JP2004288501A - Positive electrode activator for lithium secondary battery, positive electrode of lithium secondary battery using the same, and lithium secondary battery - Google Patents

Positive electrode activator for lithium secondary battery, positive electrode of lithium secondary battery using the same, and lithium secondary battery Download PDF

Info

Publication number
JP2004288501A
JP2004288501A JP2003079959A JP2003079959A JP2004288501A JP 2004288501 A JP2004288501 A JP 2004288501A JP 2003079959 A JP2003079959 A JP 2003079959A JP 2003079959 A JP2003079959 A JP 2003079959A JP 2004288501 A JP2004288501 A JP 2004288501A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium secondary
group
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003079959A
Other languages
Japanese (ja)
Other versions
JP4333173B2 (en
Inventor
Kenji Okahara
賢二 岡原
Tomoko Katsuzaki
友子 勝▲ざき▼
Akira Utsunomiya
明 宇都宮
Hiroshi Wada
博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003079959A priority Critical patent/JP4333173B2/en
Publication of JP2004288501A publication Critical patent/JP2004288501A/en
Application granted granted Critical
Publication of JP4333173B2 publication Critical patent/JP4333173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode material of a lithium secondary battery capable of suppressing increase of impedance when charging and discharging at high temperature. <P>SOLUTION: The positive electrode activator for a lithium secondary battery is characterized by containing (1) a lithium-containing complex oxide expressed in formula (I): Li<SB>x</SB>Ni<SB>1-y</SB>M<SB>y</SB>O<SB>2-δ</SB>, (In the formula, M denotes an element chosen from elements of a 2nd to 14th group of the periodic table excluding Ni; x, y, δ denote the number fulfilling 1.0<x≤1.5, 0<y≤0.7, -0.1<δ<0.1 respectively), (2) Sb, Bi, and compound of those elements, and (3) oxide salt of an element of a 16th group excluding oxygen. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用正極材料、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにこの正極材料の製造方法に関する。
【0002】
【従来の技術】
層状構造を有するLiCoO、LiNiO、LiMnO等、及びスピネル構造を有するLiMn等のリチウム含有複合酸化物は、3〜4V付近の対極Li電位でLiの挿入脱離が可能であることから、リチウム二次電池の正極活物質として注目され実用化されている。
【0003】
これらの中でLiNiO、すなわちリチウムニッケル複合酸化物は、従来一般に使用されてきたLiCoO等のリチウムコバルト複合酸化物に比べて、安価で資源的に有利であるという利点があり、また、LiMn等のリチウムマンガン複合酸化物に比べて容量が大きいという利点がある。そのため最近、携帯電話や電気自動車等、高密度かつ高出力の電源を必要とするリチウム二次電池の正極として、リチウムニッケル複合酸化物が特に注目されている。
【0004】
しかしながら、LiNiOの基本組成で表されるリチウムニッケル複合酸化物は、過電圧が大きいことや、電池の充放電サイクル時の劣化が大きいことが知られている。この原因としては、複合酸化物のNi3+がNi2+に還元されやすく、生成したNi2+が複合酸化物中のLiサイトに混入し、Liイオンの移動を妨げることが一因と考えられている。
【0005】
そこでリチウムニッケル複合酸化物を合成する際にLi原料を過剰に仕込み、LiサイトのLiイオンが不足しないようにする方法が知られている(例えば、非特許文献1参照)。
また、Lix’Ni1−y’y’(式中、MはNi以外の遷移金属やAlを表し、1.0<x′,0<y′<1)で表されるような、Niサイトの一部を他の元素で置換することによって、結晶構造を安定化させ、その結果としてリチウム二次電池のサイクル特性等の電池特性を向上させたリチウム含有複合酸化物知られている(以下、Niサイトの一部が他の元素で置換されたリチウム含有複合酸化物を「置換型リチウムニッケル複合酸化物」ということがある)(例えば、非特許文献2参照)。
【0006】
しかしながら、このように改良された置換型リチウムニッケル複合酸化物を用いたリチウム二次電池においても、電子機器や自動車中での実使用温度、すなわち40〜80℃程度での充放電サイクル時に抵抗(インピーダンス)増加が起こる事が報告されている(例えば、非特許文献3参照)。
置換型リチウムニッケル複合酸化物のサイクル特性を改良するために、複合酸化物表面に金属硫化物、セレン化物、テルル化物等を被覆する方法なども検討されている(例えば、特許文献1参照)が、これだけでは前述のインピーダンスの増加は抑制できない。
【0007】
このインピーダンスの増加は、電池の出力特性の悪化、低温出力の低下等電池特性の劣化を引き起こす。
従ってリチウムニッケル複合酸化物の高温中での充放電サイクルに伴うインピーダンス増加を抑制することは非常に重要である。
【0008】
【特許文献1】
特開平8−250120号公報
【非特許文献1】
Solid State Ionics, 1995年,第80巻,p.261
【非特許文献2】
Journal Electrochemcal Society, 1994年,第141巻,No.8,p.2010
【非特許文献3】
Journal of Power Sources,2001年,第684巻,p.97−98
【0009】
【発明が解決しようとする課題】
本発明は、高温時の充放電サイクル時のインピーダンス増加を押さえることのできるリチウム二次電池用正極材料を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、置換型リチウムニッケル複合酸化物において、特定の元素又はその化合物を存在させることでその目的を達成できることを見い出し、本発明を完成した。
即ち、本発明の要旨は、(1)下記(I)式
【0011】
【化3】
LiNi1−y2− δ (I)
(式中、Mは、周期律表の第2族〜第14族元素の中から選ばれるNi以外の元素であり、x、y、δはそれぞれ1.0<x≦1.5、0<y≦0.7、−0.1<δ<0.1の数を表す。)
の組成で表される置換型リチウムニッケル複合酸化物、(2)Sb、Bi及びこれらの化合物から選ばれるもの、並びに(3)酸素を除く第16族元素の酸化物塩を含有することを特徴とするリチウム二次電池用正極活物質、これを用いたリチウム二次電池用正極、及びリチウム二次電池、並びにこの正極活物質の製造方法に関する。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明において正極活物質中に含有させる置換型リチウムニッケル複合酸化物は、基本組成がLiNiOで表されるリチウムニッケル複合酸化物のNiサイトの一部を、周期律表の第2族〜第14族元素の中から選ばれるNi以外の元素で置換したもので、その組成は前記(I)式で表される。
【0013】
(I)式中、xは1.0より大であり、好ましくは1.03以上である。また上限としては、1.5以下であり、好ましくは1.1以下である。xが1.0以下では、LiサイトにNiイオンが混入し易くなり、電池性能に悪影響を与える。xが1.5を超えると、過剰に存在するLiが炭酸リチウムや水酸化リチウム等として抵抗成分になることがあり、また単位重量あたりの電池容量が小さくなるので、所望の電池特性の発現が妨げられる。なお、本明細書に示す置換型リチウムニッケル複合酸化物の組成は、電池を作成する前の正極活物質としてのものである。
【0014】
置換元素のMは、周期律表の第2族〜第14族元素の中から選ばれるNi以外の元素であり、1種でも2種以上であってもよい。Ni以外の金属元素をNiサイトに置換することで、充電に際してLiが抜けた際の結晶構造の不安定化を防ぐ事ができる。本発明においては、Mとしては第3周期及び第4周期に属する元素から選ばれる元素が好ましく、中でもNiサイトに固溶して置換しやすいことから、Co、Mn、Al、Fe、Cr、Ti、Zn及びMgから選ばれる元素が好ましい。
【0015】
また置換量を表すyは、0より大であり、好ましくは0.1以上、より好ましくは0.15以上である。また上限は、0.7以下であり、好ましくは0.5以下、より好ましくは0.3以下である。yが小さすぎると、Liが抜けた際の結晶構造の安定化作用が十分に得られず、また0.7を超えると、充放電に関与するNiの量が減り、容量が低下する。
【0016】
またδは、酸素欠損又は酸素過剰量に相当し、−0.1<δ、好ましくは−0.05<δの数を表し、上限はδ<0.1、好ましくはδ<0.05の数を表す。δが大きすぎたり小さすぎたりすると、結晶構造が不安定化する。
(I)式で表される置換型リチウムニッケル複合酸化物を単独で活物質として用いたリチウム二次電池は、室温付近での電池特性は非常に改良されるものの、実使用レベルの高温、すなわち40〜80℃程度での耐久試験(特に充放電サイクル)時には、抵抗(インピーダンス)増加が起こる。本発明に係るリチウム二次電池用正極活物質は、上記置換型リチウムニッケル複合酸化物と、Sb、Bi及びこれらの化合物から選ばれるもの(以下、「第15族元素物質」という)、並びに、酸素を除く16族元素の酸化物塩(以下、「第16族元素の酸化物塩」という)の3者を必須成分とするものであり、このものは高温時においても置換型リチウムニッケル複合酸化物の欠点である抵抗増加が極めて小さいという優れた特性を有している。
【0017】
本発明に係る正極活物質の母材となる置換型リチウムニッケル複合酸化物は、X線構造解析で通常、層状岩塩構造(六方晶系)に同定される。格子定数はa軸が0.285〜0.288nmの範囲が好ましく、さらには0.286〜0.287nmの範囲が好ましい。c軸は1.410〜1.425nm、さらには1.415〜1.420nmの範囲が好ましい。これらの範囲を超えると結晶の安定性が悪くなったり、容量が小さくなる傾向がある。
【0018】
また、置換型リチウムニッケル複合酸化物の平均粒径は、通常0.1μm以上、好ましくは1μm以上、更に好ましくは3μm以上であり、上限は通常50μm以下、好ましくは30μm以下、更に好ましくは20μm以下である。置換型リチウムニッケル複合酸化物の平均粒径がこの下限を下回ると、電極における活物質の密度が上がらず、電池の容量密度が低下しやすくなる。逆に上限を上回ると、電池の内部短絡などが起きやすくなる。
【0019】
第15族元素物質は、単体であってもよいが、化合物の方が好ましい。化合物の種類は特に問わないが、大気中でも安定なLiや酸素との化合物が好ましい。具体的には、Sb、Sb、LiSbO、LiSbO、Bi、Bi、LiBiO、LiBiO等が挙げられるが、これらに限定されるものではない。これら15族元素物質は、単独又は2種以上が存在しても良い。また0価の元素そのものよりも、イオン状態(高価数の状態)の化合物としてリチウムニッケル複合酸化物に含有されている方が好ましい。第15族元素物質として特に好ましいのはSbの化合物である。
【0020】
正極活物質中に含有される第15族元素物質の量は、Ni及びMの合計モル量に対し、通常0.1mol%以上、好ましくは0.5mol%以上であり、上限は通常3.0mol%以下、好ましくは2.0mol%以下である。第15族元素物質の含有量が0.1mol%未満では、電池性能の向上効果が小さく、3.0mol%を超えると容量の低下等、電池性能の低下が生じる。なお、第15族元素物質のモル数は、第15族元素としてのモル数(=原子数)である。
【0021】
一方、第16族元素の酸化物塩としては、硫酸塩、亜硫酸塩、セレン酸塩、亜セレン酸塩、テルル酸塩、亜テルル酸塩、ポロニウム酸塩、亜ポロニウム酸塩等が挙げられる。具体的には、硫酸リチウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、硫酸ニッケル、硫酸コバルト等の硫酸塩;セレン酸リチウム、セレン酸ナトリウム、セレン酸マグネシウム、セレン酸カルシウム、セレン酸ニッケル、セレン酸コバルト等のセレン酸塩;テルル酸リチウム、テルル酸ナトリウム、テルル酸マグネシウム、テルル酸カルシウム、テルル酸ニッケル、テルル酸コバルト等のテルル酸塩;ポロニウム酸リチウム、ポロニウム酸ナトリウム、ポロニウム酸マグネシウム、ポロニウム酸カルシウム、ポロニウム酸ニッケル、ポロニウム酸コバルト等のポロニウム酸塩等が挙げられる。これらの塩の中でも、硫酸塩が特に性能向上効果が高く、好ましい。
【0022】
これらの第16族元素の酸化物塩は、通常正極活物質から水によってイオンとして抽出することが出来るため、イオンクロマトグラフィ−等の分析でその量を定量する事が出来る。
正極活物質中に含有される第16族元素の酸化物塩の量は、Ni及びMの合計モル量に対し、通常0.1mol%以上、好ましくは0.5mol%以上であり、上限は3.0mol%以下、好ましくは2.0mol%以下である。第16族元素の酸化物塩の含有量が0.1mol%未満では、電池性能の向上効果が小さく、3.0mol%を超えると容量の低下等、電池性能の低下が生じる。なお、第16族元素の酸化物塩のモル数も、第16族元素としてのモル数(=原子数)である。
【0023】
また、正極活物質中における第15族元素物質と第16族元素の酸化物塩の比率は特に制限ないが、通常はモル比で 1:10〜10:1程度、好ましくは1:2〜2:1程度である。
本発明に係る正極活物質は、▲1▼前記(I)式で表される置換型リチウムニッケル複合酸化物、▲2▼第15族元素物質、及び▲3▼第16族元素の酸化物塩の3者を必須成分とするが、その存在形態について特に制限はなく、▲1▼〜▲3▼が混合状態で存在していても、複合化しているものでもよい。
【0024】
本発明に係る正極活物質を製造する最も一般的な方法は、乾式ないし湿式で上記の▲1▼〜▲3▼を混合する方法である。より均一に混合させる方法として、第15族元素物質や第16族元素の酸化物塩を適当な溶媒に溶解又は分散させて、置換型リチウムニッケル複合酸化物に添加混合する方法がより好ましい。
置換型リチウムニッケル複合酸化物に比して第15族元素物質及び第16族元素の酸化物塩の量は少量であり、かつ置換型リチウムニッケル複合酸化物の粒径が通常は他のものの粒径よりも大きいので、得られる混合物は、通常は置換型リチウムニッケル複合酸化物を核としてその表面に第15族元素物質及び第16族元素の酸化物塩が付着したもの、すなわち置換型リチウムニッケル複合酸化物を第15族元素物質及び第16族元素の酸化物塩で被覆した構造のものである。
【0025】
溶解又は分散させる際に用いられる溶媒としては、第15族元素物質や第16族元素の酸化物塩を溶解又は分散できるものであれば特に制限は無いが、通常、水ないしアルコール類が使用される。
混合処理に用いる装置としては、V型、二軸円錐型等の容器回転型混合機(Vブレンダー、コニカルブレンダー)、或いは、せん断圧縮混合作用を利用した、垂直軸回転型多段ブレード混合機(ヴァーティカルグラニュレーター、ハイスピードミキサー)、水平軸回転型ショベル羽混合機(レディゲミキサー)、圧縮せん断力を利用した粒子複合化装置(メカノフュ−ジョンシステム、ハイブリダイゼーションシステム)等が挙げられるが、これらに限定されるものではない。
【0026】
また、第15族元素物質及び第16族元素の酸化物塩の溶液又はスラリーをスプレーコーティング装置を用いて、置換型リチウムニッケル複合酸化物に噴霧する方法を採用することもできる。
3者を同時混合しても、いずれか2者を混合した後残りを混合する等して、分割して混合することもできる。
【0027】
なお、第15族元素物質としてSb又はSb化合物を用いる場合は、このものはLiとの相互作用が強く、リチウム複合酸化物中のLiを置換して、活物質としての性能を低下させやすいことから、▲1▼を▲3▼と混合したのち▲2▼と混合するか、3者を同時に混合することが望ましい。
また別法として、3者を適当な溶媒に溶解ないし分散させてスラリーとし、これを噴霧乾燥その他適宜の方法で乾燥することにより、本発明に係る正極活物質を得ることもできる。
【0028】
いずれの方法による場合でも、得られた混合物は適宜粉砕、分級等を行い、所望の粒度分布の正極活物質を得ることが出来る。
本発明に係る正極活物質の製造に用いる以上のように第15族元素物質や第16族元素の酸化物塩の形態は、より均一な混合が行われることが望ましいことから、出来る限り細かい方が好ましい。特にこれらを固体状態で混合に用いる場合には、通常はメジアン径が10μm以下のものを用いる。好ましくは5μm以下、より好ましくは1μm以下のものを用いる。
【0029】
上記のようにして3者を混合して得られる混合物は、そのままでも本発明に係る正極活物質として用いることができるが、得られた混合物を加熱焼成して正極活物質とするのが好ましい。加熱焼成により、第15族元素物質及び第16族元素の酸化物塩が融解したり、置換型リチウムニッケル複合酸化物と反応したりして、より好ましい正極活物質が生成する。
【0030】
加熱焼成は、置換型リチウムニッケル複合酸化物が分解変質しないように、リチウムニッケル複合酸化物の融点ないし分解温度以下で行われる。また、上記理由から、第15族元素物質や第16族元素の酸化物塩の融点よりも高い温度で行うのが好ましい。焼成温度は、第15族元素物質及び第16族元素の酸化物塩の種類や置換型リチウムニッケル複合酸化物の組成に依存するが、通常120℃以上、好ましくは300℃以上、より好ましくは400℃以上である。また上限温度は通常1000℃以下、好ましくは900℃以下、より好ましくは800℃以下である。
【0031】
焼成雰囲気は、置換型リチウムニッケル複合酸化物が分解変質しないように、通常空気又は酸素雰囲気で行う。
焼成時間は、通常1時間以上で、10時間以下が好ましい。短すぎると、目的の性能が得られず、長すぎると生産性が低下する。
焼成装置は、雰囲気を制御出来るものであれば、どの様なものでも良いが、バッチ式の雰囲気炉、連続式のキルン炉等がある。焼成は、局所的な加熱が起きないようにすべきであり、また焼成装置の材質は焼成に供する混合物と反応しないものを用いるべきである。
【0032】
なお、上記の製造方法の他に、置換型リチウムニッケル複合酸化物を合成する際に、原料や中間生成物などに、第15族元素物質や第16族元素の酸化物塩を添加混合することにより、最終的に生成する置換型リチウムニッケル複合酸化物中にこれらを含有させることもできる。
本発明に係る正極活物質の窒素吸着測定法(BET法)による比表面積は、好ましくは0.1〜2.0m/g、より好ましくは0.3〜1.0m/gである。また正極活物質の粒度分布は、メジアン径で好ましくは3〜20μm、より好ましくは6〜12μmである。最大粒径の上限は通常60μm以下、好ましくは50μm以下、より好ましくは40μm以下である。
【0033】
比表面積が小さすぎる、或いは粒径が大きすぎると、電池反応時にLiイオンの拡散が遅くなり、電池特性の低下が起こる可能性がある。逆に比表面積が大きすぎる、或いは粒径が小さすぎると、電解液との反応など、電池本来のLiイオンの吸蔵放出以外の副反応などが多くなり、電池劣化の原因になる可能性がある。
【0034】
本発明に係る正極活物質を電池に用いる際、どの様な形態でもかまわないが、通常電極シートの形態をとる。
電極シートとは、正極活物質にバインダー及び所望により種々の助剤を添加したものを薄膜状にしたものであり、例えば正極活物質とバインダーとを適宜の溶媒に添加して電極用塗料(スラリー)とし、これを集電体上に塗布乾燥することによって製造することができる。正極活物質には、本発明の効果を妨げない限り、他の公知の正極活物質を併用することも可能である。その場合、本発明に係る正極活物質を50重量%以上、中でも70重量%以上、更には80重量%以上とするのが発明の効果を顕著に発揮することが出来るので望ましい。
【0035】
乾燥によって得られる正極層中の活物質の割合は、下限が通常70重量%以上、好ましくは80重量%以上、さらに好ましくは90重量%以上であり、上限が通常99.9重量%以下、好ましくは99重量%以下である。活物質が多すぎると電極の機械的強度が劣る傾向にあり、少なすぎると容量等電池性能が劣る傾向にある。
【0036】
バインダー(結着剤)としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、EPDM(エチレン・プロピレン・ジエン三元共重合体)、SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、CMC(カルボキシメチルセルロース)等が挙げられる。正極層中のバインダーの割合は、下限が通常0.1重量%以上、好ましくは1重量%以上、より好ましくは2重量%以上であり、上限は通常30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。バインダーの割合が低すぎると、活物質を十分に保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させることがあり、一方、高すぎると電池容量や導電性を下げることがある。
【0037】
さらに正極層中には、通常、導電性を高めるために導電剤を含有することが好ましい。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛やアセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料を挙げることができる。正極中の導電剤の割合は、下限が通常0.1重量%以上、好ましくは2重量%以上、より好ましくは2重量%以上であり、上限は通常30重量%以下、好ましくは20重量%以下、より好ましくは10重量%以下である。導電剤の割合が低すぎると導電性が不十分になることがあり、逆に高すぎると電池容量が低下することがある。
【0038】
また、電極用塗料を作製する際の溶媒としては、バインダーを溶解あるいは分散するものであれば特に制限はないが、通常は有機溶媒又は水が使用される。例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン、水等を挙げることができる。
【0039】
正極層の厚さは、通常1〜500μm、好ましくは5〜100μm程度である。厚すぎると導電性が低下する傾向にあり、薄すぎると容量が低下する傾向にある。
正極に使用する集電体の材質としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が用いられ、好ましくはアルミニウムである。集電体の厚さは、通常1〜500μm、好ましくは5〜20μm程度である。厚すぎるとリチウム二次電池全体としての容量が低下し、薄すぎると機械的強度が不足することがある。
【0040】
なお、塗布・乾燥によって得られた正極層は、活物質の充填密度を大きくし、かつ活物質間の導電路を確保するため、ローラープレス等により圧密するのが好ましい。電極の組成にも依存するが、正極層の密度は通常2.0g/cc以上3.5g/cc以下である。
本発明に係るリチウム二次電池は、少なくとも上記により得られた正極とそれに対向する負極、及びイオン導伝体としての非水系電解液(ないしは固体電解質)から構成される。通常は、正極と負極との間には、セパレーターを介在させる。
【0041】
負極の活物質としては、リチウムを吸蔵及び放出し得る物質であればどの様なものでもよいが、通常、炭素質物が好ましい。例えば様々な熱分解条件での有機物の熱分解物や、人造黒鉛、天然黒鉛等が挙げられる。好適には種々の原料から得た易黒鉛性ピッチの高温熱処理によって製造された人造黒鉛、黒鉛化メソフェーズ小球体、黒鉛化メソフェーズピッチ系炭素繊維等の他の人造黒鉛及び精製天然黒鉛、或いはこれらの黒鉛にピッチその他で表面処理を施した材料が使用される。これらの炭素質物は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.335〜0.34nmであるものが好ましく、0.335〜0.337nmであるものがより好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は30nm以上であるのが好ましく、50nm以上であるのがより好ましく、100nm以上であるのがさらに好ましい。これらの炭素質物にリチウムを吸蔵・放出可能な他の活物質を更に混合して用いることもできる。炭素質物以外のリチウムを吸蔵・放出可能な活物質としては、酸化錫、酸化珪素等の金属酸化物材料、更にはリチウム金属並びに種々のリチウム合金を例示することができる。これらの負極材料は二種類以上を混合して用いてもよい。
【0042】
負極も正極同様、通常は電極シートの形態で用いられる。電極シートを製造する方法としては、正極の場合と同様、溶媒を用いて、負極活物質、バインダー、所望により更に増粘剤や導電剤等を含むスラリーを調製し、これを集電体に塗布・乾燥する方法があげられる。溶媒としてはN−メチルピロリドン(NMP)やジメチルホルムアミド(DMF)等の有機溶媒、あるいは水等があげられる。バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、ブダジエンゴム等を挙げることができる。また増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。導電剤としては銅やニッケル等の金属材料、グラファイト、カーボンブラック等が挙げられる。
【0043】
負極集電体としては、銅、ニッケル、ステンレス等の金属又は合金、好ましくは銅を挙げることができる。
なお、塗布・乾燥によって得られた負極層は、活物質の充填密度を上げるためローラープレス等により圧密するのが好ましい。組成にも依存するが、負極層の密度は通常1.0g/cc以上2.0g/cc以下である。
【0044】
セパレータの材質や形状は、特に限定されないが、電解液に対して安定で、保液性の優れた材料として、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いるのが好ましい。
非水系電解液としては、各種の電解質塩を非水系溶媒に溶解したものを挙げることができる。非水溶媒としては、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、ハロゲン化炭化水素類、アミン類、エステル類、アミド類、燐酸エステル化合物等を使用することができる。代表的なものとしてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン等が挙げられる。
【0045】
電解質塩としては、従来公知のいずれもが使用でき、LiClO 、LiAsF 、LiPF 、LiBF 、等のリチウム塩が挙げられる。
また、CO 、NO、CO、SO 等のガスや、ビニレンカーボネート、カテコールカーボネートなど負極表面にリチウムイオンの効率よい充放電を可能にする良好な皮膜を生成する添加剤を任意の割合で電解液中に添加してもよい。
【0046】
また、電解液の代わりに、ないしは電解液と共に高分子固体電解質を用いることもできる。
リチウム二次電池を製造する方法は、特に限定されず、通常採用されている方法の中から適宜選択することができる。電池の形状についても特に限定されず、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、電極及びセパレータを積層した積層型タイプ等が使用可能である。また電池の用途も特に限定されず、パソコン、携帯電話等の電子機器から自動車用の電池まで幅広く使用可能である。
【0047】
リチウム二次電池においては、正極の活物質と、負極の活物質の容量バランスが重要であるが、これは負極がLi金属を析出することなくLiイオンを吸蔵できる容量、あるいは正極がLiイオンを放出できる容量を基に設計される。
負極がLi金属を析出することなくLiイオンを吸蔵できる容量をQa(mAh/g)、正極がLiイオンを放出できる容量をQc(mAh/g)とし、さらに負極及び正極の活物質をそれぞれWa(g)、Wc(g)とすると、容量バランス比RはR=(Qa×Wa)/(Qc×Wc)で表される。通常はRの下限が1以上、好ましくは1.2以上、上限が2以下、好ましくは1.5以下となるように設定する。Rが小さすぎると、充電時に負極が正極からのLiイオンを受けきれず、負極上にLi金属が析出し、劣化や安全上の問題が起きる。逆にRが大きすぎると電池の重量あたりの容量が小さくなってしまう。
【0048】
なおQcないしQaの測定法は様々な方法があるが、以下の実施例では、正極及び負極を対極Li金属で電解液中、出来る限り低い電流密度、例えば20mA/g(活物質)以下で、負極は自然電位から下限5mVまでの放電(Li吸蔵)容量、正極は自然電位から4.2Vまでの充電容量を測定する事で求めた。
また電池の使用電圧範囲であるが、下限は通常2.0V以上、好ましくは2.5V以上、より好ましくは3.0V以上である。上限は通常4.3V以下、好ましくは4.2V以下、より好ましくは4.1V以下である。上限値が大きすぎたり、下限値が小さすぎたりすると電池の劣化が大きくなる場合がある。
【0049】
【実施例】
以下、本発明の具体的態様を実施例に基づきさらに詳細に説明するが、本発明はその要旨を越えない限り以下の実施例によって限定されるものではない。
(置換型リチウムニッケル複合酸化物)
正極の活物質の母材となる置換型リチウムニッケル複合酸化物としては、Li1.06Ni0.81Co0.14Al0.05なる組成のものを用いた。X線回折測定で、このものは六方晶系に属し、格子定数は、a軸0.286nm、c軸1.418nmであった。また比表面積は約0.5m/g、粒度分布測定によるメジアン径で約11μm、最大粒径は30μmであった。
【0050】
(正極の作製)
正極活物質85重量%、導電剤としてアセチレンブラック10重量%、及び結着剤としてポリフッ化ビニリデン(PVdF)5重量%を、N−メチルピロリドン溶媒中で混合して、スラリー化した後、厚さ20μmのアルミニウム箔の片面に塗布して乾燥し、さらにプレス機で圧延したものを、直径12mmφに打ち抜いて正極とした。正極層密度は2.2〜2.5g/ccであった。
【0051】
(負極活物質)
負極活物質としては黒鉛系の炭素材料を用いた。X線回折測定による面間隔は0.336nmであった。比表面積は約4m/g、粒度分布測定によるメジアン径は約11μmであった。
(負極の作製)
負極活物質92.5重量%と結着剤のPVdF7.5重量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した後、20μm厚さの銅箔の片面に塗布して乾燥し、さらにプレス機で圧延したものを直径12φmmに打ち抜いて作製した。負極層密度は1.3〜1.6g/ccであった。
正極と負極の容量バランス比Rは1.2〜1.5になるよう設計した。
【0052】
(コインセル電池の組立)
電極を120℃で1〜3hr程度真空乾燥し、アルゴン雰囲気のドライボックス内で、CR2032型コインセルを使用して、リチウム二次電池を作製した。即ち、正極缶の中に正極を置き、その上にセパレータとして孔径25μmの多孔性ポリエチレンフィルムを1枚置き、ポリプロピレン製ガスケットで押さえた後、負極を置いた。負極上に厚み調整用のスペーサーを置いた後、電解液を加えて電池内に十分に染み込ませ、最後に負極缶を載せて電池を封口した。電解液にはエチレンカーボネート(EC)+ジメチルカーボネート(DMC)+エチルメチルカーボネート(EMC)(体積比1:1:1)の混合溶媒に、LiPFを1モル/Lとなるように溶解したものを用いた。
【0053】
(電池特性評価)
上限電圧4.1V、下限電圧3.0Vで充放電サイクル試験を行った。1C電流値としては、
1C(mA)=正極の活物質量(g)×175(mAh/g)
なる値を用いた。この値は正極活物質の製造に用いた置換型リチウムニッケル複合酸化物の対極Liによる容量確認試験を基に得られたものである。
【0054】
試験はまず、コンディショニング(予備充放電)として室温(25℃)で0.2Cの定電流−定電圧充電と定電流放電を数サイクル行い、得られた容量を基に、充電深度を60%に調整した後、高温サイクル前の電池の抵抗を交流インピーダンス法により測定した。
次に電池を60℃の雰囲気に移し、0.2C定電流で1サイクル→1C定電流で100サイクル→0.2Cで2サイクルのパターンで高温サイクル試験を行った。
【0055】
さらに室温(25℃)に戻した後、高温サイクル後の抵抗増加を確認するため、60℃サイクル試験の最後の0.2Cの放電容量を基に、充電深度を60%に調整し、交流インピーダンス測定を行った。
交流インピーダンス測定は室温で、ソーラトロン社の周波数解析装置(1255B)及びポテンシオスタット(1287)を用い、振り幅10mV、測定周波数範囲0.01〜100kHzで測定した。抵抗値としては、0.1Hz時のトータルインピーダンスの値を採用した。
【0056】
実施例1
置換型リチウムニッケル複合酸化物(Li1.06Ni0.81Co0.14Al0.05)を流動槽中で攪拌しながら、そこに硫酸リチウム(LiSO・HO)の水溶液をスプレー状に噴霧した。硫酸リチウムはNi、Co、Alの合計モル量に対し、約1mol%になるように用いた。
【0057】
得られた混合物に三酸化アンチモン(Sb:粒子メジアン径0.8μm)を添加し、ポリエチレン瓶中で良く振り混ぜ混合した。SbはNi、Co、Alの合計モル量に対し、アンチモン元素として0.7mol%となるように添加した。
次にこの混合物をアルミナ坩堝中に移し、酸素雰囲気下680℃で2hr焼成した。
【0058】
得られた化合物中の硫酸塩量は、水抽出による硫酸イオン(SO 2−)として定量(イオンクロマトグラフィ−)し、Sbの量は原子吸光分析により求めた。分析の結果、硫酸塩およびSbの元素分析の結果、仕込量がほぼ維持されていた。
これを正極活物質とし、前記方法で正極を作成、コインセル電池組立および電池特性評価を行った。
【0059】
比較例1
置換型リチウムニッケル複合酸化物(Li1.06Ni0.81Co0.14Al0.05)をそのまま用いて、実施例1と同様に正極を作成、コインセル電池組立および電池特性評価を行った。
比較例2
置換型リチウムニッケル複合酸化物(Li1.06Ni0.81Co0.14Al0.05)に対し、硫酸リチウムの添加のみ行わなかった以外は実施例1と同様にして正極を作成し、コインセル電池組立および電池特性評価を行った。
【0060】
比較例3
置換型リチウムニッケル複合酸化物(Li1.06Ni0.81Co0.14Al0.05)に対し、三酸化アンチモンの添加を行わなかった以外は実施例1と同様にして正極を作成し、コインセル電池組立および電池特性評価を行った。
以上の電池試験の結果を下記表1に示す。
【0061】
【表1】

Figure 2004288501
【0062】
上記表1の結果から、第16族元素の酸化物塩である硫酸塩と第15族元素物質であるSbを含有する置換型リチウムニッケル複合酸化物を正極に用いた電池は、これらを含まない正極活物質、又は硫酸塩あるいはSbのみ含む正極活物質を正極に用いた電池よりも高温サイクル後のインピーダンス増加が小さい事は明らかである。
【0063】
【発明の効果】
本発明によれば、高温サイクル時のインピーダンス増加の小さい、特性の良好な電池あるいはそのための正極活物質を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positive electrode material for a lithium secondary battery, a positive electrode for a lithium secondary battery and a lithium secondary battery using the same, and a method for producing the positive electrode material.
[0002]
[Prior art]
LiCoO having a layered structure2, LiNiO2, LiMnO2And LiMn having a spinel structure2O4Since lithium-containing composite oxides and the like can insert and remove Li at a counter electrode Li potential near 3 to 4 V, they have been attracting attention and being put to practical use as positive electrode active materials for lithium secondary batteries.
[0003]
Among them, LiNiO2That is, the lithium nickel composite oxide is made of LiCoO which has been generally used in the past.2Has the advantage of being inexpensive and advantageous in resources as compared with lithium cobalt composite oxides such as2O4There is an advantage that the capacity is larger than that of the lithium manganese composite oxide. For this reason, recently, lithium nickel composite oxides have attracted particular attention as positive electrodes of lithium secondary batteries requiring a high-density and high-output power supply, such as mobile phones and electric vehicles.
[0004]
However, LiNiO2It is known that the lithium-nickel composite oxide represented by the following basic composition has a large overvoltage and a large deterioration during a charge / discharge cycle of a battery. The reason for this is that the composite oxide Ni3+Is Ni2+Ni that is easily reduced to2+Is Li in the composite oxide+It is considered that one of the causes is that the ions enter the site and hinder the movement of Li ions.
[0005]
Therefore, when synthesizing a lithium nickel composite oxide, an excessive amount of Li raw material is charged, and Li+There is known a method for preventing a shortage of Li ions at a site (for example, see Non-Patent Document 1).
Also, Lix 'Ni1-y 'My 'O2(In the formula, M represents a transition metal other than Ni or Al, and a part of the Ni site represented by 1.0 <x ′, 0 <y ′ <1) is replaced with another element. Thus, there is known a lithium-containing composite oxide that has stabilized the crystal structure and consequently improved battery characteristics such as cycle characteristics of a lithium secondary battery (hereinafter, a part of Ni site is replaced by another element). The lithium-containing composite oxide thus obtained is sometimes referred to as a “substituted lithium-nickel composite oxide” (for example, see Non-Patent Document 2).
[0006]
However, even in the lithium secondary battery using the improved substituted lithium nickel composite oxide as described above, the resistance (during charge / discharge cycles at about 40 to 80 ° C. of the actual use temperature in electronic devices and automobiles, that is, the resistance ( Impedance) is reported to occur (for example, see Non-Patent Document 3).
In order to improve the cycle characteristics of the substituted lithium nickel composite oxide, a method of coating the surface of the composite oxide with a metal sulfide, selenide, telluride, or the like has been studied (for example, see Patent Document 1). However, this alone cannot suppress the aforementioned increase in impedance.
[0007]
This increase in impedance causes deterioration of battery characteristics such as deterioration of output characteristics of the battery and lowering of low-temperature output.
Therefore, it is very important to suppress an increase in impedance of the lithium-nickel composite oxide due to a charge / discharge cycle at a high temperature.
[0008]
[Patent Document 1]
JP-A-8-250120
[Non-patent document 1]
Solid State Ionics, 1995, Vol. 80, p. 261
[Non-patent document 2]
Journal Electrochemical Society, 1994, vol. 141, no. 8, p. 2010
[Non-Patent Document 3]
Journal of Power Sources, 2001, Vol. 684, p. 97-98
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a positive electrode material for a lithium secondary battery that can suppress an increase in impedance during a charge / discharge cycle at a high temperature.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that in a substituted lithium nickel composite oxide, the purpose can be achieved by the presence of a specific element or a compound thereof, thereby completing the present invention. .
That is, the gist of the present invention is as follows: (1) The following formula (I)
[0011]
Embedded image
LixNi1-yMyO2- δ                (I)
(In the formula, M is an element other than Ni selected from Group 2 to Group 14 elements of the periodic table, and x, y, and δ are 1.0 <x ≦ 1.5, 0 < It represents the number of y ≦ 0.7, −0.1 <δ <0.1.)
And (2) selected from Sb, Bi and these compounds, and (3) an oxide salt of a Group 16 element excluding oxygen. The present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery using the same, a lithium secondary battery, and a method for producing the positive electrode active material.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, the substitution type lithium nickel composite oxide contained in the positive electrode active material has a basic composition of LiNiO 2.2A part of the Ni site of the lithium nickel composite oxide represented by is replaced with an element other than Ni selected from Group 2 to Group 14 elements of the periodic table, and the composition thereof is (I ) Expression.
[0013]
In the formula (I), x is larger than 1.0, preferably 1.03 or more. The upper limit is 1.5 or less, preferably 1.1 or less. When x is 1.0 or less, Ni ions easily mix into the Li site, which adversely affects battery performance. When x exceeds 1.5, excessive Li may be a resistance component as lithium carbonate, lithium hydroxide, or the like, and the battery capacity per unit weight may be reduced. Hindered. Note that the composition of the substitutional lithium nickel composite oxide described in this specification is as a positive electrode active material before a battery is manufactured.
[0014]
M of the substitution element is an element other than Ni selected from Group 2 to Group 14 elements of the periodic table, and may be one or more. By substituting metal elements other than Ni for Ni sites, it is possible to prevent instability of the crystal structure when Li is removed during charging. In the present invention, M is preferably an element selected from the elements belonging to the third period and the fourth period. Among them, Co, Mn, Al, Fe, Cr, Ti , Zn and Mg are preferred.
[0015]
Further, y representing the substitution amount is larger than 0, preferably 0.1 or more, and more preferably 0.15 or more. The upper limit is 0.7 or less, preferably 0.5 or less, and more preferably 0.3 or less. If y is too small, the effect of stabilizing the crystal structure when Li is removed cannot be sufficiently obtained, and if it exceeds 0.7, the amount of Ni involved in charge and discharge decreases, and the capacity decreases.
[0016]
Δ corresponds to oxygen deficiency or oxygen excess, and represents a number of −0.1 <δ, preferably −0.05 <δ, and the upper limit is δ <0.1, preferably δ <0.05. Represents a number. If δ is too large or too small, the crystal structure becomes unstable.
A lithium secondary battery using the substituted lithium-nickel composite oxide represented by the formula (I) alone as an active material has a significantly improved battery characteristic at around room temperature, but has a high temperature of practical use, that is, During a durability test (especially charge / discharge cycle) at about 40 to 80 ° C., resistance (impedance) increases. The positive electrode active material for a lithium secondary battery according to the present invention includes the above-described substituted lithium nickel composite oxide, one selected from Sb, Bi, and these compounds (hereinafter, referred to as a “Group 15 element substance”), and An oxide salt of a group 16 element excluding oxygen (hereinafter, referred to as an "oxide salt of a group 16 element") is an essential component, and it can be substituted lithium nickel composite oxide even at a high temperature. It has the excellent property that the increase in resistance, which is a drawback of the product, is extremely small.
[0017]
The substituted lithium nickel composite oxide serving as the base material of the positive electrode active material according to the present invention is generally identified as a layered rock salt structure (hexagonal) by X-ray structural analysis. The lattice constant of the a-axis is preferably in the range of 0.285 to 0.288 nm, and more preferably in the range of 0.286 to 0.287 nm. The c-axis has a range of preferably 1.410 to 1.425 nm, more preferably 1.415 to 1.420 nm. If the ratio exceeds these ranges, the stability of the crystal tends to deteriorate and the capacity tends to decrease.
[0018]
The average particle size of the substituted lithium nickel composite oxide is usually 0.1 μm or more, preferably 1 μm or more, more preferably 3 μm or more, and the upper limit is usually 50 μm or less, preferably 30 μm or less, more preferably 20 μm or less. It is. If the average particle size of the substitutional lithium nickel composite oxide falls below this lower limit, the density of the active material in the electrode does not increase, and the capacity density of the battery tends to decrease. Conversely, if the upper limit is exceeded, internal short-circuiting of the battery or the like tends to occur.
[0019]
The Group 15 elemental substance may be a simple substance, but is preferably a compound. The type of compound is not particularly limited, but a compound with Li or oxygen which is stable even in the air is preferable. Specifically, Sb2O3, Sb2O5, LiSbO3, Li3SbO4, Bi2O3, Bi2O5, LiBiO3, Li3BiO4And the like, but are not limited thereto. These Group 15 elemental substances may be used alone or in combination of two or more. Further, it is more preferable that the compound is contained in the lithium nickel composite oxide as a compound in an ionic state (an expensive number state) than the zero-valent element itself. Particularly preferred as the Group 15 element substance is a compound of Sb.
[0020]
The amount of the Group 15 element substance contained in the positive electrode active material is usually 0.1 mol% or more, preferably 0.5 mol% or more, and the upper limit is usually 3.0 mol based on the total molar amount of Ni and M. %, Preferably 2.0 mol% or less. When the content of the group 15 element substance is less than 0.1 mol%, the effect of improving the battery performance is small, and when it exceeds 3.0 mol%, the battery performance decreases such as a decrease in capacity. Note that the number of moles of the group 15 element substance is the number of moles (= the number of atoms) as a group 15 element.
[0021]
On the other hand, examples of the oxide salts of Group 16 elements include sulfates, sulfites, selenates, selenites, tellurates, tellurites, polonates, and polonates. Specifically, sulfates such as lithium sulfate, sodium sulfate, magnesium sulfate, calcium sulfate, nickel sulfate, and cobalt sulfate; lithium selenate, sodium selenate, magnesium selenate, calcium selenate, nickel selenate, and cobalt selenate Selenates such as lithium tellurate, sodium tellurate, magnesium tellurate, calcium tellurate, nickel tellurate, cobalt tellurate; lithium polonate, sodium polonate, magnesium polonate, calcium polonate And polonates such as nickel polonate and cobalt polonate. Among these salts, sulfates are particularly preferred because of their high performance improving effect.
[0022]
Since the oxide salts of these Group 16 elements can be usually extracted as ions from water from the positive electrode active material, their amounts can be quantified by analysis such as ion chromatography.
The amount of the Group 16 element oxide salt contained in the positive electrode active material is usually 0.1 mol% or more, preferably 0.5 mol% or more, and the upper limit is 3 mol, based on the total molar amount of Ni and M. 0.0 mol% or less, preferably 2.0 mol% or less. When the content of the oxide salt of the Group 16 element is less than 0.1 mol%, the effect of improving the battery performance is small, and when the content exceeds 3.0 mol%, the battery performance such as the capacity is reduced. Note that the number of moles of the oxide salt of the Group 16 element is also the number of moles (= the number of atoms) as the Group 16 element.
[0023]
The ratio of the Group 15 element substance to the Group 16 element oxide salt in the positive electrode active material is not particularly limited, but is usually about 1:10 to 10: 1 by mole, preferably 1: 2 to 2 in terms of molar ratio. : About 1.
The positive electrode active material according to the present invention includes (1) a substituted lithium nickel composite oxide represented by the above formula (I), (2) a Group 15 element material, and (3) an oxide salt of a Group 16 element. The three components are essential components, but there are no particular restrictions on the form in which they exist, and any of (1) to (3) may exist in a mixed state or may be in a complex form.
[0024]
The most common method for producing the positive electrode active material according to the present invention is a method of mixing the above (1) to (3) by a dry or wet method. As a more uniform mixing method, a method of dissolving or dispersing a Group 15 element substance or an oxide salt of a Group 16 element in an appropriate solvent and adding and mixing the same with the substituted lithium nickel composite oxide is more preferable.
The amount of the Group 15 element substance and the oxide salt of the Group 16 element is smaller than that of the substitutional lithium nickel composite oxide, and the particle diameter of the substitutional lithium nickel composite oxide is usually smaller than that of the substitutional lithium nickel composite oxide. Since the diameter of the mixture is larger than the diameter, the resulting mixture is usually a mixture of a substituted lithium nickel composite oxide as a core and an oxide salt of a Group 15 element substance and a Group 16 element adhered to its surface, that is, a substituted lithium nickel composite oxide. It has a structure in which a composite oxide is covered with a group 15 element substance and an oxide salt of a group 16 element.
[0025]
The solvent used for dissolving or dispersing is not particularly limited as long as it can dissolve or disperse the Group 15 element substance or the oxide salt of the Group 16 element, and usually, water or alcohol is used. You.
As a device used for the mixing process, a V-type, biaxial conical-type, etc. container rotary type mixer (V blender, conical blender) or a vertical axis rotary type multi-stage blade mixer using a shear compression mixing action (Ver. Tikal granulators, high-speed mixers), horizontal-shaft rotary shovel blade mixers (Redige mixers), and particle-combining devices using compression shearing force (mechanofusion systems, hybridization systems). However, the present invention is not limited to this.
[0026]
Alternatively, a method of spraying a solution or slurry of a Group 15 element substance and an oxide salt of a Group 16 element onto the substitutional lithium nickel composite oxide by using a spray coating apparatus may be employed.
Even if the three components are mixed simultaneously, the two components can be mixed separately after mixing any two components.
[0027]
In the case where Sb or an Sb compound is used as the Group 15 element substance, this substance has a strong interaction with Li, and tends to lower the performance as an active material by replacing Li in the lithium composite oxide. Therefore, it is desirable to mix (1) with (3) and then with (2), or to mix the three simultaneously.
Alternatively, the positive electrode active material according to the present invention can be obtained by dissolving or dispersing the three components in an appropriate solvent to form a slurry, and drying the slurry by spray drying or another appropriate method.
[0028]
In any case, the obtained mixture is appropriately ground and classified to obtain a positive electrode active material having a desired particle size distribution.
As described above, the form of the oxide salt of the group 15 element substance or the group 16 element is preferably as fine as possible because it is desirable to perform more uniform mixing as used in the production of the positive electrode active material according to the present invention. Is preferred. In particular, when these are used in a solid state for mixing, usually those having a median diameter of 10 μm or less are used. It is preferably 5 μm or less, more preferably 1 μm or less.
[0029]
The mixture obtained by mixing the three components as described above can be used as it is as the positive electrode active material according to the present invention. However, it is preferable that the obtained mixture is heated and fired to obtain the positive electrode active material. By heating and sintering, the group 15 element substance and the oxide salt of the group 16 element are melted or reacted with the substituted lithium nickel composite oxide, so that a more preferable cathode active material is produced.
[0030]
The heating and calcination is performed at a temperature lower than the melting point or the decomposition temperature of the lithium nickel composite oxide so that the substitutional lithium nickel composite oxide does not deteriorate. For the above reason, it is preferable to perform the treatment at a temperature higher than the melting point of the Group 15 element substance or the oxide salt of the Group 16 element. The firing temperature depends on the type of the oxide salt of the group 15 element substance and the group 16 element and the composition of the substituted lithium nickel composite oxide, but is usually 120 ° C. or higher, preferably 300 ° C. or higher, more preferably 400 ° C. or higher. ° C or higher. The upper limit temperature is usually 1000 ° C. or lower, preferably 900 ° C. or lower, more preferably 800 ° C. or lower.
[0031]
The firing is usually performed in an air or oxygen atmosphere so that the substitutional lithium nickel composite oxide is not decomposed and deteriorated.
The baking time is usually 1 hour or more and preferably 10 hours or less. If it is too short, the desired performance will not be obtained, and if it is too long, the productivity will decrease.
The firing apparatus may be of any type as long as the atmosphere can be controlled, and examples thereof include a batch type atmosphere furnace and a continuous kiln furnace. Sintering should be such that local heating does not occur, and the material of the sintering apparatus should be one that does not react with the mixture used for sintering.
[0032]
In addition, in addition to the above-described manufacturing method, when synthesizing the substituted lithium nickel composite oxide, a raw material or an intermediate product is mixed with an oxide salt of a Group 15 element or a Group 16 element. Accordingly, these can be contained in the substitution-type lithium nickel composite oxide finally formed.
The specific surface area of the positive electrode active material according to the present invention by the nitrogen adsorption measurement method (BET method) is preferably 0.1 to 2.0 m.2/ G, more preferably 0.3 to 1.0 m2/ G. The particle size distribution of the positive electrode active material is preferably 3 to 20 μm, more preferably 6 to 12 μm in median diameter. The upper limit of the maximum particle size is usually 60 μm or less, preferably 50 μm or less, more preferably 40 μm or less.
[0033]
If the specific surface area is too small or the particle size is too large, the diffusion of Li ions during the battery reaction will be slow, and the battery characteristics may be degraded. Conversely, if the specific surface area is too large or the particle size is too small, side reactions other than the insertion and release of the original Li ions of the battery, such as the reaction with the electrolytic solution, may increase, which may cause battery deterioration. .
[0034]
When the positive electrode active material according to the present invention is used in a battery, the positive electrode active material may take any form, but usually takes the form of an electrode sheet.
The electrode sheet is a thin film obtained by adding a binder and, if desired, various auxiliaries to a positive electrode active material, and for example, adding a positive electrode active material and a binder to an appropriate solvent to prepare a coating for an electrode (slurry). ), Which is applied to a current collector and dried. Other known positive electrode active materials can be used in combination with the positive electrode active material as long as the effects of the present invention are not hindered. In this case, the content of the positive electrode active material according to the present invention is preferably 50% by weight or more, especially 70% by weight or more, and more preferably 80% by weight or more, because the effect of the present invention can be remarkably exhibited.
[0035]
The lower limit of the proportion of the active material in the positive electrode layer obtained by drying is usually 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, and the upper limit is usually 99.9% by weight or less, preferably Is 99% by weight or less. If the amount of the active material is too large, the mechanical strength of the electrode tends to be inferior. If the amount is too small, battery performance such as capacity tends to be inferior.
[0036]
Examples of the binder (binding agent) include polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), and NBR (acrylonitrile). Butadiene rubber), fluorine rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, CMC (carboxymethyl cellulose) and the like. The lower limit of the proportion of the binder in the positive electrode layer is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 2% by weight or more, and the upper limit is usually 30% by weight or less, more preferably 20% by weight. Or less, more preferably 10% by weight or less. If the proportion of the binder is too low, the active material cannot be sufficiently retained, the mechanical strength of the positive electrode becomes insufficient, and the battery performance such as cycle characteristics may be deteriorated. May be lowered.
[0037]
Furthermore, it is usually preferable that the positive electrode layer contains a conductive agent in order to increase conductivity. Examples of the conductive agent include carbon materials such as graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke. The lower limit of the proportion of the conductive agent in the positive electrode is usually 0.1% by weight or more, preferably 2% by weight or more, more preferably 2% by weight or more, and the upper limit is usually 30% by weight or less, preferably 20% by weight or less. , More preferably 10% by weight or less. If the proportion of the conductive agent is too low, the conductivity may be insufficient, while if it is too high, the battery capacity may be reduced.
[0038]
The solvent used for preparing the electrode coating material is not particularly limited as long as it dissolves or disperses the binder, but usually an organic solvent or water is used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, water and the like can be mentioned.
[0039]
The thickness of the positive electrode layer is usually about 1 to 500 μm, preferably about 5 to 100 μm. If it is too thick, the conductivity tends to decrease, and if it is too thin, the capacity tends to decrease.
As a material of the current collector used for the positive electrode, aluminum, stainless steel, nickel-plated steel, or the like is used, and aluminum is preferable. The thickness of the current collector is usually about 1 to 500 μm, preferably about 5 to 20 μm. If the thickness is too thick, the capacity of the lithium secondary battery as a whole decreases, and if it is too thin, the mechanical strength may be insufficient.
[0040]
The positive electrode layer obtained by coating and drying is preferably compacted by a roller press or the like in order to increase the filling density of the active material and secure a conductive path between the active materials. Although depending on the composition of the electrode, the density of the positive electrode layer is usually 2.0 g / cc or more and 3.5 g / cc or less.
The lithium secondary battery according to the present invention comprises at least the positive electrode obtained as described above, a negative electrode opposed thereto, and a non-aqueous electrolyte (or solid electrolyte) as an ion conductor. Usually, a separator is interposed between the positive electrode and the negative electrode.
[0041]
As the active material of the negative electrode, any material can be used as long as it can occlude and release lithium, but a carbonaceous material is usually preferable. For example, thermal decomposition products of organic substances under various thermal decomposition conditions, artificial graphite, natural graphite and the like can be mentioned. Preferably artificial graphite, graphitized mesophase microspheres, graphitized mesophase pitch-based carbon fibers, other artificial graphite and purified natural graphite, or the like, produced by high-temperature heat treatment of graphitic pitch obtained from various raw materials. A material obtained by subjecting graphite to surface treatment with a pitch or the like is used. These carbonaceous materials preferably have a lattice plane (002 plane) d value (interlayer distance) of 0.335 to 0.34 nm, preferably 0.335 to 0.337 nm, determined by X-ray diffraction by the Gakushin method. Is more preferable. The crystallite size (Lc) determined by X-ray diffraction according to the Gakushin method is preferably 30 nm or more, more preferably 50 nm or more, and even more preferably 100 nm or more. These carbonaceous materials may be further mixed with other active materials capable of inserting and extracting lithium. Examples of the active material capable of occluding and releasing lithium other than the carbonaceous material include metal oxide materials such as tin oxide and silicon oxide, as well as lithium metal and various lithium alloys. These negative electrode materials may be used as a mixture of two or more kinds.
[0042]
Like the positive electrode, the negative electrode is usually used in the form of an electrode sheet. As a method of manufacturing an electrode sheet, a slurry containing a negative electrode active material, a binder, and, if desired, a thickener or a conductive agent is further prepared using a solvent, as in the case of the positive electrode, and the slurry is applied to a current collector. -There is a drying method. Examples of the solvent include organic solvents such as N-methylpyrrolidone (NMP) and dimethylformamide (DMF), and water. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, and butadiene rubber. Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein. Examples of the conductive agent include metal materials such as copper and nickel, graphite, and carbon black.
[0043]
Examples of the negative electrode current collector include metals or alloys such as copper, nickel, and stainless steel, and preferably copper.
The negative electrode layer obtained by coating and drying is preferably compacted by a roller press or the like in order to increase the packing density of the active material. Although depending on the composition, the density of the negative electrode layer is usually from 1.0 g / cc to 2.0 g / cc.
[0044]
The material and shape of the separator are not particularly limited, but it is preferable to use a porous sheet or a nonwoven fabric or the like made of a polyolefin such as polyethylene or polypropylene as a material that is stable to an electrolytic solution and has excellent liquid retention properties. .
Examples of the non-aqueous electrolyte include those in which various electrolyte salts are dissolved in a non-aqueous solvent. As the non-aqueous solvent, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, halogenated hydrocarbons, amines, esters, amides, phosphate compounds and the like can be used. it can. Representative examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, and the like.
[0045]
As the electrolyte salt, any of conventionally known electrolyte salts can be used.4  , LiAsF6  , LiPF6  , LiBF4  And the like.
Also, CO2  , NO2, CO, SO2  Or an additive such as vinylene carbonate, catechol carbonate, or the like that forms a good film that enables efficient charge and discharge of lithium ions on the surface of the negative electrode may be added to the electrolyte at an arbitrary ratio.
[0046]
Further, a solid polymer electrolyte may be used instead of or together with the electrolytic solution.
The method for producing the lithium secondary battery is not particularly limited, and can be appropriately selected from commonly employed methods. The shape of the battery is not particularly limited, and a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a stacked type in which an electrode and a separator are stacked, and the like can be used. The use of the battery is not particularly limited, and it can be widely used from electronic devices such as personal computers and mobile phones to batteries for automobiles.
[0047]
In a lithium secondary battery, the capacity balance between the active material of the positive electrode and the active material of the negative electrode is important. This is because the negative electrode can absorb Li ions without precipitating Li metal, or the positive electrode can store Li ions. Designed based on capacity that can be released.
The capacity of the negative electrode capable of storing Li ions without depositing Li metal is Qa (mAh / g), the capacity of the positive electrode capable of releasing Li ions is Qc (mAh / g), and the active materials of the negative electrode and the positive electrode are each Wa. (G) and Wc (g), the capacity balance ratio R is represented by R = (Qa × Wa) / (Qc × Wc). Usually, the lower limit of R is set to 1 or more, preferably 1.2 or more, and the upper limit is set to 2 or less, preferably 1.5 or less. If R is too small, the negative electrode cannot receive Li ions from the positive electrode during charging, and Li metal will precipitate on the negative electrode, causing deterioration and safety problems. Conversely, if R is too large, the capacity per weight of the battery will decrease.
[0048]
Although there are various methods for measuring Qc to Qa, in the following examples, the positive electrode and the negative electrode are each made of a counter electrode Li metal in an electrolytic solution at a current density as low as possible, for example, 20 mA / g (active material) or less. The negative electrode was determined by measuring the discharge (Li occlusion) capacity from the natural potential to the lower limit of 5 mV, and the positive electrode was determined by measuring the charge capacity from the natural potential to 4.2 V.
The lower limit is usually 2.0 V or higher, preferably 2.5 V or higher, more preferably 3.0 V or higher. The upper limit is usually 4.3 V or less, preferably 4.2 V or less, more preferably 4.1 V or less. If the upper limit value is too large or the lower limit value is too small, battery deterioration may increase.
[0049]
【Example】
Hereinafter, specific embodiments of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.
(Substitution type lithium nickel composite oxide)
Lithium-nickel composite oxide serving as a base material of a positive electrode active material includes Li1.06Ni0.81Co0.14Al0.05O2A composition having the following composition was used. According to X-ray diffraction measurement, the compound belonged to a hexagonal system, and the lattice constant was 0.286 nm for the a-axis and 1.418 nm for the c-axis. The specific surface area is about 0.5m2/ G, the median diameter measured by particle size distribution measurement was about 11 μm, and the maximum particle size was 30 μm.
[0050]
(Preparation of positive electrode)
A slurry was prepared by mixing 85% by weight of a positive electrode active material, 10% by weight of acetylene black as a conductive agent, and 5% by weight of polyvinylidene fluoride (PVdF) as a binder in an N-methylpyrrolidone solvent to form a slurry. A 20 μm aluminum foil was coated on one side, dried, and then rolled by a press machine, and punched to a diameter of 12 mm to obtain a positive electrode. The positive electrode layer density was 2.2 to 2.5 g / cc.
[0051]
(Negative electrode active material)
A graphite-based carbon material was used as the negative electrode active material. The plane distance measured by X-ray diffraction was 0.336 nm. Specific surface area is about 4m2/ G, and the median diameter as measured by particle size distribution was about 11 μm.
(Preparation of negative electrode)
92.5% by weight of the negative electrode active material and 7.5% by weight of PVdF as a binder were mixed in an N-methylpyrrolidone solvent to form a slurry, which was then applied to one side of a copper foil having a thickness of 20 μm and dried. Then, the product rolled by a press was punched out to a diameter of 12 mm. The negative electrode layer density was 1.3 to 1.6 g / cc.
The capacity balance ratio R between the positive electrode and the negative electrode was designed to be 1.2 to 1.5.
[0052]
(Assembly of coin cell battery)
The electrode was vacuum-dried at 120 ° C. for about 1 to 3 hours, and a lithium secondary battery was produced using a CR2032 type coin cell in a dry box in an argon atmosphere. That is, the positive electrode was placed in a positive electrode can, one porous polyethylene film having a pore size of 25 μm was placed thereon as a separator, pressed with a polypropylene gasket, and then the negative electrode was placed. After placing a spacer for thickness adjustment on the negative electrode, an electrolytic solution was added to allow the battery to sufficiently permeate the battery, and finally, the negative electrode can was placed thereon to seal the battery. For the electrolyte, a mixed solvent of ethylene carbonate (EC) + dimethyl carbonate (DMC) + ethyl methyl carbonate (EMC) (volume ratio 1: 1: 1) was mixed with LiPF.6Was used so as to be 1 mol / L.
[0053]
(Evaluation of battery characteristics)
A charge / discharge cycle test was performed at an upper limit voltage of 4.1 V and a lower limit voltage of 3.0 V. As the 1C current value,
1C (mA) = active material amount of positive electrode (g) x 175 (mAh / g)
Values were used. This value is obtained based on a capacity confirmation test using the counter electrode Li of the substitutional lithium nickel composite oxide used for producing the positive electrode active material.
[0054]
First, as a conditioning (preliminary charge / discharge), a constant current-constant voltage charge and constant current discharge of 0.2 C were performed at room temperature (25 ° C.) for several cycles, and based on the obtained capacity, the charge depth was increased to 60%. After the adjustment, the resistance of the battery before the high-temperature cycle was measured by the AC impedance method.
Next, the battery was moved to an atmosphere of 60 ° C., and a high-temperature cycle test was performed in a pattern of 1 cycle at 0.2 C constant current → 100 cycles at 1 C constant current → 2 cycles at 0.2 C.
[0055]
After returning to room temperature (25 ° C.), the charge depth was adjusted to 60% based on the discharge capacity of 0.2 C at the end of the 60 ° C. cycle test to confirm the increase in resistance after the high-temperature cycle. A measurement was made.
The AC impedance was measured at room temperature using a frequency analysis device (1255B) and a potentiostat (1287) manufactured by Solartron with a swing width of 10 mV and a measurement frequency range of 0.01 to 100 kHz. The value of the total impedance at 0.1 Hz was adopted as the resistance value.
[0056]
Example 1
Lithium nickel composite oxide (Li1.06Ni0.81Co0.14Al0.05O2) Is stirred in a fluidized tank while lithium sulfate (Li2SO4・ H2The aqueous solution of O) was sprayed. Lithium sulfate was used in an amount of about 1 mol% with respect to the total molar amount of Ni, Co, and Al.
[0057]
Antimony trioxide (Sb) was added to the resulting mixture.2O3: 0.8 μm in particle median diameter) and shaken and mixed well in a polyethylene bottle. Sb2O3Was added so as to be 0.7 mol% as an antimony element with respect to the total molar amount of Ni, Co and Al.
Next, this mixture was transferred into an alumina crucible and fired at 680 ° C. for 2 hours in an oxygen atmosphere.
[0058]
The amount of sulfate in the obtained compound was determined by sulfate ion (SO4 2-) Was determined (ion chromatography), and the amount of Sb was determined by atomic absorption analysis. As a result of analysis, as a result of elemental analysis of sulfate and Sb, the charged amount was almost maintained.
Using this as a positive electrode active material, a positive electrode was prepared by the method described above, and a coin cell battery assembly and battery characteristics evaluation were performed.
[0059]
Comparative Example 1
Lithium nickel composite oxide (Li1.06Ni0.81Co0.14Al0.05O2) Was used as it was, a positive electrode was prepared in the same manner as in Example 1, a coin cell battery was assembled, and battery characteristics were evaluated.
Comparative Example 2
Lithium nickel composite oxide (Li1.06Ni0.81Co0.14Al0.05O2), A positive electrode was prepared in the same manner as in Example 1 except that only lithium sulfate was not added, and a coin cell battery assembly and battery characteristics evaluation were performed.
[0060]
Comparative Example 3
Lithium nickel composite oxide (Li1.06Ni0.81Co0.14Al0.05O2), A positive electrode was prepared in the same manner as in Example 1 except that antimony trioxide was not added, and coin cell batteries were assembled and battery characteristics were evaluated.
Table 1 below shows the results of the above battery test.
[0061]
[Table 1]
Figure 2004288501
[0062]
From the results in Table 1 above, batteries using a substituted lithium nickel composite oxide containing a sulfate which is an oxide salt of a Group 16 element and a Sb which is a Group 15 element as a positive electrode do not include these. It is apparent that the impedance increase after the high-temperature cycle is smaller than that of the battery using the positive electrode active material or the positive electrode active material containing only sulfate or Sb for the positive electrode.
[0063]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the battery which has a small impedance increase at the time of a high temperature cycle, and has favorable characteristics, or its positive electrode active material can be obtained.

Claims (10)

(1)下記(I)式
Figure 2004288501
(式中、Mは、周期律表の第2族〜第14族元素の中から選ばれるNi以外の元素であり、x、y、δはそれぞれ1.0<x≦1.5、0<y≦0.7、−0.1<δ<0.1の数を表す。)
の組成で表されるリチウム含有複合酸化物、(2)Sb、Bi及びこれらの化合物から選ばれるもの、並びに(3)酸素を除く第16族元素の酸化物塩、を含有することを特徴とするリチウム二次電池用正極活物質。
(1) The following formula (I)
Figure 2004288501
(In the formula, M is an element other than Ni selected from Group 2 to Group 14 elements of the periodic table, and x, y, and δ are 1.0 <x ≦ 1.5, 0 < It represents the number of y ≦ 0.7, −0.1 <δ <0.1.)
(2) a compound selected from Sb, Bi and these compounds, and (3) an oxide salt of a Group 16 element excluding oxygen. Active material for lithium secondary batteries.
Sb、Bi及び乃至これらの化合物から選ばれるものが、Sb及び/又はその化合物であることを特徴とする請求項1に記載のリチウム二次電池用正極活物質。The positive electrode active material for a lithium secondary battery according to claim 1, wherein Sb, Bi, and / or a compound selected from these compounds are Sb and / or a compound thereof. 酸素を除く第16族元素の酸化物塩が、硫酸塩であることを特徴とする請求項1又は2に記載のリチウム二次電池用正極活物質。3. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the oxide salt of a Group 16 element excluding oxygen is a sulfate. 4. NiとMの合計モル数に対する、Sb、Bi及びこれらの化合物から選ばれるものの割合が、0.1〜3.0mol%であることを特徴とする請求項1〜3のいずれか1項に記載のリチウム二次電池用正極活物質。The ratio of one selected from Sb, Bi, and these compounds to the total number of moles of Ni and M is 0.1 to 3.0 mol%. Positive electrode active material for lithium secondary batteries. NiとMの合計モル数に対する、酸素を除く第16族元素の酸化物塩の割合が、0.1〜3.0mol%であることを特徴とする請求項1〜4のいずれか1項に記載のリチウム二次電池用正極活物質。The ratio of an oxide salt of a Group 16 element excluding oxygen to the total number of moles of Ni and M is 0.1 to 3.0 mol%, according to any one of claims 1 to 4, The positive electrode active material for a lithium secondary battery according to the above. 正極活物質として、請求項1〜5のいずれか1項に記載の正極活物質を含有することを特徴とするリチウム二次電池用正極。A positive electrode for a lithium secondary battery, comprising the positive electrode active material according to claim 1 as a positive electrode active material. 請求項6に記載の正極活物質を備えていることを特徴とするリチウム二次電池。A lithium secondary battery comprising the positive electrode active material according to claim 6. 下記(I)式
Figure 2004288501
(式中、Mは、周期律表の第2族〜第14族元素の中から選ばれるNi以外の元素であり、x、y、δはそれぞれ1.0<x≦1.5、0<y≦0.7、−0.1<δ<0.1の数を表す。)
で表されるリチウム含有複合酸化物、Sb、Bi及びこれらの化合物から選ばれるもの、並びに酸素を除く第16族元素の酸化物塩を混合し、加熱することを特徴とするリチウム二次電池用正極活物質の製造方法。
The following formula (I)
Figure 2004288501
(In the formula, M is an element other than Ni selected from Group 2 to Group 14 elements of the periodic table, and x, y, and δ are 1.0 <x ≦ 1.5, 0 < It represents the number of y ≦ 0.7, −0.1 <δ <0.1.)
A lithium-containing composite oxide represented by the formula: Sb, Bi and those selected from these compounds, and an oxide salt of a Group 16 element excluding oxygen, and heating the mixture. A method for producing a positive electrode active material.
Sb、Bi及びこれらの化合物から選ばれるものが、Sb及び/又はその化合物であることを特徴とする請求項8に記載のリチウム二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a lithium secondary battery according to claim 8, wherein Sb, Bi and a compound selected from these compounds are Sb and / or a compound thereof. 酸素を除く第16族元素の酸化物塩が硫酸塩であることを特徴とする請求項8又は9に記載のリチウム二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a lithium secondary battery according to claim 8, wherein the oxide salt of a Group 16 element excluding oxygen is a sulfate.
JP2003079959A 2003-03-24 2003-03-24 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP4333173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079959A JP4333173B2 (en) 2003-03-24 2003-03-24 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079959A JP4333173B2 (en) 2003-03-24 2003-03-24 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2004288501A true JP2004288501A (en) 2004-10-14
JP4333173B2 JP4333173B2 (en) 2009-09-16

Family

ID=33293944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079959A Expired - Fee Related JP4333173B2 (en) 2003-03-24 2003-03-24 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4333173B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146739A (en) * 2007-12-14 2009-07-02 Sony Corp Manufacturing method of positive active material
JP2009193745A (en) * 2008-02-13 2009-08-27 Sony Corp Method for manufacturing positive electrode active material
JP2012023015A (en) * 2010-01-08 2012-02-02 Mitsubishi Chemicals Corp Cathode material powder for lithium secondary battery and manufacturing method thereof and cathode for lithium secondary cattery and lithium secondary battery
JP2014216077A (en) * 2013-04-23 2014-11-17 日立マクセル株式会社 Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and nonaqueous electrolyte lithium ion secondary battery using the positive electrode material
CN112005423A (en) * 2018-02-09 2020-11-27 特莫因德股份公司 Semi-solid state battery with recharging capability
WO2021153001A1 (en) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
CN114300664A (en) * 2021-12-29 2022-04-08 北京理工大学 Lithium-rich single crystal positive electrode material with surface coated with lithium selenate and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021402A (en) * 1998-06-30 2000-01-21 Fuji Film Serutec Kk Positive electrode active material and manufacture therefor and nonaqueous electrolyte secondary battery using the same
JP2002260632A (en) * 2001-02-27 2002-09-13 Nec Corp Secondary battery
JP2002270152A (en) * 2001-03-09 2002-09-20 Yuasa Corp Lithium battery
JP2003051308A (en) * 2001-08-03 2003-02-21 Yuasa Corp Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021402A (en) * 1998-06-30 2000-01-21 Fuji Film Serutec Kk Positive electrode active material and manufacture therefor and nonaqueous electrolyte secondary battery using the same
JP2002260632A (en) * 2001-02-27 2002-09-13 Nec Corp Secondary battery
JP2002270152A (en) * 2001-03-09 2002-09-20 Yuasa Corp Lithium battery
JP2003051308A (en) * 2001-08-03 2003-02-21 Yuasa Corp Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146739A (en) * 2007-12-14 2009-07-02 Sony Corp Manufacturing method of positive active material
JP2009193745A (en) * 2008-02-13 2009-08-27 Sony Corp Method for manufacturing positive electrode active material
JP2012023015A (en) * 2010-01-08 2012-02-02 Mitsubishi Chemicals Corp Cathode material powder for lithium secondary battery and manufacturing method thereof and cathode for lithium secondary cattery and lithium secondary battery
JP2014216077A (en) * 2013-04-23 2014-11-17 日立マクセル株式会社 Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and nonaqueous electrolyte lithium ion secondary battery using the positive electrode material
CN112005423A (en) * 2018-02-09 2020-11-27 特莫因德股份公司 Semi-solid state battery with recharging capability
WO2021153001A1 (en) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
CN114300664A (en) * 2021-12-29 2022-04-08 北京理工大学 Lithium-rich single crystal positive electrode material with surface coated with lithium selenate and preparation method and application thereof
CN114300664B (en) * 2021-12-29 2023-11-07 北京理工大学 Lithium-rich single crystal positive electrode material with surface coated with lithium selenate, and preparation method and application thereof

Also Published As

Publication number Publication date
JP4333173B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP5843766B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5614513B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
US7381496B2 (en) Lithium metal oxide materials and methods of synthesis and use
JP5266861B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
CA2894545C (en) Lmfp cathode materials with improved electrochemical performance
WO2011122448A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
KR101622352B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2015527719A (en) Positive electrode active material and method for producing the same
JP7131056B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP6062818B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
CN110431109A (en) Preparation includes the method for irreversible additive in anode materials for lithium secondary cells, the positive electrode comprising irreversible additive prepared therefrom and comprising the lithium secondary battery of the positive electrode
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP4682388B2 (en) Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR101551407B1 (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same, negative electrode including the same, and rechargeable lithium battery including the negative electrode
JP4333173B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2001283845A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees