JP3349373B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3349373B2
JP3349373B2 JP31873696A JP31873696A JP3349373B2 JP 3349373 B2 JP3349373 B2 JP 3349373B2 JP 31873696 A JP31873696 A JP 31873696A JP 31873696 A JP31873696 A JP 31873696A JP 3349373 B2 JP3349373 B2 JP 3349373B2
Authority
JP
Japan
Prior art keywords
lithium
battery
carbon material
negative electrode
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31873696A
Other languages
Japanese (ja)
Other versions
JPH10144316A (en
Inventor
丈志 前田
直哉 中西
宏史 黒河
正久 藤本
俊之 能間
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31873696A priority Critical patent/JP3349373B2/en
Publication of JPH10144316A publication Critical patent/JPH10144316A/en
Application granted granted Critical
Publication of JP3349373B2 publication Critical patent/JP3349373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、リチウム二次電池
に係わり、詳しくは充放電サイクル特性に優れたリチウ
ム二次電池を得ることを目的とした、負極に使用するリ
チウムイオン吸蔵材の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to an improvement in a lithium ion storage material used for a negative electrode for the purpose of obtaining a lithium secondary battery having excellent charge / discharge cycle characteristics. .

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池が、アルカリ水溶液を電解液として使
用するニッケル・カドミウム二次電池等のアルカリ二次
電池と異なり、水の分解電圧を考慮する必要がないため
に高電圧設計が可能であるなどの理由から、注目されて
いる。
2. Description of the Related Art In recent years,
Unlike alkaline rechargeable batteries, such as nickel-cadmium rechargeable batteries, which use an aqueous alkaline solution as the electrolyte, lithium secondary batteries do not need to consider the decomposition voltage of water. For reasons, attention has been paid.

【0003】従来、この種の二次電池の負極材料として
は、当初、金属リチウムが考えられていた。この負極材
料を使用した場合、充電時にリチウム負極の表面にリチ
ウムが電析し、放電時に電析したリチウムがリチウムイ
オンとなって電解液中に溶出する。しかし、金属リチウ
ムを使用した場合は、樹枝状の電析リチウムの成長に因
り内部短絡が起こる虞れがある。そこで、実用電池で
は、このような問題が無い、充放電時にリチウムイオン
を電気化学的に吸蔵及び放出することが可能な炭素材料
が使用されている。
Conventionally, metallic lithium was initially considered as a negative electrode material for this type of secondary battery. When this negative electrode material is used, lithium is deposited on the surface of the lithium negative electrode during charging, and the lithium deposited during discharging becomes lithium ions and elutes into the electrolyte. However, when metal lithium is used, an internal short circuit may occur due to the growth of dendritic lithium. Therefore, in a practical battery, a carbon material that does not have such a problem and that can electrochemically occlude and release lithium ions during charge and discharge is used.

【0004】リチウムイオンを電気化学的に吸蔵及び放
出することが可能な炭素材料の代表的なものとしては、
コークス系のものと黒鉛系のものとがあり、コークス系
の炭素材料は約200mAh/gの比容量を、また黒鉛
系の炭素材料は約370mAh/gの比容量を有してい
る。
[0004] Typical carbon materials capable of electrochemically storing and releasing lithium ions include:
There are a coke type and a graphite type. The coke type carbon material has a specific capacity of about 200 mAh / g, and the graphite type carbon material has a specific capacity of about 370 mAh / g.

【0005】ところで、最近、携帯機器用電源などに対
する充電間隔の長期化の要請から、電池容量の一層の高
容量化が求められている。このため、炭素材料に比べて
比容量が大きい、SnO2 、SnO等の錫の酸化物が、
負極のリチウムイオン吸蔵材として提案されている(特
開平7−122274号公報参照)。
[0005] Recently, a demand for a longer charging interval for a power supply for a portable device or the like has led to a demand for higher battery capacity. For this reason, tin oxides such as SnO 2 and SnO, which have a larger specific capacity than the carbon material,
It has been proposed as a lithium ion storage material for a negative electrode (see JP-A-7-122274).

【0006】しかし、錫の酸化物を負極のリチウムイオ
ン吸蔵材として使用したリチウム二次電池には、錫の酸
化物の結晶構造が極めて不安定なため、充放電サイクル
特性が極めて良くないという問題があった。
However, a lithium secondary battery using tin oxide as a lithium ion storage material for a negative electrode has a problem that the charge / discharge cycle characteristics are extremely poor because the crystal structure of tin oxide is extremely unstable. was there.

【0007】充放電サイクル特性に優れた錫の酸化物と
しては、充放電の繰り返しに伴う結晶構造の崩壊が起こ
りにくい、錫と、リチウム、ナトリウム、カリウム、マ
グネシウム、カルシウム、チタン、ジルコニウム、バナ
ジウム、ニオブ、タンタル、モリブデン、タングステ
ン、マンガン、鉄、ロジウム、イリジウム、銅、珪素、
ゲルマニウム又はビスマスとの複合酸化物が提案されて
いる(特開平6−338325号公報参照)。この複合
酸化物を使用した場合、先の錫の酸化物を使用した場合
に比べて、充放電サイクル特性をかなり改善することが
できる。
[0007] Tin oxide having excellent charge-discharge cycle characteristics includes tin, lithium, sodium, potassium, magnesium, calcium, titanium, zirconium, vanadium, and tin, which are less likely to undergo a crystal structure collapse due to repeated charge and discharge. Niobium, tantalum, molybdenum, tungsten, manganese, iron, rhodium, iridium, copper, silicon,
A composite oxide with germanium or bismuth has been proposed (see JP-A-6-338325). When this composite oxide is used, the charge / discharge cycle characteristics can be considerably improved as compared with the case where the tin oxide is used.

【0008】しかし、上記の複合酸化物は、充電末期の
電位変化が極めて急激なため、過充電され易い。過充電
は容量劣化の一因となる。そこで、本発明者らは、過充
電に因る容量劣化を抑制すれば、充放電サイクル特性を
一層改善することができるのではないかと考えた。
However, the above-mentioned composite oxide is apt to be overcharged because the potential change at the end of charging is extremely sharp. Overcharging contributes to capacity degradation. Therefore, the present inventors have considered that if the capacity deterioration due to overcharging is suppressed, the charge / discharge cycle characteristics can be further improved.

【0009】本発明は、かかる知見に基づきなされたも
のであって、充放電サイクル特性に極めて優れたリチウ
ム二次電池を提供することを目的とする。
The present invention has been made based on such findings, and has as its object to provide a lithium secondary battery having extremely excellent charge / discharge cycle characteristics.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明に係るリチウム二次電池(以下、「本発明電
池」と称する。)は、錫と、リチウム、ナトリウム、カ
リウム、マグネシウム、カルシウム、チタン、ジルコニ
ウム、バナジウム、ニオブ、タンタル、モリブデン、タ
ングステン、マンガン、鉄、ロジウム、イリジウム、
銅、亜鉛、ホウ素、アルミニウム、珪素、リン、ゲルマ
ニウム及びビスマスよりなる群から選ばれた少なくとも
一種の元素M1 との複合酸化物と、リチウムイオンを電
気化学的に吸蔵及び放出することが可能な炭素材料との
重量比4:1〜3:2の混合物(但し、前記複合酸化物
で前記炭素材料を被覆したものを除く)を、リチウムイ
オン吸蔵材として使用したものである。
The lithium secondary battery according to the present invention for achieving the above object (hereinafter referred to as "battery of the present invention") comprises tin, lithium, sodium, potassium, magnesium, Calcium, titanium, zirconium, vanadium, niobium, tantalum, molybdenum, tungsten, manganese, iron, rhodium, iridium,
Possible copper, zinc, boron, aluminum, silicon, phosphorus, and composite oxide of the element M 1 of at least one selected from the group consisting of germanium and bismuth, be electrochemically occluding and releasing lithium ions A mixture having a weight ratio of 4: 1 to 3: 2 with the carbon material (excluding the composite oxide coated with the carbon material) was used as a lithium ion storage material.

【0011】錫と特定の元素M1 との複合酸化物は、充
電時に、リチウムイオンを吸蔵し、放電時に、リチウム
イオンを放出する。錫と特定の元素M1 との複合酸化物
としては、組成式:Snx 1 y 2 (式中、M1 はリ
チウム、ナトリウム、カリウム、マグネシウム、カルシ
ウム、チタン、ジルコニウム、バナジウム、ニオブ、タ
ンタル、モリブデン、タングステン、マンガン、鉄、ロ
ジウム、イリジウム、銅、亜鉛、ホウ素、アルミニウ
ム、珪素、リン、ゲルマニウム及びビスマスよりなる群
から選ばれた少なくとも一種の元素;0.2≦y/x≦
5;0<x<2)で表されるものが挙げられる。
The composite oxide of tin and the specific element M 1 absorbs lithium ions during charging and releases lithium ions during discharging. As a composite oxide of tin and a specific element M 1 , a composition formula: Sn x M 1 y O 2 (where M 1 is lithium, sodium, potassium, magnesium, calcium, titanium, zirconium, vanadium, niobium, At least one element selected from the group consisting of tantalum, molybdenum, tungsten, manganese, iron, rhodium, iridium, copper, zinc, boron, aluminum, silicon, phosphorus, germanium and bismuth; 0.2 ≦ y / x ≦
5; 0 <x <2).

【0012】本発明電池では、錫と特定の元素M1 との
複合酸化物と炭素材料との、重量比4:1〜3:2の混
合物(但し、前記複合酸化物で前記炭素材料を被覆した
ものを除く)が、負極のリチウムイオン吸蔵材として使
用される。混合物中の炭素材料の量が少な過ぎると、充
電末期の負極電位の急激な低下を充分に抑制できないた
めに、過充電に因り充放電サイクル特性が低下する。一
方、混合物中の炭素材料の量が多過ぎると、放電末期の
負極電位の急激な上昇を抑制できないために、過放電に
因り充放電サイクル特性が低下するとともに、比容量の
大きい、錫と特定の元素M1 との複合酸化物の量が減少
するために、電池容量が低下する。
In the battery of the present invention, a mixture of a composite oxide of tin and a specific element M 1 and a carbon material in a weight ratio of 4: 1 to 3: 2 (provided that the carbon oxide is coated with the composite oxide) Is used as a lithium ion storage material for the negative electrode. If the amount of the carbon material in the mixture is too small, a rapid drop in the negative electrode potential at the end of charging cannot be sufficiently suppressed, so that the charge / discharge cycle characteristics deteriorate due to overcharging. On the other hand, if the amount of the carbon material in the mixture is too large, a rapid increase in the negative electrode potential at the end of discharge cannot be suppressed, so that the charge / discharge cycle characteristics are reduced due to overdischarge and the specific capacity is large. the amount of the composite oxide of the element M 1 of to reduce the battery capacity is reduced.

【0013】リチウムイオンを電気化学的に吸蔵及び放
出することが可能な炭素材料としては、放電容量の大き
いリチウム二次電池を得る上で、c軸方向の結晶子の大
きさ(Lc)が400Å以上、格子面(002)面の面
間隔(d002 )が3.35Å〜3.37Åの比容量の大
きい炭素材料(黒鉛化度の高い炭素材料)が好ましい。
As a carbon material capable of electrochemically occluding and releasing lithium ions, the crystallite size (Lc) in the c-axis direction is 400 ° in order to obtain a lithium secondary battery having a large discharge capacity. As described above, a carbon material having a large specific capacity (a carbon material having a high degree of graphitization) with a lattice spacing (d 002 ) of the lattice plane (002) of 3.35 to 3.37 ° is preferable.

【0014】本発明の特徴は、充放電サイクル特性に極
めて優れたリチウム二次電池を提供するために、充電末
期の電位変化が緩やかな特定の混合物を負極のリチウム
イオン吸蔵材として使用した点にある。それゆえ、正極
材料、電解液などの電池を構成する他の材料については
特に制限は無く、リチウム二次電池用として従来使用さ
れ、或いは提案されている種々の材料を使用することが
可能である。
A feature of the present invention is that in order to provide a lithium secondary battery having extremely excellent charge / discharge cycle characteristics, a specific mixture having a gradual change in potential at the end of charging is used as a lithium ion storage material for a negative electrode. is there. Therefore, other materials constituting the battery such as the positive electrode material and the electrolyte are not particularly limited, and various materials conventionally used or proposed for lithium secondary batteries can be used. .

