JP2009224305A - LITHIUM SECONDARY BATTERY WITH Li-Sn-Mn COMPOUND POSITIVE ELECTRODE THIN FILM, MANUFACTURING METHOD OF Li-Sn-Mn COMPOUND TARGET AND POSITIVE ELECTRODE THIN FILM DEPOSITION METHOD USING THIS - Google Patents

LITHIUM SECONDARY BATTERY WITH Li-Sn-Mn COMPOUND POSITIVE ELECTRODE THIN FILM, MANUFACTURING METHOD OF Li-Sn-Mn COMPOUND TARGET AND POSITIVE ELECTRODE THIN FILM DEPOSITION METHOD USING THIS Download PDF

Info

Publication number
JP2009224305A
JP2009224305A JP2008158809A JP2008158809A JP2009224305A JP 2009224305 A JP2009224305 A JP 2009224305A JP 2008158809 A JP2008158809 A JP 2008158809A JP 2008158809 A JP2008158809 A JP 2008158809A JP 2009224305 A JP2009224305 A JP 2009224305A
Authority
JP
Japan
Prior art keywords
positive electrode
thin film
mixed powder
target
electrode thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008158809A
Other languages
Japanese (ja)
Other versions
JP5086910B2 (en
Inventor
Ji-Won Choi
チェ・ジウォン
Seok Jin Yoon
ユン・ソクジン
Dong Wook Shin
シン・ドンウク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Science and Technology KIST
Original Assignee
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Science and Technology KIST filed Critical Korea Institute of Science and Technology KIST
Publication of JP2009224305A publication Critical patent/JP2009224305A/en
Application granted granted Critical
Publication of JP5086910B2 publication Critical patent/JP5086910B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery with a Li-Sn-Mn compound positive electrode thin film; a manufacturing method of a Li-Sn-Mn compound target; and a positive electrode thin film deposition method using this. <P>SOLUTION: The positive electrode thin film deposition method for the lithium secondary battery includes the steps of: forming mixed powder by mixing Li<SB>2</SB>CO<SB>3</SB>, MnO<SB>2</SB>, and SnO powder; conducting primary crushing of the mixed powder; calcinating the mixed powder after the primary crushing; conducting secondary crushing of the calcinated mixed powder; pressing the mixed powder after secondary crushing; manufacturing a target containing Li, Sn, Mn, and O by sintering the pressed mixture; and locally vapor depositing the positive electrode thin film containing Li, Sn, Mn, and O on a substrate by irradiating laser beams to the target. The discharge capacity and charge discharge reversibility can remarkably be enhanced by replacing a part of Mn with Sn. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、Li−Sn−Mn化合物正極薄膜を備えるリチウム二次電池、並びにLi−Sn−Mn化合物ターゲットの製造方法及びこれを用いた正極薄膜形成方法に関する。   The present invention relates to a lithium secondary battery including a Li—Sn—Mn compound positive electrode thin film, a method for producing a Li—Sn—Mn compound target, and a method for forming a positive electrode thin film using the same.

リチウム二次電池の正極材料として既に実用化されているリチウムコバルト酸化物(LiCoO)は高価であり、環境問題、安全性問題などを抱えていることから、リチウムマンガン酸化物はリチウムニッケル酸化物(LiNiO)と共に、これらの問題を解決する代替物質として多くの研究が行われている物質である。リチウムコバルト酸化物及びリチウムニッケル酸化物は、過充電時に酸素が発生し爆発の危険性があるが、リチウムマンガン酸化物は、過充電時にも酸素が発生せず、コバルト(Co)に比べて相対的に豊富な元素であるマンガン(Mn)を用いることによって、価格が低廉であるという長所がある。 Lithium cobalt oxide (LiCoO 2 ), which has already been put into practical use as a positive electrode material for lithium secondary batteries, is expensive and has environmental and safety problems. Therefore, lithium manganese oxide is lithium nickel oxide. Along with (LiNiO 2 ), many materials have been studied as an alternative material to solve these problems. Lithium cobalt oxide and lithium nickel oxide generate oxygen when overcharged and there is a danger of explosion. However, lithium manganese oxide does not generate oxygen even when overcharged, and it is relative to cobalt (Co). By using manganese (Mn), which is an abundant element, there is an advantage that the price is low.

しかし、リチウムマンガン酸化物の理論充電容量(148mAh/g)は、リチウムコバルト酸化物の理論充電容量(274mAh/g)よりも小さく、充放電サイクルが繰り返されるに伴い、放電容量が急激に減少するという短所を有している。W. Liuら(J. Electronchem. Soc.、Vol. 143, No. 11,pp. 3590-3596, 1996)、及びR. J. Gummowら(Solid State Ionics, Vol. 69, No. pp. 59-67, 1994)は、充放電が繰り返される際に、リチウムイオンの挿入により正極でリチウムマンガン酸化物(LiMn)が形成されることによる正方晶(tetragonal)への相転移が充放電サイクル不良の原因であると説明する。 However, the theoretical charge capacity (148 mAh / g) of lithium manganese oxide is smaller than the theoretical charge capacity (274 mAh / g) of lithium cobalt oxide, and the discharge capacity rapidly decreases as the charge / discharge cycle is repeated. It has the disadvantages. W. Liu et al. (J. Electronchem. Soc., Vol. 143, No. 11, pp. 3590-3596, 1996) and RJ Gummow et al. (Solid State Ionics, Vol. 69, No. pp. 59-67, 1994), when charge and discharge are repeated, the phase transition to tetragonal due to the formation of lithium manganese oxide (Li 2 Mn 2 O 4 ) at the positive electrode by the insertion of lithium ions is the charge and discharge cycle. Explain that it is the cause of the defect.

リチウムイオンの挿入によってマンガン(Mn)イオンの平均原子価が3.5以下に減少し、強いJahn-Teller変形が発生して(G. Pistoiaら、Solid State Ionics, Vol. 78, pp. 115-122, 1995)、結晶構造が立方晶(cubic)から正方晶に変化し、その結果、これ以上のリチウム脱挿入が難しくなる。すなわち、スピネル構造で3価のマンガンイオンの配列(t32g・e1g, high spin)が変化し、八面体が強く伸長し、c/a比率が単位セル当り16%増加するのに伴い、充放電が繰り返される間に正極の構造的平衡を維持することができなくなる。また、リチウム離脱時にマンガンの平均原子価(valence)が再び3.5に戻りながら生じるMn3+(3d4)の原子価の変化により、放電が困難になり、充放電容量が急激に減少するものと考えられている。 Insertion of lithium ion reduces the average valence of manganese (Mn) ion to 3.5 or less, and strong Jahn-Teller deformation occurs (G. Pistoia et al., Solid State Ionics, Vol. 78, pp. 115- 122, 1995), the crystal structure changes from cubic to tetragonal, and as a result, further lithium desorption is difficult. That is, as the arrangement of trivalent manganese ions (t32g · e1g, high spin) changes in the spinel structure, the octahedron stretches strongly, and the c / a ratio increases by 16% per unit cell. It becomes impossible to maintain the structural equilibrium of the positive electrode during the repetition. Moreover, due to the change in the valence of Mn 3+ (3d4) that occurs while the average valence of manganese returns to 3.5 again when lithium leaves, the discharge becomes difficult and the charge / discharge capacity decreases rapidly. It is considered.

本発明は、Li−Sn−Mn化合物正極薄膜を備えるリチウム二次電池、Li−Sn−Mn化合物ターゲットの製造方法及びこれを用いた正極薄膜の形成方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of a lithium secondary battery provided with a Li-Sn-Mn compound positive electrode thin film, a Li-Sn-Mn compound target, and a positive electrode thin film using the same.

本発明のリチウム二次電池用薄膜正極の形成方法は、LiCO、MnO及びSnO粉末を混合して混合粉末を設ける段階と、前記混合粉末を1次粉砕する段階と、前記1次粉砕された混合粉末を仮焼する段階と、前記仮焼された混合粉末を2次粉砕する段階と、前記2次粉砕された混合粉末を加圧成形する段階と、前記加圧成形された混合物を焼結してLi、Sn、Mn及びOを備えるターゲットを製造する段階と、前記ターゲットにレーザを照射して基板に前記Li、Sn、Mn及びOを備える正極薄膜を局所蒸着する段階とを備える。 The method of forming a thin film positive electrode for a lithium secondary battery according to the present invention includes a step of mixing Li 2 CO 3 , MnO 2 and SnO powder to provide a mixed powder, a step of primary pulverizing the mixed powder, and a step of the primary A step of calcining the pulverized mixed powder, a step of secondary pulverizing the calcined mixed powder, a step of pressure-molding the secondary pulverized mixed powder, and the pressure-molded mixture A step of producing a target comprising Li, Sn, Mn, and O, and a step of locally depositing a positive electrode thin film comprising Li, Sn, Mn, and O on a substrate by irradiating the target with a laser. Prepare.

また、本発明のLiSnx/2Mn2−x(0<x≦0.05)ターゲットの製造方法は、LiCO、MnO及びSnO粉末を混合して混合粉末を設ける段階と、前記混合粉末を1次粉砕する段階と、前記1次粉砕された混合粉末を仮焼する段階と、前記仮焼された混合粉末を2次粉砕する段階と、前記2次粉砕された混合粉末を加圧成形する段階と、前記加圧成形された混合物を焼結してLiSnx/2Mn2−x(0<x≦0.05)ターゲットを製造する段階とを備える。 Moreover, the manufacturing method of the LiSn x / 2 Mn 2-x O 4 (0 <x ≦ 0.05) target of the present invention includes a step of mixing Li 2 CO 3 , MnO 2 and SnO powder to provide a mixed powder. A step of primary pulverizing the mixed powder, a step of calcining the primary pulverized mixed powder, a step of secondary pulverizing the calcined mixed powder, and the secondary pulverized mixed powder. And a step of sintering the pressure-molded mixture to produce a LiSn x / 2 Mn 2-x O 4 (0 <x ≦ 0.05) target.

また、本発明のリチウム二次電池は、Li、Sn、Mn及びOの化合物正極の組成物を備える。   The lithium secondary battery of the present invention includes a composition of a compound positive electrode of Li, Sn, Mn, and O.

以下に本発明の実施態様を、添付図面を用いて詳細に説明するが、本発明はこれらの実施態様に限定されるものではない。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings, but the present invention is not limited to these embodiments.

本発明のリチウム二次電池正極薄膜は、スピネル構造を有するリチウムマンガン酸化物(LiMn)に少量のスズ化合物を添加して形成し、次の化学式(1)の組成を有する。 The lithium secondary battery positive electrode thin film of the present invention is formed by adding a small amount of a tin compound to lithium manganese oxide (LiMn 2 O 4 ) having a spinel structure, and has the following chemical formula (1).

LiSnx/2Mn2−x (1)
(式中、xは0<x≦0.05である)。
LiSn x / 2 Mn 2-x O 4 (1)
(Wherein x is 0 <x ≦ 0.05).

本発明の実施例では、LiSnx/2Mn2−x(0<x≦0.05)のターゲットを製造し、レーザ局所蒸着法を用いて、ターゲット組成成分の組成を有する正極薄膜を容易に形成することができる。 In an embodiment of the present invention, a target of LiSn x / 2 Mn 2-x O 4 (0 <x ≦ 0.05) was manufactured, and a positive electrode thin film having a composition of target composition components was prepared using a laser local vapor deposition method. It can be formed easily.

第1実施例(ターゲットの製造)
LiSnx/2Mn2−x(x=0、0.025、0.05)ターゲットの製造のために、LiCO,MnO及びSnO粉末を、重量%でそれぞれが、19.0〜19.1:79.3〜80.7:0.3〜1.6になるように正確に秤量する。ここで、LiCOの重量%は、熱処理時にリチウムが損失するのを勘案して、その適切量よりも10%ほど多い量としている。 秤量した粉末を無水アルコール及びイットリア安定化ジルコニア(yttria stabilized zirconia)と共に24時間ボールミリング(ball-milling)した後、120℃で24時間乾燥させて混合粉末を準備し、アルミナ擂り鉢で1次粉砕した後、空気雰囲気中で400℃〜800℃で1〜5時間の間仮焼する。仮焼した粉末の中の一部を再びアルミナ擂り鉢で2次粉砕してPVA(polyvinyl alcohol)バインダと混ぜた後、1〜5ton/cmの圧力でペレット状に一軸加圧成形した後、仮焼された粉末の中の加圧成形されていない残りと共に空気雰囲気中800℃〜1200℃で1〜24時間の間焼結(最終焼結)を実施する。
First embodiment (target production)
For the production of LiSn x / 2 Mn 2-x O 4 (x = 0, 0.025, 0.05) target, Li 2 CO 3 , MnO 2 and SnO powder, each in weight percent, 19. Weigh accurately to be 0-19.1: 79.3-80.7: 0.3-1.6. Here, the weight percentage of Li 2 CO 3 is set to an amount that is about 10% larger than the appropriate amount in consideration of the loss of lithium during heat treatment. The weighed powder is ball-milled with anhydrous alcohol and yttria stabilized zirconia for 24 hours, then dried at 120 ° C. for 24 hours to prepare a mixed powder, and first ground in an alumina mortar And calcining at 400 ° C. to 800 ° C. for 1 to 5 hours in an air atmosphere. A part of the calcined powder is secondarily ground in an alumina mortar and mixed with a PVA (polyvinyl alcohol) binder, and then uniaxially pressed into a pellet at a pressure of 1 to 5 ton / cm 2 . Sintering (final sintering) is carried out in the air atmosphere at 800 ° C. to 1200 ° C. for 1 to 24 hours together with the remaining non-press-molded powder in the calcined powder.

図1aは、仮焼後、焼結前の粉末のX線回折分析結果を示し、LiMnO,γ−Mn及びSnOなどの不純物相が存在することを示している。図1bに示すように、最終的に焼結した後の粉末のX線回折分析結果では、もっぱらLiMn型のスピネル相のみが示されることが分かる。このことは、最終焼結の後に不純物相が消失し、特にスズ元素はスピネル構造内に固溶して置換されたことを意味する。また、製造されたターゲットの密度は3.5g/cm程度であり、この数値は理論密度(4.4g/cm3)の80%程度であり、これまで報告された他のターゲットの密度の数値よりも大きい。 FIG. 1a shows the result of X-ray diffraction analysis of the powder after calcination and before sintering, and shows that there are impurity phases such as Li 2 MnO 3 , γ-Mn 2 O 3 and SnO 2 . As shown in FIG. 1b, the X-ray diffraction analysis result of the powder after final sintering shows that only the LiMn 2 O 4 type spinel phase is shown. This means that the impurity phase disappeared after the final sintering, and in particular, the tin element was replaced by being dissolved in the spinel structure. Moreover, the density of the manufactured target is about 3.5 g / cm 3 , and this value is about 80% of the theoretical density (4.4 g / cm 3 ). Greater than the number.

第2実施例(レーザ局所蒸着法による薄膜製造)
前述した第1実施例によって製造したターゲットをホルダに固定し、次いで洗浄した基板を基板ホルダに固定して、レーザ局所蒸着を実施する。この時、電気化学特性の測定のための電極の位置に該当する基板の一部分をマスクで分ける。基板とターゲット間の距離は3〜5cmにする。真空チャンバ内の基本圧力は1×10−5Torr以下に調節する。基板の温度は350〜550℃、作用ガスである酸素の圧力は0.05〜0.25Torrに調節する。波長の範囲が248nmであり、20ns持続時間を有するKrFエキシマレーザを用い、レーザビームの大きさを2〜5mmに、PLD(pulsed laser deposition)出力密度を1〜4J/cm、スポット反復率を3〜10Hz、照射時間を3〜120分間として、ターゲットの構成成分であるLiSnx/2Mn2−xを基板上に蒸着する。
Second Example (Manufacturing Thin Film by Laser Local Vapor Deposition)
The target manufactured by the first embodiment described above is fixed to the holder, and then the cleaned substrate is fixed to the substrate holder, and laser local vapor deposition is performed. At this time, a part of the substrate corresponding to the position of the electrode for measuring the electrochemical characteristics is divided with a mask. The distance between the substrate and the target is 3 to 5 cm. The basic pressure in the vacuum chamber is adjusted to 1 × 10 −5 Torr or less. The temperature of the substrate is adjusted to 350 to 550 ° C., and the pressure of oxygen as the working gas is adjusted to 0.05 to 0.25 Torr. Using a KrF excimer laser with a wavelength range of 248 nm and a 20 ns duration, the laser beam size is 2 to 5 mm 2 , the PLD (pulsed laser deposition) output density is 1 to 4 J / cm 2 , and the spot repetition rate Is set to 3 to 10 Hz and the irradiation time is set to 3 to 120 minutes, and LiSn x / 2 Mn 2-x O 4 which is a component of the target is deposited on the substrate.

実施例1によって得られた厚さ0.1〜1μmの一部がスズで置換されたリチウムマンガン酸化物薄膜を正極に用い、負極としてリチウムを、電解質としてリチウムヘキサフルオロフォスフェート(LiPF)をエチレンカルボネート:ジエチルカルボネート=1:1(体積比)の有機溶媒に溶解した電解液を用いた試験電池を製造し、この電池に対して充放電実験を行った。 The lithium manganese oxide thin film partially substituted with tin of 0.1 to 1 μm thick obtained in Example 1 was used as the positive electrode, lithium as the negative electrode, and lithium hexafluorophosphate (LiPF 6 ) as the electrolyte. A test battery using an electrolytic solution dissolved in an organic solvent of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) was manufactured, and a charge / discharge experiment was performed on this battery.

LiSnx/2Mn2−x薄膜での初期充放電容量は、x=0.05で最も高かった。遮断(cut-off)電圧を3.0Vから4.5Vに変更した時のLiSnx/2Mn2−xの充放電特性を図2に示す。初期充放電容量は、図2a、b、cの各々が、97.9,120.0,133.0mAh/gであり、これは理論容量の66%、81%、90%程度となる。一般に、スピネル型リチウムマンガン酸化物正極の容量に決定的な役割を果たすMn3+イオンの量は、LiSnx/2Mn2−xにおいて、xが増加するにつれて減少し、同時に初期充放電容量も減少する。しかし、本発明においては、x値の増加に伴い初期放電容量が増加したが、この理由は、マンガンの不完全な(Mn deficient)結晶構造により、より多くのリチウムイオンが正極結晶構造内に脱挿入できるからである。また、正極容量に決定的な因子である電子伝導度(electronic conductivity)がスズ(Sn)の添加によって向上し、充放電効率のみならず、初期充放電容量も増加したからである(G. M. Ehrlichら:Sens. Actuators A, Vol. 51, pp. 17-19, 1995, X. Wuら:Surf. Coat. Technol.、Vol. 186, pp. 412-415 (2004)、K. S. Parkら:Solid State Commun.、Vol. 129, pp. 311-314, 2004)。 The initial charge / discharge capacity of the LiSn x / 2 Mn 2-x O 4 thin film was highest at x = 0.05. FIG. 2 shows the charge / discharge characteristics of LiSn x / 2 Mn 2-x O 4 when the cut-off voltage is changed from 3.0 V to 4.5 V. The initial charge / discharge capacities are 97.9, 120.0, and 133.0 mAh / g in FIGS. 2A, 2B, and 2C, respectively, which are about 66%, 81%, and 90% of the theoretical capacity. In general, the amount of Mn 3+ ions that play a decisive role in the capacity of the spinel-type lithium manganese oxide positive electrode decreases with increasing x in LiSn x / 2 Mn 2−x O 4 , and at the same time the initial charge / discharge capacity. Also decreases. However, in the present invention, the initial discharge capacity increased as the x value increased. This is because more lithium ions are desorbed into the positive electrode crystal structure due to the Mn deficient crystal structure of manganese. This is because it can be inserted. In addition, the electronic conductivity which is a decisive factor for the positive electrode capacity is improved by the addition of tin (Sn), and not only the charge / discharge efficiency but also the initial charge / discharge capacity is increased (GM Ehrlich et al. : Sens. Actuators A, Vol. 51, pp. 17-19, 1995, X. Wu et al .: Surf. Coat. Technol., Vol. 186, pp. 412-415 (2004), KS Park et al .: Solid State Commun Vol. 129, pp. 311-314, 2004).

図3は、試験電池における充放電実験おいて、遮断電圧を3.0Vから4.5Vに増加して充放電実験を行ったときの充放電回数による放電容量の変化を示す。純粋なLiMnは不安定な放電容量を示すのに対し、本発明によって形成された正極薄膜LiSn0.0125Mn1.975を備える電池の充放電効率特性は、飛び抜けて高いことが分かる。LiSnx/2Mn2−x正極薄膜の容量及び充放電効率の向上は、既存の様々な薄膜製造法で作製した異種元素によってドーピング及び置換されたLiMn系リチウム二次電池用正極薄膜の容量及び充放電性能向上値よりも優れている。さらに高い電流密度(4C)でも優れた容量及び充放電特性を示す。 FIG. 3 shows a change in discharge capacity depending on the number of times of charge / discharge when the interruption voltage is increased from 3.0V to 4.5V in a charge / discharge experiment in a test battery. While pure LiMn 2 O 4 exhibits an unstable discharge capacity, the charge / discharge efficiency characteristics of the battery comprising the positive electrode thin film LiSn 0.0125 Mn 1.975 O 4 formed according to the present invention are remarkably high. I understand. The capacity and charge / discharge efficiency of the LiSn x / 2 Mn 2-x O 4 positive electrode thin film are improved for LiMn 2 O 4 based lithium secondary batteries doped and replaced by different elements produced by various existing thin film manufacturing methods. It is superior to the capacity and charge / discharge performance improvement value of the positive electrode thin film. Furthermore, even at a high current density (4C), excellent capacity and charge / discharge characteristics are exhibited.

図4に示すように、マンガンが不十分な組成であるLiSn0.0125Mn1.975及びLiSn0.025Mn1.95においても、LiMn組成と同様に、(111)、(311)及び(400)面の回折ピークがそれぞれ現れ、空間群が

Figure 2009224305

(立方晶、no.227)でスピネル構造を有することが示された。 As shown in FIG. 4, LiSn 0.0125 Mn 1.975 O 4 and LiSn 0.025 Mn 1.95 O 4 , which have an insufficient manganese composition, are similar to the LiMn 2 O 4 composition (111 ), (311) and (400) plane diffraction peaks respectively,
Figure 2009224305

(Cubic crystal, no. 227) was shown to have a spinel structure.

図5に示すように、LiSnx/2Mn2−x組成においてx値を変化させたときのラマンスペクトル結果を分析することにより、スズで一部が置換されたスピネル構造のマンガン(Mn)と酸素(O)との間の伸縮振動(stretching vibration)を示すA1gピーク(630〜650cm−1領域の主ピーク)が低いラマンシフト値へ移動したことが分かる。これはマンガン−酸素結合の距離が減少したためであり、充放電時に相変化を起こさず、さらに多くのリチウムイオンが空いた八面体位置に脱挿入されることができ、スピネルの構造的安定性が向上したことを意味する。スズ置換の肯定的効果はx=0.025とx=0.05との間のラマンピークの変化がないことからみると、x=0.05以下に制限されることが分かる。 As shown in FIG. 5, by analyzing the Raman spectrum result when the x value was changed in the LiSn x / 2 Mn 2-x O 4 composition, manganese having a spinel structure partially substituted with tin (Mn It can be seen that the A1g peak (the main peak in the 630 to 650 cm −1 region) indicating the stretching vibration between oxygen) and oxygen (O) has shifted to a lower Raman shift value. This is because the distance between manganese-oxygen bonds has decreased, and phase change does not occur during charging / discharging, and more lithium ions can be inserted and removed into the vacant octahedron position, thereby improving the structural stability of the spinel. Means improved. It can be seen that the positive effect of tin substitution is limited to x = 0.05 or less, given that there is no change in the Raman peak between x = 0.025 and x = 0.05.

前記リチウム二次電池用正極薄膜は、マンガンが不十分なLiSnx/2Mn2−x(0<x≦0.05)組成の場合、マンガンが不十分ではないLiMδMn2−δ(“M”は金属元素)組成に比べて、充放電時にさらに多くのリチウムイオンを含有することができ、金属元素が置換されていない原組成のLiMnに比べてより大きい充放電容量を示す(R. J. Gummowら:solid State Ionics, Vol. 69, pp. 59-67, 1994、D. Singhら:Electrochem. Solid-State Letter, Vol. 5, Issue 9, pp. A198-A201, 2002)。また、マンガン−酸素結合の距離の減少は、リチウムイオンが4V領域で8a四面体の位置に脱挿入される経路として作用し、リチウムイオンが8a四面体位置に全て挿入された後、3V領域でリチウムが挿入される、スピネルの16cの八面体位置の空間をさらに広くし(K. Kangら:Science, Vol. 311, pp. 977-980, 2006、K. Tateishiら:Appl. Phys. Letter, Vol. 84, Issue 4, pp. 529-531, 2004、J. B. Batesら:J. Electrochem. Soc., Vol. 142, Issue 9, pp. L149-L151, 1995)、スズ置換によってリチウムイオンの移動及び伝導性が向上され得ることを意味する(S. Chitraら:J. Electrochem., Vol. 3, pp. 433-441, 1999、C. M. Julienら:Mater. Sci. Eng. B, Vol. 100, pp. 69-78, 2003)。 When the positive electrode thin film for a lithium secondary battery has a LiSn x / 2 Mn 2-x O 4 (0 <x ≦ 0.05) composition with insufficient manganese, LiM δ Mn 2-δ with insufficient manganese. Compared with the composition of O 4 (“M” is a metal element), more lithium ions can be contained during charging / discharging, and the charge / discharge is larger than that of LiMn 2 O 4 of the original composition in which the metal element is not substituted. Indicates discharge capacity (RJ Gummow et al .: Solid State Ionics, Vol. 69, pp. 59-67, 1994, D. Singh et al .: Electrochem. Solid-State Letter, Vol. 5, Issue 9, pp. A198-A201, 2002). Further, the decrease in the manganese-oxygen bond distance acts as a path for lithium ions to be deinserted into the 8a tetrahedron position in the 4V region, and after all the lithium ions have been inserted into the 8a tetrahedron position, in the 3V region. The space of the octahedral position of spinel 16c into which lithium is inserted is further expanded (K. Kang et al .: Science, Vol. 311, pp. 977-980, 2006, K. Tateishi et al .: Appl. Phys. Letter, Vol. 84, Issue 4, pp. 529-531, 2004, JB Bates et al .: J. Electrochem. Soc., Vol. 142, Issue 9, pp. L149-L151, 1995). It means that the conductivity can be improved (S. Chitra et al .: J. Electrochem., Vol. 3, pp. 433-441, 1999, CM Julien et al .: Mater. Sci. Eng. B, Vol. 100, pp. 69-78, 2003).

本発明の属する技術分野の当業者は、本発明がその技術的思想や必須の特徴を設定せず、他の具体的な形態で実施できたということを理解することができる。従って、以上で記述した実施例は全ての面で例示的なものであり、限定的ではないものと理解しなければならない。本発明の範囲は前記詳細な説明よりは後述する特許請求の範囲によって示され、特許請求の範囲の意味及び範囲そしてその等価概念から導き出される全ての設定または変形された形態が本発明の範囲に含まれると解釈されなければならない。   Those skilled in the art to which the present invention pertains can understand that the present invention has been implemented in other specific forms without setting the technical idea or essential features thereof. Accordingly, it should be understood that the embodiments described above are illustrative in all aspects and not limiting. The scope of the present invention is defined by the following claims rather than the above detailed description, and all the settings or modified forms derived from the meaning and scope of the claims and equivalents thereof are within the scope of the present invention. Must be interpreted as included.

[発明の効果]
本発明は、リチウムマンガン酸化物(LiMn)のマンガンを少量のスズ(Sn)で置換させることによって、Jahn-Teller変形を抑制し、相転移を防止してマンガン(Mn)イオンの平均原子価を3.5以上に維持させ、充放電容量を増加させることができる。
本発明の正極薄膜は、純粋なリチウムマンガン酸化物組成物を含む正極薄膜に比べて充放電容量が高く、薄膜を用いた電池の寿命を向上させることができ、高い電流密度でも優れた容量及び充放電サイクル特性を示すので、安定性に優れて高エネルギー、高電力の密度を要求する次世代マイクロ素子の具現を可能にする。
[The invention's effect]
The present invention replaces manganese of lithium manganese oxide (LiMn 2 O 4 ) with a small amount of tin (Sn), thereby suppressing Jahn-Teller deformation, preventing phase transition, and averaging manganese (Mn) ions. The valence can be maintained at 3.5 or more, and the charge / discharge capacity can be increased.
The positive electrode thin film of the present invention has a higher charge / discharge capacity than a positive electrode thin film containing a pure lithium manganese oxide composition, can improve the life of a battery using the thin film, and has an excellent capacity and high current density. Because it exhibits charge / discharge cycle characteristics, it enables the realization of next-generation micro devices that have excellent stability and require high energy and high power density.

本発明の実施例による仮焼した状態のターゲット用リチウムスズマンガン酸化物粉末のX線回折分析結果を示すグラフである。It is a graph which shows the X-ray-diffraction analysis result of the lithium tin manganese oxide powder for targets of the calcination state by the Example of this invention. 本発明の実施例によって製造したリチウムスズマンガン酸化物ターゲットのX線回折分析結果を示すグラフである。It is a graph which shows the X-ray-diffraction analysis result of the lithium tin manganese oxide target manufactured by the Example of this invention. 本発明の実施例によるリチウムスズマンガン酸化物LiSn0.0125Mn1.975薄膜電極の充放電実験による電圧の変化を示すグラフである(初期充放電容量:97.9mAh/g)。It is a graph showing changes in voltage due to charge and discharge experiment of the lithium-tin-manganese oxide LiSn 0.0125 Mn 1.975 O 4 thin film electrode according to an embodiment of the present invention (initial charge-discharge capacity: 97.9mAh / g). 本発明の実施例によるリチウムスズマンガン酸化物LiSn0.0125Mn1.975薄膜電極の充放電実験による電圧の変化を示すグラフである(初期充放電容量:120.0mAh/g)。It is a graph showing changes in voltage due to charge and discharge experiment of the lithium-tin-manganese oxide LiSn 0.0125 Mn 1.975 O 4 thin film electrode according to an embodiment of the present invention (initial charge-discharge capacity: 120.0mAh / g). 本発明の実施例によるリチウムスズマンガン酸化物LiSn0.0125Mn1.95薄膜電極の充放電実験による電圧の変化を示すグラフである(初期充放電容量:133.0mAh/g)。It is a graph showing changes in voltage due to charge and discharge experiment of the lithium-tin-manganese oxide LiSn 0.0125 Mn 1.95 O 4 thin film electrode according to an embodiment of the present invention (initial charge-discharge capacity: 133.0mAh / g). 本発明の実施例によるリチウムマンガン酸化物及びリチウムスズマンガン酸化物薄膜電極の充放電による放電容量の変化を示すグラフである。It is a graph which shows the change of the discharge capacity by charging / discharging of the lithium manganese oxide and lithium tin manganese oxide thin film electrode by the Example of this invention. 本発明の実施例によるリチウムマンガン酸化物及びリチウムスズマンガン酸化物薄膜電極のX線回折分析結果を示すグラフである。It is a graph which shows the X-ray-diffraction analysis result of the lithium manganese oxide by the Example of this invention, and a lithium tin manganese oxide thin film electrode. 本発明の実施例によるリチウムマンガン酸化物及びリチウムスズマンガン酸化物薄膜電極のラマンスペクトル結果を示すグラフである。It is a graph which shows the Raman spectrum result of the lithium manganese oxide by the Example of this invention and a lithium tin manganese oxide thin film electrode.

Claims (15)

リチウム二次電池正極薄膜の形成方法であって、
a)LiCO、MnO及びSnO粉末を混合して混合粉末を設ける段階と、
b)前記混合粉末を1次粉砕する段階と、
c)前記1次粉砕された混合粉末を仮焼する段階と、
d)前記仮焼された混合粉末を2次粉砕する段階と、
e)前記2次粉砕された混合粉末を加圧成形する段階と、
f)前記加圧成形された混合物を焼結してLi、Sn、Mn及びOを備えるターゲットを製造する段階と、
g)前記ターゲットにレーザを照射して、基板に前記Li、Sn、Mn及びOを備える正極薄膜を局所蒸着する段階と、
を備えることを特徴とするリチウム二次電池正極薄膜形成方法。
A method for forming a lithium secondary battery positive electrode thin film,
a) mixing Li 2 CO 3 , MnO 2 and SnO powder to provide a mixed powder;
b) primary pulverizing the mixed powder;
c) calcination of the primary pulverized mixed powder;
d) secondary pulverizing the calcined mixed powder;
e) pressure-molding the secondary pulverized mixed powder;
f) sintering the pressure-molded mixture to produce a target comprising Li, Sn, Mn and O;
g) irradiating the target with laser and locally depositing a positive electrode thin film comprising the Li, Sn, Mn and O on the substrate;
A method for forming a positive electrode thin film for a lithium secondary battery, comprising:
前記正極薄膜が、LiSnx/2Mn2−x(0<x≦0.05)である、請求項1に記載のリチウム二次電池正極薄膜形成方法。 2. The method for forming a lithium secondary battery positive electrode thin film according to claim 1, wherein the positive electrode thin film is LiSn x / 2 Mn 2-x O 4 (0 <x ≦ 0.05). 前記a)段階のLiCO、MnO及びSnO粉末の混合比率が、19.0〜19.1:79.3〜80.7:0.3〜1.6重量%である、請求項1に記載のリチウム二次電池正極薄膜形成方法。 The mixing ratio of Li 2 CO 3 , MnO 2 and SnO powder in step a) is 19.0 to 19.1: 79.3 to 80.7: 0.3 to 1.6% by weight. 2. The method for forming a positive electrode thin film of a lithium secondary battery according to 1. 前記c)段階が、前記混合された粉末を、400℃〜800℃で1〜5時間の間、空気雰囲気中で仮焼する、請求項1に記載のリチウム二次電池正極薄膜形成方法。   2. The method of forming a positive electrode thin film for a lithium secondary battery according to claim 1, wherein the step c) calcines the mixed powder at 400 ° C. to 800 ° C. for 1 to 5 hours in an air atmosphere. 前記e)段階が、前記2次粉砕された混合粉末を、加圧成形してペレット形態の混合物を形成する、請求項1に記載のリチウム二次電池正極薄膜形成方法。   2. The method of forming a positive electrode thin film for a lithium secondary battery according to claim 1, wherein the step e) press-molds the secondary pulverized mixed powder to form a pellet-shaped mixture. 前記f)段階が、前記加圧成形された混合物を、800℃〜1300℃で1〜24時間の間、空気雰囲気中で焼結する、請求項1に記載のリチウム二次電池正極薄膜形成方法。   The method of forming a positive electrode thin film for a lithium secondary battery according to claim 1, wherein the step f) sinters the pressure-molded mixture at 800 ° C to 1300 ° C for 1 to 24 hours in an air atmosphere. . 前記g)段階が、基板の温度350〜550℃、前記基板と前記ターゲットとの間の距離3〜5cm、酸素の分圧0.05〜0.25Torr、レーザパワーの密度1〜4J/cm、レーザビームの面積2〜5mm、レーザスポットの反復率3〜10Hz、レーザ照射時間30〜120分の条件で、前記ターゲットにレーザを照射して前記基板に薄膜を局所蒸着する、請求項1に記載のリチウム二次電池正極薄膜形成方法。 In step g), the substrate temperature is 350 to 550 ° C., the distance between the substrate and the target is 3 to 5 cm, the oxygen partial pressure is 0.05 to 0.25 Torr, and the laser power density is 1 to 4 J / cm 2. The thin film is locally deposited on the substrate by irradiating the target with a laser under the conditions of a laser beam area of 2 to 5 mm 2 , a laser spot repetition rate of 3 to 10 Hz, and a laser irradiation time of 30 to 120 minutes. A method for forming a positive electrode thin film of a lithium secondary battery as described in 1. Li−Sn−Mn化合物ターゲットの製造方法であって、
a)LiCO、MnO及びSnO粉末を混合して混合粉末を設ける段階と、
b)前記混合粉末を1次粉砕する段階と、
c)前記1次粉砕された混合粉末を仮焼する段階と、
d)前記仮焼された混合粉末を2次粉砕する段階と、
e)前記2次粉砕された混合粉末を加圧成形する段階と、
f)前記加圧成形された混合物を焼結してLiSnx/2Mn2−x(0<x≦0.05)ターゲットを製造する段階と、
を備えることを特徴とするLi−Sn−Mn化合物ターゲットの製造方法。
A method for producing a Li-Sn-Mn compound target,
a) mixing Li 2 CO 3 , MnO 2 and SnO powder to provide a mixed powder;
b) primary pulverizing the mixed powder;
c) calcination of the primary pulverized mixed powder;
d) secondary pulverizing the calcined mixed powder;
e) pressure-molding the secondary pulverized mixed powder;
f) sintering the pressure-molded mixture to produce a LiSn x / 2 Mn 2-x O 4 (0 <x ≦ 0.05) target;
A method for producing a Li—Sn—Mn compound target, comprising:
前記a)段階のLiCO、MnO及びSnO粉末の混合比率が、19.0〜19.1:79.3〜80.7:0.3〜1.6重量%である、請求項8に記載のLi−Sn−Mn化合物ターゲットの製造方法。 The mixing ratio of Li 2 CO 3 , MnO 2 and SnO powder in step a) is 19.0 to 19.1: 79.3 to 80.7: 0.3 to 1.6% by weight. The manufacturing method of the Li-Sn-Mn compound target of 8. 前記c)段階が、前記混合された粉末を、400℃〜800℃で1〜5時間の間、空気雰囲気中で仮焼する、請求項8に記載のLi−Sn−Mn化合物ターゲット製造方法。   The method for producing a Li-Sn-Mn compound target according to claim 8, wherein the step c) calcines the mixed powder at 400C to 800C in an air atmosphere for 1 to 5 hours. 前記e)段階が、前記2次粉砕された混合粉末を、加圧成形してペレット形態の混合物を形成する、請求項8に記載のLi−Sn−Mn化合物ターゲット製造方法。   The Li-Sn-Mn compound target manufacturing method according to claim 8, wherein in step e), the secondary pulverized mixed powder is pressure-molded to form a pellet-shaped mixture. 前記f)段階が、前記加圧成形された混合物を、800℃〜1300℃で1〜24時間の間、空気雰囲気中で焼結する、請求項8に記載のLi−Sn−Mn化合物ターゲット製造方法。   The Li-Sn-Mn compound target production according to claim 8, wherein the step f) sinters the pressure-molded mixture at 800C-1300C for 1-24 hours in an air atmosphere. Method. 前記f)段階で製造されるターゲットが、バルク用、厚膜用又はレーザ局所蒸着用のいずれかの正極活物質ターゲットに用いられる、請求項8〜11のいずれか一項に記載のLi−Sn−Mn化合物ターゲット製造方法。   The Li-Sn according to any one of claims 8 to 11, wherein the target produced in step f) is used for a positive electrode active material target for bulk, thick film, or laser local vapor deposition. -Mn compound target manufacturing method. リチウム二次電池であって、Li、Sn、Mn及びOの化合物正極組成物を備える、ことを特徴とするリチウム二次電池。   A lithium secondary battery comprising a compound positive electrode composition of Li, Sn, Mn, and O, which is a lithium secondary battery. 前記正極組成物が、LiSnx/2Mn2−x(0<x≦0.05)である、請求項14に記載のリチウム二次電池。 The lithium secondary battery according to claim 14, wherein the positive electrode composition is LiSn x / 2 Mn 2-x O 4 (0 <x ≦ 0.05).
JP2008158809A 2008-03-18 2008-06-18 Lithium secondary battery provided with Li-Sn-Mn compound positive electrode thin film, method for producing Li-Sn-Mn compound target, and method for forming positive electrode thin film using the same Expired - Fee Related JP5086910B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0025092 2008-03-18
KR20080025092 2008-03-18

Publications (2)

Publication Number Publication Date
JP2009224305A true JP2009224305A (en) 2009-10-01
JP5086910B2 JP5086910B2 (en) 2012-11-28

Family

ID=41240848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158809A Expired - Fee Related JP5086910B2 (en) 2008-03-18 2008-06-18 Lithium secondary battery provided with Li-Sn-Mn compound positive electrode thin film, method for producing Li-Sn-Mn compound target, and method for forming positive electrode thin film using the same

Country Status (3)

Country Link
JP (1) JP5086910B2 (en)
KR (1) KR101001163B1 (en)
AT (1) ATE516602T1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332575A (en) * 2011-09-22 2012-01-25 西北工业大学 Preparation method for carbon-doped lithium stannate cathodal material for lithium batteries
JP2017522253A (en) * 2014-05-22 2017-08-10 シャープ株式会社 Tin-containing compounds
CN109065858A (en) * 2018-07-25 2018-12-21 国联汽车动力电池研究院有限责任公司 Modified tertiary cathode material in a kind of surface and preparation method thereof and its manufactured battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134566B1 (en) 2009-08-26 2012-04-13 한국과학기술연구원 Novel cathode active material for lithium secondary battery and method of fabricating a cathode thin film for lithium secondary battery using the same
KR101389774B1 (en) * 2011-02-25 2014-04-28 세종대학교산학협력단 Target for forming lithium-cotaning thin film for thin film bettery and preparing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293512A (en) * 1996-02-23 1997-11-11 Fuji Photo Film Co Ltd Lithium ion secondary battery and positive pole active material precursor
JPH10233214A (en) * 1997-02-18 1998-09-02 Mitsubishi Cable Ind Ltd Positive electrode active material for lithium secondary battery
JPH1125984A (en) * 1997-06-30 1999-01-29 Samsung Display Devices Co Ltd Positive active material for lithium ion battery and its manufacture
JP2002260632A (en) * 2001-02-27 2002-09-13 Nec Corp Secondary battery
JP2005063958A (en) * 2003-07-29 2005-03-10 Mamoru Baba Thin-film solid lithium secondary battery and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763120A (en) 1996-06-25 1998-06-09 Valence Technology, Inc. Lithium manganese oxide cathodes with high capacity and stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293512A (en) * 1996-02-23 1997-11-11 Fuji Photo Film Co Ltd Lithium ion secondary battery and positive pole active material precursor
JPH10233214A (en) * 1997-02-18 1998-09-02 Mitsubishi Cable Ind Ltd Positive electrode active material for lithium secondary battery
JPH1125984A (en) * 1997-06-30 1999-01-29 Samsung Display Devices Co Ltd Positive active material for lithium ion battery and its manufacture
JP2002260632A (en) * 2001-02-27 2002-09-13 Nec Corp Secondary battery
JP2005063958A (en) * 2003-07-29 2005-03-10 Mamoru Baba Thin-film solid lithium secondary battery and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332575A (en) * 2011-09-22 2012-01-25 西北工业大学 Preparation method for carbon-doped lithium stannate cathodal material for lithium batteries
JP2017522253A (en) * 2014-05-22 2017-08-10 シャープ株式会社 Tin-containing compounds
US10263254B2 (en) 2014-05-22 2019-04-16 Faradion Limited Tin-containing compounds
CN109065858A (en) * 2018-07-25 2018-12-21 国联汽车动力电池研究院有限责任公司 Modified tertiary cathode material in a kind of surface and preparation method thereof and its manufactured battery
CN109065858B (en) * 2018-07-25 2020-08-04 国联汽车动力电池研究院有限责任公司 Surface modified ternary positive electrode material, preparation method thereof and battery prepared from surface modified ternary positive electrode material

Also Published As

Publication number Publication date
ATE516602T1 (en) 2011-07-15
KR101001163B1 (en) 2010-12-17
KR20090100196A (en) 2009-09-23
JP5086910B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US10790506B2 (en) Spherical or spherical-like cathode material for lithium-ion battery and lithium-ion battery
KR101959600B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
CN110931738B (en) Complex-phase high-voltage cathode material and preparation method thereof
EP2207227A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery comprising the same
TWI526397B (en) A lithium manganate powder for a nonaqueous electrolyte storage battery and a method for producing the same, and a nonaqueous electrolyte battery
Na et al. The effect of Si doping on the electrochemical characteristics of LiNixMnyCo (1− x− y) O2
Xiang et al. Effects of synthesis conditions on the structural and electrochemical properties of the Li-rich material Li [Li0. 2Ni0. 17Co0. 16Mn0. 47] O2 via the solid-state method
KR102016788B1 (en) Anode active material for sodium secondary battery, and manufacturing method therefor
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP4540041B2 (en) Nonaqueous electrolyte secondary battery
JP5086910B2 (en) Lithium secondary battery provided with Li-Sn-Mn compound positive electrode thin film, method for producing Li-Sn-Mn compound target, and method for forming positive electrode thin film using the same
US8658314B2 (en) Lithium—manganese—tin oxide cathode active material and lithium secondary cell using the same
JP4296274B2 (en) Lithium manganate positive electrode active material and all-solid lithium secondary battery
Du et al. Synthesis of LiMn1/3Ni1/3Co1/3O2 in molten KCl for rechargeable lithium-ion batteries
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP5708939B2 (en) Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2002145619A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and manufacturing method of lithium secondary cell and lithium manganese multiple oxide
KR20080105637A (en) Spinel complex-oxide, method for preparing thereof and lithium secondary battery using the same as cathode material
Prahasini et al. Synthesis and characterization of Cu doped LiCoO2 cathode material for lithium batteries using microwave assisted sol-gel synthesis
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
CN103855378A (en) Preparation of novel all-solid-state thin-film cathode used for lithium ion battery
CN110783565A (en) Positive electrode active material for lithium ion battery and lithium ion battery
JP2010212078A (en) Positive electrode material for lithium secondary battery, method of manufacturing the same, and secondary battery
JP7125227B2 (en) Method for producing lithium-containing cobalt oxide having spinel crystal phase

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110715

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

R150 Certificate of patent or registration of utility model

Ref document number: 5086910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees