JPH10134817A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH10134817A
JPH10134817A JP8284945A JP28494596A JPH10134817A JP H10134817 A JPH10134817 A JP H10134817A JP 8284945 A JP8284945 A JP 8284945A JP 28494596 A JP28494596 A JP 28494596A JP H10134817 A JPH10134817 A JP H10134817A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
lithium
secondary battery
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8284945A
Other languages
Japanese (ja)
Inventor
Manabu Ochita
学 落田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8284945A priority Critical patent/JPH10134817A/en
Publication of JPH10134817A publication Critical patent/JPH10134817A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery which can suppress the rise of the battery temperature owing to the chemical reaction in overcharging, and can suppress a remarkable breakdown such as bursting or exprosion of the battery. SOLUTION: A positive electrode active material layer 2 is formed by mixing LiCoO2 powder, graphite powder, and PVD (polyvinyliden fluoride), sufficiently at the weight ratio 80:10:10, adding the N-methyl-2-pyridone to be a dispersion solvent in an adequate amount there, and mixing sufficiently, and dispersing them to make into an ink form. Furthermore, a specific amount of lithium nitride is added there, and mixed and dispersed again. The resultant mixture is applied on both surfaces of a positive electrode aggregate 1 by the roll-to-roll transcription, and dried, so as to obtain the positive electrode active material layer 2. By using such positive electrodes, an organic electrolyte secondary battery is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電解液二次電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される有機電解
液二次電池は、高エネルギー密度であるメリットを活か
して、主にVTRカメラやノートパソコン、携帯電話等
のポータブル機器に使用されている。特に近年は負極に
炭素材等の、リチウムを吸蔵、放出可能な材料を用いた
いわゆるリチウムイオン二次電池が普及している。この
電池の内部構造は、通常以下に記述するような捲回式に
される。すなわち、正極、負極共に活物質は金属箔に塗
着される。そして、セパレータを挟んで正極、負極が直
接接触しないように捲回され、容器となる円筒形の缶に
収納、電解液注液後、キャップ封口されている。電池組
立時では負極活物質として用いる炭素材は、リチウムを
放出しきった状態、即ち放電状態である。従って、通常
正極も放電状態の活物質、例えばLiCoO2(コバル
ト酸リチウム)やLiNiO2(ニッケル酸リチウム)
などが用いられる。そして、初充電することによって電
池として機能させることができる。こうして必要に応じ
て充電、放電できるリチウムイオン二次電池となる。
2. Description of the Related Art Organic electrolyte secondary batteries typified by lithium secondary batteries are mainly used for portable devices such as VTR cameras, notebook computers and mobile phones, taking advantage of their high energy density. . Particularly in recent years, a so-called lithium ion secondary battery using a material capable of occluding and releasing lithium, such as a carbon material, for a negative electrode has become widespread. The internal structure of this battery is usually wound as described below. That is, the active material is applied to the metal foil for both the positive electrode and the negative electrode. Then, the positive electrode and the negative electrode are wound so as not to be in direct contact with each other with a separator interposed therebetween, housed in a cylindrical can serving as a container, filled with an electrolytic solution, and sealed with a cap. In assembling the battery, the carbon material used as the negative electrode active material is in a state where lithium has been completely released, that is, in a discharged state. Therefore, the positive electrode is usually also in a discharged active material, for example, LiCoO 2 (lithium cobaltate) or LiNiO 2 (lithium nickelate).
Are used. The battery can function as a battery by being charged for the first time. Thus, a lithium ion secondary battery that can be charged and discharged as needed is obtained.

【0003】[0003]

【発明が解決しようとする課題】一般に有機電解液二次
電池は、電極反応に関与する物質が化学的に活性な材料
であること、水分の混入により性能劣化する有機電解液
を用いていること等の理由により、電池外界と電池内部
構成物とが完全に隔離された密閉構造をとる。従って、
何らかの原因で電池内圧が上昇した場合には電池が破裂
し、周辺機器に損傷を与えてしまうことがある。さら
に、電池が爆発した場合には、周辺機器の破損のおそれ
がある。特にリチウム二次電池の場合には、過充電時に
その確率が極めて高くなる。通常、リチウム二次電池
は、充電、放電時の電流、電圧を適正に保つための電気
回路で保護されているが、この保護回路が故障した場合
に充電上限電圧の制御が効かず、充電の進行に伴い電池
電圧が上昇し、電解液の電気分解によりガスが発生し、
電池内圧が上昇する。この状態がさらに持続すると、内
部抵抗の上昇によるジュール熱と、電解液や電解液の分
解生成物と活物質の化学反応による反応熱で、電池温度
が急激に上昇する。このような状態にある電池は、破
裂、爆発に至る確率が高くなる。
Generally, an organic electrolyte secondary battery uses a chemically active material as a substance involved in an electrode reaction, and uses an organic electrolyte which deteriorates in performance due to the incorporation of moisture. For such reasons, a sealed structure is provided in which the outside of the battery and the internal components of the battery are completely isolated. Therefore,
If the internal pressure of the battery rises for some reason, the battery may explode and damage peripheral devices. Further, when the battery explodes, there is a possibility that peripheral devices may be damaged. In particular, in the case of a lithium secondary battery, the probability at the time of overcharging becomes extremely high. Normally, a lithium secondary battery is protected by an electric circuit that maintains the current and voltage during charging and discharging properly.However, if this protection circuit fails, the control of the charging upper limit voltage does not work, and the charging As the battery voltage increases, gas is generated by electrolysis of the electrolyte,
Battery internal pressure rises. When this state is further maintained, the battery temperature sharply rises due to Joule heat due to an increase in internal resistance and reaction heat due to a chemical reaction between the electrolyte and the decomposition product of the electrolyte and the active material. The battery in such a state has a high probability of explosion or explosion.

【0004】このような問題の対策として、電池内圧の
上昇に応じて作動する電流遮断機構が電池に組み込まれ
た密閉型構造とし、過充電で電池内圧が上昇した場合に
充電電流を断ち切り、それ以上の電気量が電池に流入し
ないようにしている。しかし、たとえ充電電流が断ち切
られたとしても、上記化学反応が伴った場合には電池の
温度上昇を即座に止めることはできない。そこで電流遮
断機構が作動する圧力を低くすると、40〜60℃とい
った暖められた周囲環境温度(ノートパソコン内では頻
繁にこのくらいの温度になる。)で、電池を通常条件
(保護回路で守られた条件)で使用している場合におい
てさえ、電流遮断機構が作動してしまう。従って、電流
遮断機構の作動圧力は、あまり低く設定できない制約が
ある。このようにリチウム二次電池は、誤使用、誤操
作、誤動作により、場合によっては破裂、爆発等危険な
壊れ方をするので、電池の安全性を確保することは、こ
の上ない重要な課題である。
[0004] As a countermeasure against such a problem, a current cut-off mechanism that operates in response to an increase in the internal pressure of the battery is provided in a sealed structure in which the charge current is cut off when the internal pressure of the battery increases due to overcharging. The above amount of electricity is prevented from flowing into the battery. However, even if the charging current is cut off, the temperature rise of the battery cannot be stopped immediately when the above-mentioned chemical reaction is accompanied. Therefore, when the pressure at which the current cutoff mechanism operates is reduced, the battery is operated under normal conditions (protected by a protection circuit) at a warmed ambient environment temperature of 40 to 60 ° C. (frequently in a notebook computer, this temperature is high). The current interruption mechanism operates even when the device is used under the conditions described above. Therefore, there is a restriction that the operating pressure of the current interruption mechanism cannot be set too low. As described above, the lithium secondary battery is dangerously broken such as rupture or explosion due to misuse, erroneous operation, or erroneous operation. Therefore, ensuring the safety of the battery is an extremely important issue.

【0005】本発明者らが、電池の破裂に至る状況を詳
細に分析した結果、電流遮断機構作動時の電池温度に関
わりなく、すなわちそれほど電池内圧が上昇しなくて
も、上記化学反応を伴い、およそ130℃を越えると、
電池が破裂する確率が高くなることがわかった。このよ
うな問題を解決するために、いくつかの改善がなされて
きた。たとえば、特開平4−328278号公報、特開
平4−329269号公報では正極に炭酸リチウムや蓚
酸リチウムを含有させ、電池が過充電状態になったとき
に炭酸リチウムや蓚酸リチウムを電気化学的に分解、炭
酸ガスを発生させ、早い段階で電池内圧上昇、電池内圧
上昇に応じて作動する電流遮断機構を作動させることが
提案されている。とりわけ、特開平4−329268号
公報では、リチウムとコバルトの配合モル比をLi/C
o=1.0より大きくしたリチウムリッチな条件で正極
活物質を合成、あるいは、Li/Co=1.0で合成し
た正極活物質と炭酸リチウムとを混合、熱処理すること
で正極活物質に炭酸リチウム層を含有させている。しか
し、このような方法で合成した正極活物質粒子は通常平
均粒子径が10〜25μmと大きく成長したものとな
る。粒子が大きく成長した正極活物質を用いて電池とし
た場合に、活物質の比表面積が小さいために電流密度が
大きくなり、高率放電特性、低温放電特性が悪くなると
いうデメリットがある。さらに単に炭酸リチウムを正極
に混合しただけでは、大きな電流で過充電状態になった
場合に炭酸リチウムの分解による炭酸ガスの発生で電池
内圧を上昇させるより、電池温度上昇に伴う電池内圧の
上昇の方が先に起こり、著しい破壊が発生することがあ
る。これらの問題を補うために、特開平6−33832
3号公報や特開平8−102331号公報では正極に炭
酸マンガン、炭酸コバルト、炭酸ニッケルを添加した
り、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、
炭酸マグネシウム、炭酸カルシウム、炭酸バリウムを含
有させたりしている。しかし、それでも、本発明の発明
者がトレース実験を実施したところ、その効果は必ずし
も十分なものではなっかった。このような状況を精力的
に、詳細に検討した結果、その原因は前記炭酸塩の平均
粒子径にあることが判明した。また、前記各公報では、
炭酸塩が電気化学的に分解、炭酸ガスを発生させるとい
う記載がなされているが、本発明者の詳細な分析による
と、前記炭酸塩のみが分解するのではなく、有機電解液
との相互作用によって有機電解液とともに分解、ガス発
生することが判明した。しかも発生したガスは炭酸ガス
ではなく、主に酸素、炭化水素系のガスであることが判
明した。従って、前記炭酸塩の平均粒子径が大きいと、
その表面積が小さくなるために電解液との相互作用を伴
った分解反応が十分促進されず、十分電池内圧を上昇さ
せ、所望のタイミングで電流遮断機構を作動させること
は困難である。
As a result of a detailed analysis of the situation leading to the explosion of the battery, the present inventors have found that the above-mentioned chemical reaction is involved regardless of the battery temperature at the time of operating the current interrupt mechanism, that is, even if the internal pressure of the battery does not rise so much. Above about 130 ° C,
It was found that the probability of the battery exploding was increased. Several improvements have been made to solve these problems. For example, in JP-A-4-328278 and JP-A-4-329269, the positive electrode contains lithium carbonate or lithium oxalate, and when the battery is overcharged, the lithium carbonate and lithium oxalate are electrochemically decomposed. It has been proposed to generate carbon dioxide gas and to activate the battery internal pressure at an early stage and to activate a current cutoff mechanism that operates in response to the battery internal pressure increase. In particular, JP-A-4-329268 discloses that the molar ratio of lithium to cobalt is Li / C
The positive electrode active material was synthesized under lithium-rich conditions with o greater than 1.0, or the positive electrode active material synthesized with Li / Co = 1.0 and lithium carbonate were mixed and heat-treated to form a positive electrode active material. Contains a lithium layer. However, the positive electrode active material particles synthesized by such a method usually have a large average particle diameter of 10 to 25 μm. When a battery is formed using a positive electrode active material in which particles grow large, there is a demerit that a current density increases due to a small specific surface area of the active material, and high-rate discharge characteristics and low-temperature discharge characteristics deteriorate. Furthermore, simply mixing lithium carbonate into the positive electrode increases the internal pressure of the battery as the battery temperature increases, rather than increasing the internal pressure of the battery due to the generation of carbon dioxide gas due to decomposition of lithium carbonate when the battery is overcharged with a large current. May occur earlier and cause significant destruction. To compensate for these problems, Japanese Patent Application Laid-Open No. 6-33832
No. 3 and JP-A-8-102331, manganese carbonate, cobalt carbonate, nickel carbonate is added to the positive electrode, sodium carbonate, potassium carbonate, rubidium carbonate,
It contains magnesium carbonate, calcium carbonate and barium carbonate. Nevertheless, when the inventor of the present invention conducted a tracing experiment, the effect was not always sufficient. As a result of vigorous and detailed examination of such a situation, it was found that the cause was the average particle diameter of the carbonate. In each of the above publications,
Although it is described that carbonate is electrochemically decomposed and generates carbon dioxide gas, according to a detailed analysis of the present inventors, not only the carbonate is decomposed, but also the interaction with an organic electrolyte. It was found that decomposition and gas generation occurred together with the organic electrolyte. Moreover, it was found that the generated gas was not oxygen gas but mainly oxygen-based gas. Therefore, when the average particle diameter of the carbonate is large,
Since the surface area is small, the decomposition reaction accompanied by the interaction with the electrolytic solution is not sufficiently promoted, and it is difficult to sufficiently increase the internal pressure of the battery and operate the current cutoff mechanism at a desired timing.

【0006】さらに、有機電解液の分解電圧よりも低い
電位で、上記炭酸塩は電気化学的に分解されるが、電池
が大電流で過充電状態になった場合には、電池電圧が急
速に上昇するため、上記炭酸塩の分解電圧を超え、有機
電解液の分解電圧へと、いとも簡単に到達し、破裂、爆
発することが多々あった。また、上記種々金属の炭酸塩
を正極に含ませても、過充電時には電解液の分解を抑制
することはできず、それに伴う電池温度の上昇も抑制す
ることはできない。本発明が解決しようとする課題は、
前述のような過充電時の化学反応による電池温度の上昇
を抑制し、電池の破裂や爆発といった著しい破壊を抑制
することである。
[0006] Further, the carbonate is electrochemically decomposed at a potential lower than the decomposition voltage of the organic electrolyte, but when the battery is overcharged with a large current, the battery voltage rapidly increases. Because of the rise, the decomposition voltage of the carbonate exceeded the decomposition voltage of the above-mentioned carbonate, and easily reached the decomposition voltage of the organic electrolyte. In addition, even if the above-mentioned carbonates of various metals are contained in the positive electrode, decomposition of the electrolytic solution cannot be suppressed at the time of overcharging, and a rise in battery temperature due to the decomposition cannot be suppressed. The problem to be solved by the present invention is
The purpose of the present invention is to suppress a rise in battery temperature due to a chemical reaction at the time of overcharging as described above, and to suppress remarkable destruction such as bursting or explosion of a battery.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の、正極と負極と有機電解液が密閉容器に収
納され、当該密閉容器が、所定圧力よりも高い内圧で開
放作動する弁機構を有してなる有機電解液二次電池は、
正極が硝酸リチウム(LiNO3)を含有していること
を特徴とする。このことにより電流遮断機構を速やかに
作動させることができ、前述した異常反応及びそれによ
る電池温度の上昇を確実に抑えることができる。
According to the present invention, there is provided a valve according to the present invention, wherein a positive electrode, a negative electrode and an organic electrolyte are housed in a closed container, and the closed container is opened at an internal pressure higher than a predetermined pressure. Organic electrolyte secondary battery having a mechanism,
The positive electrode contains lithium nitrate (LiNO 3 ). As a result, the current cutoff mechanism can be quickly operated, and the above-described abnormal reaction and the increase in battery temperature caused by the abnormal reaction can be reliably suppressed.

【0008】上記構成において、電池内圧上昇で作動す
る電流遮断機構を備え、前記電流遮断機構は、弁機構が
開放作動する電池内圧より低い電池内圧で作動すること
が好ましい。その理由は、万が一上記過充電が過剰なも
のとなり、有機電解液及び/又は硝酸リチウムの電気化
学的分解が促進した場合でも有機電解液二次電池が、電
池内圧上昇で作動する電流遮断機構を備え、前記電流遮
断機構は、弁機構が開放作動する電池内圧より低い電池
内圧で作動する構成を備えることにより、過剰な電池内
圧上昇に対して迅速に充電電流を遮断することができ、
より電池の安全性が高まる。
[0008] In the above structure, it is preferable that a current cut-off mechanism that operates when the internal pressure of the battery rises is provided, and the current cut-off mechanism operates at a lower battery internal pressure than the internal pressure of the battery at which the valve mechanism opens. The reason is that even if the overcharge becomes excessive and the electrochemical decomposition of the organic electrolyte and / or lithium nitrate is promoted, the organic electrolyte secondary battery has a current cut-off mechanism that operates by increasing the internal pressure of the battery. The current cutoff mechanism has a configuration in which the valve mechanism operates at a battery internal pressure lower than the battery internal pressure at which the valve mechanism is opened, whereby the charging current can be quickly interrupted against an excessive increase in battery internal pressure,
Battery safety is improved.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態の一例を以下
に図面を参照しながら説明する。図1は本発明を実施し
た円筒形リチウム二次電池の断面図である。1は正極集
電体で厚さ20μmのアルミニウム箔である。平面サイ
ズは50mm×450mmである。2は正極活物質層
で、リチウムイオンを電極反応種とし、リチウムを放
出、吸蔵可能な正極活物質LiCoO2と導電助剤であ
るグラファイトと、バインダーであるポリフッ化ビニリ
デン(PVDF)と、電解液とから構成される。正極活
物質層2の詳細な作製方法を記す。LiCoO2(平均
粒径約1〜2μm)粉末とグラファイト(平均粒径約
0.5μm)粉末とPVDFを重量比で80:10:1
0に十分混合し、そこへ分散溶媒となるN−メチル−2
−ピロリドンを適量加え、十分に混練、分散させ、イン
ク状にする。さらにそこへ硝酸リチウムを所定量加え、
再び混練、分散させる。この混練物をロールtoロール
の転写により正極集電体1の両面に塗着、乾燥し、正極
活物質層2を得る。(但し、この段階では電解液は入っ
ていない。)正極活物質層2の厚さは正極集電体1の両
面各々100μmである。3は負極集電体で厚さ10μ
mの銅箔ある。平面サイズは50mm×490mmであ
る。4は負極活物質層で、リチウムイオンを電極反応種
とし、リチウムを放出、吸蔵することのできる負極活物
質としての無定形炭素と、バインダーであるポリフッ化
ビニリデン(PVDF)と、電解液とから構成される。
負極活物質層4の詳細な作製方法を記す。無定形炭素と
PVDFを重量比で90:10となるように混合しそこ
へ分散溶媒となるN−メチル−2−ピロリドンを適量加
え、十分に混練、分散させ、インク状にする。この混練
物をロールtoロールの転写により負極集電体3の両面
に塗着、乾燥し、負極活物質層4を得る。(但し、この
段階では電解液は入っていない。)負極活物質層2の厚
さは負極集電体3の両面各々100μmである。5はセ
パレータで、厚さ25μmの微多孔性のポリエチレンフ
ィルムである。正極、負極の間にセパレータ5が配置さ
れるように捲回し、負極缶6に挿入する。そして負極集
電体に予め溶接させておいたタブ端子を負極缶6に溶接
する。7は正極キャップで8は正極タブ端子である。正
極タブ端子8は予め正極集電体1に溶接しておき、正極
キャップ7に溶接する。次に、電解液5mlを負極缶6
内に注入する。電解液は1mol/lのLiPF6が溶
解された、炭酸プロピレンと炭酸ジメチルと炭酸ジエチ
ルの混合溶媒であり、その混合比は体積にして30:5
5:15である。9は絶縁性のガスケットである。正極
キャップ7を負極缶上部に配置し、ガスケット9を介し
て負極缶上部をかしめ、電池を密閉する。ここで、正極
キャップ7内には、電池内圧の上昇によって作動する電
流遮断機構(圧力スイッチ)と前記電流遮断機構が作動
する電池内圧よりも高い電池内圧によって開放作動する
弁機構が組み込まれている。前記圧力スイッチとは、具
体的には、電池内圧の上昇によって作動する可動部材に
より正極集電端子と、正極外部端子(電池の外観から、
正極端子と表現される部材)との電気的接続を断つ機構
からなるものである。また、前記弁機構は非復帰型、つ
まり一旦電池内圧が過剰に高まり、弁が作動すると元の
状態(電池を密閉する状態)に復帰しないものを使用し
た。但し復帰型の弁機構を採用しても構わない。上記
「電池内圧によって作動する電流遮断機構」には、電池
内圧が6〜8kg/cm2で作動するものを用いた。ま
た、上記「電流遮断機構が作動する電池内圧よりも高い
電池内圧によって開放作動する弁機構」の弁には、電池
内圧が10〜15kg/cm2で開放するものを用い
た。これらの値は任意に設定可能である。電池の使用目
的等により設計すればよい。例えば弁について言うと、
弁の材質、厚み、面積等を調整することで容易に設計変
更が可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a cylindrical lithium secondary battery embodying the present invention. Reference numeral 1 denotes a positive electrode current collector, which is an aluminum foil having a thickness of 20 μm. The plane size is 50 mm × 450 mm. Reference numeral 2 denotes a positive electrode active material layer, in which lithium ions are used as an electrode reactive species, lithium can be released and occluded, a positive electrode active material LiCoO 2 , graphite as a conductive additive, polyvinylidene fluoride (PVDF) as a binder, and an electrolytic solution. It is composed of A detailed manufacturing method of the positive electrode active material layer 2 will be described. 80: 10: 1 by weight ratio of LiCoO 2 (average particle size: about 1 to 2 μm) powder, graphite (average particle size: about 0.5 μm) powder, and PVDF
0, and mixed with N-methyl-2 as a dispersion solvent.
Add an appropriate amount of pyrrolidone, knead and disperse sufficiently to form an ink. Further, a predetermined amount of lithium nitrate is added there,
Knead and disperse again. The kneaded material is applied to both surfaces of the positive electrode current collector 1 by roll-to-roll transfer and dried to obtain the positive electrode active material layer 2. (However, no electrolyte is contained at this stage.) The thickness of the positive electrode active material layer 2 is 100 μm on each side of the positive electrode current collector 1. 3 is a negative electrode current collector having a thickness of 10 μm.
m copper foil. The plane size is 50 mm × 490 mm. Reference numeral 4 denotes a negative electrode active material layer, which comprises lithium ion as an electrode reactive species, amorphous carbon as a negative electrode active material capable of releasing and occluding lithium, polyvinylidene fluoride (PVDF) as a binder, and an electrolytic solution. Be composed.
A detailed method for forming the negative electrode active material layer 4 will be described. Amorphous carbon and PVDF are mixed in a weight ratio of 90:10, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersion solvent is added thereto, and the mixture is sufficiently kneaded and dispersed to form an ink. The kneaded material is applied on both sides of the negative electrode current collector 3 by roll-to-roll transfer and dried to obtain the negative electrode active material layer 4. (However, no electrolyte is contained at this stage.) The thickness of the negative electrode active material layer 2 is 100 μm on both sides of the negative electrode current collector 3. Reference numeral 5 denotes a separator, which is a microporous polyethylene film having a thickness of 25 μm. It is wound so that the separator 5 is arranged between the positive electrode and the negative electrode, and inserted into the negative electrode can 6. Then, the tab terminal which has been welded to the negative electrode current collector in advance is welded to the negative electrode can 6. 7 is a positive electrode cap and 8 is a positive electrode tab terminal. The positive electrode tab terminal 8 is welded to the positive electrode current collector 1 in advance, and then welded to the positive electrode cap 7. Next, 5 ml of the electrolytic solution was added to the negative electrode can 6.
Inject into. The electrolyte was a mixed solvent of propylene carbonate, dimethyl carbonate and diethyl carbonate in which 1 mol / l of LiPF 6 was dissolved, and the mixing ratio was 30: 5 by volume.
5:15. 9 is an insulating gasket. The positive electrode cap 7 is arranged on the upper part of the negative electrode can, and the upper part of the negative electrode can is caulked via the gasket 9 to seal the battery. Here, in the positive electrode cap 7, a current cutoff mechanism (pressure switch) that is activated by an increase in the battery internal pressure and a valve mechanism that is opened by a battery internal pressure higher than the battery internal pressure at which the current cutoff mechanism is activated are incorporated. . The pressure switch is, specifically, a positive current collecting terminal and a positive external terminal (from the appearance of the battery,
(A member expressed as a positive electrode terminal). In addition, the valve mechanism used was a non-return type, that is, a valve mechanism which does not return to the original state (a state in which the battery is sealed) once the internal pressure of the battery becomes excessively high and the valve operates. However, a return type valve mechanism may be adopted. As the above-mentioned "current interruption mechanism operated by battery internal pressure", a mechanism which operates at a battery internal pressure of 6 to 8 kg / cm 2 was used. In addition, the valve of the "valve mechanism current interrupt device is opened actuated by high battery internal pressure than the internal pressure of the battery to operate", it was used as the battery internal pressure is opened at 10-15 kg / cm 2. These values can be set arbitrarily. What is necessary is just to design according to the intended use of a battery. For example, when it comes to valves,
The design can be easily changed by adjusting the material, thickness, area and the like of the valve.

【0010】正極に硝酸リチウムを含有させたことで、
過充電時において、電池電圧上昇を伴った場合、速やか
にガス発生、電池内圧上昇を促進させ、早い段階で電流
遮断機構を作動、電池温度上昇を抑制することができ
る。この作用は、硝酸リチウムの粒子径に依存しにく
い。
[0010] By including lithium nitrate in the positive electrode,
If the battery voltage rises during overcharge, gas generation and battery internal pressure rise can be promptly promoted, and the current cutoff mechanism can be activated at an early stage to suppress battery temperature rise. This effect is hardly dependent on the particle size of lithium nitrate.

【0011】[0011]

【実施例】発明の実施の形態の記載により作製した電池
(実施例)及び以下に述べる従来例1〜従来例12の電
池を作製し、比較検討した。従来例1は、正極に硝酸リ
チウムを加えないで、その他は全く上記実施例と同条件
で作製した。従来例2は、正極に炭酸リチウム、従来例
3は、蓚酸リチウム、従来例4は炭酸マンガン、従来例
5は炭酸コバルト、従来例6は炭酸ニッケル、従来例7
は炭酸ナトリウム、従来例8は炭酸カリウム、従来例9
は炭酸ルビジウム、従来例10は炭酸カルシウム、従来
例11は炭酸マグネシウム、従来例12は炭酸バリウム
を所定量添加したものである。
EXAMPLES Batteries (Examples) manufactured according to the description of the embodiment of the invention and batteries of Conventional Examples 1 to 12 described below were manufactured and compared. In Conventional Example 1, the lithium ion was not added to the positive electrode. Conventional example 2 is lithium carbonate for the positive electrode, conventional example 3 is lithium oxalate, conventional example 4 is manganese carbonate, conventional example 5 is cobalt carbonate, conventional example 6 is nickel carbonate, and conventional example 7
Is sodium carbonate, Conventional Example 8 is potassium carbonate, Conventional Example 9
Is a rubidium carbonate, Conventional Example 10 is calcium carbonate, Conventional Example 11 is magnesium carbonate, and Conventional Example 12 is barium carbonate.

【0012】実施例、および各従来例の電池では、硝酸
リチウムやその他の各種炭酸塩、蓚酸塩の添加量は、正
極活物質LiCoO2の重量に対して0.05〜20%
とした。また、各種炭酸塩、蓚酸塩の平均粒径は1μm
〜40μmとした。作製した電池は以下に示す条件で充
電し、放電の後、2.8Aで連続的に充電し続け、過充
電状態にした。そのときの電池の破壊状況を表1、表2
に示す。表中の数値は、上段が電池放電容量(mA
h)、下段が電池を過充電状態にしたときの破裂あるい
は爆発発生率(%)である。また表中の括弧内に記した
物質は正極に含ませた添加剤名である。なお、本過充電
テストは周囲温度25℃で実施し、硝酸リチウムや各種
炭酸塩の平均粒径は5μmとした。 充電:4.2V定電圧、上限電流100mA、20h、
周囲温度25℃ 放電:100mA定電流、終止電圧2.8V、周囲温度
25℃
In the batteries of Examples and each of the conventional examples, the addition amount of lithium nitrate and other various carbonates and oxalates is 0.05 to 20% based on the weight of the positive electrode active material LiCoO 2.
And The average particle size of various carbonates and oxalates is 1 μm.
4040 μm. The produced battery was charged under the following conditions. After discharging, the battery was continuously charged at 2.8 A, and was placed in an overcharged state. Tables 1 and 2 show the battery destruction at that time.
Shown in In the numerical values in the table, the upper row shows the battery discharge capacity (mA).
h), the lower row shows the rate of rupture or explosion when the battery is overcharged (%). The substances described in parentheses in the table are the names of additives contained in the positive electrode. The overcharge test was performed at an ambient temperature of 25 ° C., and the average particle size of lithium nitrate and various carbonates was 5 μm. Charge: 4.2V constant voltage, upper limit current 100mA, 20h,
Ambient temperature 25 ° C Discharge: 100mA constant current, final voltage 2.8V, ambient temperature 25 ° C

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】表1、表2から明らかなように、正極に硝
酸リチウムを添加したことにより、過充電に陥った場合
の破裂、爆発といった電池の著しい破壊が抑制される。
硝酸リチウムが重量で正極活物質に対して0.2重量%
以上になるとさらに顕著な効果が得られる。一方、硝酸
リチウムの添加量が15重量%を越えると、放電容量が
急激に低下する。この理由は、添加物の電子伝導度が低
いために電池の内部抵抗が大きくなったことによると思
われる。
As is clear from Tables 1 and 2, by adding lithium nitrate to the positive electrode, remarkable destruction of the battery, such as rupture or explosion when falling into overcharge, is suppressed.
Lithium nitrate is 0.2% by weight based on the weight of the positive electrode active material
Above, a more remarkable effect can be obtained. On the other hand, when the addition amount of lithium nitrate exceeds 15% by weight, the discharge capacity sharply decreases. The reason is considered to be that the internal resistance of the battery was increased due to the low electronic conductivity of the additive.

【0016】表3は、上記過充電テストにおいて、硝酸
リチウムの平均粒径を、5、10、15、20、25、
30、35、40μmとし、添加量を5%としたとき
の、電池の破裂、爆発の発生率(%)を示したものであ
る。
Table 3 shows that the average particle size of lithium nitrate in the above overcharge test was 5, 10, 15, 20, 25,
The figure shows the rate (%) of bursting and explosion of the battery when the added amount is 5%, and the battery is 30, 35, and 40 μm.

【0017】[0017]

【表3】 [Table 3]

【0018】平均粒径が30μm以下の場合において破
裂、爆発の発生率が0%となり、好ましいものである。
平均粒径が30μmを越えると効果がいくぶん小さくな
るのは、硝酸リチウムの表面積が小さくなり、電池電圧
上昇に対する感度が鈍くなり、ガス発生速度が遅くなる
ためと思われる。
When the average particle size is 30 μm or less, the rate of burst and explosion is 0%, which is preferable.
The reason why the effect is somewhat reduced when the average particle size exceeds 30 μm is considered to be because the surface area of lithium nitrate is reduced, the sensitivity to the increase in battery voltage is reduced, and the gas generation rate is reduced.

【0019】従来例1の電池では、非常に高い確率で、
電池が破裂、爆発に至っていたが、従来例2〜12では
確率が低下している。しかし、硝酸リチウムを添加した
実施例の電池よりはその効果が劣っている。その理由を
検討するために、満充電状態にある各電池の電極を正
極、負極ともに一部を取り出し、正極を作用極、負極を
対極として高電圧側に走査した。走査速度は0.1mV
/sec、試験温度は30℃条件は次のとおりである。
試験に供するために切り出した電極の寸法は、正極が2
0mm×20mm、負極が21mm×21mmである。
切り出した正極と負極はセパレータをはさんで対向させ
た2極式セルで、同電解液中で電圧走査した。尚、ここ
では参照電極は採用していない。その理由は、電圧走査
中の対極(負極)電位が殆ど変化しないためである。従
って負極に金属リチウム、リチウム合金を用いたり、無
定形炭素以外の、リチウムを吸蔵、放出することのでき
る負極材料、例えば黒鉛のような結晶性の高い炭素材料
等を用いても図2に示す結果と同様の結果が得られると
考えられる。
In the battery of Conventional Example 1, the probability is very high.
Although the battery exploded and exploded, the probability is reduced in Conventional Examples 2 to 12. However, the effect is inferior to that of the battery of the example to which lithium nitrate was added. In order to investigate the reason, a part of both the positive electrode and the negative electrode of each battery in a fully charged state was taken out, and the positive electrode was used as a working electrode and the negative electrode was used as a counter electrode to scan toward a high voltage side. Scanning speed is 0.1mV
/ Sec, test temperature 30 ° C. Conditions are as follows.
The size of the electrode cut out for the test is 2
0 mm × 20 mm, and the negative electrode is 21 mm × 21 mm.
The cut positive electrode and negative electrode were a bipolar cell in which a separator was opposed to each other, and voltage scanning was performed in the same electrolytic solution. Here, the reference electrode is not used. This is because the potential of the counter electrode (negative electrode) during voltage scanning hardly changes. Therefore, even if metal lithium or a lithium alloy is used for the negative electrode, or a negative electrode material capable of occluding and releasing lithium other than amorphous carbon, for example, a highly crystalline carbon material such as graphite, is also shown in FIG. It is thought that the same result as the result is obtained.

【0020】電圧走査の結果を図2〜図8に示す。図2
は正極に硝酸リチウムを添加した実施例の電池の電極を
用いて電圧走査した結果、図3は、正極には何も添加し
ない従来例1の電池の電極を用いて電圧走査した結果、
図4は正極に炭酸リチウムを添加した従来例2の電池の
電極を用いて電圧走査した結果、図5は正極に蓚酸リチ
ウムを添加した従来例3の電池の電極を用いて電圧走査
した結果、図6は正極に炭酸マンガンを添加した従来例
4の電池の電極を用いて電圧走査した結果、図7は正極
に炭酸カリウムを添加した従来例8の電池の電極を用い
て電圧走査した結果、図8は正極に炭酸マグネシウムを
添加した従来例11の電池の電極を用いて電圧走査した
結果をそれぞれ示す。図2〜図8において4.6V付近
に観測される電流ピークは、電解液や添加剤の電気化学
的分解に起因するピークではなく、正極の酸化ピークで
ある。図3の、正極には何も添加しない従来例1の電池
の電極を用いて電圧走査した結果では、約5.1Vから
電解液の分解に相当する電流値の上昇が観測される。こ
れは電池が過充電状態となり、約5.1V以上となる
と、電池が破裂、爆発に至る確率がかなり高くなるとい
う試験結果と一致している。図4の正極に炭酸リチウム
を添加した従来例2の電池の電極を用いて電圧走査した
結果では、電解液の分解に相当する電流が流れる電圧よ
りも低い、約5Vで炭酸リチウムと電解液との分解反応
に相当する電流ピークが観測され、特開平4−3282
78号公報の記述内容と一致している。しかし、5.5
V付近から急激に電解液の分解に起因する電流値の上昇
が観測された。図5〜図8に示されているように、各種
炭酸塩や蓚酸リチウムを添加した従来例3、従来例4、
従来例8、従来例11の電池の電極を用いて電圧走査し
た結果では、電解液の分解に相当する電流が流れる電圧
よりも低い電圧で、添加物と電解液との分解反応に相当
する電流は観測されない。従って添加物の効果は殆どな
いといえる。
The results of the voltage scanning are shown in FIGS. FIG.
FIG. 3 shows the result of voltage scanning using the electrode of the battery of the example in which lithium nitrate was added to the positive electrode. FIG. 3 shows the result of voltage scanning using the electrode of the battery of Conventional Example 1 in which nothing was added to the positive electrode.
FIG. 4 shows the result of voltage scanning using the electrode of the battery of Conventional Example 2 in which lithium carbonate was added to the positive electrode, and FIG. 5 shows the result of voltage scanning using the electrode of the battery of Conventional Example 3 in which lithium oxalate was added to the positive electrode. FIG. 6 shows the result of voltage scanning using the electrode of the battery of Conventional Example 4 in which manganese carbonate was added to the positive electrode. FIG. 7 shows the result of voltage scanning using the electrode of the battery of Conventional Example 8 in which potassium carbonate was added to the positive electrode. FIG. 8 shows the results of voltage scanning using the electrode of the battery of Conventional Example 11 in which magnesium carbonate was added to the positive electrode. The current peak observed near 4.6 V in FIGS. 2 to 8 is not the peak due to the electrochemical decomposition of the electrolyte or the additive, but the oxidation peak of the positive electrode. In FIG. 3, as a result of voltage scanning using the electrode of the battery of Conventional Example 1 in which nothing is added to the positive electrode, an increase in the current value corresponding to decomposition of the electrolyte from about 5.1 V is observed. This is in agreement with the test result that when the battery is overcharged and the voltage becomes about 5.1 V or more, the probability of the battery exploding or exploding becomes considerably high. The result of voltage scanning using the electrode of the battery of Conventional Example 2 in which lithium carbonate was added to the positive electrode in FIG. 4 shows that the lithium carbonate and the electrolyte were at about 5 V lower than the voltage at which the current corresponding to the decomposition of the electrolyte flows. A current peak corresponding to the decomposition reaction of
This is consistent with the description in JP-A-78. However, 5.5
From around V, a sharp increase in the current value due to the decomposition of the electrolytic solution was observed. As shown in FIGS. 5 to 8, Conventional Examples 3 and 4, in which various carbonates and lithium oxalate were added,
The results of voltage scanning using the electrodes of the batteries of Conventional Example 8 and Conventional Example 11 show that at a voltage lower than the voltage at which the current corresponding to the decomposition of the electrolytic solution flows, the current corresponding to the decomposition reaction between the additive and the electrolytic solution is obtained. Is not observed. Therefore, it can be said that the additive has almost no effect.

【0021】従来例1〜4、8、11の電池の電極を用
いて電圧走査した結果(図3〜図8)では、いずれも
5.1Vを超えると電解液の分解反応に相当する電流値
の上昇が観測される。従って、図3〜図8は、比較的大
きな電流で電池が急激に過充電状態に陥った場合に、破
裂、爆発を抑制できないことを示唆している。それに対
して図2の正極に硝酸リチウムを添加した、本発明の電
池の電極を用いて電圧走査した結果では、5.1Vを超
えると電解液の分解反応に相当する電流値の上昇が観測
されるものの、それより以前の4.7Vと4.8V付近
で硝酸リチウムと電解液との分解反応に相当すると思わ
れる電流ピークが観測される。ガス発生は4.7V付近
から目視で確認された。従って、正極に硝酸リチウムを
添加した電池は、電解液の分解に相当する電流が流れる
電圧よりも低い電圧で添加物の分解ガス発生が起こり、
危険な状態になる前に電池内圧が上昇して、電流遮断機
構を動作させたり、弁機構を動作させ、破裂、爆発を回
避できることがわかる。
According to the results of voltage scanning using the electrodes of the batteries of Conventional Examples 1 to 4, 8, and 11 (FIGS. 3 to 8), when the voltage exceeds 5.1 V, the current value corresponding to the decomposition reaction of the electrolytic solution is obtained. Is observed. Therefore, FIGS. 3 to 8 suggest that when the battery suddenly falls into an overcharged state with a relatively large current, bursting and explosion cannot be suppressed. On the other hand, in the result of voltage scanning using the electrode of the battery of the present invention in which lithium nitrate was added to the positive electrode in FIG. 2, when the voltage exceeded 5.1 V, an increase in the current value corresponding to the decomposition reaction of the electrolyte was observed. However, a current peak which is considered to correspond to the decomposition reaction between lithium nitrate and the electrolyte is observed at around 4.7 V and 4.8 V before that. Gas generation was visually confirmed from around 4.7V. Therefore, in a battery in which lithium nitrate is added to the positive electrode, decomposition gas generation of the additive occurs at a voltage lower than a voltage at which a current corresponding to decomposition of the electrolyte flows,
It can be seen that the internal pressure of the battery rises before a dangerous state occurs, and the current cutoff mechanism or the valve mechanism is operated, so that rupture and explosion can be avoided.

【0022】本実施例では正極活物質にLiCoO2
用いたが、その他の正極活物質、例えばLiNiO2
LiMnO2、等を用いても本実施例と同様の効果が得
られる。
In this embodiment, LiCoO 2 is used as the positive electrode active material, but other positive electrode active materials, for example, LiNiO 2 ,
Even if LiMnO 2 or the like is used, the same effect as that of the present embodiment can be obtained.

【0023】[0023]

【発明の効果】本発明により、過充電領域における急激
な電池電圧の上昇に対しても速やかに電池内圧を上昇さ
せることができる結果、電池内圧の上昇による電流遮断
機構の作動が確実となる。電流遮断機構の作動は、電解
液が急激に分解する異常な反応が起こる前であり、電池
温度の上昇を回避し、電池の破裂や爆発といった著しい
破壊を抑制することのできる有機電解液二次電池を提供
することができた。
According to the present invention, the internal pressure of the battery can be rapidly increased even in the case of a sudden increase in the battery voltage in the overcharge region. As a result, the operation of the current interrupting mechanism due to the increase in the internal pressure of the battery is ensured. The current interrupt mechanism is activated before an abnormal reaction occurs, in which the electrolyte is rapidly decomposed.The secondary solution of the organic electrolyte, which can prevent the battery temperature from rising and suppress remarkable destruction such as rupture or explosion of the battery, can be achieved. Battery could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機電解液二次電池の一例の縦断面図
である。
FIG. 1 is a longitudinal sectional view of an example of an organic electrolyte secondary battery of the present invention.

【図2】正極に硝酸リチウムを添加した実施例の電池の
電極を用いて電圧走査した結果を示したものである。
FIG. 2 shows the results of voltage scanning using the electrodes of the battery of the example in which lithium nitrate was added to the positive electrode.

【図3】正極には何も添加しない従来例1の電池の電極
を用いて電圧走査した結果を示したものである。
FIG. 3 shows the result of voltage scanning using the electrode of the battery of Conventional Example 1 in which nothing is added to the positive electrode.

【図4】正極に炭酸リチウムを添加した従来例2の電池
の電極を用いて電圧走査した結果をを示したものであ
る。
FIG. 4 shows the result of voltage scanning using the electrode of the battery of Conventional Example 2 in which lithium carbonate was added to the positive electrode.

【図5】正極に蓚酸リチウムを添加した従来例3の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 5 shows the result of voltage scanning using the electrode of the battery of Conventional Example 3 in which lithium oxalate was added to the positive electrode.

【図6】正極に炭酸マンガンを添加した従来例4の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 6 shows the result of voltage scanning using the electrode of the battery of Conventional Example 4 in which manganese carbonate was added to the positive electrode.

【図7】正極に炭酸カリウムを添加した従来例8の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 7 shows the result of voltage scanning using the electrode of the battery of Conventional Example 8 in which potassium carbonate was added to the positive electrode.

【図8】正極に炭酸マグネシウムを添加した従来例11
の電池の電極を用いて電圧走査した結果を示したもので
ある。
FIG. 8 shows a conventional example 11 in which magnesium carbonate is added to a positive electrode.
3 shows the results of voltage scanning using the electrodes of the battery of FIG.

【符号の説明】[Explanation of symbols]

1.正極集電体 2.正極活物質層 3.負極集電体 4.負極活物質層 5.セパレータ 6.負極缶 7.正極キャップ 8.正極タブ端子 9.ガスケット 1. 1. positive electrode current collector 2. positive electrode active material layer Negative electrode current collector 4. Negative electrode active material layer 5. Separator 6. Negative electrode can 7 Positive electrode cap 8. Positive electrode tab terminal 9. gasket

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正極と負極と有機電解液が密閉容器に収納
され、当該密閉容器が、所定圧力よりも高い電池内圧で
開放作動する弁機構を有してなる有機電解液二次電池に
おいて、前記正極が硝酸リチウムを含有していることを
特徴とする有機電解液二次電池。
An organic electrolyte secondary battery comprising a positive electrode, a negative electrode, and an organic electrolyte housed in a closed container, wherein the closed container has a valve mechanism that is opened at a battery internal pressure higher than a predetermined pressure. An organic electrolyte secondary battery, wherein the positive electrode contains lithium nitrate.
【請求項2】電池内圧上昇で作動する電流遮断機構を備
え、前記電流遮断機構は、弁機構が開放作動する電池内
圧より低い電池内圧で作動することを特徴とする請求項
1記載の有機電解液二次電池。
2. The organic electrolysis according to claim 1, further comprising a current cutoff mechanism that operates when the internal pressure of the battery rises, wherein the current cutoff mechanism operates at a lower battery internal pressure than when the valve mechanism opens. Liquid secondary battery.
【請求項3】硝酸リチウムの含有量が、正極活物質重量
に対して0.2〜15%であることを特徴とする請求項
1又は2記載の有機電解液二次電池。
3. The organic electrolyte secondary battery according to claim 1, wherein the content of lithium nitrate is 0.2 to 15% based on the weight of the positive electrode active material.
【請求項4】硝酸リチウムの平均粒子径が30μm以下
であることを特徴とする請求項1〜3のいずれかに記載
の有機電解液二次電池。
4. The organic electrolyte secondary battery according to claim 1, wherein the average particle diameter of lithium nitrate is 30 μm or less.
【請求項5】正極が充電、放電に伴い、リチウムを放
出、吸蔵することのできる材料であり、負極がリチウム
金属、リチウム合金、リチウムを吸蔵、放出することの
できる材料の中から選ばれる請求項1〜4のいずれかに
記載の有機電解液二次電池。
5. The positive electrode is a material capable of releasing and occluding lithium during charging and discharging, and the negative electrode is selected from lithium metal, lithium alloy, and a material capable of occluding and releasing lithium. Item 6. The organic electrolyte secondary battery according to any one of Items 1 to 4.
【請求項6】正極が充電、放電に伴い、リチウムを放
出、吸蔵することのできる材料であり、負極がリチウム
を吸蔵、放出することのできる炭素材である請求項1〜
4のいずれかに記載の有機電解液二次電池。
6. The positive electrode is a material capable of releasing and occluding lithium during charge and discharge, and the negative electrode is a carbon material capable of occluding and releasing lithium.
5. The organic electrolyte secondary battery according to any one of 4.
JP8284945A 1996-10-28 1996-10-28 Organic electrolyte secondary battery Pending JPH10134817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8284945A JPH10134817A (en) 1996-10-28 1996-10-28 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8284945A JPH10134817A (en) 1996-10-28 1996-10-28 Organic electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10134817A true JPH10134817A (en) 1998-05-22

Family

ID=17685109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8284945A Pending JPH10134817A (en) 1996-10-28 1996-10-28 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10134817A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319436A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Nonaqueous electrolyte cell
JP2006324235A (en) * 2005-04-20 2006-11-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008181830A (en) * 2007-01-26 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2019097190A1 (en) * 2017-11-20 2019-05-23 Blue Solutions Use of lithium nitrate as the sole lithium salt in a lithium-gel battery
WO2019111644A1 (en) * 2017-12-04 2019-06-13 日立オートモティブシステムズ株式会社 Secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319436A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Nonaqueous electrolyte cell
JP2006324235A (en) * 2005-04-20 2006-11-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008181830A (en) * 2007-01-26 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2019097190A1 (en) * 2017-11-20 2019-05-23 Blue Solutions Use of lithium nitrate as the sole lithium salt in a lithium-gel battery
FR3073984A1 (en) * 2017-11-20 2019-05-24 Blue Solutions USE OF LITHIUM NITRATE AS A SINGLE SALT OF LITHIUM IN A GELIFIED LITHIUM BATTERY
KR20200089306A (en) * 2017-11-20 2020-07-24 블루 솔루션즈 Use of lithium nitrate as the only lithium salt in gelled lithium batteries
US20200266480A1 (en) * 2017-11-20 2020-08-20 Blue Solutions Use of lithium nitrate as sole lithium salt in a gelled lithium battery
US11799124B2 (en) 2017-11-20 2023-10-24 Blue Solutions Use of lithium nitrate as sole lithium salt in a gelled lithium battery
WO2019111644A1 (en) * 2017-12-04 2019-06-13 日立オートモティブシステムズ株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
JP3358478B2 (en) Organic electrolyte secondary battery
KR19980024915A (en) Nonaqueous Electrolyte Secondary Battery
JP5335437B2 (en) Electrochemical device with improved safety
KR20000052412A (en) Positive electrode for nonaqueous electrolyte battery and method of manufacturing the same, and nonaqueous electrolyte battery using the positive electrode and method of manufacturing the same
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
US20140002942A1 (en) Secondary Lithium Ion Battery With Mixed Nickelate Cathodes
JP2017059526A (en) Nonaqueous electrolyte secondary battery
JP2021511639A (en) Battery connection device and battery pack including the battery connection device
JPH10125327A (en) Organic electrolyte secondary battery
US20040146775A1 (en) Battery pack
JPH11273674A (en) Organic electrolyte secondary battery
JP2001250543A (en) Lithium secondary battery
JPH10134817A (en) Organic electrolyte secondary battery
JP2008243659A (en) Nonaqueous electrolyte battery
JP3371713B2 (en) Organic electrolyte secondary battery
JPH09129241A (en) Nonaqueous electrolytic secondary battery
JP2005251548A (en) Square shape secondary battery
JPH04329269A (en) Nonaqueous electrolyte secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JPH11224670A (en) Lithium secondary battery
JP3010973B2 (en) Non-aqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JPH1021961A (en) Organic electrolyte lithium secondary battery