【0015】正極材料(正極活物質)としては、LiC
oO2 、LiNiO2 、LiFeO2 、LiMn2 4
等の金属酸化物が例示される。
As the positive electrode material (positive electrode active material), LiC
oO 2, LiNiO 2, LiFeO 2 , LiMn 2 O 4
And the like.

【0016】電解液としては、エチレンカーボネート、
ジエチルカーボネート、ジメチルカーボネート、1,2
−ジメトキシエタン、スルホラン、又は、これらの混合
溶媒に、LiPF6 、LiClO4 、LiCF3 SO3
などの電解質塩を0.7〜1.5モル/リットル溶かし
た溶液が例示される。
As the electrolyte, ethylene carbonate,
Diethyl carbonate, dimethyl carbonate, 1,2
- dimethoxyethane, sulfolane, or a mixture of these solvents, LiPF 6, LiClO 4, LiCF 3 SO 3
A solution in which 0.7 to 1.5 mol / liter of an electrolyte salt such as described above is dissolved is exemplified.

【0017】本発明電池では、負極のリチウムイオン吸
蔵材として、充電末期の電位変化が急激な、錫と特定の
元素M1 との複合酸化物と、充電末期の電位変化が緩や
かな炭素材料との所定割合の混合物(但し、前記複合酸
化物で前記炭素材料を被覆したものを除く)を使用して
いるので、錫と特定の元素M1 との複合酸化物を単独使
用した場合に比べて、充電末期の負極の電位変化が緩や
かで過充電されにくい。このため、本発明電池は、過充
電に起因する容量低下が起こりにくく、極めて優れた充
放電サイクル特性を発現する。
In the battery of the present invention, as the lithium ion storage material of the negative electrode, a composite oxide of tin and a specific element M 1 having a sharp change in potential at the end of charging, and a carbon material having a gradual change in potential at the end of charging are used. Is used (except that the carbon material is coated with the composite oxide), so that a mixture of tin and the specific element M 1 is used alone. In addition, the potential change of the negative electrode at the end of charging is gradual, and overcharging is difficult. For this reason, the battery of the present invention hardly causes a decrease in capacity due to overcharge, and exhibits extremely excellent charge / discharge cycle characteristics.

【0018】[0018]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the invention without changing its gist. Is possible.

【0019】〔正極の作製〕 正極活物質としてのLiCoO2 と、導電剤としての炭
素材料とを、重量比18:1で混合し、この混合物95
重量部と、ポリフッ化ビニリデン5重量部のNMP(N
−メチル−2−ピロリドン)溶液とを混練してスラリー
を調製し、このスラリーを正極集電体としてのアルミニ
ウム箔の両面にドクターブレード法により塗布し、15
0°Cで2時間真空乾燥して、正極を作製した。
[Preparation of Positive Electrode] LiCoO 2 as a positive electrode active material and a carbon material as a conductive agent were mixed at a weight ratio of 18: 1.
Parts by weight and 5 parts by weight of polyvinylidene fluoride in NMP (N
-Methyl-2-pyrrolidone) solution to prepare a slurry, and apply the slurry to both surfaces of an aluminum foil as a positive electrode current collector by a doctor blade method.
Vacuum drying was performed at 0 ° C. for 2 hours to produce a positive electrode.

【0020】〔負極の作製〕 酸化第二錫(SnO2 )とシュウ酸リチウム(Li2
2 4 )とのモル比1:1の混合物を、空気中にて90
0°Cで1時間焼成して複合酸化物を得た。この複合酸
化物の元素M1 はリチウムである。この複合酸化物と、
天然黒鉛粉末(Lc>1000Å;d002 =3.356
Å;平均粒径10μm)又はコークス粉末(Lc=15
Å;d002 =3.40Å;平均粒径10μm)とを重量
比19:1、9:1、4:1、7:3、3:2、1:
1、2:3で混合して、リチウムイオン吸蔵材を作製し
た。この負極材料90重量部と、ポリフッ化ビニリデン
10重量部のNMP溶液とを混練してスラリーを調製
し、このスラリーを負極集電体としての銅箔の両面にド
クターブレード法により塗布し、150°Cで2時間真
空乾燥して、負極を作製した。
[Preparation of Negative Electrode] Stannic oxide (SnO 2 ) and lithium oxalate (Li 2 C)
2 O 4 ) in a molar ratio of 1: 1 in air at 90
Calcination was performed at 0 ° C. for 1 hour to obtain a composite oxide. The element M 1 of this composite oxide is lithium. This composite oxide,
Natural graphite powder (Lc>1000Å; d 002 = 3.356)
Å; average particle size 10 μm) or coke powder (Lc = 15)
{; D 002 = 3.40}; average particle size of 10 μm) and a weight ratio of 19: 1, 9: 1, 4: 1, 7: 3, 3: 2, and 1:
1,2: 3 to prepare a lithium ion storage material. A slurry was prepared by kneading 90 parts by weight of this negative electrode material and an NMP solution of 10 parts by weight of polyvinylidene fluoride, and this slurry was applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, C was vacuum dried for 2 hours to produce a negative electrode.

【0021】〔電解液の調製〕 エチレンカーボネート(EC)と1,2−ジメトキシエ
タン(DME)との体積比1:1の混合溶媒に、LiP
6 を1モル/リットル溶かして電解液を調製した。
[Preparation of Electrolyte Solution] LiP was added to a mixed solvent of ethylene carbonate (EC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1.
F 6 was dissolved at 1 mol / liter to prepare an electrolytic solution.

【0022】〔電池の作製〕 上記の正極、負極及び電解液を用いて、円筒形のリチウ
ム二次電池A1,A2,…,A7及びA11,A22,
…,A77を作製した。電池寸法は外径14mm、高さ
50mmである。セパレータとして、ポリプロピレン製
の微多孔膜を使用した。なお、電池A1,A2,…,A
7は炭素材料として天然黒鉛粉末を使用した電池であ
り、電池A11,A22,…,A77は炭素材料として
コークス粉末を使用した電池である。すなわち、電池符
号でアルファベットの後に、一桁数字を付したものは炭
素材料として天然黒鉛粉末を使用した電池であり、ゾロ
目数字を付したものは炭素材料としてコークス粉末を使
用した電池である(以下の電池も同様である)。また、
電池A5,A6,A7,A55,A66,A77は本発
明電池であり、電池A1,A2,A3,A4,A11,
A22,A33,A44は比較電池である。
[Preparation of Battery] Using the above positive electrode, negative electrode and electrolytic solution, cylindrical lithium secondary batteries A1, A2,..., A7 and A11, A22,
..., A77 was produced. The battery dimensions are an outer diameter of 14 mm and a height of 50 mm. A microporous polypropylene membrane was used as a separator. The batteries A1, A2, ..., A
7 is a battery using natural graphite powder as a carbon material, and batteries A11, A22,..., A77 are batteries using coke powder as a carbon material. That is, a battery code with a one-digit number after an alphabet is a battery using natural graphite powder as a carbon material, and a battery with a zigzag number is a battery using coke powder as a carbon material ( The same applies to the following batteries). Also,
Batteries A5, A6, A7, A55, A66, A77 are the batteries of the present invention, and batteries A1, A2, A3, A4, A11,
A22, A33, and A44 are comparative batteries.

【0023】図1は作製したリチウム二次電池の断面模
式図であり、図示の電池BAは、正極1、負極2、これ
らを互いに離間するセパレータ3、正極リード4、負極
リード5、正極外部端子6、負極缶7などからなる。正
極1及び負極2は、非水電解液が注入されたセパレータ
3を介して渦巻き状に巻き取られた状態で負極缶7内に
収納されており、正極1は正極リード4を介して正極外
部端子6に、また負極2は負極リード5を介して負極缶
7に接続され、電池内部で生じた化学エキルギーを電気
エネルギーとして外部へ取り出し得るようになってい
る。
FIG. 1 is a schematic cross-sectional view of a manufactured lithium secondary battery. The illustrated battery BA has a positive electrode 1, a negative electrode 2, a separator 3 separating them from each other, a positive electrode lead 4, a negative electrode lead 5, and a positive external terminal. 6, a negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 are housed in a negative electrode can 7 while being spirally wound through a separator 3 into which a non-aqueous electrolyte is injected. The terminal 6 and the negative electrode 2 are connected to a negative electrode can 7 via a negative electrode lead 5, so that chemical energy generated inside the battery can be extracted to the outside as electric energy.

【0024】表1に、各電池の負極にリチウムイオン吸
蔵材として使用した複合酸化物と炭素材料との重量比を
示す。
Table 1 shows the weight ratio of the composite oxide used as the lithium ion storage material to the negative electrode of each battery to the carbon material.

【0025】[0025]

【表1】 [Table 1]

【0026】〈各電池の放電容量及び充放電サイクル特
性〉 各電池について、室温にて、200mAで4.1Vまで
充電した後、200mAで2.75Vまで放電する工程
を200サイクル繰り返して、各電池の200サイクル
目までの1サイクル当たりの容量劣化率を、下式に基づ
き算出した。先の表1に、各電池の容量劣化率(%/サ
イクル)及び200サイクル目の放電容量(mAh)を
示す。電池符号の下の数字が容量劣化率、さらに下の数
字が200サイクル目の放電容量である。
<Discharge Capacity and Charge / Discharge Cycle Characteristics of Each Battery> The process of charging each battery to 4.1 V at 200 mA at room temperature and then discharging it to 2.75 V at 200 mA was repeated 200 times for each battery. The capacity deterioration rate per cycle up to the 200th cycle was calculated based on the following equation. Table 1 shows the capacity deterioration rate (% / cycle) of each battery and the discharge capacity (mAh) at the 200th cycle. The number below the battery code is the capacity deterioration rate, and the number further below is the discharge capacity at the 200th cycle.

【0027】容量劣化率={(1サイクル目の放電容量
−200サイクル目の放電容量)/1サイクル目の放電
容量}÷充放電サイクル(199サイクル)×100
Capacity deterioration rate = {(discharge capacity at first cycle-discharge capacity at 200th cycle) / discharge capacity at first cycle} charge / discharge cycle (199 cycles) × 100

【0028】表1より、複合酸化物と炭素材料の混合割
合を重量比で4:1〜3:2の範囲に規制した場合に、
容量劣化率の極めて低い、充放電サイクル特性に極めて
優れた電池が得られることが分かる。また、充放電サイ
クル特性に優れるだけでなく、放電容量が大きい電池を
得るためには、複合酸化物と併用する炭素材料として、
黒鉛化度の高い炭素材料を使用する方が好ましいことが
分かる。
According to Table 1, when the mixing ratio of the composite oxide and the carbon material is regulated in a range of 4: 1 to 3: 2 by weight,
It can be seen that a battery having an extremely low capacity deterioration rate and extremely excellent charge / discharge cycle characteristics can be obtained. In addition, in order to obtain a battery having not only excellent charge / discharge cycle characteristics but also a large discharge capacity, as a carbon material used in combination with the composite oxide,
It can be seen that it is preferable to use a carbon material having a high degree of graphitization.

【0029】上記の実施例では、本発明を円筒形のリチ
ウム二次電池に適用する場合を例に挙げて説明したが、
電池の形状は特に限定されず、扁平形、角形など種々の
形状のリチウム二次電池に適用し得るものである。
In the above embodiment, the case where the present invention is applied to a cylindrical lithium secondary battery has been described as an example.
The shape of the battery is not particularly limited, and can be applied to lithium secondary batteries of various shapes such as a flat shape and a square shape.

【0030】また、上記の実施例では液体電解質を使用
したが、本発明は固体電解質電池にも適用可能である。
Although a liquid electrolyte is used in the above embodiment, the present invention is also applicable to a solid electrolyte battery.

【0031】[0031]

【発明の効果】本発明電池は、充電末期の負極の電位変
化が緩やかで過充電されにくいため、過充電に起因する
容量低下が起こりにくく、極めて優れた充放電サイクル
特性を発現する。
According to the battery of the present invention, since the potential change of the negative electrode at the end of charging is gradual and it is difficult to overcharge, the capacity is hardly reduced due to overcharging, and the battery exhibits extremely excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製した円筒形のリチウム二次電池の
断面図である。
FIG. 1 is a cross-sectional view of a cylindrical lithium secondary battery manufactured in an example.

【符号の説明】[Explanation of symbols]

BA リチウム二次電池 1 正極 2 負極 3 セパレータ 4 正極リード 5 負極リード 6 正極外部端子 7 負極缶 BA lithium secondary battery 1 positive electrode 2 negative electrode 3 separator 4 positive electrode lead 5 negative electrode lead 6 positive external terminal 7 negative electrode can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 正久 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平6−338325(JP,A) 特開 平10−21913(JP,A) 特開 平8−78003(JP,A) 特開 平8−130036(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahisa Fujimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshiyuki Noma 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-6-338325 (JP, A) JP-A-10-21913 (JP, A) JP-A-8-78003 (JP, A) JP-A-8-130036 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4 / 00-4/62 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】錫と、リチウム、ナトリウム、カリウム、
マグネシウム、カルシウム、チタン、ジルコニウム、バ
ナジウム、ニオブ、タンタル、モリブデン、タングステ
ン、マンガン、鉄、ロジウム、イリジウム、銅、亜鉛、
ホウ素、アルミニウム、珪素、リン、ゲルマニウム及び
ビスマスよりなる群から選ばれた少なくとも一種の元素
1 との複合酸化物と、リチウムイオンを電気化学的に
吸蔵及び放出することが可能な炭素材料との重量比4:
1〜3:2の混合物(但し、前記複合酸化物で前記炭素
材料を被覆したものを除く)が、負極のリチウムイオン
吸蔵材として使用されていることを特徴とするリチウム
二次電池。
1. Tin and lithium, sodium, potassium,
Magnesium, calcium, titanium, zirconium, vanadium, niobium, tantalum, molybdenum, tungsten, manganese, iron, rhodium, iridium, copper, zinc,
Boron, aluminum, silicon, phosphorus, and a composite oxide of at least one element M 1 selected from the group consisting of germanium and bismuth, a carbon material capable of electrochemically occluding and releasing lithium ions Weight ratio 4:
A lithium secondary battery in which a mixture of 1 to 3: 2 (except for the case where the carbon material is coated with the composite oxide) is used as a lithium ion storage material for a negative electrode.
【請求項2】前記炭素材料が、c軸方向の結晶子の大き
さ(Lc)が400Å以上、格子面(002)面の面間
隔(d002 )が3.35Å〜3.37Åの炭素材料であ
る請求項1記載のリチウム二次電池。
2. The carbon material having a crystallite size (Lc) of at least 400 ° in the c-axis direction and a lattice spacing (d 002 ) of lattice planes ( 002 ) of 3.35 ° to 3.37 °. The lithium secondary battery according to claim 1, wherein
JP31873696A 1996-11-13 1996-11-13 Lithium secondary battery Expired - Fee Related JP3349373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31873696A JP3349373B2 (en) 1996-11-13 1996-11-13 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31873696A JP3349373B2 (en) 1996-11-13 1996-11-13 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH10144316A JPH10144316A (en) 1998-05-29
JP3349373B2 true JP3349373B2 (en) 2002-11-25

Family

ID=18102382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31873696A Expired - Fee Related JP3349373B2 (en) 1996-11-13 1996-11-13 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3349373B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028941B2 (en) * 1997-10-22 2000-04-04 核燃料サイクル開発機構 Multi-sheath type sodium leak detection device
JP4503807B2 (en) * 2000-10-11 2010-07-14 東洋炭素株式会社 Negative electrode for lithium ion secondary battery and method for producing negative electrode for lithium ion secondary battery
US7432015B2 (en) 2004-02-25 2008-10-07 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same

Also Published As

Publication number Publication date
JPH10144316A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
JP3187929B2 (en) Lithium secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP4412778B2 (en) Polymer electrolyte battery
EP1009055A1 (en) Nonaqueous electrolyte battery and charging method therefor
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP2008034368A (en) Lithium ion storage battery containing contains tio2-b as anode active substance
JP2008177346A (en) Energy storage device
JPH0652887A (en) Lithium secondary battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP3609612B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2011181427A (en) Lithium secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP3188033B2 (en) Non-aqueous secondary battery
JP3244389B2 (en) Lithium secondary battery
JP2002117836A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using it
JP3768046B2 (en) Lithium secondary battery
US6482546B1 (en) Rechargeable lithium battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP3188032B2 (en) Lithium secondary battery
JPH06338325A (en) Nonaqueous electrolytic secondary battery
JP4656710B2 (en) Non-aqueous electrolyte secondary battery
JPH06196170A (en) Nonaqueous electrolyte secondary battery
JP3349373B2 (en) Lithium secondary battery
JPH08306386A (en) Manaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees