JPH07122297A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH07122297A
JPH07122297A JP5291331A JP29133193A JPH07122297A JP H07122297 A JPH07122297 A JP H07122297A JP 5291331 A JP5291331 A JP 5291331A JP 29133193 A JP29133193 A JP 29133193A JP H07122297 A JPH07122297 A JP H07122297A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
negative electrode
positive electrode
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5291331A
Other languages
Japanese (ja)
Inventor
Atsushi Suemori
敦 末森
Yoshihiro Shoji
良浩 小路
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5291331A priority Critical patent/JPH07122297A/en
Publication of JPH07122297A publication Critical patent/JPH07122297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve reserving characteristic and cycle characteristic of a battery using LiPF6 as a material of an electrolyte solute by adding acid anhydride into a non-aqueous electrolyte having hexafluoro lithium phosphate as a solute. CONSTITUTION:A positive electrode 1 and a negative electrode 2 are housed inside a negative electrode jar 7 in a spirally wound state via a separator 3, into which a non-aqueous electrolyte is injected. The positive electrode 1 is connected to a positive electrode outside terminal via a positive electrode lead 4 while the negative electrode 2 is connected to the negative electrode jar 7 via a negative electrode lead 5 so that chemical energy generated inside the battery can be taken out as electric energy. The non-aqueous electrolyte includes mainly hexafluoro lithium phosphate, added with acid anhydride. Consequently, water content contained in a battery system reacts with the acid anhydride, and decomposition of LiPF6 due to the reaction with the water can be restrained when the water content is dissipated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液電池に係わ
り、詳しくは非水電解液電池の保存特性(一次及び二次
電池)及びサイクル特性(二次電池)の改善を目的とし
た、非水電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more specifically, to improve storage characteristics (primary and secondary batteries) and cycle characteristics (secondary battery) of the non-aqueous electrolyte battery. , Improvement of non-aqueous electrolyte.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
金属リチウム又はリチウムイオンを吸蔵、放出し得る合
金又は炭素材料を負極材料とする非水電解液電池が、高
容量化が可能な電池として注目されている。
2. Description of the Related Art In recent years,
A non-aqueous electrolyte battery using an alloy or a carbon material capable of inserting and extracting metallic lithium or lithium ions as a negative electrode material has been attracting attention as a battery capable of increasing the capacity.

【0003】この種の電池に用いられる非水電解液の溶
質としては、トリフルオロメタンスルホン酸リチウム
(LiCF3 SO3 )、ヘキサフルオロリン酸リチウム
(LiPF6 )などが良く知られている。なかでも、L
iPF6 は、それを溶質とする非水電解液の電導度が高
く、優れた高率放電特性を発現する非水電解液電池を得
ることを可能にするので、最も注目されている溶質の一
つである。
Lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ) and the like are well known as solutes of the non-aqueous electrolyte used in this type of battery. Above all, L
Since iPF 6 has a high electric conductivity in the non-aqueous electrolyte solution using it as a solute, and makes it possible to obtain a non-aqueous electrolyte battery exhibiting excellent high rate discharge characteristics, iPF 6 is one of the most noticeable solutes. Is one.

【0004】しかしながら、LiPF6 を用いた非水電
解液電池を長期間保存したり、また二次電池の場合にお
いて、充電後の状態(炭素材料内にリチウムイオンが吸
蔵された状態、又は、金属リチウムの表面に活性なリチ
ウムイオンが析出した状態)で長期間保存したりする
と、電池系内に存在する水分(正負極中の水分及び電解
液中の水分)又は電池系外から侵入した水分によりLi
PF6 が分解し、この分解生成物と負極に存在するリチ
ウムとが反応して負極表面にその反応生成物が付着す
る。その結果、負極の反応面積が小さくなり、負極容量
が次第に減少する。このようなことから、従来の非水電
解液電池には、一次電池であるか、二次電池であるかを
問わず保存特性が良くないという問題があった。
However, a non-aqueous electrolyte battery using LiPF 6 is stored for a long period of time, and in the case of a secondary battery, it is in a state after charging (a state in which lithium ions are occluded in the carbon material, or a metal material). If stored for a long period of time in a state where active lithium ions are deposited on the surface of lithium), the water present in the battery system (water in the positive and negative electrodes and water in the electrolyte) or water entering from outside the battery system Li
PF 6 is decomposed, and the decomposition product reacts with lithium existing in the negative electrode to attach the reaction product to the surface of the negative electrode. As a result, the reaction area of the negative electrode becomes small, and the negative electrode capacity gradually decreases. Therefore, the conventional non-aqueous electrolyte battery has a problem that the storage characteristics are not good regardless of whether it is a primary battery or a secondary battery.

【0005】特に、充放電を繰り返し行う二次電池にあ
っては、充放電サイクルの進行に伴い負極の反応面積が
次第に減少するため、サイクル特性が良くないという問
題もあった。
Particularly, in a secondary battery which is repeatedly charged and discharged, the reaction area of the negative electrode gradually decreases as the charging and discharging cycle progresses, so that there is a problem that the cycle characteristics are not good.

【0006】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、電解液溶質として
LiPF6 を用いた非水電解液電池の保存特性(一次及
び二次電池)及びサイクル特性(二次電池)を改善する
ことにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to preserve characteristics of a non-aqueous electrolyte battery using LiPF 6 as an electrolyte solute (primary and secondary batteries). And improving cycle characteristics (secondary battery).

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解液電池(以下「本発明電池」と
称する。)は、正極と、金属リチウム又はリチウムイオ
ンを吸蔵、放出し得る物質を負極材料とする負極と、ヘ
キサフルオロリン酸リチウムを溶質とする非水電解液と
を備える非水電解液電池において、前記非水電解液に酸
無水物が添加されていることを特徴とする。
A non-aqueous electrolyte battery according to the present invention (hereinafter referred to as "the battery of the present invention") according to the present invention for achieving the above object is a positive electrode and stores and releases metallic lithium or lithium ions. In a non-aqueous electrolyte battery comprising a negative electrode having a substance capable of being a negative electrode material and a non-aqueous electrolyte solution having lithium hexafluorophosphate as a solute, it is possible to add an acid anhydride to the non-aqueous electrolyte solution. Characterize.

【0008】酸無水物としては、無水酢酸、無水プロピ
オン酸等の一塩基酸及びこれらの誘導体や、無水コハク
酸、無水フタル酸、無水マレイン酸等の二塩基酸及びこ
れらの誘導体が代表的なものとして例示され、また、酸
無水物は液体(例えば、無水酢酸)であるか、固体(例
えば、無水コハク酸)であるかを問わない。
Typical acid anhydrides are monobasic acids such as acetic anhydride and propionic anhydride and their derivatives, and dibasic acids such as succinic anhydride, phthalic anhydride and maleic anhydride and their derivatives. The acid anhydride may be a liquid (eg, acetic anhydride) or a solid (eg, succinic anhydride).

【0009】酸無水物の添加量は電池内に含まれる水分
の量により異ならしめる必要があるが、一般的には、非
水電解液の総量に対して0.1〜10重量%とするのが
好ましい。0.1重量%未満では添加効果が充分に発現
されず、一方10重量%を超えると電解液不足が顕著と
なる。
The amount of the acid anhydride to be added needs to be varied depending on the amount of water contained in the battery, but it is generally 0.1 to 10% by weight based on the total amount of the non-aqueous electrolyte. Is preferred. If it is less than 0.1% by weight, the effect of addition is not sufficiently exhibited, while if it exceeds 10% by weight, the electrolyte solution becomes deficient.

【0010】本発明は、電池系内の水分を添加せる酸無
水物と反応させて消失せしめることにより、LiPF6
を非水電解液の溶質として用いた場合に問題となってい
た水との反応によるLiPF6 の分解を抑制し、もって
非水電解液電池の保存特性及びサイクル特性を改善し得
たものである。それゆえ、正極材料、負極材料、非水電
解液の溶媒などについては、従来非水電解液電池用とし
て提案され、或いは実用されている種々の材料を特に制
限なく用いることが可能である。
In the present invention, LiPF 6 is produced by reacting with an acid anhydride to which water is added in the battery system to eliminate it.
It is possible to suppress decomposition of LiPF 6 due to reaction with water, which has been a problem when solute is used as a solute of the non-aqueous electrolyte, and thereby improve the storage characteristics and cycle characteristics of the non-aqueous electrolyte battery. . Therefore, as the positive electrode material, the negative electrode material, the solvent of the non-aqueous electrolyte solution, and the like, various materials conventionally proposed or put into practical use for the non-aqueous electrolyte battery can be used without particular limitation.

【0011】二次電池の場合の正極材料(活物質)とし
ては、LiCoO2 、LiNiO2、LiMnO2 、L
iFeO2 が例示され、一次電池の場合の正極材料とし
てはMnO2 、フッ化黒鉛が例示される。
In the case of a secondary battery, positive electrode materials (active materials) include LiCoO 2 , LiNiO 2 , LiMnO 2 and L.
iFeO 2 is exemplified, and MnO 2 and fluorinated graphite are exemplified as the positive electrode material in the case of the primary battery.

【0012】二次電池の場合の負極材料としては、金属
リチウム又はリチウムイオンを吸蔵、放出し得る合金及
び炭素材料が例示され、一次電池の場合の負極材料とし
ては金属リチウムが例示される。
[0012] Examples of the negative electrode material in the case of the secondary battery include metallic lithium and alloys and carbon materials capable of inserting and extracting lithium ions, and examples of the negative electrode material in the case of the primary battery include metallic lithium.

【0013】溶媒としては、エチレンカーボネート、ビ
ニレンカーボネート、プロピレンカーボネートなどの有
機溶媒や、これらとジメチルカーボネート、ジエチルカ
ーボネート、1,2−ジメトキシエタン、1,2−ジエ
トキシエタン、エトキシメトキシエタンなどの低沸点溶
媒との混合溶媒が例示される。
Examples of the solvent include organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, and low solvents such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane and ethoxymethoxyethane. A mixed solvent with a boiling point solvent is exemplified.

【0014】[0014]

【作用】本発明においては、非水電解液に酸無水物が添
加されているので、電池系内に発生した水はこの酸無水
物と反応して、カルボン酸に戻る(例えば、無水酢酸の
場合には水と反応して酢酸となる)。したがって、非水
電解液一次電池を長期間保存したり、非水電解液二次電
池を充電後の状態で長期間保存したりしたときのLiP
6 の分解劣化が抑制される。それゆえ、LiPF6
分解生成物と負極に存在するリチウムとが反応し、この
反応生成物が負極表面に付着することに起因する負極の
反応面積の減少が抑制される。
In the present invention, since the acid anhydride is added to the non-aqueous electrolyte, the water generated in the battery system reacts with this acid anhydride to return to the carboxylic acid (for example, acetic anhydride In some cases it reacts with water to form acetic acid). Therefore, LiP when the non-aqueous electrolyte primary battery is stored for a long period of time or the non-aqueous electrolyte secondary battery is stored for a long period of time after being charged.
The decomposition and degradation of F 6 is suppressed. Therefore, the decomposition product of LiPF 6 reacts with lithium existing on the negative electrode, and the reduction of the reaction area of the negative electrode due to the reaction product adhering to the surface of the negative electrode is suppressed.

【0015】特に、非水電解液二次電池においては、充
放電時のLiPF6 の分解劣化も抑制されるので、充放
電サイクルの進行に伴う電池容量の低下が抑制される。
Particularly, in the non-aqueous electrolyte secondary battery, decomposition and deterioration of LiPF 6 at the time of charging / discharging is also suppressed, so that the decrease in battery capacity with the progress of charging / discharging cycle is suppressed.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0017】(実施例1)単3型(AAサイズ)の非水
電解液二次電池(本発明電池)を作製した。
Example 1 AA type (AA size) non-aqueous electrolyte secondary battery (the battery of the present invention) was produced.

【0018】〔正極〕800°Cで熱処理して作製され
た正極活物質としてのLiCoO2 と導電剤としての人
造黒鉛と結着剤としてのポリフッ化ビニリデンとの重量
比が85:10:5となるように、LiCoO2 と人造
黒鉛とを混合して得た混合物を、ポリフッ化ビニリデン
の5重量%N−メチルピロリドン(NMP)溶液に分散
させてスラリーを調製し、このスラリーをドクターブレ
ード法にて正極集電体としてのアルミニウム箔の両面に
塗布した後、130°Cで2時間真空乾燥して正極を作
製した。
[Positive electrode] LiCoO 2 as a positive electrode active material produced by heat treatment at 800 ° C., artificial graphite as a conductive agent, and polyvinylidene fluoride as a binder have a weight ratio of 85: 10: 5. As such, a mixture obtained by mixing LiCoO 2 and artificial graphite is dispersed in a 5 wt% N-methylpyrrolidone (NMP) solution of polyvinylidene fluoride to prepare a slurry, and this slurry is subjected to a doctor blade method. And then applied on both sides of an aluminum foil as a positive electrode current collector, and vacuum dried at 130 ° C. for 2 hours to produce a positive electrode.

【0019】〔負極〕黒鉛粉末とポリフッ化ビニリデン
との重量比が85:15となるように、黒鉛粉末をポリ
フッ化ビニリデンの5重量%NMP溶液に分散させてス
ラリーを調製し、このスラリーをドクターブレード法に
て負極集電体としての銅箔の両面に塗布した後、100
〜150°Cで2時間真空乾燥して負極を作製した。
[Negative Electrode] The graphite powder was dispersed in a 5 wt% NMP solution of polyvinylidene fluoride so that the weight ratio of the graphite powder and polyvinylidene fluoride was 85:15 to prepare a slurry. After coating on both sides of the copper foil as the negative electrode current collector by the blade method, 100
A negative electrode was produced by vacuum drying at 150 ° C for 2 hours.

【0020】〔非水電解液〕エチレンカーボネート(E
C)と1,2−ジメトキシエタン(DME)との等体積
混合溶媒に、LiPF6 を1M(モル/リットル)の割
合で溶かし、次いで無水酢酸を添加混合して無水酢酸を
0.01M含有する非水電解液を調製した。
[Non-aqueous electrolyte] ethylene carbonate (E
C) and 1,2-dimethoxyethane (DME) in an equal volume mixed solvent, LiPF 6 is dissolved at a ratio of 1 M (mol / liter), and then acetic anhydride is added and mixed to contain 0.01 M acetic anhydride. A non-aqueous electrolyte was prepared.

【0021】〔電池の作製〕以上の正負両極及び非水電
解液を用いて単3型の本発明電池BA1を作製した。な
お、セパレータとしては、ポリプロピレン製の微多孔膜
(ヘキストセラニーズ社製、商品名「セルガード」)を
使用し、これに先の非水電解液を含浸させた。
[Production of Battery] AA-type battery BA1 of the present invention was produced using the above-described positive and negative electrodes and the non-aqueous electrolyte. As the separator, a polypropylene microporous film (Hoechst Celanese Co., Ltd., trade name “Celgard”) was used and impregnated with the above non-aqueous electrolyte.

【0022】図1は作製した本発明電池BA1を模式的
に示す断面図であり、図示の本発明電池BA1は、正極
1、負極2、これら両電極を離間するセパレータ3、正
極リード4、負極リード5、正極外部端子6、負極缶7
などからなる。正極1及び負極2は、非水電解液を注入
されたセパレータ3を介して渦巻き状に巻き取られた状
態で負極缶7内に収容されており、正極1は正極リード
4を介して正極外部端子6に、また負極2は負極リード
5を介して負極缶7に接続され、電池内部で生じた化学
エネルギーを電気エネルギーとして外部へ取り出し得る
ようになっている。
FIG. 1 is a cross-sectional view schematically showing the produced battery BA1 of the present invention. The illustrated battery BA1 of the present invention includes a positive electrode 1, a negative electrode 2, a separator 3 for separating the two electrodes, a positive electrode lead 4, and a negative electrode. Lead 5, positive electrode external terminal 6, negative electrode can 7
And so on. The positive electrode 1 and the negative electrode 2 are housed in the negative electrode can 7 in a state of being spirally wound via the separator 3 in which the nonaqueous electrolytic solution is injected, and the positive electrode 1 is externally connected to the positive electrode via the positive electrode lead 4. The terminal 6 and the negative electrode 2 are connected to the negative electrode can 7 via the negative electrode lead 5 so that chemical energy generated inside the battery can be taken out as electric energy to the outside.

【0023】(比較例1)無水酢酸を添加しなかったこ
と以外は実施例1と同様にして、非水電解液を調製し
た。次いで、この非水電解液を用いたこと以外は実施例
1と同様にして単3型の比較電池BC1を作製した。
Comparative Example 1 A non-aqueous electrolytic solution was prepared in the same manner as in Example 1 except that acetic anhydride was not added. Next, an AA type comparative battery BC1 was produced in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used.

【0024】〔サイクル特性〕本発明電池BA1及び比
較電池BC1について、200mAで充電終止電圧4.
1Vまで充電した後、200mAで放電終止電圧2.7
5Vまで放電する工程を1サイクルとする充放電サイク
ル試験を行った。結果を図2に示す。なお、本試験で
は、放電容量が400mAhとなった時点を電池寿命と
考え、その時点で試験を終了した。
[Cycle Characteristics] With respect to the battery BA1 of the present invention and the comparative battery BC1, the end-of-charge voltage at 200 mA was 4.
After charging to 1V, discharge end voltage is 2.7 at 200mA.
A charging / discharging cycle test in which the step of discharging up to 5 V was defined as one cycle was performed. The results are shown in Figure 2. In this test, the time when the discharge capacity reached 400 mAh was considered to be the battery life, and the test was terminated at that time.

【0025】図2は、各電池のサイクル特性を、縦軸に
放電容量(mAh)を、また横軸にサイクル数(回)を
とって示したグラフであり、同図に示すように本発明電
池BA1では電池寿命が約600サイクルと長いのに対
して、比較電池BC1では電池寿命が約500サイクル
と短い。このことから、充放電サイクル時のLiPF6
の分解に起因する放電容量の低下が、無水酢酸を添加す
ることにより顕著に抑制されることが分かる。
FIG. 2 is a graph showing the cycle characteristics of each battery, in which the vertical axis represents the discharge capacity (mAh) and the horizontal axis represents the number of cycles (times). As shown in FIG. The battery BA1 has a long battery life of about 600 cycles, while the comparative battery BC1 has a short battery life of about 500 cycles. From this fact, LiPF 6 during charge / discharge cycle
It can be seen that the decrease in the discharge capacity due to the decomposition of the is significantly suppressed by adding acetic anhydride.

【0026】図3は、非水電解液への無水酢酸の添加割
合を種々変えた場合の非水電解液中の無水酢酸の重量割
合(%)とサイクル寿命(放電容量が400mAhに到
るまでのサイクル数(回))との関係を示すグラフであ
り、同図より、無水酢酸の場合は、非水電解液中に無水
酢酸を0.1〜10重量%の範囲内で添加することが好
ましいことが分かる。
FIG. 3 shows the weight ratio (%) of acetic anhydride in the non-aqueous electrolyte and the cycle life (up to a discharge capacity of 400 mAh) when the proportion of acetic anhydride added to the non-aqueous electrolyte was variously changed. Is a graph showing the relationship between the number of cycles (number of times) and the acetic anhydride in the nonaqueous electrolytic solution within the range of 0.1 to 10% by weight. It turns out to be preferable.

【0027】〔保存特性〕本発明電池BA1及び比較電
池BC1について、200mAで充電終止電圧4.1V
まで充電した後、60°Cで10日間保存し(常温で約
半年間保存するのに相当)、保存前後の電池容量を調べ
た。結果を表1に示す。
[Storage Characteristics] With respect to the battery BA1 of the present invention and the comparative battery BC1, the end-of-charge voltage of 4.1 V at 200 mA.
After being charged up to 60 ° C., it was stored for 10 days (corresponding to storage for about half a year at room temperature), and the battery capacity before and after storage was examined. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、本発明電池BA
1では容量維持率が99%と極めて高いのに対して、比
較電池BC1では容量維持率が88%と低くなってい
る。このことから、充電状態で保存したときのLiPF
6 の分解に起因する放電容量の低下が、非水電解液に無
水酢酸を添加することにより顕著に抑制されることが分
かる。
As is clear from Table 1, the battery BA of the present invention
1 has a very high capacity retention rate of 99%, whereas Comparative Battery BC1 has a low capacity retention rate of 88%. From this, LiPF when stored in the charged state
It can be seen that the decrease in discharge capacity due to the decomposition of 6 is significantly suppressed by adding acetic anhydride to the non-aqueous electrolyte.

【0030】(実施例2)ECとDMEとの等体積混合
溶媒に代えてプロピレンカーボネートとDMEとの等体
積混合溶媒を用いたこと以外は実施例1と同様にして、
非水電解液を調製した。次いで、この非水電解液を用い
たこと以外は実施例1と同様にして単3型の本発明電池
BA2を作製した。
(Example 2) In the same manner as in Example 1 except that an equal volume mixed solvent of propylene carbonate and DME was used in place of the equal volume mixed solvent of EC and DME.
A non-aqueous electrolyte was prepared. Next, an AA-type battery BA2 of the present invention was produced in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used.

【0031】(実施例3)無水酢酸に代えて無水プロピ
オン酸を0.01M添加混合したこと以外は実施例2と
同様にして、非水電解液を調製した。次いで、この非水
電解液を用いたこと以外は実施例1と同様にして単3型
の本発明電池BA3を作製した。
Example 3 A nonaqueous electrolytic solution was prepared in the same manner as in Example 2 except that 0.01M of propionic anhydride was added and mixed instead of acetic anhydride. Next, an AA-type battery BA3 of the present invention was produced in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used.

【0032】(実施例4)無水酢酸に代えて無水コハク
酸を0.01M添加混合したこと以外は実施例2と同様
にして、非水電解液を調製した。次いで、この非水電解
液を用いたこと以外は実施例1と同様にして単3型の本
発明電池BA4を作製した。
Example 4 A nonaqueous electrolytic solution was prepared in the same manner as in Example 2 except that 0.01M of succinic anhydride was added and mixed instead of acetic anhydride. Next, an AA-type battery BA4 of the present invention was produced in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used.

【0033】(比較例2)無水酢酸を添加混合しなかっ
たこと以外は実施例2と同様にして、非水電解液を調製
した。次いで、この非水電解液を用いたこと以外は実施
例1と同様にして単3型の比較電池BC2を作製した。
Comparative Example 2 A non-aqueous electrolyte solution was prepared in the same manner as in Example 2 except that acetic anhydride was not added and mixed. Next, an AA type comparative battery BC2 was produced in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used.

【0034】〔サイクル特性〕本発明電池BA2〜BA
4及び比較電池BC2について、先の充放電サイクル試
験条件と同じ条件で充放電サイクル試験を行い、各電池
のサイクル特性を調べた。結果を図4に示す。なお、先
の充放電サイクル試験と同様、放電容量が400mAh
となった時点を電池寿命と考え、その時点で試験を終了
した。
[Cycle Characteristics] Batteries BA2 to BA of the present invention
4 and the comparative battery BC2 were subjected to a charge / discharge cycle test under the same conditions as the above charge / discharge cycle test conditions to examine the cycle characteristics of each battery. The results are shown in Fig. 4. As in the previous charge / discharge cycle test, the discharge capacity was 400 mAh.
The battery life was considered to be the time when the test became, and the test was terminated at that time.

【0035】図4は、各電池のサイクル特性を、縦軸に
放電容量(mAh)を、また横軸にサイクル数(回)を
とって示したグラフであり、同図に示すように本発明電
池BA2〜BA4では電池寿命が600サイクル以上と
長いのに対して、比較電池BC2では電池寿命が約50
0サイクルと短い。これも、前出の〔サイクル特性〕の
ところで述べた理由と同じ理由によるものと考えられ
る。
FIG. 4 is a graph showing the cycle characteristics of each battery, in which the vertical axis represents the discharge capacity (mAh) and the horizontal axis represents the number of cycles (times). As shown in FIG. The batteries BA2 to BA4 have a long battery life of 600 cycles or more, while the comparative battery BC2 has a battery life of about 50.
As short as 0 cycles. It is considered that this is also due to the same reason as described in the above [Cycle characteristics].

【0036】叙上の実施例では、本発明を非水電解液二
次電池に適用する場合を例に挙げて説明したが、非水電
解液一次電池に適用した場合においても同様の優れた効
果が得られる。
In the above embodiments, the case where the present invention is applied to the non-aqueous electrolyte secondary battery has been described as an example, but the same excellent effect can be obtained when applied to the non-aqueous electrolyte primary battery. Is obtained.

【0037】更に、上記実施例では、酸無水物として無
水酢酸、無水プロピオン酸、無水コハク酸を用いる場合
を例に挙げて説明したが、無水酢酸等の誘導体や無水フ
タル酸、無水マレイン酸及びこれらの誘導体などの外、
他の酸無水物を用いた場合にも同様の優れた保存特性及
びサイクル特性を発現する非水電解液電池を得ることが
可能である。
Further, in the above embodiments, the case where acetic anhydride, propionic anhydride, and succinic anhydride are used as the acid anhydride has been described as an example. However, derivatives such as acetic anhydride, phthalic anhydride, maleic anhydride and Besides these derivatives,
Even when other acid anhydride is used, it is possible to obtain a non-aqueous electrolyte battery exhibiting the same excellent storage characteristics and cycle characteristics.

【0038】[0038]

【発明の効果】電池系内の水分によるLiPF6 の分解
劣化が、非水電解液に添加せる酸無水物により抑制され
るため、本発明電池は保存特性に優れるとともに、特に
二次電池にあっては、充放電時のLiPF6 の分解劣化
が起こりにくくなるため、サイクル特性にも優れる。
The decomposition and deterioration of LiPF 6 due to the water content in the battery system is suppressed by the acid anhydride added to the non-aqueous electrolyte solution. Therefore, the battery of the present invention has excellent storage characteristics and is particularly suitable for secondary batteries. As a result, decomposition and deterioration of LiPF 6 during charging / discharging are less likely to occur, so that cycle characteristics are also excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】単3型の本発明電池の断面図である。FIG. 1 is a sectional view of an AA battery of the present invention.

【図2】本発明電池及び比較電池の各サイクル特性を示
すグラフである。
FIG. 2 is a graph showing each cycle characteristic of the battery of the present invention and the comparative battery.

【図3】非水電解液中の無水酢酸の重量割合(%)とサ
イクル寿命(回)との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the weight ratio (%) of acetic anhydride in the non-aqueous electrolyte and the cycle life (times).

【図4】本発明電池及び比較電池の各サイクル特性を示
すグラフである。
FIG. 4 is a graph showing each cycle characteristic of the battery of the present invention and the comparative battery.

【符号の説明】[Explanation of symbols]

BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Inventive battery 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、金属リチウム又はリチウムイオン
を吸蔵、放出し得る物質を負極材料とする負極と、ヘキ
サフルオロリン酸リチウムを溶質とする非水電解液とを
備える非水電解液電池において、前記非水電解液に酸無
水物が添加されていることを特徴とする非水電解液電
池。
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode having a negative electrode material made of a substance capable of occluding and releasing metallic lithium or lithium ions, and a non-aqueous electrolytic solution having lithium hexafluorophosphate as a solute. A non-aqueous electrolyte battery in which an acid anhydride is added to the non-aqueous electrolyte.
【請求項2】前記酸無水物が、無水酢酸、無水プロピオ
ン酸、無水コハク酸、無水フタル酸、無水マレイン酸又
はこれらの誘導体である請求項1記載の非水電解液電
池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the acid anhydride is acetic anhydride, propionic anhydride, succinic anhydride, phthalic anhydride, maleic anhydride or a derivative thereof.
JP5291331A 1993-10-26 1993-10-26 Non-aqueous electrolyte battery Pending JPH07122297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5291331A JPH07122297A (en) 1993-10-26 1993-10-26 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5291331A JPH07122297A (en) 1993-10-26 1993-10-26 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH07122297A true JPH07122297A (en) 1995-05-12

Family

ID=17767536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5291331A Pending JPH07122297A (en) 1993-10-26 1993-10-26 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH07122297A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077628A (en) * 1997-04-21 2000-06-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery
JP2000268859A (en) * 1999-03-15 2000-09-29 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US6235431B1 (en) 1997-06-24 2001-05-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery using the same
JP2001297793A (en) * 2000-04-13 2001-10-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary cell and nonaqueous liquid used for the same
JP2001307770A (en) * 2000-04-19 2001-11-02 Mitsui Chemicals Inc Electrolytic solution for lithium storage battery and secondary battery using the same
JP2002100400A (en) * 2000-09-20 2002-04-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte solution and nonaqueous electrolyte secondary cell
JP2002352852A (en) * 2001-05-23 2002-12-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary cell
US6790555B2 (en) 1999-07-28 2004-09-14 Mitsubishi Chemical Corporation Electrochemical cell having a controlled electrode surface
US7297447B2 (en) 2001-12-11 2007-11-20 Hitachi Maxell, Ltd. Non-aqueous electrolyte battery
EP3261155A1 (en) * 2016-06-22 2017-12-27 Kansai Paint Co., Ltd Conductive paste and mixture paste for lithium ion battery positive electrode
JP2019008923A (en) * 2017-06-22 2019-01-17 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2019175592A (en) * 2018-03-27 2019-10-10 トヨタ自動車株式会社 Electrolyte solution and lithium ion battery
US10978737B2 (en) 2014-06-23 2021-04-13 Nec Corporation Nonaqueous electrolyte solution and secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077628A (en) * 1997-04-21 2000-06-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery
US6235431B1 (en) 1997-06-24 2001-05-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery using the same
JP2000268859A (en) * 1999-03-15 2000-09-29 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US6790555B2 (en) 1999-07-28 2004-09-14 Mitsubishi Chemical Corporation Electrochemical cell having a controlled electrode surface
JP4590680B2 (en) * 2000-04-13 2010-12-01 三菱化学株式会社 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2001297793A (en) * 2000-04-13 2001-10-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary cell and nonaqueous liquid used for the same
JP2001307770A (en) * 2000-04-19 2001-11-02 Mitsui Chemicals Inc Electrolytic solution for lithium storage battery and secondary battery using the same
JP2002100400A (en) * 2000-09-20 2002-04-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte solution and nonaqueous electrolyte secondary cell
JP2002352852A (en) * 2001-05-23 2002-12-06 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary cell
US7297447B2 (en) 2001-12-11 2007-11-20 Hitachi Maxell, Ltd. Non-aqueous electrolyte battery
US10978737B2 (en) 2014-06-23 2021-04-13 Nec Corporation Nonaqueous electrolyte solution and secondary battery
EP3261155A1 (en) * 2016-06-22 2017-12-27 Kansai Paint Co., Ltd Conductive paste and mixture paste for lithium ion battery positive electrode
CN107528067A (en) * 2016-06-22 2017-12-29 关西涂料株式会社 Lithium ion cell positive is with electrocondution slurry and lithium ion cell positive composite material sizing agent
US10468683B2 (en) 2016-06-22 2019-11-05 Kansai Paint Co., Ltd. Conductive paste and mixture paste for lithium ion battery positive electrode
JP2019008923A (en) * 2017-06-22 2019-01-17 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2019175592A (en) * 2018-03-27 2019-10-10 トヨタ自動車株式会社 Electrolyte solution and lithium ion battery

Similar Documents

Publication Publication Date Title
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JPH0945373A (en) Lithium secondary battery
JP2004014405A (en) Non-aqueous electrolyte secondary battery
JP4056117B2 (en) Lithium secondary battery
JP2011181427A (en) Lithium secondary battery
JPH07122297A (en) Non-aqueous electrolyte battery
JPH07235297A (en) Nonaqueous electrolyte secondary battery
JP3188033B2 (en) Non-aqueous secondary battery
JPH06231754A (en) Non-aqueous electrolyte secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JP3349399B2 (en) Lithium secondary battery
JPH05290844A (en) Lithium secondary battery
JPH09147910A (en) Lithium secondary battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JPH07114940A (en) Non-aqueous electrolyte secondary battery
JP3238980B2 (en) Lithium secondary battery
JP3188032B2 (en) Lithium secondary battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JPH08306386A (en) Manaqueous electrolyte secondary battery
JP3213458B2 (en) Non-aqueous electrolyte secondary battery
JPH08171934A (en) Lithium secondary battery
JPH06111820A (en) Nonaqueous battery
JP2000215910A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using it