JP2011181427A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2011181427A
JP2011181427A JP2010046201A JP2010046201A JP2011181427A JP 2011181427 A JP2011181427 A JP 2011181427A JP 2010046201 A JP2010046201 A JP 2010046201A JP 2010046201 A JP2010046201 A JP 2010046201A JP 2011181427 A JP2011181427 A JP 2011181427A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010046201A
Other languages
Japanese (ja)
Inventor
Tomokazu Yoshida
智一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010046201A priority Critical patent/JP2011181427A/en
Publication of JP2011181427A publication Critical patent/JP2011181427A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To improve low-temperature output characteristics and a preservation characteristic in a lithium secondary battery using an oxy-anion compound containing lithium and iron as a positive electrode active material. <P>SOLUTION: In the lithium secondary battery including a positive electrode 1 having the oxy-anion compound containing lithium and iron as a positive electrode active material, a negative electrode 2 having a carbon material as a negative electrode active material, wherein graphite and amorphous carbon come in contact with each other, and a nonaqueous electrolyte wherein an electrolyte containing fluorine is dissolved in a nonaqueous solvent, the nonaqueous electrolyte contains vinylene carbonate, and at least one of the positive electrode, the negative electrode, and the nonaqueous electrolyte contains lithium chloride. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えたリチウム二次電池に関するものであり、特に、正極活物質にリチウムと鉄とを含有するオキシアニオン化合物を用い、負極活物質に黒鉛と非晶質炭素とが接触した炭素材料を用いると共に、非水系溶媒にフッ素を含む電解質が溶解された非水電解液を用いたリチウム二次電池において、その低温出力特性及び保存特性を向上させるようにした点に特徴を有するものである。   The present invention relates to a lithium secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte obtained by dissolving a solute in a non-aqueous solvent. Non-aqueous electrolysis in which an oxyanion compound containing lithium and iron is used as a material, a carbon material in which graphite and amorphous carbon are in contact is used as a negative electrode active material, and an electrolyte containing fluorine is dissolved in a non-aqueous solvent The lithium secondary battery using the liquid is characterized in that its low-temperature output characteristics and storage characteristics are improved.

近年、高出力,高エネルギー密度の新型二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにしたリチウム二次電池が広く利用されるようになった。   In recent years, lithium secondary batteries using a non-aqueous electrolyte and moving lithium ions between a positive electrode and a negative electrode for charging and discharging are widely used as new secondary batteries with high output and high energy density. It became so.

そして、このようなリチウム二次電池においては、一般に、正極における正極活物質にコバルト酸リチウムLiCoO2を用い、負極における負極活物質にリチウム金属やリチウム合金やリチウムの吸蔵・放出が可能な炭素材料を用い、非水電解液として、エチレンカーボネートやジエチルカーボネート等の非水系溶媒にLiBF4やLiPF6等のリチウム塩からなる電解質を溶解させたものが使用されている。 In such a lithium secondary battery, generally, lithium cobalt oxide LiCoO 2 is used as the positive electrode active material in the positive electrode, and lithium metal, a lithium alloy, or a carbon material capable of occluding and releasing lithium is used as the negative electrode active material in the negative electrode. As a non-aqueous electrolyte, a solution obtained by dissolving an electrolyte composed of a lithium salt such as LiBF 4 or LiPF 6 in a non-aqueous solvent such as ethylene carbonate or diethyl carbonate is used.

ここで、正極活物質のLiCoO2に使用されるCoは希少な資源であり、生産コストが高くつくと共に、安定した供給が困難になる等の問題があった。また、正極活物質にLiCoO2を用いたリチウム二次電池においては、一般に、充電状態での高温下における熱安定性が悪く、高温状態での電池特性が低下するという問題もあった。 Here, Co used for the positive electrode active material LiCoO 2 is a scarce resource, and there are problems such as high production costs and difficulty in stable supply. In addition, lithium secondary batteries using LiCoO 2 as a positive electrode active material generally have a problem that the thermal stability at high temperature in the charged state is poor and the battery characteristics at high temperature are deteriorated.

また、従来においては、上記のLiCoO2に代わる正極活物質として、スピネルマンガン酸リチウムLiMn24を用いることも検討されている。 Conventionally, the use of lithium spinel manganate LiMn 2 O 4 as a positive electrode active material in place of LiCoO 2 has also been studied.

しかし、正極活物質にLiMn24を用いたリチウム二次電池においては、十分な放電容量を得ることが困難であり、また電池温度が高くなると、正極活物質のLiMn24中におけるマンガンMnが溶解し、サイクル特性等の電池特性が大きく低下する等の問題があった。 However, in a lithium secondary battery using LiMn 2 O 4 as a positive electrode active material, it is difficult to obtain a sufficient discharge capacity, and when the battery temperature increases, manganese in the LiMn 2 O 4 of the positive electrode active material There is a problem that Mn is dissolved and battery characteristics such as cycle characteristics are greatly deteriorated.

また、従来においては、上記のような正極活物質に代わるものとして、一般式LiMPO4(式中、Mは、Co,Ni,Mn及びFeから選択される少なくとも1種以上の元素である。)で表されるオリビン構造を有するリチウム含有リン酸塩を用いることが検討されている。 Conventionally, as a substitute for the positive electrode active material as described above, the general formula LiMPO 4 (wherein M is at least one element selected from Co, Ni, Mn and Fe). The use of a lithium-containing phosphate having an olivine structure represented by

ここで、このようなリチウム含有リン酸塩は、核となる金属元素Mの種類によって作動電圧が異なり、Mの選択により電池電圧を任意に選定できると共に、理論容量も140mAh/g〜170mAh/g程度と比較的高いので、単位質量あたりの電池容量を大きくすることができる。特に、上記の金属元素Mに安価な鉄Feを用いたLiFePO4を使用することにより、リチウム二次電池の製造コストを大幅に低減させることができる。 Here, such a lithium-containing phosphate has a different operating voltage depending on the kind of the core metal element M, and the battery voltage can be arbitrarily selected by selecting M, and the theoretical capacity is 140 mAh / g to 170 mAh / g. Since it is relatively high, the battery capacity per unit mass can be increased. In particular, by using LiFePO 4 using inexpensive iron Fe as the metal element M, the manufacturing cost of the lithium secondary battery can be greatly reduced.

しかし、正極活物質にLiFePO4を使用したリチウム二次電池の場合、高温環境下で充放電を繰り返して行うと、正極活物質中におけるFeが溶出して、炭素材料等からなる負極活物質に悪影響を及ぼし、容量やサイクル特性が低下する等の問題があった。 However, in the case of a lithium secondary battery using LiFePO 4 as a positive electrode active material, when charging and discharging are repeated in a high temperature environment, Fe in the positive electrode active material is eluted, and a negative electrode active material made of a carbon material or the like is obtained. There were problems such as adversely affecting the capacity and cycle characteristics.

そして、近年においては、特許文献1に示されるように、正極活物質にLiFePO4を使用したリチウム二次電池において、エチレンカーボネートとジエチルカーボネートとの混合溶媒や、エチレンカーボネートとエチルメチルカーボネートとの混合溶媒を主成分とする非水系溶媒にLiPF6を主成分とする電解質を溶解させた非水電解液に、ビニレンカーボネートやビニルエチレンカーボネートを含有させるようにしたものが提案されている。 In recent years, as shown in Patent Document 1, in a lithium secondary battery using LiFePO 4 as a positive electrode active material, a mixed solvent of ethylene carbonate and diethyl carbonate, or a mixture of ethylene carbonate and ethyl methyl carbonate is used. There has been proposed a nonaqueous electrolytic solution in which an electrolyte mainly composed of LiPF 6 is dissolved in a nonaqueous solvent mainly composed of a solvent so that vinylene carbonate or vinyl ethylene carbonate is contained therein.

そして、この特許文献1においては、上記のように非水電解液に含有させたビニレンカーボネートやビニルエチレンカーボネートにより、正極活物質や負極活物質の表面に安定な被膜が形成されて、正極活物質中におけるFeが溶出するのが抑制されると共に、溶出したFeが炭素材料等からなる負極活物質に悪影響を及ぼすのが抑制され、容量やサイクル特性が低下するのが防止されるということが示されている。   And in this patent document 1, the stable film is formed in the surface of a positive electrode active material or a negative electrode active material with the vinylene carbonate or vinyl ethylene carbonate contained in the non-aqueous electrolyte as mentioned above, and positive electrode active material It is shown that Fe in the inside is suppressed, and that the eluted Fe is prevented from adversely affecting the negative electrode active material made of a carbon material or the like, thereby preventing a decrease in capacity and cycle characteristics. Has been.

しかし、このように正極活物質にLiFePO4を使用したリチウム二次電池において、その非水電解液にビニレンカーボネートやビニルエチレンカーボネートを含有させた場合においても、このリチウム二次電池における低温出力特性や保存特性を十分に向上させることは困難であった。 However, in the lithium secondary battery using LiFePO 4 as the positive electrode active material in this way, even when vinylene carbonate or vinyl ethylene carbonate is contained in the non-aqueous electrolyte, the low-temperature output characteristics of the lithium secondary battery It has been difficult to sufficiently improve the storage characteristics.

特開2009−4357号公報JP 2009-4357 A

本発明は、正極活物質にLiFePO4等のオリビン構造を有するリチウム含有リン酸塩を用いたリチウム二次電池における上記のような問題を解決することを課題とするものである。 An object of the present invention is to solve the above-mentioned problems in a lithium secondary battery using a lithium-containing phosphate having an olivine structure such as LiFePO 4 as a positive electrode active material.

特に、本発明においては、正極活物質にLiFePO4等のリチウムと鉄とを含有するオキシアニオン化合物を用い、負極活物質に黒鉛と非晶質炭素とが接触した炭素材料を用いると共に、非水系溶媒にフッ素を含む電解質が溶解された非水電解液を用いたリチウム二次電池において、その低温出力特性及び保存特性を向上させることを課題とするものである。 In particular, in the present invention, an oxyanion compound containing lithium and iron such as LiFePO 4 is used as the positive electrode active material, and a carbon material in which graphite and amorphous carbon are in contact is used as the negative electrode active material. An object of the present invention is to improve the low-temperature output characteristics and storage characteristics of a lithium secondary battery using a nonaqueous electrolytic solution in which an electrolyte containing fluorine is dissolved in a solvent.

本発明においては、上記のような課題を解決するため、正極活物質としてリチウムと鉄とを含有するオキシアニオン化合物を含む正極と、負極活物質として黒鉛と非晶質炭素とが接触した炭素材料を含む負極と、非水系溶媒にフッ素を含む電解質が溶解された非水電解液とを備えたリチウム二次電池において、上記の非水電解液にビニレンカーボネートを含有させると共に、上記の正極と負極と非水電解液との少なくとも1つに塩化リチウムを含有させるようにした。   In the present invention, in order to solve the above-mentioned problems, a positive electrode containing an oxyanion compound containing lithium and iron as a positive electrode active material, and a carbon material in which graphite and amorphous carbon are in contact as a negative electrode active material A lithium secondary battery comprising a non-aqueous electrolyte in which an electrolyte containing fluorine is dissolved in a non-aqueous solvent, and the non-aqueous electrolyte contains vinylene carbonate, and the positive electrode and the negative electrode And at least one of the non-aqueous electrolyte solution contains lithium chloride.

ここで、正極活物質に用いる上記のリチウムと鉄とを含有するオキシアニオン化合物としては、前記のように理論容量が大きくかつ安価なオリビン構造を有するリチウム含有リン酸塩であるLiFePO4を用いることが好ましい。 Here, as the oxyanion compound containing lithium and iron used for the positive electrode active material, LiFePO 4 which is a lithium-containing phosphate having a large theoretical capacity and an olivine structure as described above is used. Is preferred.

また、負極活物質に用いる黒鉛と非晶質炭素とが接触した炭素材料としては、低温での出力特性を向上させるため、黒鉛の表面の少なくとも一部を非晶質炭素で被覆させたものを用いることが好ましい。ここで、黒鉛の表面を被覆させる非晶質炭素の量が少ないと、リチウム二次電池の低温での出力特性を十分に向上させることが困難になる一方、非晶質炭素の量が多くなりすぎると、リチウム二次電池の保存特性が低下する。このため、上記の炭素材料における非晶質炭素の量を0.1〜10質量%の範囲にすることが好ましい。   In addition, as a carbon material in which graphite and amorphous carbon used for the negative electrode active material are in contact, a material in which at least a part of the surface of graphite is coated with amorphous carbon is used in order to improve output characteristics at low temperature. It is preferable to use it. Here, if the amount of amorphous carbon covering the surface of the graphite is small, it will be difficult to sufficiently improve the low temperature output characteristics of the lithium secondary battery, while the amount of amorphous carbon will increase. If it is too high, the storage characteristics of the lithium secondary battery will be reduced. For this reason, it is preferable to make the quantity of the amorphous carbon in said carbon material into the range of 0.1-10 mass%.

また、上記の非水電解液における非水系溶媒としては、リチウム二次電池において一般に使用されているものを用いることができ、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートや、1,2−ジメトキシエタン,1,2−ジエトキシエタンなどのエーテル類等を用いることができ、また上記の環状カーボネートと鎖状カーボネートとの混合溶媒や、上記の環状カーボネートとエーテル類との混合溶媒を用いることができる。   In addition, as the non-aqueous solvent in the non-aqueous electrolyte, those generally used in lithium secondary batteries can be used, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and dimethyl carbonate. , Chain carbonates such as methyl ethyl carbonate and diethyl carbonate, ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, etc. can be used. A mixed solvent or a mixed solvent of the above cyclic carbonate and ether can be used.

また、上記の非水系溶媒に溶解させるフッ素を含む電解質としては、例えば、一般式LiXFp(式中、Xは、P,As,Sb,Al,B,Bi,Ga又はInであり、XがP,As,Sbである場合にpは6であり、XがAl,B,Bi,Ga,Inである場合にpは4である。)、一般式LiN(Cm2m+1SO2)(Cn2n+1SO2)(式中、mは1,2,3又は4,nは1,2,3又は4である。)、一般式LiC(Cl2l+1SO2)(Cm2m+1SO2)(Cn2n+1SO2)(式中、lは1,2,3又は4、mは1,2,3又は4、nは1,2,3又は4である。)で表されるフッ素を含む化合物及びこれらの混合物を用いることができる。なお、上記の一般式LiXFpで表されるフッ素を含む化合物の場合、その濃度は溶解せずに析出しない範囲で高いほど好ましい。 Examples of the electrolyte containing fluorine dissolved in the non-aqueous solvent include, for example, a general formula LiXF p (wherein X is P, As, Sb, Al, B, Bi, Ga, or In, and X is In the case of P, As, Sb, p is 6, and in the case where X is Al, B, Bi, Ga, In, p is 4.), the general formula LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ) (wherein m is 1, 2, 3 or 4, n is 1, 2, 3 or 4), general formula LiC (C l F 2l + 1 SO 2) (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) ( wherein, l is 1, 2, 3 or 4, m is 1, 2, 3 or 4, n is 1, 2, 3 or 4) and a mixture containing fluorine and a mixture thereof can be used. In the case of a compound containing fluorine represented by the above general formula LiXF p, its concentration is preferably higher within a range not precipitated without being dissolved.

そして、上記の非水電解液にビニレンカーボネートを含有させるにあたり、ビニレンカーボネートの量が少なすぎると、上記の正極活物質の表面に十分な被膜が形成されず、正極活物質中のFeが溶出するのを十分に抑制することが困難になる一方、ビニレンカーボネートの量が多くなると、正極活物質の界面抵抗が大きくなって充放電特性が低下する。このため、非水電解液に含有させるビニレンカーボネートの量を0.1質量%〜5質量%の範囲にすることが好ましい。   When the amount of vinylene carbonate is too small to contain vinylene carbonate in the nonaqueous electrolytic solution, a sufficient film is not formed on the surface of the positive electrode active material, and Fe in the positive electrode active material is eluted. On the other hand, when the amount of vinylene carbonate increases, the interfacial resistance of the positive electrode active material increases and the charge / discharge characteristics deteriorate. For this reason, it is preferable to make the quantity of vinylene carbonate contained in a non-aqueous electrolyte into the range of 0.1 mass%-5 mass%.

また、上記のように正極と負極と非水電解液との少なくとも1つに塩化リチウムを含有させると、非水電解液における上記のフッ素を含む電解質が水分と反応してHFが発生するのが抑制されるようになる。ここで、非水電解液におけるフッ素を含む電解質が水分と反応するのをより効率的に抑制するためには、塩化リチウムを非水電解液に含有させることが好ましい。   In addition, when lithium chloride is contained in at least one of the positive electrode, the negative electrode, and the non-aqueous electrolyte as described above, the above-described fluorine-containing electrolyte in the non-aqueous electrolyte reacts with moisture to generate HF. It will be suppressed. Here, in order to more efficiently suppress the electrolyte containing fluorine in the non-aqueous electrolyte from reacting with moisture, it is preferable to contain lithium chloride in the non-aqueous electrolyte.

また、このように塩化リチウムを非水電解液に含有させるにあたり、塩化リチウムの量が少ないと、フッ素を含む電解質が水分と反応してHFが発生するのを十分に抑制することができなくなる一方、塩化リチウムの量が多くなりすぎると、非水電解液におけるリチウムイオンの電導性が低下して、リチウム二次電池の充放電特性が低下する。このため、非水電解液中に含有させる塩化リチウムの量を0.01〜0.1mol/lの範囲にすることが好ましい。   In addition, when lithium chloride is contained in the non-aqueous electrolyte as described above, if the amount of lithium chloride is small, the electrolyte containing fluorine cannot sufficiently suppress the generation of HF by reacting with moisture. If the amount of lithium chloride is too large, the conductivity of lithium ions in the non-aqueous electrolyte is lowered, and the charge / discharge characteristics of the lithium secondary battery are lowered. For this reason, it is preferable to make the quantity of lithium chloride contained in a non-aqueous electrolyte into the range of 0.01-0.1 mol / l.

本発明のリチウム二次電池においては、正極活物質にリチウムと鉄とを含有するオキシアニオン化合物を用いるようにしたため、正極活物質にLiCoO2を用いた場合に比べてコストが低減され、またLiMn24を用いた場合に比べて十分な電池容量が得られるようになる。 In the lithium secondary battery of the present invention, since the oxyanion compound containing lithium and iron is used as the positive electrode active material, the cost is reduced as compared with the case where LiCoO 2 is used as the positive electrode active material. A sufficient battery capacity can be obtained as compared with the case of using 2 O 4 .

また、本発明のリチウム二次電池においては、負極活物質に黒鉛と非晶質炭素とが接触した炭素材料を用いるようにしたため、リチウムの受入れ及び放出性能が向上して、リチウム二次電池における出力特性が向上される。   In the lithium secondary battery of the present invention, since a carbon material in which graphite and amorphous carbon are in contact with each other is used as the negative electrode active material, lithium receiving and releasing performance is improved. Output characteristics are improved.

また、本発明のリチウム二次電池においては、非水電解液にビニレンカーボネートを含有させるようにしたため、正極活物質や負極活物質の表面に安定な被膜が形成され、正極活物質中における鉄が非水電解液中に溶出するのが抑制されると共に、溶出された鉄が負極活物質に悪影響を及ぼすのが抑制され、リチウム二次電池の容量やサイクル特性が低下するのが防止される。   Further, in the lithium secondary battery of the present invention, vinylene carbonate is contained in the non-aqueous electrolyte, so that a stable film is formed on the surface of the positive electrode active material or the negative electrode active material, and iron in the positive electrode active material Elution into the non-aqueous electrolyte is suppressed, and the eluted iron is prevented from adversely affecting the negative electrode active material, thereby preventing the capacity and cycle characteristics of the lithium secondary battery from deteriorating.

さらに、本発明のリチウム二次電池においては、非水系溶媒にフッ素を含む電解質を溶解させた非水電解液を用いた場合に、正極と負極と非水電解液との少なくとも1つに塩化リチウムを含有させるようにしたため、非水電解液におけるフッ素を含む電解質が水分と反応してHFが発生するのが抑制され、これにより正極活物質中における鉄が溶出するのが一層抑制されるようになる。   Furthermore, in the lithium secondary battery of the present invention, when a non-aqueous electrolyte in which an electrolyte containing fluorine is dissolved in a non-aqueous solvent is used, lithium chloride is added to at least one of the positive electrode, the negative electrode, and the non-aqueous electrolyte. As a result, the fluorine-containing electrolyte in the nonaqueous electrolytic solution is inhibited from reacting with moisture to generate HF, thereby further suppressing the elution of iron in the positive electrode active material. Become.

この結果、本発明のリチウム二次電池においては、高温環境下においても十分な保存特性が得られると共に、低温環境下においても十分な出力特性が得られるようになる。   As a result, in the lithium secondary battery of the present invention, sufficient storage characteristics can be obtained even in a high temperature environment, and sufficient output characteristics can be obtained even in a low temperature environment.

本発明の実施例及び比較例において作製したリチウム二次電池の概略断面図である。It is a schematic sectional drawing of the lithium secondary battery produced in the Example and comparative example of this invention.

以下、この発明に係るリチウム二次電池について実施例を挙げて具体的に説明すると共に、この実施例に係るリチウム二次電池においては、正極活物質にリチウムと鉄とを含有するオキシアニオン化合物を用いた場合においても、高温環境下において十分な保存特性が得られると共に、低温環境下において十分な出力特性が得られることを、比較例を挙げて明らかにする。なお、本発明のリチウム二次電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the lithium secondary battery according to the present invention will be specifically described with reference to examples. In the lithium secondary battery according to this example, an oxyanion compound containing lithium and iron as a positive electrode active material is used. Even when used, it will be clarified by giving a comparative example that sufficient storage characteristics can be obtained under a high temperature environment and sufficient output characteristics can be obtained under a low temperature environment. The lithium secondary battery of the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications within a range that does not change the gist thereof.

(実施例1)
実施例1においては、下記のようにして作製した正極と負極と非水電解液とを用い、直径が18mm,高さが65mmになった図1に示すような円筒型のリチウム二次電池を作製した。
Example 1
In Example 1, a cylindrical lithium secondary battery as shown in FIG. 1 having a diameter of 18 mm and a height of 65 mm using a positive electrode, a negative electrode, and a nonaqueous electrolyte prepared as described below was used. Produced.

[正極の作製]
正極活物質を得るにあたり、Fe3(PO42・7H2OとH3PO4とLiOHとを1:1:3.1のモル比になるように計量した。
[Production of positive electrode]
In obtaining the positive electrode active material, Fe 3 (PO 4 ) 2 · 7H 2 O, H 3 PO 4 and LiOH were weighed so as to have a molar ratio of 1: 1: 3.1.

そして、上記のFe3(PO42・7H2Oと水とを1:2の質量比にし、これを混合させてFe3(PO42・7H2Oを溶解させた後、さらに上記のH3PO4を溶解させた。 Then, the Fe 3 (PO 4 ) 2 · 7H 2 O and water are mixed at a mass ratio of 1: 2 and mixed to dissolve Fe 3 (PO 4 ) 2 · 7H 2 O. The above H 3 PO 4 was dissolved.

次いで、上記の水溶液をスターラーで攪拌しながら、上記のLiOHと水とを1:10の質量比で混合させたLiOH水溶液を徐々に添加させた。その後、オートクレーブ中で160℃の温度で5時間水熱処理して、LiFePO4を合成した。 Next, while stirring the above aqueous solution with a stirrer, a LiOH aqueous solution in which the above LiOH and water were mixed at a mass ratio of 1:10 was gradually added. Then, hydrothermal treatment was performed for 5 hours at a temperature of 160 ° C. in an autoclave to synthesize LiFePO 4 .

そして、このように合成したLiFePO4とスクロースと水とを20:6:8の質量比になるようにし、これをボールミルにより100rpmで18分間混合させた後、これを50℃で乾燥させ、その後、真空中において850℃で5時間熱処理して、LiFePO4の表面に炭素が付着された正極活物質を得た。なお、この正極活物質の平均粒径は0.7μm、BET比表面積は14m/gであった。 Then, LiFePO 4 synthesized in this way, sucrose, and water were adjusted to a mass ratio of 20: 6: 8, and this was mixed by a ball mill at 100 rpm for 18 minutes, and then dried at 50 ° C., Then, heat treatment was performed in a vacuum at 850 ° C. for 5 hours to obtain a positive electrode active material in which carbon was adhered to the surface of LiFePO 4 . The positive electrode active material had an average particle size of 0.7 μm and a BET specific surface area of 14 m 2 / g.

次いで、上記の正極活物質と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンとを90:5:5の重量比になるようにして混合させた後、N−メチル−2−ピロリドンを適量加えて正極合剤スラリーを作製した。   Next, the positive electrode active material, the conductive agent acetylene black, and the binder polyvinylidene fluoride were mixed in a weight ratio of 90: 5: 5, and then N-methyl-2-pyrrolidone was mixed. An appropriate amount of was added to prepare a positive electrode mixture slurry.

そして、この正極合剤スラリーをドクターブレード法によりアルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、55mm×750mmの大きさに切断し、これを圧延ローラにより圧延させた後、正極リードを取り付けて正極を作製した。   Then, this positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil by a doctor blade method, dried, then cut into a size of 55 mm × 750 mm, and rolled with a rolling roller. Then, a positive electrode lead was attached to produce a positive electrode.

[負極の作製]
負極を作製するにあたっては、天然黒鉛の表面の一部が非晶質炭素で被覆された非晶質炭素被覆天然黒鉛と、結着剤のポリフッ化ビニリデンとを98:2の質量比になるように混合した後、N−メチル−2−ピロリドンを適量加えて負極合剤スラリーを作製した。
[Production of negative electrode]
In producing the negative electrode, the mass ratio of the amorphous carbon-coated natural graphite in which a part of the surface of natural graphite is coated with amorphous carbon and the polyvinylidene fluoride as a binder is set to a mass ratio of 98: 2. Then, an appropriate amount of N-methyl-2-pyrrolidone was added to prepare a negative electrode mixture slurry.

そして、この負極合剤スラリーをドクターブレード法により銅箔からなる負極集電体の両面に塗布し、これを乾燥させた後、58mm×850mmの大きさに切断し、これを圧延ローラにより圧延させた後、負極リードを取り付けて負極を作製した。   Then, this negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector made of copper foil by the doctor blade method, dried, and then cut into a size of 58 mm × 850 mm, which was rolled by a rolling roller. After that, a negative electrode lead was attached to produce a negative electrode.

[非水電解液の作製]
非水電解液の作製においては、非水系溶媒のエチレンカーボネートとエチルメチルカーボネートとを3:7の体積比で混合した混合溶媒に、溶質のLiPF6を1.0mol/lの濃度になるように溶解させて非水電解液を作製し、この非水電解液に対してビニレンカーボネート(VC)を1質量%添加させ、さらに、この非水電解液に塩化リチウム(LiCl)を0.05mol/l添加させた。
[Preparation of non-aqueous electrolyte]
In the preparation of the non-aqueous electrolyte, the solute LiPF 6 is adjusted to a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate, which are non-aqueous solvents, are mixed at a volume ratio of 3: 7. A non-aqueous electrolyte is prepared by dissolution, and 1% by mass of vinylene carbonate (VC) is added to the non-aqueous electrolyte. Further, 0.05 mol / l of lithium chloride (LiCl) is added to the non-aqueous electrolyte. Added.

[電池の作製]
電池を作製するにあたっては、図1に示すように、上記のようにして作製した正極1と負極2との間に、リチウムイオン透過性のポリエチレン製の微多孔膜からなるセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させ、正極1に設けた上記の正極集電リード1aを正極外部端子5aが設けられた正極蓋5に接続させると共に、負極2に設けた上記の負極集電リード2aを電池缶4に接続させ、この電池缶4内に上記の非水電解液を注液して封口し、電池缶4と正極蓋5とを絶縁パッキン6により電気的に分離させた。
[Production of battery]
In producing the battery, as shown in FIG. 1, a separator 3 made of a lithium ion-permeable polyethylene microporous membrane is interposed between the positive electrode 1 and the negative electrode 2 produced as described above, These are spirally wound and accommodated in the battery can 4, and the positive electrode current collecting lead 1 a provided on the positive electrode 1 is connected to the positive electrode lid 5 provided with the positive electrode external terminal 5 a and the above described provided on the negative electrode 2. The negative electrode current collecting lead 2 a is connected to the battery can 4, the nonaqueous electrolyte is poured into the battery can 4 and sealed, and the battery can 4 and the positive electrode lid 5 are electrically connected by the insulating packing 6. Separated.

(実施例2)
実施例2においては、上記の実施例1における非水電解液の作製において、非水電解液に添加させる塩化リチウム(LiCl)の量を0.1mol/lに変更させた。そして、この非水電解液を用いる以外は、上記の実施例1の場合と同様にしてリチウム二次電池を作製した。
(Example 2)
In Example 2, the amount of lithium chloride (LiCl) added to the non-aqueous electrolyte in the preparation of the non-aqueous electrolyte in Example 1 was changed to 0.1 mol / l. And the lithium secondary battery was produced like the case of said Example 1 except using this non-aqueous electrolyte.

(比較例1)
比較例1においては、上記の実施例1における非水電解液の作製において、非水電解液にビニレンカーボネート(VC)を1質量%添加させるだけで、塩化リチウム(LiCl)を添加させないようにした。そして、この非水電解液を用いる以外は、上記の実施例1の場合と同様にしてリチウム二次電池を作製した。
(Comparative Example 1)
In Comparative Example 1, in the preparation of the non-aqueous electrolyte in Example 1 above, only 1% by mass of vinylene carbonate (VC) was added to the non-aqueous electrolyte, and lithium chloride (LiCl) was not added. . And the lithium secondary battery was produced like the case of said Example 1 except using this non-aqueous electrolyte.

(比較例2)
比較例2においては、上記の実施例1における非水電解液の作製において、非水電解液にビニレンカーボネート(VC)を添加させずに、塩化リチウム(LiCl)だけを0.05mol/l添加させるようにした。そして、この非水電解液を用いる以外は、上記の実施例1の場合と同様にしてリチウム二次電池を作製した。
(Comparative Example 2)
In Comparative Example 2, in the preparation of the non-aqueous electrolyte in Example 1 above, 0.05 mol / l of lithium chloride (LiCl) alone is added without adding vinylene carbonate (VC) to the non-aqueous electrolyte. I did it. And the lithium secondary battery was produced like the case of said Example 1 except using this non-aqueous electrolyte.

(比較例3)
比較例3においては、上記の実施例1における負極の作製において、負極活物質に非晶質炭素を被覆させていない天然黒鉛を用いると共に、実施例1における非水電解液の作製において、上記の比較例1と同様に、非水電解液にビニレンカーボネート(VC)を1質量%添加させるだけで、塩化リチウム(LiCl)を添加させないようにした。そして、上記の負極と非水電解液とを用いる以外は、上記の実施例1の場合と同様にしてリチウム二次電池を作製した。
(Comparative Example 3)
In Comparative Example 3, natural graphite not coated with amorphous carbon was used for the negative electrode active material in the production of the negative electrode in Example 1, and in the production of the non-aqueous electrolyte in Example 1, As in Comparative Example 1, only 1% by mass of vinylene carbonate (VC) was added to the nonaqueous electrolytic solution, and lithium chloride (LiCl) was not added. And the lithium secondary battery was produced like the case of said Example 1 except using said negative electrode and non-aqueous electrolyte.

(比較例4)
比較例4においては、上記の実施例1における正極の作製において、正極活物質にLiNi0.33Co0.33Mn0.332を用いると共に、実施例1における非水電解液の作製において、上記の比較例1と同様に、非水電解液にビニレンカーボネート(VC)を1質量%添加させるだけで、塩化リチウム(LiCl)を添加させないようにした。そして、上記の正極と非水電解液とを用いる以外は、上記の実施例1の場合と同様にしてリチウム二次電池を作製した。
(Comparative Example 4)
In Comparative Example 4, LiNi 0.33 Co 0.33 Mn 0.33 O 2 was used as the positive electrode active material in the production of the positive electrode in Example 1, and in the production of the non-aqueous electrolyte in Example 1, the above Comparative Example 1 was used. In the same manner as described above, only 1% by mass of vinylene carbonate (VC) was added to the nonaqueous electrolytic solution, and lithium chloride (LiCl) was not added. And the lithium secondary battery was produced like the case of said Example 1 except using said positive electrode and non-aqueous electrolyte.

次に、上記のようにして作製した実施例1,2及び比較例1〜4の各リチウム二次電池を、それぞれ25℃の条件下において、1000mAの電流で200mAhまで充電した後、60℃の条件下において1日間放置させた。   Next, the lithium secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 4 manufactured as described above were charged to 200 mAh at a current of 1000 mA under the condition of 25 ° C. It was allowed to stand for 1 day under the conditions.

そして、上記の各リチウム二次電池について、放置前の電池電圧Voと放置後の電池電圧Vaとを測定し、下記の式に基づいて放置後の電圧変化(V)を求め、その結果を表1に示した。
電圧変化(V)=Va−Vo
Then, for each of the above lithium secondary batteries, the battery voltage Vo before being left and the battery voltage Va after being left are measured, and the voltage change (V) after being left is obtained based on the following formula, and the result is shown in Table 1. It was shown in 1.
Voltage change (V) = Va-Vo

また、上記の各リチウム二次電池を、それぞれ25℃の条件下において、1000mAの電流で4.2Vになるまで定電流充電させ、さらに4.2Vの状態で電流値が50mAに低下するまで定電圧充電させた後、1000mAの電流で2.0Vになるまで放電させた。   Each lithium secondary battery is charged at a constant current of 1000 mA at a current of 25 mA until the voltage reaches 4.2 V, and further fixed at a voltage of 4.2 V until the current value is reduced to 50 mA. After being charged with voltage, the battery was discharged at a current of 1000 mA until the voltage reached 2.0 V.

その後、上記の各リチウム二次電池を、1000mAの電流値で500mAhまで充電させた後、−20℃の条件下において、500mAと5000mAと10000mAと15000mAの各電流でそれぞれ10秒間放電を行い、それぞれ10秒後における電圧を求めて、各電流値に対する電圧をプロットし、−20℃の条件下において電圧が2.2Vとなる電流値Ia(A)を求め、下記の式に基づいて−20℃での低温出力(W)を算出した。
低温出力(W)=Ia(A)×2.2(V)
Thereafter, each of the lithium secondary batteries described above was charged to 500 mAh at a current value of 1000 mA, and then discharged at a current of 500 mA, 5000 mA, 10000 mA, and 15000 mA for 10 seconds under the condition of −20 ° C., respectively. The voltage after 10 seconds is obtained, the voltage against each current value is plotted, the current value Ia (A) at which the voltage is 2.2 V under the condition of −20 ° C. is obtained, and −20 ° C. based on the following formula: The low temperature output (W) at was calculated.
Low temperature output (W) = Ia (A) x 2.2 (V)

そして、上記のようにして算出した実施例1のリチウム二次電池の低温出力を100として、実施例1,2及び比較例1〜4の各リチウム二次電池における相対低温出力を求め、その結果を表1に示した。   Then, assuming the low temperature output of the lithium secondary battery of Example 1 calculated as described above as 100, the relative low temperature output in each of the lithium secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 4 was obtained, and the result Are shown in Table 1.

Figure 2011181427
Figure 2011181427

この結果、正極活物質にLiFePO4を、負極活物質に非晶質炭素被覆天然黒鉛を用いると共に、フッ素を含む電解質を溶解させた非水電解液にビニレンカーボネート(VC)と塩化リチウム(LiCl)とを含有させた実施例1,2の各リチウム二次電池は、正極活物質にLiNi0.33Co0.33Mn0.332を、負極活物質に非晶質炭素被覆天然黒鉛を用い、フッ素を含む電解質を溶解させた非水電解液にビニレンカーボネート(VC)だけを含有させた比較例4のリチウム二次電池と比べて、高温下での保存特性が若干向上する一方、低温での出力特性が若干低下しているが、正極活物質にLiNi0.33Co0.33Mn0.332を用いたものと同等の特性が得られた。 As a result, LiFePO 4 is used as the positive electrode active material, amorphous carbon-coated natural graphite is used as the negative electrode active material, and vinylene carbonate (VC) and lithium chloride (LiCl) are added to the nonaqueous electrolyte solution in which the fluorine-containing electrolyte is dissolved. In each of the lithium secondary batteries of Examples 1 and 2, the cathode active material is LiNi 0.33 Co 0.33 Mn 0.33 O 2 , the anode active material is amorphous carbon-coated natural graphite, and the electrolyte contains fluorine. Compared with the lithium secondary battery of Comparative Example 4 in which only the vinylene carbonate (VC) is contained in the non-aqueous electrolyte in which the solution is dissolved, the storage characteristics at a high temperature are slightly improved, while the output characteristics at a low temperature are slightly Although decreased, characteristics equivalent to those using LiNi 0.33 Co 0.33 Mn 0.33 O 2 as the positive electrode active material were obtained.

また、正極活物質にLiFePO4を用いた実施例1,2及び比較例1〜3のリチウム二次電池を比較した場合、負極活物質に非晶質炭素を被覆させていない天然黒鉛を用いた比較例3のリチウム二次電池は、低温での出力特性が大きく低下していた。 Moreover, when comparing the lithium secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 using LiFePO 4 as the positive electrode active material, natural graphite not coated with amorphous carbon was used as the negative electrode active material. The lithium secondary battery of Comparative Example 3 had greatly reduced output characteristics at low temperatures.

また、負極活物質に非晶質炭素被覆天然黒鉛を用いたものであっても、フッ素を含む電解質を溶解させた非水電解液に対して、ビニレンカーボネート(VC)だけを含有させた比較例1のリチウム二次電池や、塩化リチウム(LiCl)だけを含有させた比較例2のリチウム二次電池は、フッ素を含む電解質を溶解させた非水電解液に対してビニレンカーボネート(VC)と塩化リチウム(LiCl)との両方を含有させた実施例1,2の各リチウム二次電池に比べて、高温下での保存特性及び低温での出力特性が大きく低下していた。   In addition, even in the case of using amorphous carbon-coated natural graphite as a negative electrode active material, a comparative example in which only vinylene carbonate (VC) is contained in a nonaqueous electrolytic solution in which an electrolyte containing fluorine is dissolved. The lithium secondary battery of No. 1 and the lithium secondary battery of Comparative Example 2 containing only lithium chloride (LiCl) are made of vinylene carbonate (VC) and chloride with respect to a non-aqueous electrolyte in which an electrolyte containing fluorine is dissolved. Compared to each of the lithium secondary batteries of Examples 1 and 2 containing both lithium (LiCl), the storage characteristics at high temperatures and the output characteristics at low temperatures were greatly deteriorated.

なお、上記の実施例においては、塩化リチウム(LiCl)を非水電解液中に含有させたものを示したが、塩化リチウム(LiCl)を正極や負極に含有させた場合にも、この塩化リチウム(LiCl)が非水電解液に溶解されて同様の効果が得られる。   In the above examples, lithium chloride (LiCl) was included in the non-aqueous electrolyte. However, when lithium chloride (LiCl) is included in the positive electrode and the negative electrode, this lithium chloride is also included. (LiCl) is dissolved in the nonaqueous electrolytic solution, and the same effect is obtained.

1 正極
1a 正極集電リード
2 負極
2a 負極集電リード
3 セパレータ
4 電池缶
5 正極蓋
5a 正極外部端子
6 絶縁パッキン
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode current collection lead 2 Negative electrode 2a Negative electrode current collection lead 3 Separator 4 Battery can 5 Positive electrode cover 5a Positive electrode external terminal 6 Insulation packing

Claims (3)

正極活物質としてリチウムと鉄とを含有するオキシアニオン化合物を含む正極と、負極活物質として黒鉛と非晶質炭素とが接触した炭素材料を含む負極と、非水系溶媒にフッ素を含む電解質が溶解された非水電解液とを備え、上記の非水電解液にビニレンカーボネートを含有させると共に、上記の正極と負極と非水電解液との少なくとも1つに塩化リチウムを含有させたことを特徴とするリチウム二次電池。   A positive electrode containing an oxyanion compound containing lithium and iron as a positive electrode active material, a negative electrode containing a carbon material in which graphite and amorphous carbon are in contact as a negative electrode active material, and an electrolyte containing fluorine in a non-aqueous solvent A non-aqueous electrolyte solution containing vinylene carbonate in the non-aqueous electrolyte solution, and at least one of the positive electrode, the negative electrode, and the non-aqueous electrolyte solution containing lithium chloride. Rechargeable lithium battery. 請求項1に記載のリチウム二次電池において、前記の塩化リチウムが非水電解液中に含有されていることを特徴とするリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the lithium chloride is contained in a non-aqueous electrolyte. 請求項1又は請求項2に記載のリチウム二次電池において、前記のリチウムと鉄とを含有するオキシアニオン化合物がLiFePO4であることを特徴とするリチウム二次電池。 3. The lithium secondary battery according to claim 1, wherein the oxyanion compound containing lithium and iron is LiFePO 4. 4 .
JP2010046201A 2010-03-03 2010-03-03 Lithium secondary battery Pending JP2011181427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046201A JP2011181427A (en) 2010-03-03 2010-03-03 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046201A JP2011181427A (en) 2010-03-03 2010-03-03 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2011181427A true JP2011181427A (en) 2011-09-15

Family

ID=44692721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046201A Pending JP2011181427A (en) 2010-03-03 2010-03-03 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2011181427A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115013A1 (en) * 2012-01-31 2013-08-08 住友大阪セメント株式会社 Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
JP2015531971A (en) * 2012-09-03 2015-11-05 スウェレア シコンプ アクチボラグ Battery half-cell, battery and their manufacture
JP2017117804A (en) * 2012-11-22 2017-06-29 エルジー・ケム・リミテッド Lithium secondary battery
JP2018098027A (en) * 2016-12-13 2018-06-21 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
JP2018156803A (en) * 2017-03-17 2018-10-04 旭化成株式会社 Nonaqueous secondary battery
US10128540B2 (en) 2012-11-22 2018-11-13 Lg Chem, Ltd. Lithium secondary battery
CN109164146A (en) * 2018-11-12 2019-01-08 桑顿新能源科技有限公司 A method of water content is judged by being melted into curve
JP2019114531A (en) * 2017-12-22 2019-07-11 ベレノス・クリーン・パワー・ホールディング・アーゲー Liquid electrolyte formulation for lithium metal secondary battery and lithium metal secondary battery comprising the same
WO2019239652A1 (en) * 2018-06-15 2019-12-19 三洋電機株式会社 Non-aqueous electrolyte secondary cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025347B (en) * 2012-01-31 2018-12-28 住友大阪水泥股份有限公司 Manufacturing method, the manufacturing method of electrode plate of electrode material, electrode plate, lithium ion battery and electrode material
CN104025347A (en) * 2012-01-31 2014-09-03 住友大阪水泥股份有限公司 Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
WO2013115013A1 (en) * 2012-01-31 2013-08-08 住友大阪セメント株式会社 Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
US9748563B2 (en) 2012-01-31 2017-08-29 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode plate, lithium ion battery, manufacturing method for electrode material, and manufacturing method for electrode plate
JP2015531971A (en) * 2012-09-03 2015-11-05 スウェレア シコンプ アクチボラグ Battery half-cell, battery and their manufacture
JP2017117804A (en) * 2012-11-22 2017-06-29 エルジー・ケム・リミテッド Lithium secondary battery
US10128540B2 (en) 2012-11-22 2018-11-13 Lg Chem, Ltd. Lithium secondary battery
US10135095B2 (en) 2012-11-22 2018-11-20 Lg Chem, Ltd. Lithium secondary battery
JP2018098027A (en) * 2016-12-13 2018-06-21 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
JP2018156803A (en) * 2017-03-17 2018-10-04 旭化成株式会社 Nonaqueous secondary battery
JP2019114531A (en) * 2017-12-22 2019-07-11 ベレノス・クリーン・パワー・ホールディング・アーゲー Liquid electrolyte formulation for lithium metal secondary battery and lithium metal secondary battery comprising the same
WO2019239652A1 (en) * 2018-06-15 2019-12-19 三洋電機株式会社 Non-aqueous electrolyte secondary cell
CN109164146A (en) * 2018-11-12 2019-01-08 桑顿新能源科技有限公司 A method of water content is judged by being melted into curve
CN109164146B (en) * 2018-11-12 2023-06-09 桑顿新能源科技(长沙)有限公司 Method for judging water content through formation curve

Similar Documents

Publication Publication Date Title
US11251428B2 (en) Positive electrode active material manufacturing method with control of washing slurry liquid electrical conductivity
JP5100024B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4696557B2 (en) Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
JP5116329B2 (en) Nonaqueous electrolyte secondary battery
JP4853608B2 (en) Lithium secondary battery
JP2011181427A (en) Lithium secondary battery
JP4798964B2 (en) Nonaqueous electrolyte secondary battery
JP5991718B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery
US20140315089A1 (en) Positive active material, method of preparing the same, and rechargeable lithium battery including the same
JP2007073487A (en) Nonaqueous electrolyte secondary battery
US20110143216A1 (en) Lithium secondary battery
JP2015128044A (en) Nonaqueous electrolyte secondary battery
JP2007250440A (en) Nonaqueous electrolyte secondary battery
JP2008311211A (en) Nonaqueous electrolyte secondary battery
JP4656349B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, its production method and lithium secondary battery using the same
JP2008135245A (en) Non-aqueous electrolyte secondary battery
JP6522661B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4693372B2 (en) Nonaqueous electrolyte secondary battery
JP5006599B2 (en) Lithium ion secondary battery
JP2001052698A (en) Lithium secondary battery
JP5209944B2 (en) Anode material for lithium ion batteries
JP5196718B2 (en) Nonaqueous electrolyte secondary battery
JP2002334703A (en) Lithium battery
JP3349373B2 (en) Lithium secondary battery
JP2001052700A (en) Lithium secondary battery