JP2003346807A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2003346807A
JP2003346807A JP2002158240A JP2002158240A JP2003346807A JP 2003346807 A JP2003346807 A JP 2003346807A JP 2002158240 A JP2002158240 A JP 2002158240A JP 2002158240 A JP2002158240 A JP 2002158240A JP 2003346807 A JP2003346807 A JP 2003346807A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
manganese composite
positive electrode
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002158240A
Other languages
Japanese (ja)
Inventor
Atsuo Kondo
篤郎 近藤
Yoshihiko Hiroe
廣江  佳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002158240A priority Critical patent/JP2003346807A/en
Publication of JP2003346807A publication Critical patent/JP2003346807A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery using lithium manganese compound oxide with high energy density for suppressing degradation of the discharging capacity, in particular, for suppressing degradation of the discharging capacity at high temperatures. <P>SOLUTION: A general formula of a lithium-manganese compound oxide having a spinel structure is expressed by Li<SB>1+x</SB>Mn<SB>2-x-y</SB>Me<SB>y</SB>O<SB>4</SB>(where, Me is a metal element other than manganese, x satisfies inequalities 0<x≤0.2, and y satisfies inequalities 0<y≤0.15). The lithium-manganese compound oxide of the lattice constant a to satisfy an inequality a≤8.215 Å, the specific surface area of ≤1.5 m<SP>2</SP>/g, and the grain size of 5-30 μm is used for the positive electrode active material. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質を用いた
非水電解質二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進むに従い、小型電子機器の電源
としてリチウムイオン二次電池が実用化されている。リ
チウムイオン二次電池についてはコバルト酸リチウムが
正極活物質として有用であるとの報告がなされて以来、
リチウム-遷移金属複合酸化物に関する研究開発が活発
に進められており、これまでに主な正極活物質としてコ
バルト酸リチウム、ニッケル酸リチウム及びマンガン酸
リチウム等が知られている。このうちマンガン酸リチウ
ムは、コバルト酸リチウム、ニッケル酸リチウムと比較
して電池異常時の安全性や、資源埋蔵量によるコストパ
フォーマンスに優れていることから最近特に注目されて
いる。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
As cordless technology has rapidly progressed, lithium ion secondary batteries have been put into practical use as power supplies for small electronic devices. For lithium ion secondary batteries, since it was reported that lithium cobalt oxide was useful as a positive electrode active material,
Research and development on lithium-transition metal composite oxides have been actively advanced, and lithium cobaltate, lithium nickelate, lithium manganate, and the like have been known as main positive electrode active materials so far. Of these, lithium manganate has recently received particular attention because it is superior to lithium cobalt oxide and lithium nickelate in safety at the time of battery abnormality and cost performance due to resource reserves.

【0003】[0003]

【発明が解決しようとする課題】リチウムマンガン複合
酸化物を正極活物質として用いた電池においては、充放
電を繰り返すことによって放電容量及び出力の低下など
の問題がみられ、この問題は特に高温化での使用の際に
顕著である。主な原因としては充放電の繰り返しによる
リチウムマンガン複合酸化物の体積変化やヤーンテラー
歪みによる相転移、高温下ではリチウムマンガン複合酸
化物から電解液中へのマンガンイオンの溶解などが挙げ
られ、それらを克服し、放電容量低下の抑制および高温
特性の改善を行うことが重要である。
In a battery using a lithium manganese composite oxide as a positive electrode active material, problems such as reduction in discharge capacity and output due to repeated charging and discharging are observed. Notable when used in The main causes include volume change of lithium manganese composite oxide due to repeated charge and discharge, phase transition due to Jahn-Teller distortion, and dissolution of manganese ions from lithium manganese composite oxide into electrolyte at high temperatures. It is important to overcome the problem and to suppress a decrease in discharge capacity and improve high-temperature characteristics.

【0004】そこで、本発明の課題は、エネルギー密度
が高くまた放電容量の低下が抑制された、特に高温化に
おける放電容量の低下が抑制されたリチウムマンガン複
合酸化物を用いた非水電解質二次電池を提供することに
ある。
Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide having a high energy density and a reduced discharge capacity, and in particular, a reduced discharge capacity at a high temperature. It is to provide a battery.

【0005】[0005]

【課題を解決するための手段】本発明の非水電解質二次
電池は、一般式Li1+xMn2-x-yMeyO4(式中Meはマンガン
以外の金属元素を表し、xは0<x≦0.2、yは0<y≦0.15
の値をとる)で示され、スピネル構造を有するリチウム
マンガン複合酸化物であって、格子定数aがa≦8.215
Å、比表面積が1.5m2/g以下、平均粒径が5〜30μmであ
るリチウムマンガン複合酸化物を正極活物質として用い
たことを特徴とする非水電解質二次電池である。
The non-aqueous electrolyte secondary battery of the present invention has a general formula Li 1 + x Mn 2-xy Me y O 4 (where Me represents a metal element other than manganese, and x is 0) <X ≦ 0.2, y is 0 <y ≦ 0.15
Is a lithium manganese composite oxide having a spinel structure, wherein the lattice constant a is a ≦ 8.215.
Å A non-aqueous electrolyte secondary battery characterized by using a lithium manganese composite oxide having a specific surface area of 1.5 m 2 / g or less and an average particle size of 5 to 30 μm as a positive electrode active material.

【0006】X線回折測定より求められる格子定数aがa
≦8.215Å、比表面積が1.5m2/g以下、平均粒径が5〜30
μmであるリチウムマンガン複合酸化物を正極活物質と
して用いることにより、充放電の繰り返しによる放電容
量低下の抑制、特に高温化における放電容量の低下を抑
制することが可能となる。
The lattice constant a obtained from X-ray diffraction measurement is a
≤8.215Å, specific surface area 1.5m 2 / g or less, average particle size 5-30
By using a lithium manganese composite oxide having a thickness of μm as a positive electrode active material, it is possible to suppress a decrease in discharge capacity due to repetition of charge and discharge, and particularly to suppress a decrease in discharge capacity at a high temperature.

【0007】[0007]

【発明の実施の形態】本発明では、X線回折測定結果(Cu
Kα線)を基にリートベルト解析によって得られた格子定
数aがa≦8.215Åの範囲であらわされるスピネル構造の
リチウムマンガン複合酸化物を用いるが、より好ましく
はa≦8.21Åのものを用いるのが良い。当範囲の格子定
数をもつリチウムマンガン複合酸化物では寿命特性、特
に高温特性が改善され、a≦8.21Åの範囲で特にその効
果が顕著となる。これは、結晶構造の安定化が図られる
ため、充放電過程に伴う体積変化が小さくなり、極板内
での密着性低下が抑制されるためと考えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the results of X-ray diffraction measurement (Cu
(Kα ray) based on the lattice constant a obtained by Rietveld analysis based on the Rietveld use a lithium manganese composite oxide having a spinel structure represented by a ≤ 8.215 Å, more preferably a ≤ 8.21 Å Is good. In the lithium manganese composite oxide having the lattice constant in this range, the life characteristics, particularly the high temperature characteristics, are improved, and the effect is particularly remarkable in the range of a ≦ 8.21%. It is considered that this is because the crystal structure is stabilized, the volume change during the charge / discharge process is reduced, and the decrease in adhesion within the electrode plate is suppressed.

【0008】さらに、寿命性能は、格子定数のみでは改
善されず、用いるリチウムマンガン複合酸化物は、図3
に示すように、その粒子の比表面積が1.5m2/g以下であ
ることが好ましく、より好ましくは1.0m2/g以下、さら
に好ましくは0.8m2/g以下であるのがよい。比表面積を
この範囲とすることにより、Mnの溶出も抑制することが
可能となるが、それ以上の比表面積であると正極合材に
おける導電助剤および結着剤の添加量を増加させる必要
がある。また電極密度・電極強度の改善の観点から上記
活物質の平均粒径は5〜30μmであることが望ましい。リ
チウムマンガン複合酸化物の粒子は図4に示すように多
面体からなる0.5〜10μmの一次粒子が凝集して平均粒径
が5〜30μmである球形の二次粒子を形成している形状が
好ましいが、形状そのものはこれに限定されるものでは
ない。
[0008] Further, the life performance is not improved only by the lattice constant, and the lithium manganese composite oxide to be used is shown in FIG.
As shown in the above, the specific surface area of the particles is preferably 1.5 m 2 / g or less, more preferably 1.0 m 2 / g or less, and further preferably 0.8 m 2 / g or less. By setting the specific surface area in this range, it is possible to suppress the elution of Mn, but if the specific surface area is more than that, it is necessary to increase the amount of the conductive additive and the binder in the positive electrode mixture. is there. The average particle size of the active material is desirably 5 to 30 μm from the viewpoint of improving the electrode density and the electrode strength. As shown in FIG. 4, the lithium manganese composite oxide particles preferably have a shape in which 0.5 to 10 μm polyhedral primary particles are aggregated to form spherical secondary particles having an average particle size of 5 to 30 μm. However, the shape itself is not limited to this.

【0009】本発明に係るリチウムマンガン複合酸化物
において、粒度分布測定をおこなった際の標準偏差σの
値は0.15≦σ≦0.30であらわされる。当範囲の標準偏差
をもつリチウムマンガン複合酸化物では、粒子径の分布
状態が適度であり、粒子径がある程度分散しているた
め、ペーストを基材に塗布した際に大きい粒子の分布し
ているところの間隙により小さな粒子が入り込み、その
間隙を埋めるといった効果が期待でき、得られた極板は
間隙が小さくタップ密度の大きなものが作製可能とな
る。この極板を用いる電池においては、極板を巻く過程
で生じる可能性のある折れ曲がりや剥離といった問題が
解消でき、また多孔度を同程度にした場合の、体積当た
りのエネルギー密度が高いものができ好ましい。正極合
材を基材に塗布し極板を作製し、それを巻いた場合に折
れ曲がりなどの問題が抑制され、電池作製時にエネルギ
ー密度が大きなものが作製できる。
In the lithium-manganese composite oxide according to the present invention, the value of the standard deviation σ when the particle size distribution is measured is expressed as 0.15 ≦ σ ≦ 0.30. In the lithium manganese composite oxide having the standard deviation in the range, the distribution state of the particle diameter is moderate, and the particle diameter is dispersed to some extent, so that when the paste is applied to the base material, large particles are distributed. However, an effect that small particles enter the gap and fill the gap can be expected, and the obtained electrode plate can be manufactured with a small gap and a large tap density. In a battery using this electrode plate, problems such as bending and peeling which may occur in the process of winding the electrode plate can be eliminated, and a battery having a high energy density per volume when the porosity is almost the same can be obtained. preferable. When a positive electrode mixture is applied to a base material to produce an electrode plate, and when the electrode plate is wound, problems such as bending are suppressed, and a battery having a large energy density can be produced at the time of producing a battery.

【0010】本発明に係るリチウムマンガン複合酸化物
において、リートベルト解析より求められる格子定数a
はa>8.184Åを示す。リチウムマンガン複合酸化物では
格子定数の減少に伴って初期放電容量は低下する傾向に
あり、格子定数aがa≦8.184Åを示すリチウムマンガン
複合酸化物においても初期放電容量は低下しその値は80
mA/gを切るなどエネルギー密度が劣悪な電池となる。ま
た格子定数がそれよりも小さな値となっても、さらなる
寿命特性改善の効果は確認されなかった。
In the lithium manganese composite oxide according to the present invention, the lattice constant a determined by Rietveld analysis
Indicates that a> 8.184Å. In the lithium manganese composite oxide, the initial discharge capacity tends to decrease as the lattice constant decreases, and the initial discharge capacity also decreases in the lithium manganese composite oxide where the lattice constant a shows a ≦ 8.184Å, and the value is 80%.
A battery with poor energy density, such as below mA / g. Further, even when the lattice constant was a smaller value, no further effect of improving the life characteristics was confirmed.

【0011】上記のリチウムマンガン複合酸化物は、一
般式Li1+xMn2-x-yMeyO4(式中Meはマンガン以外の金属
元素を表し、xは0<x≦0.2、yは0<y≦0.15の値をと
る)であらわされ、かつスピネル構造を有する。前記一
般式中、Meはマンガン以外の金属元素であり、例えば、
Mg, Al, Cr, Ni, Fe, Co及びCu等が挙げられ、これらは
1種又は2種以上組み合わせて用いられる。このMeは、本
発明のリチウムマンガン複合酸化物の結晶構造中、本来
Mnが占めるべきサイトの一部にMnと置換しているもので
ある。Meは放電容量の観点から3価安定の金属が好まし
く、さらにはAlがより好ましい。
The above-mentioned lithium manganese composite oxide has a general formula Li 1 + x Mn 2-xy Me y O 4 (where Me represents a metal element other than manganese, x is 0 <x ≦ 0.2, and y is 0 <Y ≦ 0.15) and has a spinel structure. In the general formula, Me is a metal element other than manganese, for example,
Mg, Al, Cr, Ni, Fe, Co and Cu, and the like.
One type or a combination of two or more types is used. This Me is originally in the crystal structure of the lithium manganese composite oxide of the present invention.
Some sites that should be occupied by Mn are replaced with Mn. Me is preferably a trivalent stable metal from the viewpoint of discharge capacity, and more preferably Al.

【0012】本発明では、リチウムマンガン複合酸化物
を主成分とし、他のリチウム遷移金属複合酸化物と混合
して用いることも可能である。他のリチウム遷移金属複
合酸化物としては、例えば、リチウムコバルト複合酸化
物、リチウムニッケル複合酸化物などが挙げられる。正
極活物質に混合物を用いる場合、リチウムマンガン複合
酸化物の重量比は正極活物質重量の60〜90%が好まし
い。
In the present invention, it is possible to use a lithium manganese composite oxide as a main component and mix it with another lithium transition metal composite oxide. Other lithium transition metal composite oxides include, for example, lithium cobalt composite oxide, lithium nickel composite oxide, and the like. When a mixture is used as the positive electrode active material, the weight ratio of the lithium manganese composite oxide is preferably from 60 to 90% of the weight of the positive electrode active material.

【0013】本発明における負極材料としては、例え
ば、リチウム金属、リチウム合金または炭素材料などで
ある。炭素材料には結晶化度の高い人造黒鉛、天然黒
鉛、低結晶性である昜黒鉛化炭素、難黒鉛化炭素などを
用い、これらを混合して用いることもできる。
As the negative electrode material in the present invention, for example, lithium metal, lithium alloy or carbon material is used. As the carbon material, artificial graphite having high crystallinity, natural graphite, easily graphitized carbon having low crystallinity, hardly graphitized carbon, or the like may be used, and these may be mixed and used.

【0014】本発明における非水電解質としては高誘電
率溶媒にエチレンカーボネート(EC)、プロピレンカーボ
ネート(PC)、γ-プチロラクトン(γ-BL)、ジメチルスル
ホキシド(DMSO)など、低粘度溶媒にジメチルカーボネー
ト(DMC)、ジエチルカーボネート(DEC)、エチルメチルカ
ーボネート(EMC)、ジメトキシエタン(DME)などの非プロ
トン性有機溶媒の少なくとも1種以上を混合した溶媒と
その溶媒に溶けるリチウム塩として六フッ化リン酸リチ
ウム(LiPF6)、四フッカホウ酸リチウム(LiBF 4)、過塩素
酸リチウム(LiClO4)、六フッカヒ酸リチウム(LiAsF6)な
どが使用される。このような電解液を電池内に添加する
量は、特に限定されないが、正極活物質や負極材料の量
や電池のサイズによって必要量用いることができる。
The non-aqueous electrolyte used in the present invention has a high dielectric constant.
Ethylene carbonate (EC), propylene carbonate
Nate (PC), γ-butyrolactone (γ-BL), dimethyl sulfone
Dimethyl carbonate is used for low-viscosity solvents such as foxide (DMSO).
(DMC), diethyl carbonate (DEC), ethyl methyl carbonate
Non-professionals such as carbonate (EMC) and dimethoxyethane (DME)
A mixture of at least one or more organic solvents
Lithium hexafluorophosphate as a lithium salt soluble in the solvent
Um (LiPF6), Lithium tetrafukaborate (LiBF Four), Perchlorine
Lithium oxide (LiClOFour), Lithium hexafuca arsenate (LiAsF6)
Which is used. Add such electrolyte into the battery
Although the amount is not particularly limited, the amount of the positive electrode active material or the negative electrode material
And the required amount can be used depending on the size of the battery.

【0015】上記液状の電解質のかわりに固体のイオン
導電性ポリマー電解質を用いることもできる。ポリマー
電解質膜が、ポリエチレンオキシド、ポリアクリロニト
リル、ポリエチレングリコールおよびこれらの変性体な
どの場合には、軽量で柔軟性があり、巻回極板に使用す
る場合に有利である。さらに、イオン導電性ポリマー電
解質膜と有機電解液を組み合わせて使用することができ
る。また、電解質としては、ポリマー電解質以外にも、
有機ポリマー電解質と無機固体電解質の混合材料、もし
くは有機バインダーによって結着された無機固体粉末な
どが使用可能である。
[0015] Instead of the above liquid electrolyte, a solid ionic conductive polymer electrolyte can also be used. When the polymer electrolyte membrane is made of polyethylene oxide, polyacrylonitrile, polyethylene glycol, or a modified product thereof, it is lightweight and flexible, and is advantageous when used for a wound electrode plate. Furthermore, the ion conductive polymer electrolyte membrane and the organic electrolyte can be used in combination. In addition, as the electrolyte, in addition to the polymer electrolyte,
A mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, an inorganic solid powder bound by an organic binder, or the like can be used.

【0016】また、本発明になる非水電解質二次電池
は、普通その構成として正極、負極およびセパレータと
非水電解液との組み合わせからなっているが、セパレー
タとしては、多孔性ポリ塩化ビニル膜などの多孔性ポリ
マー膜やリチウムイオンまたはイオン導電性ポリマー電
解質膜を、単独または組み合わせて使用することができ
る。
The non-aqueous electrolyte secondary battery according to the present invention generally comprises a positive electrode, a negative electrode and a combination of a separator and a non-aqueous electrolyte. The separator is a porous polyvinyl chloride film. Such a porous polymer membrane or a lithium ion or ionic conductive polymer electrolyte membrane can be used alone or in combination.

【0017】[0017]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明の趣旨を超えない限り、本発明に制限を
加えるものではない。本発明のリチウムマンガン複合酸
化物の合成において、リチウム原材料として水酸化リチ
ウムや炭酸リチウムなど、マンガン原材料として二酸化
マンガンや炭酸マンガンなど、またマンガン以外の金属
種に関しては各金属の水酸化物、酸化物などが用いられ
る。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited thereto without departing from the gist of the present invention. In the synthesis of the lithium-manganese composite oxide of the present invention, lithium hydroxide and lithium carbonate as lithium raw materials, manganese dioxide and manganese carbonate as manganese raw materials, and hydroxides and oxides of each metal for metal species other than manganese Are used.

【0018】水酸化リチウム、二酸化マンガンおよび水
酸化アルミニウムを所定比で混合し、電気炉内で焼成す
ることによって、格子定数の異なる数種のリチウムマン
ガン複合酸化物を得た。温度800℃〜900℃、焼成時間は
5〜15時間の条件で焼成を行った。生成物のX線回折測定
(理学電機製RINT2400)では、スピネル型のマンガンに
起因するピークのみが観測され、不純物等に起因される
ピークは観測されなかった。このX線回折測定結果を用
いてリートベルト解析(リートベルト解析プログラム RI
ETAN)することにより格子定数を算出した。生成物の平
均粒径および粒度分布を粒度分布測定装置(島津製レー
ザー回折式粒度分布測定装置SALD-2000J)を用いて、相
対複素数を2.00+0.05iに設定し、粒度分布を測定した。
なお測定の際にはサンプルの分散媒には0.1%ヘキサメタ
リン酸ソーダ水溶液を用い、超音波を5分間照射した後
に測定をおこなった。また生成物の比表面積を比表面積
測定装置(島津製ジェミニ2370)を用いBET法窒素置換
で測定した。
[0018] Lithium hydroxide, manganese dioxide and aluminum hydroxide were mixed at a predetermined ratio and fired in an electric furnace to obtain several kinds of lithium manganese composite oxides having different lattice constants. 800 ℃ ~ 900 ℃, firing time is
The firing was performed for 5 to 15 hours. In the X-ray diffraction measurement of the product (RINT2400, manufactured by Rigaku Corporation), only peaks attributed to spinel-type manganese were observed, and peaks attributed to impurities and the like were not observed. Using the results of the X-ray diffraction measurement, Rietveld analysis (Rietbelt analysis program RI
ETAN) to calculate the lattice constant. The average particle size and particle size distribution of the product were measured using a particle size distribution analyzer (Shimadzu laser diffraction type particle size analyzer SALD-2000J) with the relative complex number set to 2.00 + 0.05i, and the particle size distribution was measured.
In the measurement, a 0.1% aqueous solution of sodium hexametaphosphate was used as a dispersion medium for the sample, and the measurement was performed after irradiating ultrasonic waves for 5 minutes. The specific surface area of the product was measured by a BET method using a specific surface area measuring device (Gemini 2370 manufactured by Shimadzu).

【0019】上記のリチウムマンガン複合酸化物の正極
板作製に関しては、導電助剤にグラファイト、結着剤に
ポリフッ化ビニリデンを用いた。リチウムマンガン複合
酸化物、グラファイトおよびポリフッ化ビニリデンを所
定の割合で混合し、粘度調整にはN-メチルピロリドンを
用いた。得られた正極合材をドクターブレード法にて所
定の塗布重量で、アルミニウム基板に塗布し、所定温度
で真空乾燥させることにより正極板を作製した。用いた
正極活物質は、計22種類で、組成および上記測定の結
果をまとめると以下の表1のとおりである。なお組成式
は、一般式Li1+ xMn2-x-yMeyO4における、Meの元素とそ
の割合、およびLiとMeとの比率で示す。
With respect to the production of the above-mentioned positive electrode plate of the lithium manganese composite oxide, graphite was used as a conductive agent, and polyvinylidene fluoride was used as a binder. A lithium manganese composite oxide, graphite and polyvinylidene fluoride were mixed at a predetermined ratio, and N-methylpyrrolidone was used for viscosity adjustment. The obtained positive electrode mixture was applied to an aluminum substrate at a predetermined application weight by a doctor blade method, and dried at a predetermined temperature under vacuum to prepare a positive electrode plate. The positive electrode active materials used were 22 in total, and the compositions and the results of the above measurements are summarized in Table 1 below. The composition formula is represented by the elements of Me and their ratios and the ratio of Li and Me in the general formula Li 1+ x Mn 2-xy Me y O 4 .

【0020】上記の極板を用いて180°極板を折れ曲
げ、折り曲がりを示す合材層の亀裂および合材剥離の有
無を調べた。その結果を表1の右欄に示す。また上記の
良好な結果を示すサンプルを用い、正極板を作用極と
し、対極および参照極にはリチウム金属を用いて3極式
ガラスセルを組み立てた。電解液には支持塩に六フッ化
リン酸リチウム(LiPF6)、溶剤にエチレンカーボネート
(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネ
ート(DEC)の混合溶液を用いた。作製したセルを用いて
充電電流密度 1.0mA/cm2、放電電流密度 2.0mA/cm2の電
流密度、3.0〜4.3Vの電圧範囲で充放電サイクルを行っ
た。60℃の温度下で50サイクル行い、1サイクル目の放
電容量に対する50サイクル目の放電容量の割合を容量保
持率とした。得られた初期放電容量および60℃における
容量保持率と格子定数の関係を表1に、また表1を元に
グラフを作成した。その結果を図1、図2に示す。
Using the above-described electrode plate, the electrode plate was bent at 180 °, and the presence or absence of cracks and peeling of the mixture layer showing bending was examined. The results are shown in the right column of Table 1. Further, a triode-type glass cell was assembled using a sample showing the above favorable results, using a positive electrode plate as a working electrode, and lithium metal as a counter electrode and a reference electrode. Lithium hexafluorophosphate (LiPF 6 ) as a supporting salt for the electrolyte and ethylene carbonate for the solvent
A mixed solution of (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) was used. A charge / discharge cycle was performed using the prepared cell at a charge current density of 1.0 mA / cm 2 , a discharge current density of 2.0 mA / cm 2 , and a voltage range of 3.0 to 4.3 V. 50 cycles were performed at a temperature of 60 ° C., and the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the first cycle was defined as the capacity retention. Table 1 shows the relationship between the obtained initial discharge capacity, the capacity retention at 60 ° C., and the lattice constant, and a graph was created based on Table 1. The results are shown in FIGS.

【表1】 [Table 1]

【0021】格子定数が8.215Å以下の試料については6
0℃-50サイクルの容量保持率が90%以上、格子定数が8.2
1Å以下の試料については容量保持率が95%以上であり、
良好な高温特性を示す。また格子定数が8.19Å以上の試
料については、初期の放電容量が90mAh/g以上であり、
良好な放電容量を示す。
For a sample having a lattice constant of 8.215 ° or less, 6
0 ° C-50 cycles capacity retention of 90% or more, lattice constant 8.2
1% or less samples have a capacity retention of 95% or more,
Shows good high temperature properties. For samples with a lattice constant of 8.19Å or more, the initial discharge capacity is 90mAh / g or more,
Shows good discharge capacity.

【0022】格子定数aがa≦8.215Å、比表面積が1.5m2
/g以下、平均粒径が5〜30μmの試料については、60℃-5
0サイクルの容量保持率が90%以上であり、良好な高温特
性を示す。
The lattice constant a is a ≦ 8.215 ° and the specific surface area is 1.5 m 2
/ g or less, for a sample having an average particle size of 5 to 30 μm,
The capacity retention of 0 cycles is 90% or more, indicating good high-temperature characteristics.

【0023】[0023]

【発明の効果】Li1+xMn2-x-yMeyO4(式中Meはマンガン
以外の金属元素を表し、xは0<x≦0.2、yは0<y≦0.15
の値をとる)で示され、スピネル構造を有するリチウム
マンガン複合酸化物であって、格子定数aがa≦8.215
Å、比表面積が1.5m2/g以下、平均粒径が5〜30μmであ
るリチウムマンガン複合酸化物を正極活物質として用い
たことによって、エネルギー密度が高く、放電容量の低
下、特に高温下における放電容量の低下を抑制した電池
とすることができる。
According to the present invention, Li 1 + x Mn 2-xy Me y O 4 (where Me represents a metal element other than manganese, x is 0 <x ≦ 0.2, y is 0 <y ≦ 0.15
Is a lithium manganese composite oxide having a spinel structure, wherein the lattice constant a is a ≦ 8.215.
Å By using a lithium manganese composite oxide having a specific surface area of 1.5 m 2 / g or less and an average particle size of 5 to 30 μm as a positive electrode active material, the energy density is high, the discharge capacity is reduced, especially at high temperatures. A battery with a reduced discharge capacity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】格子定数と容量保持率の関係を示す図。FIG. 1 is a diagram showing a relationship between a lattice constant and a capacity retention.

【図2】格子定数と初期放電容量の関係を示す図。FIG. 2 is a diagram showing a relationship between a lattice constant and an initial discharge capacity.

【図3】比表面積と容量保持率の関係を示す図。FIG. 3 is a diagram showing a relationship between specific surface area and capacity retention.

【図4】本発明の一実施形態に係る正極活物質の粒子形
状を示す図。
FIG. 4 is a view showing a particle shape of a positive electrode active material according to one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AK03 AM03 AM05 DJ16 DJ17 HJ02 HJ05 HJ07 HJ13 5H050 AA05 AA08 BA17 CA09 FA17 FA19 GA28 HA02 HA05 HA07 HA13    ────────────────────────────────────────────────── ─── Continuation of front page    F-term (reference) 5H029 AJ03 AK03 AM03 AM05 DJ16                       DJ17 HJ02 HJ05 HJ07 HJ13                 5H050 AA05 AA08 BA17 CA09 FA17                       FA19 GA28 HA02 HA05 HA07                       HA13

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式Li1+xMn2-x-yMeyO4(式中Meはマン
ガン以外の金属元素を表し、xは0<x≦0.2、yは0<y≦
0.15の値をとる)で示され、スピネル構造を有するリチ
ウムマンガン複合酸化物であって、格子定数aがa≦8.21
5Å、比表面積が1.5m2/g以下、平均粒径が5〜30μmであ
るリチウムマンガン複合酸化物を正極活物質として用い
たことを特徴とする非水電解質二次電池。
1. The general formula Li 1 + x Mn 2-xy Me y O 4 (where Me represents a metal element other than manganese, x is 0 <x ≦ 0.2, and y is 0 <y ≦
A lithium manganese composite oxide having a spinel structure, wherein the lattice constant a is a ≦ 8.21.
5. A non-aqueous electrolyte secondary battery using a lithium manganese composite oxide having a specific surface area of 1.5 m 2 / g or less and an average particle size of 5 to 30 μm as a positive electrode active material.
JP2002158240A 2002-05-30 2002-05-30 Non-aqueous electrolyte secondary battery Pending JP2003346807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158240A JP2003346807A (en) 2002-05-30 2002-05-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158240A JP2003346807A (en) 2002-05-30 2002-05-30 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003346807A true JP2003346807A (en) 2003-12-05

Family

ID=29773665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158240A Pending JP2003346807A (en) 2002-05-30 2002-05-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003346807A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101307A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery using same
WO2010101308A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery
JP2013145753A (en) * 2013-03-11 2013-07-25 Toda Kogyo Corp Lithium manganate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US8790830B2 (en) 2009-09-29 2014-07-29 Ngk Insulators, Ltd. Positive electrode active element and lithium secondary battery
US8821766B2 (en) 2007-03-30 2014-09-02 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821766B2 (en) 2007-03-30 2014-09-02 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
WO2010101307A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery using same
WO2010101308A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery
US8790830B2 (en) 2009-09-29 2014-07-29 Ngk Insulators, Ltd. Positive electrode active element and lithium secondary battery
JP2013145753A (en) * 2013-03-11 2013-07-25 Toda Kogyo Corp Lithium manganate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
KR102140969B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP4644895B2 (en) Lithium secondary battery
JP5534595B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
WO2011089958A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
WO2010116839A1 (en) Electrode active material, method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2011016372A1 (en) Positive electrode active material, method for producing same, and nonaqueous electrolyte secondary battery using same
JP4853608B2 (en) Lithium secondary battery
JP2000223122A (en) Positive electrode active material for lithium secondary battery and its manufacture, positive electrode for lithium secondary battery using the positive electrode active material and its manufacture, and lithium secondary battery using the positive electrode and its manufacture
JP2012017253A (en) Lithium composite compound particle powder and method for producing the same, and nonaqueous electrolyte secondary battery
EP1207574A1 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
KR20180059736A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2004006094A (en) Nonaqueous electrolyte secondary battery
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
CN112424976A (en) Positive electrode active material and secondary battery
JP2006252940A (en) Lithium secondary battery and manufacturing method of lithium manganate
KR20170076348A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JPWO2003088382A1 (en) Non-aqueous electrolyte secondary battery
JP2003229128A (en) Non-aqueous secondary battery and its manufacturing method
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
US20220131139A1 (en) Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2002145619A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and manufacturing method of lithium secondary cell and lithium manganese multiple oxide