high temperature were improved.
[0042]
Further, when Example 1 and each of the lithium secondary batteries of Reference Examples 14 and 15 were compared, the lithium secondary battery of Example 1 using graphite as the negative electrode material was different from lithium metal other than graphite or Li— The improvement in storage characteristics at high temperatures was greater than in the lithium secondary batteries of Reference Examples 14 and 15 using an Al alloy.
[0043]
【The invention's effect】
As described above in detail, as a non-aqueous electrolyte battery solute in the present invention, an alkoxy group is coupled to a lithium borate, used as at least a part of hydrogen definitive the alkoxy group is substituted by fluorine Thus, dissociation of the solute in the non-aqueous electrolyte is suppressed, and the solute is stably present in the non-aqueous electrolyte even at a high temperature, and the reaction with the electrode is reduced.
[0044]
And, when the solute for non-aqueous electrolyte battery as described above is used as the solute of the non-aqueous electrolyte battery, it is suppressed that the solute is dissociated in the non-aqueous electrolyte as described above. When the solute is present stably in the non-aqueous electrolyte and the solute reacts with the electrode to prevent self-discharge, and when the non-aqueous electrolyte battery is stored in a charged state at a high temperature, However, the storage capacity at high temperatures was improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the internal structure of a lithium secondary battery produced in Examples and Comparative Examples of the present invention.
[Explanation of symbols]
1 Positive electrode 2 Negative electrode

Claims (2)

正極と負極と非水電解液とを備えた非水電解質電池において、前記負極における負極材料として、炭素材料が用いられ、前記非水電解液における溶質として、アルコキシ基がホウ酸リチウムに結合されてなり、アルコキシ基における水素の少なくとも一部がフッ素で置換されてなることを特徴とする非水電解質電池用溶質を用いたことを特徴とする非水電解質電池。 In a non-aqueous electrolyte battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, a carbon material is used as a negative electrode material in the negative electrode, and an alkoxy group is bonded to lithium borate as a solute in the non-aqueous electrolyte. becomes non-aqueous electrolyte battery, wherein at least a portion of the hydrogen definitive alkoxy group with solute for non-aqueous electrolyte battery characterized by comprising substituted with fluorine. 請求項1に記載した非水電解質電池において、前記炭素材料とは黒鉛であることを特徴とする非水電解質電池。  2. The nonaqueous electrolyte battery according to claim 1, wherein the carbon material is graphite.
JP04256699A 1999-02-22 1999-02-22 Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery Expired - Fee Related JP4306858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04256699A JP4306858B2 (en) 1999-02-22 1999-02-22 Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04256699A JP4306858B2 (en) 1999-02-22 1999-02-22 Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2000243437A JP2000243437A (en) 2000-09-08
JP4306858B2 true JP4306858B2 (en) 2009-08-05

Family

ID=12639618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04256699A Expired - Fee Related JP4306858B2 (en) 1999-02-22 1999-02-22 Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4306858B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772129A1 (en) * 2019-07-31 2021-02-03 Innolith Assets AG So2-based electrolyte for rechargeable battery cell and rechargeable battery cell comprising the same
EP4037036A1 (en) 2021-01-29 2022-08-03 Innolith Technology AG Rechargeable battery cell
EP4037056A1 (en) 2021-01-29 2022-08-03 Innolith Technology AG So2-based electrolyte for rechargeable battery cell and rechargeable battery cell
EP4037051A1 (en) 2021-01-29 2022-08-03 Innolith Technology AG Rechargeable battery cell
RU2788178C1 (en) * 2019-07-31 2023-01-17 Иннолит Текнолоджи Аг (Ch/Ch) Battery cell
EP4199150A1 (en) 2021-12-17 2023-06-21 Innolith Technology AG Rechargeable battery cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1175423A4 (en) * 1999-03-10 2002-10-25 Univ Colorado State Res Found Weakly coordinating anions containing polyfluoroalkoxide ligands
DE19959722A1 (en) * 1999-12-10 2001-06-13 Merck Patent Gmbh Alkyl spiroborate salts for use in electrochemical cells
WO2015007586A1 (en) * 2013-07-19 2015-01-22 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium sulphur batteries
EP2827430A1 (en) * 2013-07-19 2015-01-21 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium ion batteries
EP3022797B1 (en) * 2013-07-19 2019-01-02 Basf Se Use of reactive lithium alkoxyborates as electrolyte additives in electrolytes for lithium ion batteries
US20220231336A1 (en) * 2019-03-14 2022-07-21 Mitsui Chemicals, Inc. Lithium borate compound, additive for lithium secondary battery, nonaqueous electrolytic solution for lithium secondary battery, precursor for lithium secondary battery, and production method for lithium secondary battery
CN112467220B (en) * 2020-12-03 2022-04-08 珠海冠宇电池股份有限公司 Electrolyte suitable for silicon-carbon system lithium ion battery
CN113764739A (en) * 2021-09-06 2021-12-07 中国科学院青岛生物能源与过程研究所 Wide-temperature-zone high-concentration double-salt flame-retardant electrolyte and application thereof in high-nickel lithium ion battery
CN117586295A (en) * 2024-01-18 2024-02-23 山东海化集团有限公司 Preparation method of sodium tetra (pentafluorophenol) borate and application of sodium tetra (pentafluorophenol) borate in sodium electricity

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788178C1 (en) * 2019-07-31 2023-01-17 Иннолит Текнолоджи Аг (Ch/Ch) Battery cell
WO2021019043A1 (en) * 2019-07-31 2021-02-04 Innolith Technology AG Rechargeable battery cell
WO2021019042A1 (en) * 2019-07-31 2021-02-04 Innolith Technology AG Rechargeable battery cell
WO2021019044A1 (en) * 2019-07-31 2021-02-04 Innolith Technology AG So2-based electrolyte for a rechargeable battery cell, and rechargeable battery cell comprising same
WO2021019041A1 (en) * 2019-07-31 2021-02-04 Innolith Technology AG Rechargeable battery cell
WO2021019047A1 (en) * 2019-07-31 2021-02-04 Innolith Technology AG Rechargeable battery cell
WO2021019045A1 (en) * 2019-07-31 2021-02-04 Innolith Technology AG Rechargeable battery cell
US11942594B2 (en) 2019-07-31 2024-03-26 Innolith Technology AG Rechargeable battery cell
US11901504B2 (en) 2019-07-31 2024-02-13 Innolith Technology AG Rechargeable battery cell having an SO2-based electrolyte
US11876170B2 (en) 2019-07-31 2024-01-16 Innolith Technology AG Rechargeable battery cell
EP3772129A1 (en) * 2019-07-31 2021-02-03 Innolith Assets AG So2-based electrolyte for rechargeable battery cell and rechargeable battery cell comprising the same
US11710849B2 (en) 2019-07-31 2023-07-25 Innolith Technology AG SO2-based electrolyte for a rechargeable battery cell, and rechargeable battery cells
WO2022162008A1 (en) 2021-01-29 2022-08-04 Innolith Technology AG Rechargeable battery cell
WO2022161996A1 (en) 2021-01-29 2022-08-04 Innolith Technology AG Rechargeable battery cell
WO2022162005A1 (en) 2021-01-29 2022-08-04 Innolith Technology AG So2-based electrolyte for a rechargeable battery cell, and rechargeable battery cell
EP4037051A1 (en) 2021-01-29 2022-08-03 Innolith Technology AG Rechargeable battery cell
EP4037056A1 (en) 2021-01-29 2022-08-03 Innolith Technology AG So2-based electrolyte for rechargeable battery cell and rechargeable battery cell
EP4037036A1 (en) 2021-01-29 2022-08-03 Innolith Technology AG Rechargeable battery cell
EP4199150A1 (en) 2021-12-17 2023-06-21 Innolith Technology AG Rechargeable battery cell
WO2023111070A1 (en) 2021-12-17 2023-06-22 Innolith Technology AG Rechargeable battery cell

Also Published As

Publication number Publication date
JP2000243437A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
JP3439085B2 (en) Non-aqueous electrolyte secondary battery
JP3669064B2 (en) Nonaqueous electrolyte secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JP5017778B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP4306858B2 (en) Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JPH0864237A (en) Nonaqueous electrolyte battery
JPH09147913A (en) Nonaqueous electrolyte battery
JPH07320779A (en) Nonaqueous electrolytic battery
JPH10289731A (en) Nonaqueous electrolytic battery
JPH11111332A (en) Nonaqueous electrolyte battery
JP4082853B2 (en) Lithium secondary battery
JP4248258B2 (en) Lithium secondary battery
JP3625679B2 (en) Lithium secondary battery
JP3748843B2 (en) Organic electrolyte secondary battery
JP2004342575A (en) Secondary battery
JP3172445B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2000100469A (en) Nonaqueous electrolyte battery
JP4036717B2 (en) Nonaqueous electrolyte secondary battery
KR102449845B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery
JPH117977A (en) Non-aqueous electrolyte battery
JP4194248B2 (en) Lithium secondary battery
JP3619702B2 (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees