JP4540041B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4540041B2
JP4540041B2 JP2004064498A JP2004064498A JP4540041B2 JP 4540041 B2 JP4540041 B2 JP 4540041B2 JP 2004064498 A JP2004064498 A JP 2004064498A JP 2004064498 A JP2004064498 A JP 2004064498A JP 4540041 B2 JP4540041 B2 JP 4540041B2
Authority
JP
Japan
Prior art keywords
compound
battery
peak
positive electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004064498A
Other languages
Japanese (ja)
Other versions
JP2005251700A (en
Inventor
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2004064498A priority Critical patent/JP4540041B2/en
Publication of JP2005251700A publication Critical patent/JP2005251700A/en
Application granted granted Critical
Publication of JP4540041B2 publication Critical patent/JP4540041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、一般式LiNiCoAlで示される化合物を正極活物質に用いた非水電解質二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery using a compound represented by the general formula Li a Ni x Co y Al z O 2 as a positive electrode active material.

電子機器の急激な小型軽量化に伴い、その電源である電池に対して小型で軽量かつ高エネルギー密度、更に繰り返し充放電が可能な二次電池開発への要求が高まっている。また、大気汚染や二酸化炭素の増加等の環境問題により、電気自動車の早期実用化が望まれており、高効率、高出力、高エネルギー密度、軽量等の特徴を有する、優れた二次電池の開発が要望されている。   With the rapid reduction in size and weight of electronic devices, there is an increasing demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged with respect to the battery that is the power source. In addition, due to environmental problems such as air pollution and an increase in carbon dioxide, early commercialization of electric vehicles is desired, and an excellent secondary battery having features such as high efficiency, high output, high energy density, and light weight. Development is desired.

これらの要求を満たす二次電池として、非水電解質を使用した二次電池が実用化されている。この電池は、従来の水溶液電解質を使用した電池の数倍のエネルギー密度を有している。その例として、非水電解質二次電池の正極にリチウム含有層状コバルト酸化物(以下「Co系化合物」とする)、リチウム含有層状ニッケル酸化物(以下「Ni系化合物」とする)又はスピネル型リチウムマンガン複合酸化物(以下「Mn系化合物」とする)を用い、負極にリチウムが吸蔵・放出可能な炭素材料などを用いた長寿命な4V級非水電解質二次電池が実用化されている。   As a secondary battery that satisfies these requirements, a secondary battery using a non-aqueous electrolyte has been put into practical use. This battery has an energy density several times that of a battery using a conventional aqueous electrolyte. For example, lithium-containing layered cobalt oxide (hereinafter referred to as “Co-based compound”), lithium-containing layered nickel oxide (hereinafter referred to as “Ni-based compound”), or spinel type lithium as a positive electrode of a non-aqueous electrolyte secondary battery. A long-life 4V class non-aqueous electrolyte secondary battery using a manganese composite oxide (hereinafter referred to as “Mn compound”) and using a carbon material capable of occluding and releasing lithium in a negative electrode has been put into practical use.

中でもNi系化合物は、非水電解質二次電池内で実際に使用される電位範囲内(3.0V〜4.3V vs.Li/Li)において挿入脱離可能なリチウム量がCo系化合物やMn系化合物以上である特長があり、資源も豊富であることから高容量かつ低コストな電池の開発を目指して多くの開発検討がなされてきた。 Among these, Ni-based compounds have a lithium amount capable of insertion / extraction within a potential range (3.0 V to 4.3 V vs. Li / Li + ) actually used in a non-aqueous electrolyte secondary battery. Due to its advantages over Mn-based compounds and abundant resources, many development studies have been made with the aim of developing batteries with high capacity and low cost.

例えば、特許文献1や特許文献2に示されているように、ニッケルの一部を異種金属で置換することにより、サイクル寿命性能や熱安定性、保存特性などが改善されてきた。   For example, as shown in Patent Document 1 and Patent Document 2, by replacing a part of nickel with a different metal, cycle life performance, thermal stability, storage characteristics, and the like have been improved.

サイクル寿命性能、熱安定性、保存特性、および放電容量のバランスに優れた正極活物質として、Ni系化合物中のニッケルを異種金属で置換した組成が従来から数多く提案されてきた。しかし、そのような組成を満足する化合物を合成して電池での評価をおこなってみても、必ずしも良好な性能が得られるわけではなく、同一組成のNi系化合物を用いても、化合物の製造ロットによっては内部抵抗が高くなり放電容量が低下するような電池が得られる結果となった。   As a positive electrode active material excellent in the balance of cycle life performance, thermal stability, storage characteristics, and discharge capacity, many compositions have been conventionally proposed in which nickel in a Ni-based compound is replaced with a different metal. However, even if a compound satisfying such a composition is synthesized and evaluated in a battery, good performance is not always obtained. Even if Ni-based compounds having the same composition are used, a compound production lot Depending on the case, the internal resistance is increased and the discharge capacity is decreased.

また、特許文献3では、正極活物質にLiMnやLiNiOなどの複合酸化物またはこれら複合酸化物のMnやNiの一部を他の元素で置換したリチウム複合酸化物を正極活物質に用いた非水電解質二次電池において、温度上昇に起因する電池の内部ショートを防止し、安全性に優れた電池を提供するために、正極の表面にバインダーおよび導電性炭素材からなる薄膜を形成し、正極薄膜表面から35度以下の光電子の取り出し角度で、XPSによって測定される酸素の1s内殻準位スペクトルにおいて、530ev〜535eV領域のピーク強度極大値が、528eV〜530eV領域のピーク強度極大値よりも大きくする技術が開示されている。 In Patent Document 3, a positive electrode active material is a composite oxide such as LiMn 2 O 4 or LiNiO 2 or a lithium composite oxide obtained by substituting a part of Mn or Ni of these composite oxides with other elements. In the non-aqueous electrolyte secondary battery used in the above, a thin film made of a binder and a conductive carbon material is provided on the surface of the positive electrode in order to prevent an internal short circuit of the battery due to a temperature rise and to provide a battery with excellent safety. In the 1s core level spectrum of oxygen measured by XPS at a photoelectron take-off angle of 35 degrees or less from the surface of the positive electrode thin film, the peak intensity maximum value in the 530 ev to 535 eV region is the peak intensity in the 528 eV to 530 eV region. A technique for making the value larger than the maximum value is disclosed.

しかし、特許文献3に記載の技術は、正極上に形成した薄膜に由来するXPSのピークに注目したもので、正極活物質表面のXPSのピークについては、なんら記載されていない。   However, the technique described in Patent Document 3 pays attention to the XPS peak derived from the thin film formed on the positive electrode, and does not describe any XPS peak on the surface of the positive electrode active material.

特開平05−325966号公報JP 05-325966 A 特開平08−213015号公報Japanese Patent Laid-Open No. 08-213015 特開2003−338277号公報JP 2003-338277 A

Ni系化合物中のニッケルを異種金属で置換した正極活物質においてみられる、同一組成のNi系化合物を用いても、化合物の製造ロットによっては内部抵抗が高くなり放電容量が低下するような電池が得られるという結果は、Co系化合物やMn系化合物を用いた電池では観察されなかった現象であり、Ni系電池特有の課題であると考えられた。   Even in the case of using a Ni-based compound having the same composition, which is found in a positive electrode active material in which nickel in the Ni-based compound is replaced with a different metal, there is a battery in which internal resistance increases and discharge capacity decreases depending on the production lot of the compound. The obtained result was a phenomenon that was not observed in batteries using Co-based compounds or Mn-based compounds, and was considered to be a problem peculiar to Ni-based batteries.

この課題を解決すべく、製造ロットごとによる化合物の物性の違いを詳細に検討した結果、Ni系化合物の組成がいずれのロットで同一であっても、化合物の表面状態が化合物内部と異なる場合があり、そのような表面状態の変化が起きている化合物を正極活物質に用いた場合には満足な電池性能が得られないことがわかった。   As a result of examining in detail the difference in the physical properties of the compound depending on the production lot in order to solve this problem, the surface state of the compound may be different from the inside of the compound even if the composition of the Ni-based compound is the same in any lot. In other words, it was found that satisfactory battery performance could not be obtained when a compound in which such a surface state change occurred was used as the positive electrode active material.

そこで、本発明の目的とするところは、Ni系化合物の表面状態を規定し、その規定を満たす化合物を非水電解質二次電池の正極活物質に使用することで、Ni系化合物本来の優れた特性が活かされた非水電解質二次電池を安定して提供することにある。   Therefore, the object of the present invention is to define the surface state of the Ni-based compound and to use the compound satisfying the specified condition as the positive electrode active material of the non-aqueous electrolyte secondary battery, so that the Ni-based compound is excellent in nature. The object is to stably provide a non-aqueous electrolyte secondary battery in which the characteristics are utilized.

上述の目的を達成するために、本発明の請求項1に係る発明は、一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.02)で示される化合物を正極活物質に用いた非水電解質二次電池において、前記化合物表面において、0.8≦a≦1.05の状態で15kV−15mAの条件で測定されたX線光電子分光法による酸素1sスペクトルの、528eV〜531eVの間に頂点を持つピークの強度(Ia)と、531eV〜533eVの間に頂点を持つピークの強度(Ib)の比(Ia/Ib)が0.5以上であることを特徴とする。 In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention has a general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0). .87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.02), a nonaqueous electrolyte secondary battery using a positive electrode active material In the above compound surface, a peak having an apex between 528 eV and 531 eV of the oxygen 1s spectrum measured by X-ray photoelectron spectroscopy measured under the condition of 15 kV-15 mA with 0.8 ≦ a ≦ 1.05. The ratio (Ia / Ib) of the intensity (Ia) and the intensity (Ib) of a peak having a peak between 531 eV to 533 eV is 0.5 or more.

本発明によれば、Ni系化合物の表面状態に着目し、その状態をX線光電子分光法で得られる酸素1sスペクトルのピーク強度比で定性し、そのピーク強度比が規定範囲にある化合物を非水電解質二次電池の正極活物質に使用することにより、化合物表面の状態変化に由来する内部抵抗の上昇や放電容量の低下が起こらず、一般式に示された組成のNi系化合物本来の特徴が安定して得られ、放電容量が大きく、かつサイクル性能や保存性能に優れる電池を安定して提供することができる。このような効果により工業的価値は高い。   According to the present invention, attention is paid to the surface state of the Ni-based compound, the state is qualitatively determined by the peak intensity ratio of the oxygen 1s spectrum obtained by X-ray photoelectron spectroscopy, and the compound whose peak intensity ratio is in the specified range is determined. By using it as a positive electrode active material for water electrolyte secondary batteries, there is no increase in internal resistance or reduction in discharge capacity resulting from changes in the state of the compound surface, and the original characteristics of Ni-based compounds with the composition shown in the general formula Can be stably obtained, a battery having a large discharge capacity and excellent cycle performance and storage performance can be provided. Industrial value is high by such an effect.

化合物全体の平均組成が一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.02)で示されるリチウム含有層状ニッケル酸化物を正極活物質に用いた非水電解質二次電池は、製造ロットごとに内部抵抗や放電容量にばらつきが生じることが多かった。 The average composition of the whole compound is represented by the general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.02), a non-aqueous electrolyte secondary battery using a lithium-containing layered nickel oxide as a positive electrode active material has an internal resistance or In many cases, the discharge capacity varied.

本発明者は、この原因を詳しく調査した結果、Ni系化合物は、Co系化合物やMn系化合物と比較して元来合成が困難であることに加え、化合物全体の平均組成が上記一般式で規定される範囲内にある場合でも、化合物の表面状態が変化している場合が多く、そのような化合物を正極活物質に用いた非水電解質二次電池は、正極と電解質との間の界面抵抗が上昇し、放電容量が低下することを明らかにした。また、化合物の表面状態が変化する原因が、出発原料、焼成条件、焼成後化合物の取り扱い方法、電池作製方法などにあることを明らかにした。   As a result of detailed investigation of this cause, the present inventor has found that Ni-based compounds are inherently difficult to synthesize compared to Co-based compounds and Mn-based compounds, and the average composition of the entire compound is the above general formula. Even in the specified range, the surface state of the compound often changes, and a non-aqueous electrolyte secondary battery using such a compound as a positive electrode active material has an interface between the positive electrode and the electrolyte. It was clarified that the resistance increased and the discharge capacity decreased. It was also clarified that the surface state of the compound was changed due to the starting material, firing conditions, handling method of the compound after firing, battery preparation method, and the like.

そこで、本発明者は、出発原料や焼成条件、焼成後化合物の取り扱い方法や電池作製方法などの条件を適正化し、化合物表面の状態が化合物内部とほぼ同一にするとともに、その表面状態の変化の程度をX線光電子分光法による酸素1sスペクトルのピーク強度比で規定して、その規定内に収まるNi系化合物を正極活物質として使用することにより長寿命かつ高容量の非水電解質二次電池を安定して製造することに成功した。   Therefore, the present inventor has optimized the conditions such as the starting material, firing conditions, the method of handling the compound after firing and the battery preparation method, so that the surface state of the compound is almost the same as the inside of the compound, and the change of the surface state A non-aqueous electrolyte secondary battery having a long life and a high capacity can be obtained by using a Ni-based compound that falls within the specified range as a positive electrode active material by specifying the degree of the peak intensity ratio of the oxygen 1s spectrum by X-ray photoelectron spectroscopy. Succeeded in manufacturing stably.

以下、本発明にかかる非水電解質二次電池の具体的な実施の形態について説明する。   Hereinafter, specific embodiments of the nonaqueous electrolyte secondary battery according to the present invention will be described.

本発明において、正極活物質として用いるリチウム含有層状ニッケル酸化物全体の平均組成、および化合物表面の組成は一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.02)である。 In the present invention, the average composition of the entire lithium-containing layered nickel oxide used as the positive electrode active material and the composition of the compound surface are expressed by the general formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1.02.

この化合物では、ニッケルの一部がコバルトによって置換されるため、充放電にともなう結晶構造の変化が抑制される。また、3価で安定なアルミを添加することにより、結晶構造はさらに安定化する。なお、a<0.3の領域まで充電すると結晶構造が大きく変化するため、そのような領域まで充電しないことが好ましい。また、同様の理由で放電はa≦1.05の範囲内におさめることが好ましい。xが0.7を下回るとコバルト系化合物を正極活物質に用いた従来の非水電解質電池と放電容量が同等にまで低下し、0.87を上回ると熱安定性が極度に低下するため、xは0.7〜0.87の範囲が好ましい。また、yが0.1を下回ると結晶構造が不安定化し、逆に0.27を上回っても結晶構造の安定化は頭打ちであり、放電容量の低下をまねくだけであるため、yは0.1〜0.27の範囲が好ましい。zが0.02を下回ると結晶構造の安定性が低下し、さらに充電時の熱安定性も低下する。しかし、zが0.1を上回ると放電容量が著しく低下するためzは0.02〜0.1の範囲が望ましい。   In this compound, since a part of nickel is substituted by cobalt, the change of the crystal structure accompanying charging / discharging is suppressed. Moreover, the crystal structure is further stabilized by adding trivalent and stable aluminum. Note that when charging to a region where a <0.3, the crystal structure changes greatly, so it is preferable not to charge to such a region. For the same reason, it is preferable that the discharge be within a range of a ≦ 1.05. When x is less than 0.7, the discharge capacity of the conventional nonaqueous electrolyte battery using a cobalt-based compound as the positive electrode active material is reduced to the same level, and when it exceeds 0.87, the thermal stability is extremely reduced. x is preferably in the range of 0.7 to 0.87. Further, if y is less than 0.1, the crystal structure becomes unstable. Conversely, even if it exceeds 0.27, the stabilization of the crystal structure reaches its peak, and only leads to a decrease in discharge capacity. A range of .1 to 0.27 is preferred. When z is less than 0.02, the stability of the crystal structure is lowered, and the thermal stability during charging is also lowered. However, if z exceeds 0.1, the discharge capacity is remarkably reduced, so z is preferably in the range of 0.02 to 0.1.

次に、本発明になるNi系化合物は、0.8≦a≦1.05の状態で15kV−15mAの条件で測定されたX線光電子分光法(XPS)による酸素1sスペクトルにおいて、528eV〜531eVの間に頂点を持つピークの強度(Ia)と、531eV〜533eVの間に頂点を持つピークの強度(Ib)の比(Ia/Ib)が0.5以上であることを特徴とする。   Next, the Ni-based compound according to the present invention has an oxygen 1s spectrum measured by X-ray photoelectron spectroscopy (XPS) measured under the condition of 15 kV-15 mA in a state of 0.8 ≦ a ≦ 1.05, 528 eV to 531 eV. The ratio (Ia / Ib) of the intensity (Ia) of the peak having a peak between and the intensity (Ib) of the peak having a peak between 531 eV to 533 eV is 0.5 or more.

本発明になるNi系化合物のXPS酸素1Sスペクトルの例を図1および図2に、また、従来のNi系化合物のXPS酸素1Sスペクトルの例を図3に示す。図1、図2および図2において、528eV〜531eVの間に頂点を持つピークは、結晶構造内のニッケル、コバルト、アルミニウムと酸素からなる平面層に含まれる酸素(以下「結晶酸素」とよぶ)に起因する。一方、531eV〜533eVの間に頂点を持つピークは、化合物の表面に吸着した酸素(以下「吸着酸素」とよぶ)に起因するとの報告もあるが、定かではない(Journal ofElectroanaiytical Chemistry,419,77(1996)、Thin Solid Film,384,23(2001))。 Examples of XPS oxygen 1S spectra of Ni-based compounds according to the present invention are shown in FIGS. 1 and 2, and examples of XPS oxygen 1S spectra of conventional Ni-based compounds are shown in FIG. 1, 2, and 2, a peak having a peak between 528 eV and 531 eV is oxygen contained in a planar layer made of nickel, cobalt, aluminum, and oxygen in the crystal structure (hereinafter referred to as “crystalline oxygen”). caused by. On the other hand, there is a report that a peak having a peak between 531 eV and 533 eV is caused by oxygen adsorbed on the surface of the compound (hereinafter referred to as “adsorbed oxygen”), but it is not certain (Journal of Electrochemical Chemistry, 419 , 77). (1996), Thin Solid Film, 384 , 23 (2001)).

そこで、最表面のXPS酸素1Sスペクトルの、528eV〜531eVの間に頂点を持つピークの強度Iaと531eV〜533eVの間に頂点を持つピークの強度Ibとの比(Ia/Ib)を比較した場合、図3に示した従来のNi系化合物ではIa/Ib<0.5となっているのに対し、図1や図2に示した本発明になるNi系化合物ではIa/Ib>0.5となっており、特に図2に示したようにIa/Ib>1の場合に、極めて優れた特性が得られる物である。   Therefore, when comparing the ratio (Ia / Ib) of the peak intensity Ia having the peak between 528 eV to 531 eV and the peak intensity Ib having the peak between 531 eV to 533 eV in the XPS oxygen 1S spectrum of the outermost surface The conventional Ni compound shown in FIG. 3 has Ia / Ib <0.5, whereas the Ni compound according to the present invention shown in FIGS. 1 and 2 has Ia / Ib> 0.5. In particular, as shown in FIG. 2, when Ia / Ib> 1, extremely excellent characteristics can be obtained.

本発明者は、化合物表面における吸着酸素量が少なく、結晶酸素量が多いほど、表面でのリチウムイオンの拡散や電荷移動反応が進行しやすいと予測し、化合物表面での結晶酸素の濃度比を向上させる手段について検討した。そして、両酸素の濃度比と電池性能の関係を検討した結果、結晶酸素の濃度比を向上させるには、出発原料、焼成条件、焼成後化合物の取り扱い方法、電池作製方法などにポイントがあることを見いだした。   The present inventor predicts that the smaller the amount of adsorbed oxygen on the compound surface and the greater the amount of crystalline oxygen, the easier the lithium ion diffusion and charge transfer reaction will proceed on the surface, and the concentration ratio of crystalline oxygen on the compound surface is determined. The means to improve was examined. As a result of examining the relationship between the concentration ratio of both oxygen and the battery performance, there are points in the starting material, the firing conditions, the handling method of the compound after firing, the battery preparation method, etc. to improve the concentration ratio of crystalline oxygen I found.

この内容については実施例に記載するが、結論としては、0.8≦a≦1.05の放電状態で、528eV〜531eVの間に頂点を持つピークの強度(Ia)と、531eV〜533eVの間に頂点を持つピークの強度(Ib)の比(Ia/Ib)が0.5以上であれば、内部抵抗や放電容量のばらつきのない良好な電池性能が得られることを見いだした。   This content will be described in the examples, but as a conclusion, in the discharge state of 0.8 ≦ a ≦ 1.05, the peak intensity (Ia) having a peak between 528 eV to 531 eV, and 531 eV to 533 eV. It has been found that if the ratio (Ia / Ib) of peak intensities (Ib) having apexes between them is 0.5 or more, good battery performance without variations in internal resistance and discharge capacity can be obtained.

以上、化合物の表面状態が化合物内部の状態と異なる場合は満足な電池性能が得られないことが判明したが、Ni系化合物の一般的な定性手段である組成分析やXRD分析では、表面近傍の状態の変化が検知されない。このような状況を理解せずに、表面状態が内部と大幅にずれた化合物を正極活物質として使用すると、製造ロットごとに内部抵抗や放電容量にばらつきが生じる。   As described above, it has been found that satisfactory battery performance cannot be obtained when the surface state of the compound is different from the state inside the compound. However, in compositional analysis and XRD analysis, which are general qualitative means of Ni-based compounds, State change is not detected. Without understanding this situation, if a compound whose surface state is significantly different from the inside is used as the positive electrode active material, variations in internal resistance and discharge capacity occur between production lots.

本発明になるNi系化合物を合成する際には、つぎのようないくつかの点に注意することが重要である。原料に水酸化リチウムとニッケル水酸化物とを用い、酸素雰囲気中で反応させる場合、複合酸化物にならなかったリチウム成分によって炭酸リチウムが生成し、表面に炭酸リチウムが存在するNi系化合物を電池に用いた場合、炭酸リチウムが電解液と反応してガスを発生し、電池のふくれの原因となる。そこで、水酸化リチウムとニッケル水酸化物とを反応させる場合、水酸化リチウムの量を少なくして、炭酸リチウムの発生量を減少させることができる。   When synthesizing the Ni-based compound according to the present invention, it is important to pay attention to the following points. When lithium hydroxide and nickel hydroxide are used as raw materials and reacted in an oxygen atmosphere, lithium carbonate is generated by the lithium component that did not become a composite oxide, and a Ni-based compound in which lithium carbonate is present on the surface of the battery When used in a battery, lithium carbonate reacts with the electrolyte to generate gas, which causes battery blistering. Thus, when lithium hydroxide and nickel hydroxide are reacted, the amount of lithium hydroxide can be reduced to reduce the amount of lithium carbonate generated.

また、原料に水酸化リチウムとニッケル水酸化物を用いる場合、原料粉末の比表面積は1〜100m/gとし、平均粒子径は0.05〜30μmの範囲で、水酸化リチウム原料粉末とニッケル水酸化物原料粉末との平均粒子径の比が0.5〜2.0の範囲のものが好ましい。 In addition, when lithium hydroxide and nickel hydroxide are used as raw materials, the specific surface area of the raw material powder is 1 to 100 m 2 / g and the average particle size is in the range of 0.05 to 30 μm. The ratio of the average particle diameter with the hydroxide raw material powder is preferably in the range of 0.5 to 2.0.

さらに、原料粉末を混合した後、焼成をおこなう条件は、あらかじめ原料粉末を混合した後ペレットとし、温度は400〜800℃、時間は10〜100時間、酸素雰囲気中や酸素気流中とし、特に酸素加圧状態で行うことが好ましい。   Furthermore, after the raw material powder is mixed, the conditions for firing are as follows. The raw material powder is mixed in advance, and then pellets are formed. The temperature is 400 to 800 ° C., the time is 10 to 100 hours, the oxygen atmosphere or the oxygen stream, It is preferable to carry out in a pressurized state.

また、水酸化リチウムの代わりに酸化リチウムを用いる、Co系やMn系のように800℃以上の温度で焼成する、焼成時間をできるだけ長くする、焼成炉内の温度分布を均一にすること、焼成の際に多量の水分が発生するので、焼成炉中の原料の充填密度を下げ、酸素気流中で行うことで、水分が除去されやすいようにする、ニッケルに対するリチウムのモル比を1以下にする、表面を高濃度のアルミニウムで置換する、焼成で得られた活物質を水分や二酸化炭素と接触させない、極板の製造はドライルーム中で行う、正極合剤層を塗布後の極板は真空中に保管する、などの工夫が必要である。   In addition, lithium oxide is used instead of lithium hydroxide, baking is performed at a temperature of 800 ° C. or more like Co-based and Mn-based, baking time is as long as possible, temperature distribution in the baking furnace is uniform, baking Since a large amount of moisture is generated at the time, the packing density of the raw material in the firing furnace is lowered, and the process is performed in an oxygen stream so that the moisture is easily removed. The molar ratio of lithium to nickel is 1 or less. The surface is replaced with high-concentration aluminum, the active material obtained by firing is not brought into contact with moisture or carbon dioxide, the electrode plate is manufactured in a dry room, and the electrode plate after applying the positive electrode mixture layer is vacuum It is necessary to devise such as storing it inside.

本発明の非水電解質二次電池の外観を図4に、電池の電極群を図5に示す。図4および図5において、1は非水電解質二次電池、2は電極群、2aは正極、2bは負極、2cはセパレータ、3は電池ケース、3aは電池ケースのケース部、3bは電池ケースの蓋部、4は正極端子、5は負極端子、6は安全弁、7は電解液注液口である。   The external appearance of the nonaqueous electrolyte secondary battery of the present invention is shown in FIG. 4, and the electrode group of the battery is shown in FIG. 4 and 5, 1 is a nonaqueous electrolyte secondary battery, 2 is an electrode group, 2a is a positive electrode, 2b is a negative electrode, 2c is a separator, 3 is a battery case, 3a is a case part of the battery case, and 3b is a battery case. , 4 is a positive terminal, 5 is a negative terminal, 6 is a safety valve, and 7 is an electrolyte injection port.

本発明の非水電解質二次電池は、化合物を正極活物質として用いた正極7と負極8とがセパレータ9を介して長円形状に巻回されてなる電池のエレメント1を電池容器2に収納し、カーボンブラックもしくはカーボンブラックと活性炭を含ませた非水電解液(図示せず)を注液口6から注液し、その後、注液口6を封口して構成されている。   In the nonaqueous electrolyte secondary battery of the present invention, a battery element 1 in which a positive electrode 7 and a negative electrode 8 using a compound as a positive electrode active material are wound in an oval shape via a separator 9 is housed in a battery container 2. The non-aqueous electrolyte (not shown) containing carbon black or carbon black and activated carbon is injected from the injection port 6, and then the injection port 6 is sealed.

本発明の非水電解液二次電池に用いられる負極、セパレータおよび電解液などは、特に従来用いられてきたものと異なるところなく、通常用いられているものが使用できる。なお、図5では、電池のエレメントは長円形状を示したが、長円形状でもよい。また、電池のエレメントの形状は巻回型に限らず、平板状極板を積層した形状でもよい。   The negative electrode, separator, and electrolytic solution used in the non-aqueous electrolyte secondary battery of the present invention are not particularly different from those conventionally used, and those commonly used can be used. In FIG. 5, the battery element has an oval shape, but may have an oval shape. Further, the shape of the battery element is not limited to the winding type, and may be a shape in which flat plate plates are laminated.

本発明の非水電解質二次電池に用いる負極材料としては、リチウムイオンを吸蔵・放出可能な種々の炭素材料、または金属リチウムやリチウム合金が使用できる。また、遷移金属酸化物や窒化物を使用してもよい。   As a negative electrode material used for the nonaqueous electrolyte secondary battery of the present invention, various carbon materials capable of inserting and extracting lithium ions, metallic lithium and lithium alloys can be used. Transition metal oxides and nitrides may also be used.

また、本発明の非水電解質二次電池に用いるセパレータとしては、ポリエチレンやポリプロピレン等のポリオレフィン樹脂からなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであってもよい。   In addition, as the separator used in the nonaqueous electrolyte secondary battery of the present invention, a microporous membrane made of a polyolefin resin such as polyethylene or polypropylene is used, and a plurality of microporous membranes having different materials, weight average molecular weights and porosity are used. Those obtained by laminating and those microporous membranes containing appropriate amounts of various plasticizers, antioxidants, flame retardants and the like may be used.

本発明の非水電解質二次電池に用いる電解液の有機溶媒には、特に制限はなく、例えばエーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類等を用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系化合物が好ましい。これらの例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、アニソール、モノグライム、4−メチル−2−ペンタノン、酢酸エチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジクロロエタン、γ−ブチロラクトン、ジメトキシエタン、メチルフォルメイト、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3−メチル−スルホラン、リン酸トリメチル、リン酸トリエチルおよびこれらの混合溶媒等を挙げることができるが、必ずしもこれらに限定されるものではない。好ましくは環状カーボネート類および環状エステル類である。もっとも好ましくは、エチレンカーボネート、プロピレンカーボネート、メチルエチルカーボネート、ジメチルカーボネートおよびジエチルカーボネートのうち、1種または2種以上した混合物の有機溶媒である。   There are no particular restrictions on the organic solvent of the electrolyte used in the non-aqueous electrolyte secondary battery of the present invention. For example, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, halogenated hydrocarbons. , Esters, carbonates, nitro compounds, phosphate ester compounds, sulfolane hydrocarbons, etc. can be used, among these ethers, ketones, esters, lactones, halogenated hydrocarbons , Carbonates and sulfolane compounds are preferred. Examples of these are tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, 4-methyl-2-pentanone, ethyl acetate, methyl acetate, methyl propionate, ethyl propionate, 1,2-dichloroethane. , Γ-butyrolactone, dimethoxyethane, methyl formate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, phosphorus Examples thereof include trimethyl acid, triethyl phosphate, and mixed solvents thereof, but are not necessarily limited thereto. Cyclic carbonates and cyclic esters are preferred. Most preferably, the organic solvent is a mixture of one or more of ethylene carbonate, propylene carbonate, methyl ethyl carbonate, dimethyl carbonate and diethyl carbonate.

また、本発明の非水電解質二次電池に用いる電解質塩としては、特に制限はないが、LiClO、LiBF、LiAsF、CFSOLi、LiPF、LiN(CFSO、LiN(CSO、LiI、LiAlCl等およびそれらの混合物が挙げられる。好ましくは、LiBF、LiPFのうち、1種または2種以上を混合したリチウム塩がよい。 As the electrolyte salt used for the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, LiClO 4, LiBF 4, LiAsF 6, CF 3 SO 3 Li, LiPF 6, LiN (CF 3 SO 2) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiI, LiAlCl 4 and the like and mixtures thereof. Preferably, a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.

また、上記電解質には補助的に固体のイオン導伝性ポリマー電解質を用いることもできる。この場合、非水電解質二次電池の構成としては、正極、負極およびセパレータと有機または無機の固体電解質と上記非水電解液との組み合わせ、または正極、負極およびセパレータとしての有機または無機の固体電解質膜と上記非水電解液との組み合わせがあげられる。ポリマー電解質膜がポリエチレンオキシド、ポリアクリロニトリルまたはポリエチレングリコールおよびこれらの変成体などの場合には、軽量で柔軟性があり、巻回極板に使用する場合に有利である。さらに、ポリマー電解質以外にも、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質との混合材料などを使用することができる。   In addition, a solid ion-conducting polymer electrolyte can be used as an auxiliary material for the electrolyte. In this case, the configuration of the nonaqueous electrolyte secondary battery includes a combination of a positive electrode, a negative electrode and a separator, an organic or inorganic solid electrolyte and the nonaqueous electrolyte, or an organic or inorganic solid electrolyte as the positive electrode, the negative electrode and the separator. A combination of the membrane and the non-aqueous electrolyte solution can be mentioned. When the polymer electrolyte membrane is polyethylene oxide, polyacrylonitrile, polyethylene glycol, or a modified product thereof, the polymer electrolyte membrane is lightweight and flexible, which is advantageous when used for a wound electrode plate. In addition to the polymer electrolyte, an inorganic solid electrolyte or a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte can be used.

その他の電池の構成要素として、集電体、端子、絶縁板、電池ケース等があるが、これらの部品についても従来用いられてきたものをそのまま用いて差し支えない。   Other battery components include a current collector, a terminal, an insulating plate, a battery case, and the like. However, these components may be used as they are.

以下に、本発明の実施例を、比較例とあわせて説明する。 Examples of the present invention will be described below together with comparative examples.

[Ni系化合物の合成]
硫酸ニッケルと硫酸コバルトを、モル比がNi:Co=71:21となるように水中に溶解し、さらに十分に攪拌させながら水酸化ナトリウム溶液を加えてニッケル−コバルト複合共沈水酸化物を得た。
[Synthesis of Ni-based compounds]
Nickel sulfate and cobalt sulfate were dissolved in water so that the molar ratio was Ni: Co = 71: 21, and a sodium hydroxide solution was added with sufficient stirring to obtain a nickel-cobalt composite coprecipitated hydroxide. .

生成した共沈物を水洗、乾燥し、その後に、平均粒径が約0.5μmの水酸化アルミニウムを、モル比が(Ni+Co):Al=92:8となるように混合し、その後に水酸化リチウム一水和塩を加え、モル比がLi:(Ni+Co+Al)=105:100となるように調整して前駆体を作製した。   The produced coprecipitate was washed with water and dried, and then aluminum hydroxide having an average particle diameter of about 0.5 μm was mixed so that the molar ratio was (Ni + Co): Al = 92: 8, and then water was added. A precursor was prepared by adding lithium oxide monohydrate and adjusting the molar ratio to be Li: (Ni + Co + Al) = 105: 100.

これらの前駆体を酸素気流中、700℃で10時間焼成し、室温まで冷却した後に乾燥アルゴンガス中で取り出して粉砕し、組成式Li1.03Ni0.71Co0.21Ai0.08で表されるNi系化合物を得た。そして、これをNi系化合物N01とした。 These precursors were calcined at 700 ° C. for 10 hours in an oxygen stream, cooled to room temperature, taken out in a dry argon gas and pulverized, and composition formula Li 1.03 Ni 0.71 Co 0.21 Ai 0.08 A Ni-based compound represented by O 2 was obtained. This was designated Ni-based compound N01.

ニッケル−コバルト複合共沈水酸化物のモル比をNi:Co=74:22とし、共沈物と水酸化アルミニウムの混合物のモル比を(Ni+Co):Al=96:4としたこと以外はNi系化合物N01と同様の条件で、組成式Li1.03Ni0.74Co0.22Ai0.04で表されるNi系化合物を得た。そして、これをNi系化合物N02とした。 Ni system except that the molar ratio of nickel-cobalt composite coprecipitated hydroxide is Ni: Co = 74: 22 and the molar ratio of the mixture of coprecipitate and aluminum hydroxide is (Ni + Co): Al = 96: 4. A Ni-based compound represented by the composition formula Li 1.03 Ni 0.74 Co 0.22 Ai 0.04 O 2 was obtained under the same conditions as for the compound N01. This was designated Ni compound N02.

ニッケル−コバルト複合共沈水酸化物のモル比をNi:Co=80:12とし、共沈物と水酸化アルミニウムの混合物のモル比を(Ni+Co):Al=92:8としたこと以外はNi系化合物N01と同様の条件で、組成式Li1.03Ni0.80Co0.12Ai0.08で表されるNi系化合物を得た。そして、これをNi系化合物N03とした。 Ni system except that the molar ratio of nickel-cobalt composite coprecipitated hydroxide is Ni: Co = 80: 12 and the molar ratio of the mixture of coprecipitate and aluminum hydroxide is (Ni + Co): Al = 92: 8. A Ni-based compound represented by the composition formula Li 1.03 Ni 0.80 Co 0.12 Ai 0.08 O 2 was obtained under the same conditions as for the compound N01. This was designated Ni-based compound N03.

ニッケル−コバルト複合共沈水酸化物のモル比をNi:Co=81:16とし、共沈物と水酸化アルミニウムの混合物のモル比を(Ni+Co):Al=97:3としたこと以外はNi系化合物N01と同様の条件で、組成式Li1.03Ni0.81Co0.16Ai0.03で表されるNi系化合物を得た。そして、これをNi系化合物N04とした。 Ni system except that the molar ratio of nickel-cobalt composite coprecipitated hydroxide is Ni: Co = 81: 16 and the molar ratio of the mixture of coprecipitate and aluminum hydroxide is (Ni + Co): Al = 97: 3. A Ni-based compound represented by the composition formula Li 1.03 Ni 0.81 Co 0.16 Ai 0.03 O 2 was obtained under the same conditions as for the compound N01. This was designated Ni-based compound N04.

ニッケル−コバルト複合共沈水酸化物のモル比をNi:Co=85:13とし、共沈物と水酸化アルミニウムの混合物のモル比を(Ni+Co):Al=98:2としたこと以外はNi系化合物N01と同様の条件で、組成式Li1.03Ni0.85Co0.13Ai0.02で表されるNi系化合物を得た。そして、これをNi系化合物N05とした。 Ni system except that the molar ratio of nickel-cobalt composite coprecipitated hydroxide is Ni: Co = 85: 13 and the molar ratio of the mixture of coprecipitate and aluminum hydroxide is (Ni + Co): Al = 98: 2. Under the same conditions as for compound N01, a Ni-based compound represented by the composition formula Li 1.03 Ni 0.85 Co 0.13 Ai 0.02 O 2 was obtained. This was designated Ni-based compound N05.

なお、得られたNi系化合物N01〜N05はデシケーター中に真空保管し、その後の分析および電池作製は1週間以内におこなった。   The obtained Ni compounds N01 to N05 were vacuum-stored in a desiccator, and the subsequent analysis and battery production were performed within one week.

硫酸ニッケル、硫酸コバルト、水酸化アルミニウム、水酸化リチウム一水和塩をNi系化合物N01を合成した場合の前駆体中の金属と同一のモル比となるように乳鉢で混合し、酸素気流中で700℃で10時間焼成し、室温まで冷却した後に露点−30℃以下の乾燥空気中で取り出して粉砕し、組成式Li1.03Ni0.71Co0.21Ai0.08で表されるNi系化合物を得た。そして、これをNi系化合物N11とした。得られた化合物はデシケーター中に真空保管した。 Nickel sulfate, cobalt sulfate, aluminum hydroxide, and lithium hydroxide monohydrate are mixed in a mortar so that the molar ratio is the same as that of the metal in the precursor when the Ni compound N01 is synthesized. After baking at 700 ° C. for 10 hours, cooling to room temperature, taking it out in dry air with a dew point of −30 ° C. or less and pulverizing it, the composition is expressed as Li 1.03 Ni 0.71 Co 0.21 Ai 0.08 O 2 . A Ni-based compound was obtained. This was designated as Ni compound N11. The obtained compound was vacuum-stored in a desiccator.

Ni系化合物N01を合成した場合の前駆体を大気雰囲気中で焼成したこと以外はNi系化合物N01と同一の条件で、組成式Li1.03Ni0.71Co0.21Ai0.08で表されるNi系化合物を得た。そして、これをNi系化合物N12とした。 The composition formula Li 1.03 Ni 0.71 Co 0.21 Ai 0.08 O was used under the same conditions as the Ni compound N01 except that the precursor when the Ni compound N01 was synthesized was calcined in the atmosphere. A Ni-based compound represented by 2 was obtained. This was designated Ni compound N12.

Ni系化合物N01を合成した場合の前駆体の焼成温度を600℃としたこと以外はNi系化合物N01と同一の条件で、組成式Li1.03Ni0.71Co0.21Ai0.08で表されるNi系化合物を得た。そして、これをNi系化合物N13とした。 The composition formula Li 1.03 Ni 0.71 Co 0.21 Ai 0.08 is the same as the Ni compound N01 except that the firing temperature of the precursor when the Ni compound N01 is synthesized is 600 ° C. A Ni-based compound represented by O 2 was obtained. This was designated Ni compound N13.

Ni系化合物N01を合成した場合の前駆体の焼成時間を1時間としたこと以外はNi系化合物N01と同一の条件で、組成式Li1.03Ni0.71Co0.21Ai0.08で表されるNi系化合物を得た。そして、これをNi系化合物N14とした。 The composition formula Li 1.03 Ni 0.71 Co 0.21 Ai 0.08 was used under the same conditions as the Ni compound N01 except that the firing time of the precursor when the Ni compound N01 was synthesized was 1 hour. A Ni-based compound represented by O 2 was obtained. This was designated Ni compound N14.

Ni系化合物N01を合成した場合に、焼成後に湿度50%の大気中で焼成炉から取り出したこと以外はNi系化合物N01と同一の条件で、組成式Li1.03Ni0.71Co0.21Ai0.08で表されるNi系化合物を得た。そして、これをNi系化合物N15とした。 When the Ni-based compound N01 was synthesized, the composition formula Li 1.03 Ni 0.71 Co 0 .5 was obtained under the same conditions as the Ni-based compound N01 except that the Ni-based compound N01 was taken out from the firing furnace in the atmosphere of 50% humidity after firing . A Ni-based compound represented by 21 Ai 0.08 O 2 was obtained. This was designated Ni compound N15.

Ni系化合物N01を合成した場合に、焼成・粉砕後に湿度50%の大気中で1週間放置したこと以外はNi系化合物N01と同一の条件で、組成式Li1.03Ni0.71Co0.21Ai0.08で表されるNi系化合物を得た。そして、これをNi系化合物N16とした。 When the Ni-based compound N01 was synthesized, the composition formula Li 1.03 Ni 0.71 Co 0 was used under the same conditions as the Ni-based compound N01 except that the Ni-based compound N01 was left in an atmosphere of 50% humidity after firing and pulverization for one week. A Ni-based compound represented by .21 Ai 0.08 O 2 was obtained. This was designated Ni-based compound N16.

Ni系化合物N01を合成した場合に、焼成・粉砕後にデシケーター中で1年間真空保管したこと以外はNi系化合物N01と同一の条件で、組成式Li1.03Ni0.71Co0.21Ai0.08で表されるNi系化合物を得た。そして、これをNi系化合物N17とした。 When the Ni compound N01 was synthesized, the composition formula Li 1.03 Ni 0.71 Co 0.21 Ai was used under the same conditions as the Ni compound N01 except that it was vacuum-stored in a desiccator for 1 year after firing and pulverization. A Ni-based compound represented by 0.08 O 2 was obtained. This was designated Ni compound N17.

以上のようにして合成したNi系化合物N01〜05およびN11〜N17の一部をデシケーターから取り出し、定性分析をおこなった。その結果、粉末X線回折では、すべての化合物について未反応の水酸化物やアルミン酸リチウム、または炭酸リチウム等の不純物のピークは認められなかった。Ni系化合物N01〜05およびN11〜N17の、ICP発光分光法で分析した化合物全体の平均組成を表1に示す。   A part of the Ni-based compounds N01 to 05 and N11 to N17 synthesized as described above was taken out from the desiccator and subjected to qualitative analysis. As a result, in powder X-ray diffraction, no peak of impurities such as unreacted hydroxide, lithium aluminate, or lithium carbonate was observed for all compounds. Table 1 shows the average composition of the Ni compounds N01 to 05 and N11 to N17 analyzed by ICP emission spectroscopy.

次に、各化合物自身の表面部分に存在する酸素の結合状態を調べるために、アルゴンイオンスパッタリングを併用したX線光電子分光法で分析をおこなった。528eV〜531eVの間に頂点を持つピークの強度(Ia:ベースラインからピーク頂点までの高さ)と、531eV〜533eVの間に頂点を持つピークの強度(Ib:ベースラインからピーク頂点までの高さ)の比を表1に示す。なお、ベースラインの引き方はLinear法、Shirley法、Tougaard法のいずれでもかまわないが、ここではLinear法を用いた。   Next, in order to investigate the bonding state of oxygen present on the surface portion of each compound itself, analysis was performed by X-ray photoelectron spectroscopy combined with argon ion sputtering. The intensity of the peak having a peak between 528 eV and 531 eV (Ia: the height from the baseline to the peak peak) and the intensity of the peak having a peak between 533 eV and 533 eV (Ib: the height from the baseline to the peak peak) Table 1 shows the ratio. Note that the baseline method may be any of the Linear method, the Shirley method, and the Tougaard method, but here, the Linear method was used.

X線光電子分光法による表面分析を具体的には以下の手順でおこなった。まず、露点−50℃以下のドライルーム中で、X線光電子分光法用のサンプルステージ上に貼りつけた導電性カーボンテープ上に化合物粒子の粉体をまぶし、その上に清浄な表面を有するステンレス板を載せて油圧プレス器で適度に圧迫し、目視上、平らで密なサンプルを作製した。次に、前記サンプルをトランスファーベッセルを用いて、大気に触れないようにX線光電子分光装置(島津製作所製、AXIS−HS)内の試料台に水平に装着した。   Specifically, the surface analysis by X-ray photoelectron spectroscopy was performed according to the following procedure. First, in a dry room with a dew point of −50 ° C. or less, stainless steel having a clean surface coated with a powder of compound particles on a conductive carbon tape affixed on a sample stage for X-ray photoelectron spectroscopy. The plate was placed and pressed moderately with a hydraulic press, and a flat and dense sample was produced visually. Next, the sample was horizontally mounted on a sample stage in an X-ray photoelectron spectrometer (manufactured by Shimadzu Corporation, AXIS-HS) using a transfer vessel so as not to be exposed to the atmosphere.

X線源はMgKα線を用いて、加速電圧15keV−エミッション電流15mAとした。X線光電子分光法の分析範囲径は100μmφとしたため、得られるスペクトルは数十個の化合物粒子のからの平均値となるが、同一の化合物を用いて分析サンプルの準備から
X線光電子分光測定までの作業を数十回繰り返しても、得られる情報に誤差は生じなかった。
The X-ray source was MgKα ray, and the acceleration voltage was 15 keV and the emission current was 15 mA. Since the analysis range diameter of the X-ray photoelectron spectroscopy is 100 μmφ, the spectrum obtained is an average value from several tens of compound particles, but from the preparation of the analysis sample to the X-ray photoelectron spectroscopy measurement using the same compound No error occurred in the obtained information even if the above operation was repeated several tens of times.

なお、化合物の最表面には分析用のサンプルを作製した際や、分析装置に導入した際に付着したガスや不純物がわずかに存在するため、ここでは分析サンプルの最表面から1nmエッチングした後のスペクトルを真の化合物表面のスペクトルと定義した。深さは単結晶Si換算の厚さで算定した。   In addition, since there is a slight amount of gas and impurities adhering to the outermost surface of the compound when an analytical sample is prepared or introduced into the analyzer, here, after etching 1 nm from the outermost surface of the analytical sample, The spectrum was defined as the true compound surface spectrum. The depth was calculated by the thickness in terms of single crystal Si.

なお、一連の化合物についての表面分析は、上記のように粉体を凝集圧迫した平板についておこなったが、化合物をアセチレンブラック、ポリフッ化ビニリデンと混合して平板上に塗布し、圧迫成形した極板について同様の分析をおこなっても、アセチレンブラックやポリフッ化ビニリデン中には金属元素が含まれないため、化合物表面の特定および化合物表面の組成分析には支障をもたらさず、極板についても同様の分析が可能である。ただし、ピーク強度は活物質の充電状態によって若干変動するため、0.8≦a≦1.05の放電状態で比較するように定める。   The surface analysis of a series of compounds was carried out on the flat plate on which the powder was agglomerated and pressed as described above, but the compound was mixed with acetylene black and polyvinylidene fluoride and applied onto the flat plate, followed by compression molding. Even if the same analysis is performed for, the metal element is not contained in acetylene black or polyvinylidene fluoride, so it does not hinder the identification of the compound surface and the composition analysis of the compound surface, and the same analysis for the electrode plate Is possible. However, since the peak intensity slightly varies depending on the charged state of the active material, the peak intensity is determined to be compared in the discharged state of 0.8 ≦ a ≦ 1.05.

Figure 0004540041
Figure 0004540041

[実施例1〜5および比較例1〜7]
[実施例1]
正極は、活物質としてのNi系化合物N01を87重量%、アセチレンブラック5重量%、ポリフッ化ビニリデン8重量%を混合し、これに含水量50ppm以下のN−メチル−2−ピロリドン(以下「NMP」とする)を加えてペースト状とし、さらにアルミニウム箔上に塗布、乾燥して正極合材層を形成させて作製した。負極は、炭素材料(グラファイト)とポリフッ化ビニリデンとを混合し、これにNMPを加えてペースト状とし、さらに銅箔上に塗布、乾燥して負極合材層を形成させて作製した。
[Examples 1-5 and Comparative Examples 1-7]
[Example 1]
In the positive electrode, 87% by weight of Ni compound N01 as an active material, 5% by weight of acetylene black and 8% by weight of polyvinylidene fluoride were mixed, and this was mixed with N-methyl-2-pyrrolidone (hereinafter “NMP”) having a water content of 50 ppm or less. To make a paste, and then applied onto an aluminum foil and dried to form a positive electrode mixture layer. The negative electrode was prepared by mixing a carbon material (graphite) and polyvinylidene fluoride, adding NMP to the paste to form a paste, and coating and drying on a copper foil to form a negative electrode mixture layer.

このようにして作製した帯状の正極と負極とを図3に示すように、セパレータを介して長円形状に捲回して電極群を構成した後、この電極群を長円筒形の有底アルミニウム容器に挿入し、さらに、電極群の巻芯部に充填物をつめた後、電解液を注入し、レーザー溶接にて容器と蓋とを封口溶接した。なお、ペースト作製から電極加工、電池組立に至る全ての工程は露点50℃以下の乾燥環境下でおこなった。作製した電池を実施例1の電池とし、この電池の設計容量は10Ahとした。   After forming the electrode group by winding the belt-like positive electrode and the negative electrode thus produced into an oval shape through a separator as shown in FIG. 3, this electrode group is formed into a long cylindrical bottomed aluminum container. Then, after filling the core portion of the electrode group with a filler, the electrolyte was injected, and the container and the lid were sealed and welded by laser welding. All processes from paste preparation to electrode processing and battery assembly were performed in a dry environment with a dew point of 50 ° C. or lower. The produced battery was the battery of Example 1, and the design capacity of this battery was 10 Ah.

[実施例2〜5および比較例1〜7]
正極活物質としてNi系化合物N02を用いたこと以外は実施例1と同様にして、実施例2の電池を作製した。同様にして、Ni系化合物N03を用いた電池を実施例3の電池、Ni系化合物N04を用いた電池を実施例4の電池、Ni系化合物N05を用いた電池を実施例5の電池とした。
[Examples 2 to 5 and Comparative Examples 1 to 7]
A battery of Example 2 was made in the same manner as Example 1 except that the Ni-based compound N02 was used as the positive electrode active material. Similarly, a battery using the Ni compound N03 was used as the battery of Example 3, a battery using the Ni compound N04 was used as the battery of Example 4, and a battery using the Ni compound N05 was used as the battery of Example 5. .

正極活物質としてNi系化合物N11を用いたこと以外は実施例1と同様にして、比較例1の電池を作製した。同様にして、Ni系化合物N12を用いた電池を比較例2の電池、Ni系化合物N13を用いた電池を比較例3の電池、Ni系化合物N14を用いた電池を比較例4の電池、Ni系化合物N15を用いた電池を比較例5の電池、Ni系化合物N16を用いた電池を比較例6の電池、Ni系化合物N17を用いた電池を比較例7の電池とした。   A battery of Comparative Example 1 was fabricated in the same manner as in Example 1 except that Ni compound N11 was used as the positive electrode active material. Similarly, a battery using Ni-based compound N12 is the battery of Comparative Example 2, a battery using Ni-based compound N13 is the battery of Comparative Example 3, a battery using Ni-based compound N14 is the battery of Comparative Example 4, Ni The battery using Comparative compound N15 was used as the battery of Comparative Example 5, the battery using Ni compound N16 as the battery of Comparative Example 6, and the battery using Ni compound N17 as the battery of Comparative Example 7.

[放電容量測定]
この試験電池を、1A定電流で4.2Vまで充電した後、1A定電流で3.0Vまで放電したときの放電容量を測定し、正極活物質1g当たりの放電容量を算定した。
[Discharge capacity measurement]
The test battery was charged to 4.2 V at a constant current of 1 A, and then the discharge capacity when discharged to 3.0 V at a constant current of 1 A was measured to calculate the discharge capacity per gram of the positive electrode active material.

[充放電サイクル試験]
次に、この試験電池を同じ試験条件で300サイクル充放電した後の放電容量を求め、これを初期の放電容量で除して、サイクル後容量保持率(%)を算定した。
[Charge / discharge cycle test]
Next, the discharge capacity after charging and discharging the test battery for 300 cycles under the same test conditions was determined, and this was divided by the initial discharge capacity to calculate the post-cycle capacity retention rate (%).

[保存試験]
充放電サイクル試験、サイクル試験に供した電池と同時に作製した別の電池で保存特性を比較した。1A定電流で4.2Vまで充電した後、1A定電流で3.0Vまで放電する充放電を初期に3回繰り返し、3回目の放電容量を初期容量とした。次に、1A定電流で4.2Vまでまで再度充電した後、電池を60℃の環境下で10日間保存し、保存後も初期と同様の充放電条件で3回充放電を繰り返し、3回目の放電容量を保存後容量として、これを初期の放電容量で除して保存後の容量保持率(%)を算定した。これらの試験結果を表2に示す。
[Preservation test]
The storage characteristics were compared with other batteries prepared at the same time as the batteries subjected to the charge / discharge cycle test and the cycle test. After charging to 4.2 V at a constant current of 1 A, charging / discharging to discharge to 3.0 V at a constant current of 1 A was repeated three times initially, and the third discharge capacity was defined as the initial capacity. Next, after charging again to 4.2 V at a constant current of 1 A, the battery was stored in an environment of 60 ° C. for 10 days, and after the storage, the charge and discharge were repeated three times under the same charge and discharge conditions as in the initial stage. The storage capacity after storage was divided by the initial discharge capacity, and the capacity retention rate (%) after storage was calculated. These test results are shown in Table 2.

Figure 0004540041
Figure 0004540041

表1および表2の結果より、0.8≦a≦1.05の状態で16kV−15mAの条件で測定されたX線光電子分光法による化合物自身の酸素1sスペクトルにおいて、528eV〜531eVの間に頂点を持つピークの強度(Ia)と、531eV〜533eVの間に頂点を持つピークの強度(Ib)の比(Ia/Ib)が0.5以上である一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.02)で示されるNi系化合物を正極活物質とした施例1〜5の非水電解質二次電池は、Ia/Ib<0.5である比較例1〜7の非水電解質二次電池と比較して、放電容量が大きく、かつサイクル性能や保存性能に優れていることがわかった。 From the results of Table 1 and Table 2, in the oxygen 1s spectrum of the compound itself by X-ray photoelectron spectroscopy measured under the condition of 16 kV-15 mA with 0.8 ≦ a ≦ 1.05, it is between 528 eV and 531 eV. The general formula Li a Ni x Co y Al z in which the ratio (Ia / Ib) of the intensity (Ia) of the peak having the apex to the intensity (Ib) of the peak having the apex between 531 eV to 533 eV is 0.5 or more. O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0.1, 0.98 ≦ x + y + z ≦ 1 0.02), the nonaqueous electrolyte secondary batteries of Examples 1 to 5 using the Ni-based compound as the positive electrode active material are the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 7 where Ia / Ib <0.5. Compared to the above, the discharge capacity is large and the cycle performance and storage performance are excellent. I found out.

本発明になるNi系化合物のXPS酸素1Sスペクトルの一例を示す図。The figure which shows an example of the XPS oxygen 1S spectrum of the Ni type compound which becomes this invention. 本発明になるNi系化合物のXPS酸素1Sスペクトルの他の例を示す図。The figure which shows the other example of the XPS oxygen 1S spectrum of the Ni type compound which becomes this invention. 従来のNi系化合物のXPS酸素1Sスペクトルの例を示す図。The figure which shows the example of the XPS oxygen 1S spectrum of the conventional Ni type compound. 本発明の非水電解液二次電池の外観を示す図。The figure which shows the external appearance of the nonaqueous electrolyte secondary battery of this invention. 電池の電極群を示す図。The figure which shows the electrode group of a battery.

符号の説明Explanation of symbols

1 非水電解質二次電池
2 電極群
2a 正極
2b 負極
2c セパレータ
3 電池ケース
3a 電池ケースのケース部
3b 電池ケースの蓋部
4 正極端子
5 負極端子
6 安全弁
7 電解液注液口
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 2a Positive electrode 2b Negative electrode 2c Separator 3 Battery case 3a Case part of battery case 3b Cover part of battery case 4 Positive electrode terminal 5 Negative electrode terminal 6 Safety valve 7 Electrolyte injection port

Claims (1)

一般式LiNiCoAl(0.3≦a≦1.05、0.7≦x≦0.87、0.1≦y≦0.27、0.02≦z≦0.1、0.98≦x+y+z≦1.02)で示される化合物を正極活物質に用いた非水電解質二次電池において、前記化合物表面において、0.8≦a≦1.05の状態で15kV−15mAの条件で測定されたX線光電子分光法による酸素1sスペクトルの、528eV〜531eVの間に頂点を持つピークの強度(Ia)と、531eV〜533eVの間に頂点を持つピークの強度(Ib)の比(Ia/Ib)が0.5以上(ただし、Ib/Iaが1.72、1.6および1.5以下の場合を除く)であることを特徴とする非水電解質二次電池。
General formula Li a Ni x Co y Al z O 2 (0.3 ≦ a ≦ 1.05, 0.7 ≦ x ≦ 0.87, 0.1 ≦ y ≦ 0.27, 0.02 ≦ z ≦ 0 .1, 0.98 ≦ x + y + z ≦ 1.02) in a nonaqueous electrolyte secondary battery using a positive electrode active material, 15 kV in a state of 0.8 ≦ a ≦ 1.05 on the surface of the compound. The intensity (Ia) of the peak having an apex between 528 eV and 531 eV and the intensity of the peak having an apex between 531 eV and 533 eV (Ib) of the oxygen 1s spectrum measured by X-ray photoelectron spectroscopy measured under the condition of −15 mA ) Ratio (Ia / Ib) is 0.5 or more (except when Ib / Ia is 1.72, 1.6, or 1.5 or less). .
JP2004064498A 2004-03-08 2004-03-08 Nonaqueous electrolyte secondary battery Expired - Lifetime JP4540041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064498A JP4540041B2 (en) 2004-03-08 2004-03-08 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064498A JP4540041B2 (en) 2004-03-08 2004-03-08 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005251700A JP2005251700A (en) 2005-09-15
JP4540041B2 true JP4540041B2 (en) 2010-09-08

Family

ID=35031952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064498A Expired - Lifetime JP4540041B2 (en) 2004-03-08 2004-03-08 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4540041B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036680A1 (en) * 2003-10-07 2005-04-21 Gs Yuasa Corporation Non-aqueous electrolyte secondary cell
KR101450978B1 (en) 2009-12-18 2014-10-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
KR20120061943A (en) 2009-12-22 2012-06-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
EP2533333B1 (en) 2010-02-05 2018-09-12 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101456344B1 (en) 2010-02-05 2014-11-03 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN102782911B (en) 2010-03-04 2015-06-24 Jx日矿日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR101430843B1 (en) 2010-03-04 2014-08-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
CN102782913B (en) 2010-03-04 2015-02-11 Jx日矿日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
EP2544273A4 (en) 2010-03-04 2014-06-25 Jx Nippon Mining & Metals Corp Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN105514420A (en) 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
KR20120099411A (en) 2011-01-21 2012-09-10 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method of manufacturing positive electrode active material for a lithium-ion battery and a positive electrode active material for a lithium-ion battery
CN102812583B (en) 2011-03-29 2015-02-11 Jx日矿日石金属株式会社 Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
EP2693536B1 (en) 2011-03-31 2017-05-03 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6159514B2 (en) * 2012-09-19 2017-07-05 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN104335396B (en) 2012-09-28 2018-01-05 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
JP6721287B2 (en) * 2013-07-30 2020-07-15 株式会社村田製作所 Positive electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool and electronic device
JP6426820B1 (en) 2017-11-30 2018-11-21 住友化学株式会社 Lithium-containing transition metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium-containing transition metal composite oxide
WO2022059634A1 (en) * 2020-09-17 2022-03-24 株式会社村田製作所 Secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106565A (en) * 1996-10-01 1998-04-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte battery and manufacture therefor
JP2000030693A (en) * 1998-07-10 2000-01-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacture
JP2004327246A (en) * 2003-04-24 2004-11-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for lithium secondary battery and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106565A (en) * 1996-10-01 1998-04-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte battery and manufacture therefor
JP2000030693A (en) * 1998-07-10 2000-01-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacture
JP2004327246A (en) * 2003-04-24 2004-11-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for lithium secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JP2005251700A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4540041B2 (en) Nonaqueous electrolyte secondary battery
KR101970909B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
US7981544B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
KR102140969B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP5341837B2 (en) Positive electrode, non-aqueous electrolyte battery and battery pack
US20110033750A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2013076893A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
CN111226332A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, nonaqueous electrolyte secondary battery, and method for producing same
US20080182171A1 (en) Composition for negative electrode of non-aqueous rechargeable battery and non-aqueous rechargeable battery prepared by using same
KR101531776B1 (en) Positive active material, process for producing same, and lithium secondary battery including same
KR20200043514A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing same, and lithium ion secondary battery
CN116529548A (en) Method for producing lithium metal composite oxide
WO2004088777A1 (en) Secondary battery-use anode active material, secondary battery, and production method for secondary battery-use anode active material
JP5180448B2 (en) Spinel type lithium manganate and method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using spinel type lithium manganate
JP2022095988A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6481907B2 (en) Lithium iron manganese based composite oxide, positive electrode active material for lithium ion secondary battery using the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4720505B2 (en) Nonaqueous electrolyte secondary battery
JP3975502B2 (en) Non-aqueous electrolyte secondary battery
US20220127160A1 (en) Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
US20220131139A1 (en) Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
US10096821B2 (en) Lithium secondary battery
WO2017034000A1 (en) Positive electrode active material for non-aqueous electrolyte secondary cell and method for manufacturing said material, and non-aqueous electrolyte secondary cell
JP2996234B1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

R150 Certificate of patent or registration of utility model

Ref document number: 4540041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

EXPY Cancellation because of completion of term