JPH09259879A - Manufacture of positive electrode active material for lithium battery - Google Patents

Manufacture of positive electrode active material for lithium battery

Info

Publication number
JPH09259879A
JPH09259879A JP8090013A JP9001396A JPH09259879A JP H09259879 A JPH09259879 A JP H09259879A JP 8090013 A JP8090013 A JP 8090013A JP 9001396 A JP9001396 A JP 9001396A JP H09259879 A JPH09259879 A JP H09259879A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
battery
compound
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8090013A
Other languages
Japanese (ja)
Inventor
So Arai
創 荒井
Shigeto Okada
重人 岡田
Yoji Sakurai
庸司 櫻井
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8090013A priority Critical patent/JPH09259879A/en
Publication of JPH09259879A publication Critical patent/JPH09259879A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for positive electrode material to realize a lithium battery of a large discharge capacity. SOLUTION: This substance is double oxide expressed by a composition formula of LiXNi1- YMYOZ (0<=X<=1.1, 0<=Y<=0.5, 1.8<=Z<=2.2, M is an element of a transition metal, IIIB group, IVB group, or VB group). In a manufacturing method for this substance, lithium compound, nickel compound, and compound of the element M are mixed to provide an atomic ratio of Li/(Ni+M)>1, and after heat treatment to this mix, lithium compound other than LiXNi1- YMYOZ is cleaned to be eliminated by use of water or solution in which lithium compound is dissolved, where total lithium ion concentration in cleaning liquid is 0.01mol/liter or more, with the cleaning liquid set in such a way that lithium compound other than LiXNi1- YMYOZ in the cleaning liquid is completely dissolved without saturating at a cleaning temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム電池用正極活物
質の製造方法、さらに詳細には、充放電可能なリチウム
二次電池正極活物質の製造方法に関し、特に放電容量の
大きい電池を提供する正極活物質の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for a lithium battery, and more particularly to a method for producing a positive electrode active material for a lithium secondary battery which can be charged and discharged, and particularly provides a battery having a large discharge capacity. The present invention relates to a method for producing a positive electrode active material.

【0002】[0002]

【従来の技術及び問題点】リチウムなどのアルカリ金属
及びその化合物を負極活物質とする非水電解液電池は、
負極金属イオンの正極活物質へのインサーションもしく
はインターカレーション反応によって、その大放電容量
と充放電可逆性を両立させている。従来からこれらの正
極活物質には、二流化チタンなどの硫化物が提案されて
いるが、これらは電圧が2V程度と低く、放電エネルギ
ーが小さいという欠点があった。
2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium or a compound thereof as a negative electrode active material is disclosed in US Pat.
The large discharge capacity and charge / discharge reversibility are both achieved by the insertion or intercalation reaction of the negative electrode metal ions into the positive electrode active material. Conventionally, sulfides such as titanium difluride have been proposed for these positive electrode active materials, but they have a drawback that the voltage is as low as about 2 V and the discharge energy is small.

【0003】この問題を解決するために、4V級の電圧
を示す正極材料LiXNi1-YYZ(Mは遷移金属、I
IIB族、IVB族、VB族に属する元素、0≦X≦
1.1、0≦Y≦0.5)が開発されている。これら化
合物は熱処理時にリチウム欠損を生じて構造に欠陥を生
じ、放電容量の低下を招きやすいため、構造欠陥の少な
い化合物の合成方法としては、原子比でLi/(Ni+
M)>1となるようにリチウム化合物とニッケル化合物
と元素Mの化合物を混合してその混合物を熱処理する方
法が挙げられる。
In order to solve this problem, a positive electrode material Li X Ni 1-Y M Y O Z (M is a transition metal, I
IIB group, IVB group, VB group element, 0 ≦ X ≦
1.1, 0 ≦ Y ≦ 0.5) has been developed. Since lithium deficiency is generated during the heat treatment to cause a defect in the structure of these compounds, and the discharge capacity is likely to be reduced, a method of synthesizing a compound having a small number of structural defects is Li / (Ni +
A method may be mentioned in which a lithium compound, a nickel compound and a compound of the element M are mixed so that M)> 1, and the mixture is heat treated.

【0004】しかしこの場合、LiXNi1-YYZに加
えてLiXNi1-YYZ以外のリチウム化合物が副生成
物として生成するので、これを除去するために、熱処理
して得られたLiXNi1-YYZとLiXNi1-YYZ
以外のリチウム化合物の混合物を、リチウム化合物の溶
解性の高い水で洗浄除去する方法が挙げられる。しかし
従来の水洗による製造方法では、洗浄の際に、LiX
1-YYZ以外のリチウム化合物のみならず、目的と
するLiXNi1-YYZのリチウムも流し出されてしま
うため、X値が1を大きく下回り、利用できるリチウム
量が減ったり、構造中に欠陥を生じたりして、十分な放
電容量を持つ電池を実現することができないという問題
があった。
[0004] However, in this case, since Li X Ni 1-Y M Y O in addition to the Z Li X Ni 1-Y M Y O lithium compound other than Z are formed as by-products, in order to remove it, Li X Ni 1-Y M Y O Z and Li X Ni 1-Y M Y O Z obtained by heat treatment
A method of washing and removing a mixture of lithium compounds other than the above with water having a high solubility for lithium compounds can be mentioned. However, according to the conventional manufacturing method by washing with water, Li X N
Not only lithium compounds other than i 1-Y M Y O Z , but also the lithium of the target Li X Ni 1-Y M Y O Z is also flushed out, so the X value is far below 1 and usable lithium. There is a problem that the battery having a sufficient discharge capacity cannot be realized due to a decrease in the amount or a defect in the structure.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な現状の課題を解決し、放電容量が大きいリチウム電池
を実現するリチウム電池用正極活物質の製造方法を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a positive electrode active material for a lithium battery, which solves the above-mentioned problems of the present situation and realizes a lithium battery having a large discharge capacity.

【0006】[0006]

【問題点を解決するための手段】かかる目的を達成する
ために本発明によるリチウム電池用正極活物質の製造方
法では、組成式LiXNi1-YYZ(0≦X≦1.1、
0≦Y≦0.5、1.8≦Z≦2.2、Mは遷移金属、
IIIB族、IVB族、VB族に属する元素)で与えら
れる複酸化物であるリチウム電池用正極活物質の製造方
法において、原子比でLi/(Ni+M)>1となるよ
うにリチウム化合物とニッケル化合物と元素Mの化合物
を混合してその混合物を熱処理した後にLiXNi1-Y
YZ以外のリチウム化合物を水またはリチウム化合物を
溶解した水溶液を洗浄液に用いて洗浄除去する場合に、
洗浄液中の全リチウムイオン濃度が0.01モル/リッ
トル、好ましくは1モル/リットル以上であり、かつ洗
浄液中のLiXNi1-YYZ以外のリチウム化合物が洗
浄を行う温度において洗浄液に飽和せず完全に溶解でき
るように洗浄液を調整したものであることを特徴として
いる。
In order to achieve the above object, in the method for producing a positive electrode active material for a lithium battery according to the present invention, the composition formula Li X Ni 1-Y M Y O Z (0 ≦ X ≦ 1. 1,
0 ≦ Y ≦ 0.5, 1.8 ≦ Z ≦ 2.2, M is a transition metal,
In the method for producing a positive electrode active material for a lithium battery, which is a complex oxide given by IIIB group, IVB group, and VB group elements), a lithium compound and a nickel compound are provided so that Li / (Ni + M)> 1 in atomic ratio. And a compound of the element M are mixed, and the mixture is heat treated, and then Li X Ni 1-Y M
When cleaning or removing a lithium compound other than Y O Z with water or an aqueous solution in which the lithium compound is dissolved,
The cleaning liquid has a total lithium ion concentration of 0.01 mol / liter, preferably 1 mol / liter or more, and a cleaning liquid at a temperature at which a lithium compound other than Li X Ni 1 -Y M Y O Z performs cleaning. It is characterized in that the cleaning solution is adjusted so that it can be completely dissolved without being saturated.

【0007】そして、これによって得られた組成式Li
XNi1-YYZ(0≦X≦1.1、0≦Y≦0.5、
1.8≦Z≦2.2、Mは遷移金属、IIIB族、IV
B族、VB族に属する元素)で与えられる複酸化物を正
極活物質として含み、リチウムあるいはリチウムを吸
蔵、放出可能な物質を負極活物質とし、リチウムイオン
が前記正極活物質及び負極活物質と電気化学反応をする
ための移動を行い得る物質を電解質物質とすることによ
り、放電容量の大きいリチウム電池を構成することがで
きる。
The composition formula Li thus obtained is
X Ni 1-Y M Y O Z (0 ≦ X ≦ 1.1, 0 ≦ Y ≦ 0.5,
1.8 ≦ Z ≦ 2.2, M is a transition metal, IIIB group, IV
A positive electrode active material includes a complex oxide given by a group B or VB group element), and lithium or a material capable of absorbing and releasing lithium is used as a negative electrode active material, and lithium ions are used as the positive electrode active material and the negative electrode active material. A lithium battery having a large discharge capacity can be constructed by using an electrolyte substance as a substance that can move for an electrochemical reaction.

【0008】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0009】発明者は、放電容量が大きいリチウム電池
用正極材料の製造方法を鋭意探索した結果、上述のよう
に組成式LiXNi1-YYZ(0≦X≦1.1、0≦Y
≦0.5、1.8≦Z≦2.2、Mは遷移金属、III
B族、IVB族、VB族に属する元素)で与えられる複
酸化物であるリチウム電池用正極活物質の製造方法にお
いて、原子比でLi/(Ni+M)>1となるようにリ
チウム化合物とニッケル化合物と元素Mの化合物を混合
してその混合物を熱処理した後にLiXNi1-YYZ
外のリチウム化合物を水またはリチウム化合物を溶解し
た水溶液を洗浄液に用いて洗浄除去する場合において、
洗浄液中の全リチウムイオン濃度が0.01モル/リッ
トル以上、好ましくは1モル/リットル以上であり、か
つ洗浄液中のLiXNi1-YYZ以外のリチウム化合物
が洗浄を行う温度において洗浄液に飽和せず完全に溶解
できるように洗浄液を調整することにより、従来よりも
放電容量が大きいリチウム電池を構成できるリチウム電
池用正極活物質を製造することができることを確かめ、
その認識の下に本発明を完成した。
As a result of earnest search for a method for producing a positive electrode material for a lithium battery having a large discharge capacity, the inventor has found that the composition formula Li X Ni 1-Y M Y O Z (0 ≦ X ≦ 1.1, 0 ≦ Y
≦ 0.5, 1.8 ≦ Z ≦ 2.2, M is a transition metal, III
In a method for producing a positive electrode active material for a lithium battery, which is a complex oxide provided by a group B, IVB, or VB group), a lithium compound and a nickel compound are provided so that Li / (Ni + M)> 1 in atomic ratio. And a compound of the element M are mixed, and the mixture is heat-treated, and then a lithium compound other than Li X Ni 1 -Y M Y O Z is washed and removed using water or an aqueous solution in which the lithium compound is dissolved as a washing liquid,
The total lithium ion concentration in the cleaning liquid is 0.01 mol / liter or more, preferably 1 mol / liter or more, and at a temperature at which a lithium compound other than Li X Ni 1 -Y M Y O Z in the cleaning liquid performs cleaning. By adjusting the cleaning liquid so that it can be completely dissolved without being saturated in the cleaning liquid, it was confirmed that it is possible to produce a positive electrode active material for a lithium battery that can constitute a lithium battery having a larger discharge capacity than before,
With this recognition, the present invention has been completed.

【0010】本発明のリチウム電池用正極活物質の製造
方法によって、従来の正極活物質の製造方法に比べて放
電容量が大きい電池を構成できる理由は、現在のところ
完全に明らかではないが、例えば以下のようなものが考
えられる。すなわち、LiXNi1-YYZ(0≦X≦
1.1、0≦Y≦0.5、1.8≦Z≦2.2、Mは遷
移金属、IIIB族、IVB族、VB族に属する元素)
の合成において、熱処理時に生じやすいリチウム欠損を
補うため原子比でLi/(Ni+M)>1となるように
リチウム化合物とニッケル化合物と元素Mの化合物を混
合して、その混合物を熱処理した後に、LiXNi1-Y
YZ以外のリチウム化合物を、リチウム化合物の溶解性
の高い水で洗浄除去する時に、LiXNi1-YYZ以外
のリチウム化合物のみならず、目的とするLiXNi1-Y
YZのリチウムが流し出されてしまい、X値が1を大
きく下回り、十分な放電容量を持つ電池を実現すること
ができないのは、LiXNi1-YYZが水に対して塩基
として作用する性質を持っているためと考えられる。す
なわち、水が酸として働き、以下のような酸塩基平衡に
よって、LiXNi1-YYZのリチウムが失われると考
えられる。
The reason why the method for producing a positive electrode active material for a lithium battery of the present invention can form a battery having a larger discharge capacity than the conventional method for producing a positive electrode active material is not completely clear at present. The following can be considered. That is, Li X Ni 1-Y M Y O Z (0 ≦ X ≦
1.1, 0 ≦ Y ≦ 0.5, 1.8 ≦ Z ≦ 2.2, M is a transition metal, an element belonging to the IIIB group, the IVB group, and the VB group)
In the synthesis of, the lithium compound, the nickel compound, and the compound of the element M are mixed so that the atomic ratio of Li / (Ni + M)> 1 is satisfied in order to compensate for the lithium deficiency that tends to occur during the heat treatment, and the mixture is heat-treated, X Ni 1-Y M
When the lithium compound other than Y O Z is washed and removed with water having a high solubility for the lithium compound, not only the lithium compound other than Li X Ni 1-Y M Y O Z but also the target Li X Ni 1-Y
Lithium of M Y O Z is flowed out, the X value is much less than 1, and a battery with sufficient discharge capacity cannot be realized because Li X Ni 1-Y M Y O Z is converted to water. It is thought that this is because it has the property of acting as a base. That is, it is considered that water acts as an acid, and the lithium of Li X Ni 1-Y M Y O Z is lost by the following acid-base equilibrium.

【0011】 LiXNi1-YYZ+Q(H2O) =LiX-QQNi1-YYZ+Q(LiOH)・・・(A)Li X Ni 1-Y M Y O Z + Q (H 2 O) = Li XQ H Q Ni 1-Y M Y O Z + Q (LiOH) (A)

【0012】但しここでQは0≦Q≦Xを満たす数であ
る。(A)式のような反応は温度で決まる平衡定数に従
って起こると考えられる。然るにこの洗浄液中のリチウ
ムイオン濃度が0.01モル/リットル以上である場合
は、上記(A)式の平衡反応は右辺に進行しにくく、目
的とするLiXNi1-YYZのリチウムが流し出されな
いため、X値が1を大きく下回ることがなく、十分な放
電容量を持つ電池を実現することができると考えられ
る。
Here, Q is a number satisfying 0≤Q≤X. It is considered that the reaction such as the equation (A) occurs according to the equilibrium constant determined by the temperature. However, when the lithium ion concentration in this cleaning solution is 0.01 mol / liter or more, the equilibrium reaction of the above formula (A) hardly proceeds to the right side, and the target Li X Ni 1-Y M Y O Z It is considered that a battery having a sufficient discharge capacity can be realized because the X value does not greatly fall below 1 because lithium is not discharged.

【0013】また特に洗浄液中のリチウムイオン濃度が
1モル/リットル以上である場合には、上記(A)式の
平衡反応はほぼ完全に左辺に進行するため、X値が極め
て1に近くなり、放電容量の特に大きな電池を実現する
ことができると考えられる。洗浄液中に含まれるリチウ
ムイオンが0.01モル/リットル未満の場合は、上記
(A)式の平衡反応は右辺に進行しやすくなり、目的と
するLiXNi1-YYZのリチウムが流し出されるた
め、X値が1を大きく下回り、十分な放電容量を持つ電
池を実現することができないと考えられる。
Further, particularly when the lithium ion concentration in the cleaning liquid is 1 mol / liter or more, the equilibrium reaction of the above formula (A) proceeds almost completely to the left side, so that the X value becomes extremely close to 1. It is considered that a battery having a particularly large discharge capacity can be realized. When the amount of lithium ions contained in the cleaning liquid is less than 0.01 mol / liter, the equilibrium reaction of the above formula (A) easily proceeds to the right side, and the target lithium Li X Ni 1-Y M Y O Z Therefore, it is considered that the X value is much lower than 1 and a battery having a sufficient discharge capacity cannot be realized.

【0014】また洗浄温度において、洗浄液中のLiX
Ni1-YYZ以外のリチウム化合物が洗浄を行う温度
において洗浄液に飽和する、あるいは飽和濃度を越えて
溶解できない場合は、LiXNi1-YYZ以外のリチウ
ム化合物が完全に除去されず、LiXNi1-YYZ以外
のリチウム化合物が正極中に含まれてしまい、十分な放
電容量を持つ電池を実現することができない、ショート
が起きやすくなる、などの問題を生じるため、不適であ
る。
Also, at the cleaning temperature, Li X in the cleaning liquid
If lithium compounds other than Ni 1 -Y M Y O Z are saturated or cannot be dissolved in the cleaning solution at the cleaning temperature, the lithium compounds other than Li X Ni 1-Y M Y O Z are completely dissolved. The lithium compound other than Li X Ni 1-Y M Y O Z is not removed by the above, and the positive electrode contains a lithium compound, so that a battery having a sufficient discharge capacity cannot be realized, and a short circuit easily occurs. Not suitable as it causes problems.

【0015】また、水にリチウム化合物を溶解させた水
溶液を洗浄液に用いることにより、上記(A)式の平衡
を予め左辺に傾けておいた場合も、目的とするLiX
1-YYZのリチウムが流し出されないため、X値が
1を大きく下回ることがなく、十分な放電容量を持つ電
池を実現することができる。但しこの場合は、洗浄前に
溶解させたりリチウム化合物と洗浄除去しようとするL
XNi1-YYZ以外のリチウム化合物の双方が洗浄液
中に含まれるため、洗浄を行う温度において双方のリチ
ウム化合物が共に洗浄液に飽和せずに完全に溶解できる
ようにする必要がある。
Further, even when the equilibrium of the above formula (A) is tilted to the left side in advance by using an aqueous solution in which a lithium compound is dissolved in water as a cleaning liquid, the desired Li X N
Since the lithium of i 1-Y M Y O Z is not flowed out, the X value does not greatly fall below 1, and a battery having a sufficient discharge capacity can be realized. However, in this case, L that is to be dissolved or washed away with the lithium compound before washing
Since both the lithium compounds other than i X Ni 1-Y M Y O Z are contained in the cleaning liquid, it is necessary to allow both lithium compounds to be completely dissolved in the cleaning liquid at the cleaning temperature without being saturated. is there.

【0016】前記元素M(Mは遷移金属、IIIB族、
IVB族、VB族に属する元素)は、組成式LiXNi
Z(0≦X≦1.1)で与えられる複酸化物を、必要
に応じて安定化し、主として電池とした際のサイクル特
性等を改善するために加えることができる。特に充電時
に正極活物質から脱離されるリチウム量が多くなると、
サイクル特性が悪化する場合があるため、充電時に正極
活物質から脱離されるリチウム量を制限する目的で、元
素Mを加えることができ、このような目的で加える場合
には、正極活物質にあって活性なニッケル量を減らし
て、Mはむしろ不活性な役割をするため、ニッケル以外
の多くの元素が該当する。Mの具体的な例としては、ス
カンジウム、チタン、バナジウム、クロム、マンガン、
鉄、コバルト、銅、イットリウム、ジルコニウム、モリ
ブデン、銀、ハフニウム、タンタル、タングステン、硼
素、アルミニウム、ガリウム、インジウム、珪素、ゲル
マニウム、錫、鉛、燐、アンチモン、ビスマス等を挙げ
ることができる。好ましくは、チタン、バナジウム、マ
ンガン、コバルト、硼素、アルミニウムである。ここで
ニッケルの酸化還元対に基づく充放電容量を確保するた
めに、元素Mの置換量に相当するYは0≦Y≦0.5を
満たす必要があり、好ましくは0≦Y≦0.2である。
0.5<Yである場合は、充放電容量が少なくなるとい
う問題点を生じる。
The element M (M is a transition metal, IIIB group,
The elements belonging to the IVB group and the VB group) have a composition formula of Li X Ni.
The complex oxide given by O Z (0 ≦ X ≦ 1.1) can be added as a stabilizer, if necessary, and mainly for improving cycle characteristics and the like when used as a battery. Especially when the amount of lithium desorbed from the positive electrode active material during charging increases,
Since the cycle characteristics may deteriorate, the element M can be added for the purpose of limiting the amount of lithium desorbed from the positive electrode active material during charging. Therefore, many elements other than nickel are applicable since M plays an inactive role by reducing the amount of active nickel. Specific examples of M include scandium, titanium, vanadium, chromium, manganese,
Examples thereof include iron, cobalt, copper, yttrium, zirconium, molybdenum, silver, hafnium, tantalum, tungsten, boron, aluminum, gallium, indium, silicon, germanium, tin, lead, phosphorus, antimony and bismuth. Preferred are titanium, vanadium, manganese, cobalt, boron, and aluminum. Here, in order to secure the charge / discharge capacity based on the redox couple of nickel, Y corresponding to the substitution amount of the element M needs to satisfy 0 ≦ Y ≦ 0.5, and preferably 0 ≦ Y ≦ 0.2. Is.
When 0.5 <Y, there arises a problem that the charge / discharge capacity decreases.

【0017】本製造方法によって得られた正極活物質を
用いて電池正極を形成するには、前記複酸化物粉末とポ
リテトラフルオロエチレンのごとき結着剤粉末との混合
物をステンレス等の支持体上に圧着成形する、あるい
は、かかる混合物粉末に導電性を付与するためアセチレ
ンブラックのような導電性粉末を混合し、これにさらに
ポリテトラフルオロエチレンのような結着剤粉末を所要
に応じて加え、この混合物を金属容器にいれる、あるい
はステンレスなどの支持体上に圧着成形する、あるいは
有機溶剤等の溶媒中に分散してスラリー状にして金属基
板上に塗布する、等の手段によって形成される。
To form a battery positive electrode using the positive electrode active material obtained by the present production method, a mixture of the above-mentioned double oxide powder and a binder powder such as polytetrafluoroethylene is placed on a support such as stainless steel. , Or by mixing a conductive powder such as acetylene black for imparting conductivity to such a mixture powder, and further adding a binder powder such as polytetrafluoroethylene to this, The mixture is placed in a metal container, pressure-molded on a support such as stainless steel, or dispersed in a solvent such as an organic solvent to form a slurry, which is applied onto a metal substrate.

【0018】本製造方法によって得られた正極活物質を
用いた電池では、負極活物質としてリチウムを用いる場
合は、一般のリチウム電池のそれと同様にシート上にし
て、またそのシートをニッケル、ステンレス等の導電体
網に圧着して負極として形成される。また負極活物質と
しては、リチウム以外にリチウム−アルミニウム合金等
のリチウム合金を用いることができる。さらに炭素な
ど、いわゆるロッキングチェア電池(リチウムイオン電
池)用の負極を用いることもでき、充電反応により正極
から供給されるリチウムイオンを電気化学的に挿入し、
炭素−リチウム負極などとすることもできる。
In the battery using the positive electrode active material obtained by the present manufacturing method, when lithium is used as the negative electrode active material, it is put on a sheet like that of a general lithium battery, and the sheet is made of nickel, stainless steel or the like. It is pressure-bonded to the conductor net of to form a negative electrode. As the negative electrode active material, a lithium alloy such as a lithium-aluminum alloy can be used in addition to lithium. Further, a negative electrode for a rocking chair battery (lithium ion battery) such as carbon can be used, and lithium ions supplied from the positive electrode by a charging reaction are electrochemically inserted,
A carbon-lithium negative electrode or the like can also be used.

【0019】本製造方法によって得られた正極活物質を
用いた電池では、電解液として、例えばジメトキシエタ
ン、ジエトキシエタン、2−メチルテトラヒドロフラ
ン、エチレンカーボネート、プロピレンカーボネート、
メチルホルメート、ジメチルスルホキシド、アセトニト
リル、ブチロラクトン、ジメチルホルムアミド、ジメチ
ルカーボネート、ジエチルカーボネート、スルホラン、
エチルメチルカーボネート等の有機溶媒に、LiAsF
6、LiBF4、LiPF6、LiAlCl4、LiClO
4等のルイス酸を溶解した非水電解質溶媒、あるいは固
体電解質等が使用できる。
In the battery using the positive electrode active material obtained by the present manufacturing method, as the electrolytic solution, for example, dimethoxyethane, diethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, propylene carbonate,
Methyl formate, dimethyl sulfoxide, acetonitrile, butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane,
LiAsF in an organic solvent such as ethyl methyl carbonate
6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiClO
A non-aqueous electrolyte solvent in which a Lewis acid such as 4 is dissolved, or a solid electrolyte can be used.

【0020】さらにセパレータ、電池ケース等の構造材
料等の他の要素についても従来公知の各種材料が使用で
き、特に制限はない。
Further, other conventionally known materials can be used for other elements such as structural materials such as a separator and a battery case, and there is no particular limitation.

【0021】[0021]

【実施例】以下実施例によって本発明のリチウム電池用
正極活物質の製造方法をさらに具体的に説明するが、本
発明はこれらによりなんら制限されるものではない。な
お、実施例において、電池の作成及び測定はアルゴン雰
囲気下のドライボックス内で行った。
EXAMPLES Hereinafter, the method for producing the positive electrode active material for a lithium battery of the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In addition, in the examples, the production and measurement of the battery were performed in a dry box under an argon atmosphere.

【0022】[0022]

【実施例1】図1は本発明によるリチウム電池用正極活
物質の製造方法によって得られた正極活物質を用いた電
池の一具体例であるコイン型電池の断面図であり、図中
1は封口板、2はガスケット、3は正極ケース、4は負
極、5はセパレータ、6は正極合剤ペレットを示す。
Example 1 FIG. 1 is a cross-sectional view of a coin-type battery, which is a specific example of a battery using the positive electrode active material obtained by the method for producing a positive electrode active material for a lithium battery according to the present invention. A sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, 5 is a separator, and 6 is a positive electrode material mixture pellet.

【0023】正極活物質は、次のようにして製造した試
料aを用いた。まず水酸化リチウム一水和物2モルと硝
酸ニッケル六水和物1モル(原子比でLi/Ni=2)
を混合し、大気中で700℃で10時間熱処理すること
により、LiNiO2とLiNiO2以外のリチウム化合
物との混合物を得た。X線回折により、LiNiO2
外のリチウム化合物は、LiOHを主成分とすることが
判明した。
As the positive electrode active material, a sample a manufactured as follows was used. First, 2 mol of lithium hydroxide monohydrate and 1 mol of nickel nitrate hexahydrate (atomic ratio of Li / Ni = 2)
Were mixed and heat-treated at 700 ° C. for 10 hours in the atmosphere to obtain a mixture of LiNiO 2 and a lithium compound other than LiNiO 2 . X-ray diffraction revealed that lithium compounds other than LiNiO 2 contained LiOH as a main component.

【0024】次にこの混合物に25℃、1リットルの水
を加えて混合物を洗浄し、LiNiO2以外のリチウム
化合物を水溶液中に溶かし、濾過によって除去すること
により、黒灰色固体試料を得た。この固体試料中のリチ
ウム含有率を原子吸光分析により、またニッケル含有率
を発光分光分析によって調べることにより、この試料の
化学組成式はLi0.99NiO1.99であることが判明し
た。この試料をaとする。この洗浄液中のリチウムイオ
ン濃度を原子吸光分析により調べたところ、1モル/リ
ットルであった。またこの洗浄液を蒸発により濃縮して
いったところ、25℃においては、溶液量が0.2リッ
トルになった時にリチウム化合物が飽和して、それ以上
溶液を濃縮するとリチウム化合物が析出することがわか
った。従って、25℃での水洗除去作業中のリチウム化
合物の濃度は、飽和濃度未満であることがわかった。
Next, 1 liter of water was added to this mixture at 25 ° C. to wash the mixture, and a lithium compound other than LiNiO 2 was dissolved in an aqueous solution and removed by filtration to obtain a black gray solid sample. By examining the lithium content in this solid sample by atomic absorption spectrometry and the nickel content by optical emission spectroscopy, the chemical composition formula of this sample was found to be Li 0.99 NiO 1.99 . This sample is designated as a. When the lithium ion concentration in this washing liquid was examined by atomic absorption spectrometry, it was 1 mol / liter. Further, when the washing liquid was concentrated by evaporation, it was found that at 25 ° C., the lithium compound was saturated when the solution amount reached 0.2 liters, and the lithium compound was precipitated when the solution was concentrated further. It was Therefore, it was found that the concentration of the lithium compound during the washing operation at 25 ° C. was less than the saturation concentration.

【0025】この正極活物質試料aを真空乾燥した後、
粉砕して粉末とし、導電剤(アセチレンブラック)、結
着剤(ポリテトラフルオロエチレン)と共に混合の上、
ロール成形し、正極合剤ペレット6(厚さ0.5mm、
直径15mm)とした。
After vacuum drying this positive electrode active material sample a,
After pulverized to a powder, mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene),
Roll forming, positive electrode mixture pellet 6 (0.5 mm thick,
(Diameter 15 mm).

【0026】次にステンレス製の封口板1上に金属リチ
ウムの負極4を加圧配置したものをポリプロピレン製ガ
スケット2の凹部に挿入し、負極4の上にポリプロピレ
ン製で微孔性のセパレータ5、正極合剤ペレット6をこ
の順序に配置し、電解液としてエチレンカーボネートと
ジメチルカーボネートの等容積混合溶媒にLiPF6
溶解させた1規定溶液を適量注入して含浸させた後に、
ステンレス製の正極ケース3を被せてかしめることによ
り、厚さ2mm、直径23mmのコイン型電池を作製し
た。
Next, a negative electrode 4 made of metallic lithium, which was placed under pressure on a stainless steel sealing plate 1, was inserted into a recess of a polypropylene gasket 2, and a polypropylene microporous separator 5 was placed on the negative electrode 4. After arranging the positive electrode material mixture pellets 6 in this order and injecting an appropriate amount of a 1N solution of LiPF 6 dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate as an electrolytic solution to impregnate it,
A coin-type battery having a thickness of 2 mm and a diameter of 23 mm was produced by covering and swaging a stainless steel positive electrode case 3.

【0027】このようにして作製した試料aを正極活物
質とする電池を、0.5mA/cm2の電流密度で、
4.3Vまで充電しその後3.0Vまで放電させた際の
放電容量を表に示す。放電容量が大きく、高エネルギー
密度電池として利用できる利点を有している。
A battery using the sample a thus prepared as a positive electrode active material was tested at a current density of 0.5 mA / cm 2 .
The table shows the discharge capacities when the battery was charged to 4.3V and then discharged to 3.0V. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery.

【0028】またこの電池を、0.5mA/cm2の充
放電電流密度で3.0V−4.3Vの電圧範囲規制で充
放電させた際の1回目の放電容量、及び10回目の放電
容量を表に示す。これから明らかなようにサイクルによ
る容量低下が少ないことがわかる。
Further, this battery was charged and discharged at a charge and discharge current density of 0.5 mA / cm 2 under a voltage range regulation of 3.0 V to 4.3 V, and the discharge capacity at the first time and the discharge capacity at the 10th time. Is shown in the table. It is apparent from this that the capacity decrease due to the cycle is small.

【0029】[0029]

【実施例2】実施例2では、以下のような製造方法によ
り得た正極活物質の試料bを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物0.2モルと硝酸ニッケル六水和物0.1モル
(原子比でLi/Ni=2)を混合し、大気中で700
℃で10時間熱処理することにより、LiNiO2とL
iNiO2以外のリチウム化合物との混合物を得た。X
線回折により、LiNiO2以外のリチウム化合物は、
LiOHを主成分とすることが判明した。
Example 2 In Example 2, a lithium battery was fabricated in the same manner as in Example 1, except that the positive electrode active material sample b obtained by the following manufacturing method was used. First, 0.2 mol of lithium hydroxide monohydrate and 0.1 mol of nickel nitrate hexahydrate (atomic ratio of Li / Ni = 2) were mixed, and 700
LiNiO 2 and L by heat treatment at ℃ for 10 hours
A mixture with a lithium compound other than iNiO 2 was obtained. X
By line diffraction, lithium compounds other than LiNiO 2
It was found that the main component was LiOH.

【0030】次にこの混合物に25℃、10リットルの
水を加えて混合物を洗浄し、LiNiO2以外のリチウ
ム化合物を水溶液中に溶かし、濾過によって除去するこ
とにより、黒灰色固体試料を得た。この固体試料中のリ
チウム含有率を原子吸光分析により、またニッケル含有
率を発光分光分析によって調べることにより、この試料
の化学組成式はLi0.97NiO1.97であることが判明し
た。この試料をbとする。この洗浄液中のリチウムイオ
ン濃度を原子吸光分析により調べたところ、0.01モ
ル/リットルであった。またこの洗浄液を蒸発により濃
縮していったところ、25℃においては、溶液量が0.
02リットルになった時にリチウム化合物が飽和して、
それ以上溶液を濃縮するとリチウム化合物が析出するこ
とがわかった。従って、25℃での水洗除去作業中のリ
チウム化合物の濃度は、飽和濃度未満であることがわか
った。
Next, 10 liters of water at 25 ° C. was added to this mixture to wash the mixture, and a lithium compound other than LiNiO 2 was dissolved in an aqueous solution and removed by filtration to obtain a black gray solid sample. By examining the lithium content of this solid sample by atomic absorption spectrometry and the nickel content by optical emission spectroscopy, it was found that the chemical composition formula of this sample was Li 0.97 NiO 1.97 . This sample is designated as b. When the lithium ion concentration in this washing solution was examined by atomic absorption spectrometry, it was 0.01 mol / liter. Further, when this washing solution was concentrated by evaporation, the solution amount was 0.
At 02 liters, the lithium compound saturates,
It was found that the lithium compound was precipitated when the solution was concentrated further. Therefore, it was found that the concentration of the lithium compound during the washing operation at 25 ° C. was less than the saturation concentration.

【0031】このようにして作製した試料bを正極活物
質とする電池を、0.5mA/cm2の電流密度で、
4.3Vまで充電しその後3.0Vまで放電させた際の
放電容量を表に示す。放電容量が大きく、高エネルギー
密度電池として利用できる利点を有している。
A battery using the sample b thus prepared as a positive electrode active material was tested at a current density of 0.5 mA / cm 2 .
The table shows the discharge capacities when the battery was charged to 4.3V and then discharged to 3.0V. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery.

【0032】またこの電池を、0.5mA/cm2の充
放電電流密度で3.0V−4.3Vの電圧範囲規制で充
放電させた際の1回目の放電容量、及び10回目の放電
容量を表に示す。これから明らかなようにサイクルによ
る容量低下が少ないことがわかる。
Further, this battery was charged and discharged at a charge and discharge current density of 0.5 mA / cm 2 under a voltage range regulation of 3.0 V to 4.3 V, and the discharge capacity at the first time and the discharge capacity at the 10th time. Is shown in the table. It is apparent from this that the capacity decrease due to the cycle is small.

【0033】[0033]

【実施例3】実施例3では、以下のような製造方法によ
り得た正極活物質の試料cを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物2モルと硝酸ニッケル六水和物0.9モルと硝
酸コバルト六水和物0.1(原子比でLi/(Ni+C
o)=2)を混合し、大気中で700℃で10時間熱処
理することにより、LiNi0.9Co0.12とLiNi
0.9Co0.12以外のリチウム化合物との混合物を得
た。X線回折により、LiNi0.9Co0.12以外のリ
チウム化合物は、LiOHを主成分とすることが判明し
た。
Example 3 In Example 3, a lithium battery was produced in the same manner as in Example 1, except that the sample c of the positive electrode active material obtained by the following manufacturing method was used. First, 2 mol of lithium hydroxide monohydrate, 0.9 mol of nickel nitrate hexahydrate and 0.1 mol of cobalt nitrate hexahydrate (atomic ratio of Li / (Ni + C
o) = 2) and heat treated in air at 700 ° C. for 10 hours to obtain LiNi 0.9 Co 0.1 O 2 and LiNi
A mixture with a lithium compound other than 0.9 Co 0.1 O 2 was obtained. X-ray diffraction revealed that lithium compounds other than LiNi 0.9 Co 0.1 O 2 contained LiOH as a main component.

【0034】次にこの混合物に25℃、1リットルの水
を加えて混合物を洗浄し、LiNi0.9Co0.12以外
のリチウム化合物を水溶液中に溶かし、濾過によって除
去することにより、黒灰色固体試料を得た。この固体試
料中のリチウム含有率を原子吸光分析により、またニッ
ケルおよびコバルトの含有率を発光分光分析によって調
べることにより、この試料の化学組成式はLi0.99Ni
0.9Co0.12であることが判明した。この試料をcと
する。この洗浄液中のリチウムイオン濃度を原子吸光分
析により調べたところ、1モル/リットルであった。ま
たこの洗浄液を蒸発により濃縮していったところ、25
℃においては、溶液量が0.2リットルになった時にリ
チウム化合物が飽和して、それ以上溶液を濃縮するとリ
チウム化合物が析出することがわかった。従って、25
℃での水洗除去作業中のリチウム化合物の濃度は、飽和
濃度未満であることがわかった。
Next, 1 liter of water was added to this mixture at 25 ° C. to wash the mixture, and a lithium compound other than LiNi 0.9 Co 0.1 O 2 was dissolved in an aqueous solution and removed by filtration to obtain a black gray solid sample. Got By examining the lithium content in this solid sample by atomic absorption spectrometry and the nickel and cobalt contents by optical emission spectroscopy, the chemical composition formula of this sample was Li 0.99 Ni.
It was found to be 0.9 Co 0.1 O 2 . This sample is designated as c. When the lithium ion concentration in this washing liquid was examined by atomic absorption spectrometry, it was 1 mol / liter. When the washing solution was concentrated by evaporation,
It was found that at 0 ° C., the lithium compound was saturated when the solution volume reached 0.2 liters, and the lithium compound was precipitated when the solution was concentrated further. Therefore, 25
It was found that the concentration of the lithium compound during the washing and removal operation at ℃ was less than the saturation concentration.

【0035】このようにして作製した試料cを正極活物
質とする電池を、0.5mA/cm2の電流密度で、
4.3Vまで充電しその後3.0Vまで放電させた際の
放電容量を表に示す。放電容量が大きく、高エネルギー
密度電池として利用できる利点を有している。
A battery using the sample c thus prepared as a positive electrode active material was tested at a current density of 0.5 mA / cm 2 .
The table shows the discharge capacities when the battery was charged to 4.3V and then discharged to 3.0V. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery.

【0036】またこの電池を、0.5mA/cm2の充
放電電流密度で3.0V−4.3Vの電圧範囲規制で充
放電させた際の1回目の放電容量、及び10回目の放電
容量を表に示す。これから明らかなようにサイクルによ
る容量低下が少ないことがわかる。
Further, this battery was charged and discharged at a charge / discharge current density of 0.5 mA / cm 2 in a voltage range regulation of 3.0 V to 4.3 V, and the first discharge capacity and the 10th discharge capacity. Is shown in the table. It is apparent from this that the capacity decrease due to the cycle is small.

【0037】[0037]

【実施例4】実施例4では、以下のような製造方法によ
り得た正極活物質の試料dを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物2モルと硝酸ニッケル六水和物1モル(原子比
でLi/Ni=2)を混合し、大気中で700℃で10
時間熱処理することにより、LiNiO2とLiNiO2
以外のリチウム化合物との混合物を得た。X線回折によ
り、LiNiO2以外のリチウム化合物は、LiOHを
主成分とすることが判明した。次にこの混合物に50
℃、0.25リットルの水を加えて混合物を洗浄し、L
iNiO2以外のリチウム化合物を水溶液中に溶かし、
濾過によって除去することにより、黒灰色固体試料を得
た。この固体試料中のリチウム含有率を原子吸光分析に
より、またニッケル含有率を発光分光分析によって調べ
ることにより、この試料の化学組成式はLi1.00NiO
2.00であることが判明した。この試料をdとする。この
洗浄液中のリチウムイオン濃度を原子吸光分析により調
べたところ、4モル/リットルであった。またこの洗浄
液を蒸発により濃縮していったところ、50℃において
は、溶液量が0.20リットルになった時にリチウム化
合物が飽和して、それ以上溶液を濃縮するとリチウム化
合物が析出することがわかった。従って、50℃での水
洗除去作業中のリチウム化合物の濃度は、飽和濃度未満
であることがわかった。
Example 4 In Example 4, a lithium battery was manufactured in the same manner as in Example 1 except that the sample d of the positive electrode active material obtained by the following manufacturing method was used. First, 2 mol of lithium hydroxide monohydrate and 1 mol of nickel nitrate hexahydrate (atomic ratio of Li / Ni = 2) were mixed, and the mixture was mixed in air at 700 ° C. for 10 minutes.
LiNiO 2 and LiNiO 2 by heat treatment for a time
A mixture with other lithium compounds was obtained. X-ray diffraction revealed that lithium compounds other than LiNiO 2 contained LiOH as a main component. Then add 50 to this mixture.
C., wash the mixture with the addition of 0.25 liters of water, L
Dissolve a lithium compound other than iNiO 2 in an aqueous solution,
A black gray solid sample was obtained by removal by filtration. By examining the lithium content in this solid sample by atomic absorption spectrometry and the nickel content by optical emission spectroscopy, the chemical composition formula of this sample was Li 1.00 NiO.
It turned out to be 2.00 . This sample is referred to as d. When the lithium ion concentration in this washing solution was examined by atomic absorption spectrometry, it was 4 mol / liter. Further, when the washing solution was concentrated by evaporation, it was found that at 50 ° C., the lithium compound was saturated when the solution amount reached 0.20 liters, and the lithium compound was precipitated when the solution was concentrated further. It was Therefore, it was found that the concentration of the lithium compound during the washing operation at 50 ° C. was less than the saturation concentration.

【0038】このようにして作製した試料dを正極活物
質とする電池を、0.5mA/cm2の電流密度で、
4.3Vまで充電しその後3.0Vまで放電させた際の
放電容量を表に示す。放電容量が大きく、高エネルギー
密度電池として利用できる利点を有している。
A battery using the thus prepared sample d as a positive electrode active material was tested at a current density of 0.5 mA / cm 2 .
The table shows the discharge capacities when the battery was charged to 4.3V and then discharged to 3.0V. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery.

【0039】またこの電池を、0.5mA/cm2の充
放電電流密度で3.0V−4.3Vの電圧範囲規制で充
放電させた際の1回目の放電容量、及び10回目の放電
容量を表に示す。これから明らかなようにサイクルによ
る容量低下が少ないことがわかる。
Further, this battery was charged and discharged at a charge and discharge current density of 0.5 mA / cm 2 under a voltage range regulation of 3.0 V to 4.3 V, and the first discharge capacity and the 10th discharge capacity. Is shown in the table. It is apparent from this that the capacity decrease due to the cycle is small.

【0040】[0040]

【実施例5】実施例5では、以下のような製造方法によ
り得た正極活物質の試料eを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物0.02モルと硝酸ニッケル六水和物0.01
モル(原子比でLi/Ni=2)を混合し、大気中で7
00℃で10時間熱処理することにより、LiNiO2
とLiNiO2以外のリチウム化合物との混合物を得
た。X線回折により、LiNiO2以外のリチウム化合
物は、LiOHを主成分とすることが判明した。
Example 5 In Example 5, a lithium battery was manufactured in the same manner as in Example 1 except that the positive electrode active material sample e obtained by the following manufacturing method was used. First, 0.02 mol of lithium hydroxide monohydrate and 0.01 mol of nickel nitrate hexahydrate
Molar mixture (atomic ratio of Li / Ni = 2) was mixed,
By heat treating at 00 ° C. for 10 hours, LiNiO 2
And a lithium compound other than LiNiO 2 was obtained. X-ray diffraction revealed that lithium compounds other than LiNiO 2 contained LiOH as a main component.

【0041】次にこの混合物に水酸化リチウム一水和物
10モルと25℃、10リットルの水を加えて混合物を
洗浄し、LiNiO2以外のリチウム化合物を水溶液中
に溶かし、濾過によって除去することにより、黒灰色固
体試料を得た。この固体試料中のリチウム含有率を原子
吸光分析により、またニッケル含有率を発光分光分析に
よって調べることにより、この試料の化学分析値はLi
0.99NiO1.99であることが判明した。この試料をeと
する。この洗浄液中のリチウムイオン濃度を原子吸光分
析により調べたところ、1モル/リットルであった。ま
たこの洗浄液を蒸発により濃縮していったところ、25
℃においては、溶液量が2リットルになった時にリチウ
ム化合物が飽和して、それ以上溶液を濃縮するとリチウ
ム化合物が析出することがわかった。従って、25℃で
の水洗除去作業中のリチウム化合物の濃度は、飽和濃度
未満であることがわかった。
Next, 10 mol of lithium hydroxide monohydrate and 10 liters of water at 25 ° C. are added to this mixture to wash the mixture, and lithium compounds other than LiNiO 2 are dissolved in an aqueous solution and removed by filtration. A black gray solid sample was obtained. By examining the lithium content in this solid sample by atomic absorption spectrometry and the nickel content by optical emission spectroscopy, the chemical analysis value of this sample was Li.
It was found to be 0.99 NiO 1.99 . This sample is referred to as e. When the lithium ion concentration in this washing liquid was examined by atomic absorption spectrometry, it was 1 mol / liter. When the washing solution was concentrated by evaporation,
At ° C, it was found that the lithium compound was saturated when the solution amount became 2 liters, and the lithium compound was precipitated when the solution was concentrated further. Therefore, it was found that the concentration of the lithium compound during the washing operation at 25 ° C. was less than the saturation concentration.

【0042】このようにして作製した試料dを正極活物
質とする電池を、0.5mA/cm 2の電流密度で、
4.3Vまで充電しその後3.0Vまで放電させた際の
放電容量を表に示す。放電容量が大きく、高エネルギー
密度電池として利用できる利点を有している。
Sample d thus prepared was used as a positive electrode active material.
Quality battery, 0.5mA / cm TwoWith the current density of
When charging to 4.3V and then discharging to 3.0V
The discharge capacity is shown in the table. Large discharge capacity and high energy
It has the advantage that it can be used as a density battery.

【0043】またこの電池を、0.5mA/cm2の充
放電電流密度で3.0V−4.3Vの電圧範囲規制で充
放電させた際の1回目の放電容量、及び10回目の放電
容量を表に示す。これから明らかなようにサイクルによ
る容量低下が少ないことがわかる。
Further, this battery was charged and discharged at a charge / discharge current density of 0.5 mA / cm 2 within a voltage range regulation of 3.0 V to 4.3 V, and the first discharge capacity and the 10th discharge capacity. Is shown in the table. It is apparent from this that the capacity decrease due to the cycle is small.

【0044】実施例1〜5では、具体的なX、Y、Mを
有する組成式LiXNi1-YYZ(0≦X≦1.1、0
≦Y≦0.5、1.8≦Z≦2.2、Mは遷移金属、I
IIB族、IVB族、VB族に属する元素)で与えられ
る複酸化物であるリチウム電池用正極活物質の具体的な
製造例について示したが、組成式LiXNi1-YY
Z(0≦X≦1.1、0≦Y≦0.5、1.8≦Z≦
2.2、Mは遷移金属、IIIB族、IVB族、VB族
に属する元素)で与えられる複酸化物であるリチウム電
池用正極活物質の他の製造方法であっても、原子比でL
i/(Ni+M)>1となるようにリチウム化合物とニ
ッケル化合物と元素Mの化合物を混合してその混合物を
熱処理した後にLiXNi1-YYZ以外のリチウム化合
物を水またはリチウム化合物を溶解した水溶液を用いて
洗浄除去する場合において洗浄液中の全リチウムイオン
濃度が0.01モル/リットル、好ましくは1モル/リ
ットル以上であり、かつ洗浄液中のLiXNi1-YYZ
以外のリチウム化合物が洗浄を行う温度において洗浄液
に飽和せず完全に溶解できるように洗浄液を調整したも
のであることを特徴とする場合は、同様の効果を生じる
ことは言うまでもない。
In Examples 1 to 5, the composition formula Li X Ni 1-Y M Y O Z (0 ≦ X ≦ 1.1, 0) having specific X, Y and M was used.
≦ Y ≦ 0.5, 1.8 ≦ Z ≦ 2.2, M is a transition metal, I
A specific production example of the positive electrode active material for a lithium battery, which is a complex oxide given by the IIB group, the IVB group, and the VB group) is shown. The composition formula Li X Ni 1-Y M Y O
Z (0 ≦ X ≦ 1.1, 0 ≦ Y ≦ 0.5, 1.8 ≦ Z ≦
2.2, M is a transition metal, a compound belonging to IIIB group, IVB group, and VB group), which is a complex oxide provided by a positive electrode active material for a lithium battery.
A lithium compound, a nickel compound, and a compound of the element M are mixed so that i / (Ni + M)> 1, and the mixture is heat-treated, and then a lithium compound other than Li X Ni 1-Y M Y O Z is added to water or a lithium compound. In the case of removing by washing with an aqueous solution in which is dissolved, the total lithium ion concentration in the washing liquid is 0.01 mol / liter, preferably 1 mol / liter or more, and Li X Ni 1-Y M Y O in the washing liquid is Z
Needless to say, when the cleaning liquid is prepared so that the other lithium compounds are not saturated in the cleaning liquid at the cleaning temperature and can be completely dissolved in the cleaning liquid, the same effect is produced.

【0045】[0045]

【比較例1】比較例1では、以下のような製造方法によ
り得た正極活物質の試料fを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物0.02モルと硝酸ニッケル六水和物0.01
モル(原子比でLi/Ni=2)を混合し、大気中で7
00℃で10時間熱処理することにより、LiNiO 2
とLiNiO2以外のリチウム化合物との混合物を得
た。X線回折により、LiNiO2以外のリチウム化合
物は、LiOHを主成分とすることが判明した。
Comparative Example 1 In Comparative Example 1, the following manufacturing method is used.
The same as in Example 1 except that the obtained positive electrode active material sample f was used.
Thus, a lithium battery was produced. First lithium hydroxide
Monohydrate 0.02 mol and nickel nitrate hexahydrate 0.01
Molar mixture (atomic ratio of Li / Ni = 2) was mixed,
By heat treatment at 00 ° C. for 10 hours, LiNiO 2 Two
And LiNiOTwoTo obtain a mixture with a lithium compound other than
Was. By X-ray diffraction, LiNiOTwoOther than lithium compounds
It was found that the product had LiOH as a main component.

【0046】次にこの混合物に25℃、10リットルの
水を加えて混合物を洗浄し、LiNiO2以外のリチウ
ム化合物を水溶液中に溶かし、濾過によって除去するこ
とにより、黒灰色固体試料を得た。この固体試料中のリ
チウム含有率を原子吸光分析により、またニッケル含有
率を発光分光分析によって調べることにより、この試料
の化学分析値はLi0.93NiO1.93であることが判明し
た。この試料をfとする。この洗浄液中のリチウムイオ
ン濃度を原子吸光分析により調べたところ、0.001
モル/リットルであった。
Next, 10 liters of water at 25 ° C. was added to this mixture to wash the mixture, and a lithium compound other than LiNiO 2 was dissolved in an aqueous solution and removed by filtration to obtain a black gray solid sample. By examining the lithium content in this solid sample by atomic absorption spectrometry and the nickel content by optical emission spectroscopy, it was found that the chemical analysis value of this sample was Li 0.93 NiO 1.93 . Let this sample be f. When the lithium ion concentration in this cleaning liquid was examined by atomic absorption spectrometry, it was 0.001.
Mol / l.

【0047】このようにして作製した試料eを正極活物
質とする電池を、0.5mA/cm2の電流密度で、
4.3Vまで充電しその後3.0Vまで放電させた際の
放電容量を表に示す。この電池と比較すると、本発明の
実施例で製造した正極活物質を有する電池は、放電容量
が大きいことがわかる。
A battery using the thus-prepared sample e as a positive electrode active material was tested at a current density of 0.5 mA / cm 2 .
The table shows the discharge capacities when the battery was charged to 4.3V and then discharged to 3.0V. As compared with this battery, it can be seen that the battery having the positive electrode active material manufactured in the example of the present invention has a large discharge capacity.

【0048】[0048]

【比較例2】比較例2では、以下のような製造方法によ
り得た正極活物質の試料gを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物2モルと硝酸ニッケル六水和物1モル(原子比
でLi/Ni=2)を混合し、大気中で700℃で10
時間熱処理することにより、LiNiO2とLiNiO2
以外のリチウム化合物との混合物を得た。X線回折によ
り、LiNiO2以外のリチウム化合物は、LiOHを
主成分とすることが判明した。
Comparative Example 2 In Comparative Example 2, a lithium battery was produced in the same manner as in Example 1 except that Sample g of the positive electrode active material obtained by the following manufacturing method was used. First, 2 mol of lithium hydroxide monohydrate and 1 mol of nickel nitrate hexahydrate (atomic ratio of Li / Ni = 2) were mixed, and the mixture was mixed in air at 700 ° C. for 10 minutes.
LiNiO 2 and LiNiO 2 by heat treatment for a time
A mixture with other lithium compounds was obtained. X-ray diffraction revealed that lithium compounds other than LiNiO 2 contained LiOH as a main component.

【0049】次にこの混合物に25℃、1リットルの水
を加えて混合物を洗浄し、LiNiO2以外のリチウム
化合物を水溶液中に溶かして濾過によって除去し、得ら
れた黒灰色固体試料をさらにもう一度、25℃、1リッ
トルの水を加えて洗浄し、洗浄液を濾過によって除去す
ることにより、黒灰色固体試料を得た。この固体試料中
のリチウム含有率を原子吸光分析により、またニッケル
含有率を発光分光分析によって調べることにより、この
試料の化学分析値はLi0.93NiO1.93であることが判
明した。この試料をgとする。二回目の洗浄液中のリチ
ウムイオン濃度を原子級光分析により調べたところ、
0.001モル/リットルであった。
Next, 1 liter of water was added to this mixture at 25 ° C. to wash the mixture, and a lithium compound other than LiNiO 2 was dissolved in an aqueous solution and removed by filtration, and the obtained black gray solid sample was further added once again. At 25 ° C., 1 liter of water was added for washing, and the washing liquid was removed by filtration to obtain a black gray solid sample. By examining the lithium content in this solid sample by atomic absorption spectrometry and the nickel content by optical emission spectroscopy, it was found that the chemical analysis value of this sample was Li 0.93 NiO 1.93 . Let this sample be g. When the lithium ion concentration in the second cleaning liquid was examined by atomic-grade optical analysis,
It was 0.001 mol / liter.

【0050】このようにして作製した試料fを正極活物
質とする電池を、0.5mA/cm2の電流密度で、
4.3Vまで充電しその後3.0Vまで放電させた際の
放電容量を表に示す。この電池と比較すると、本発明の
実施例で製造した正極活物質を有する電池は、放電容量
が大きいことがわかる。
A battery using the thus prepared sample f as a positive electrode active material was tested at a current density of 0.5 mA / cm 2 .
The table shows the discharge capacities when the battery was charged to 4.3V and then discharged to 3.0V. As compared with this battery, it can be seen that the battery having the positive electrode active material manufactured in the example of the present invention has a large discharge capacity.

【0051】[0051]

【比較例3】比較例3では、以下のような製造方法によ
り得た正極活物質の試料hを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物2モルと硝酸ニッケル六水和物1モル(原子比
でLi/Ni=2)を混合し、大気中で700℃で10
時間熱処理することにより、LiNiO2とLiNiO2
以外のリチウム化合物との混合物を得た。X線回折によ
り、LiNiO2以外のリチウム化合物は、LiOHを
主成分とすることが判明した。
Comparative Example 3 In Comparative Example 3, a lithium battery was manufactured in the same manner as in Example 1 except that the positive electrode active material sample h obtained by the following manufacturing method was used. First, 2 mol of lithium hydroxide monohydrate and 1 mol of nickel nitrate hexahydrate (atomic ratio of Li / Ni = 2) were mixed, and the mixture was mixed in air at 700 ° C. for 10 minutes.
LiNiO 2 and LiNiO 2 by heat treatment for a time
A mixture with other lithium compounds was obtained. X-ray diffraction revealed that lithium compounds other than LiNiO 2 contained LiOH as a main component.

【0052】次にこの混合物に25℃、10リットルの
水を加えて混合物を洗浄したが、LiNiO2以外のリ
チウム化合物が水溶液中に溶けきれず、25℃での水洗
除去作業中のリチウム化合物の濃度は、飽和濃度を越え
ていることがわかった。溶液を濾過したが、得られた固
体は、LiNiO2とLiNiO2以外のリチウム化合物
との混合物試料であった。X線回折により、LiNiO
2以外のリチウム化合物は、LiOHを主成分とするこ
とが判明した。この試料をhとする。
Next, 10 liters of water at 25 ° C. was added to this mixture to wash the mixture. However, the lithium compounds other than LiNiO 2 could not be completely dissolved in the aqueous solution, and the lithium compound during the washing and removal work at 25 ° C. It was found that the concentration exceeded the saturation concentration. The solution was filtered and the solid obtained was a mixture sample of LiNiO 2 and a lithium compound other than LiNiO 2 . By X-ray diffraction, LiNiO
It was found that lithium compounds other than 2 have LiOH as a main component. This sample is designated as h.

【0053】このようにして作製した試料gを正極活物
質とする電池を、0.5mA/cm2の電流密度で、
4.3Vまで充電したところ、ショートが発生し、以降
の充放電は不可能であった。この電池と比較すると、本
発明の実施例で製造した正極活物質を有する電池は、放
電容量が大きいことがわかる。
A battery using the thus prepared sample g as a positive electrode active material was tested at a current density of 0.5 mA / cm 2 .
When the battery was charged to 4.3 V, a short circuit occurred, and subsequent charging / discharging was impossible. As compared with this battery, it can be seen that the battery having the positive electrode active material manufactured in the example of the present invention has a large discharge capacity.

【0054】 [0054]

【0055】[0055]

【発明の効果】以上説明したように、本発明によれば、
放電容量が大きいリチウム電池を実現するリチウム電池
用正極活物質を製造することができ、携帯用の種々の電
子機器の電源を始め、さまざまな分野に利用できるとい
う利点を有する。
As described above, according to the present invention,
A positive electrode active material for a lithium battery, which realizes a lithium battery having a large discharge capacity, can be manufactured, and it has an advantage that it can be used in various fields including a power source for various portable electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるコイン型電池の構成例
を示す断念図。
FIG. 1 is an abandoned diagram showing a configuration example of a coin battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 封口板 2 ガスケット 3 正極ケース 4 負極 5 セパレータ 6 正極合剤ペレット DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Gasket 3 Positive electrode case 4 Negative electrode 5 Separator 6 Positive electrode mixture pellet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山木 準一 東京都新宿区西新宿3丁目19番2号 日本 電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Junichi Yamaki 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】組成式LiXNi1-YYZ(0≦X≦1.
1、0≦Y≦0.5、1.8≦Z≦2.2、Mは遷移金
属、IIIB族、IVB族、VB族に属する元素)で与
えられる複酸化物であるリチウム電池用正極活物質の製
造方法において、原子比でLi/(Ni+M)>1とな
るようにリチウム化合物とニッケル化合物と元素Mの化
合物を混合してその混合物を熱処理した後に、LiX
1-YYZ以外のリチウム化合物を水またはリチウム
化合物を溶解した水溶液を洗浄液に用いて洗浄除去する
場合に、洗浄液中の全リチウムイオン濃度が0.01モ
ル/リットル以上であり、かつ洗浄液中のLiXNi1-Y
YZ以外のリチウム化合物が洗浄を行う温度において
洗浄液に飽和せず完全に溶解できるように洗浄液を調整
したものであることを特徴とするリチウム電池用正極活
物質の製造方法。
A composition formula Li x Ni 1-Y M Y O Z (0 ≦ X ≦ 1.
1, 0 ≦ Y ≦ 0.5, 1.8 ≦ Z ≦ 2.2, M is a transition metal, an element belonging to the IIIB group, the IVB group, and the VB group) and is a positive electrode active material for a lithium battery. In the method for producing a substance, a lithium compound, a nickel compound, and a compound of the element M are mixed so that the atomic ratio is Li / (Ni + M)> 1, and the mixture is heat-treated, and then Li X N
When a lithium compound other than i 1 -Y M Y O Z is washed and removed using water or an aqueous solution in which the lithium compound is dissolved as a washing liquid, the total lithium ion concentration in the washing liquid is 0.01 mol / liter or more, And Li X Ni 1-Y in the cleaning liquid
A method for producing a positive electrode active material for a lithium battery, characterized in that the cleaning liquid is adjusted so that a lithium compound other than M Y O Z can be completely dissolved in the cleaning liquid at a cleaning temperature without being saturated.
【請求項2】前記洗浄液中のリチウムイオン濃度が1モ
ル/リットル以上であることを特徴とする請求項1のリ
チウム電池用正極活物質の製造方法。
2. The method for producing a positive electrode active material for a lithium battery according to claim 1, wherein the concentration of lithium ions in the cleaning liquid is 1 mol / liter or more.
JP8090013A 1996-03-19 1996-03-19 Manufacture of positive electrode active material for lithium battery Pending JPH09259879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8090013A JPH09259879A (en) 1996-03-19 1996-03-19 Manufacture of positive electrode active material for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8090013A JPH09259879A (en) 1996-03-19 1996-03-19 Manufacture of positive electrode active material for lithium battery

Publications (1)

Publication Number Publication Date
JPH09259879A true JPH09259879A (en) 1997-10-03

Family

ID=13986804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8090013A Pending JPH09259879A (en) 1996-03-19 1996-03-19 Manufacture of positive electrode active material for lithium battery

Country Status (1)

Country Link
JP (1) JPH09259879A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203549A (en) * 2000-12-28 2002-07-19 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and treatment method of the positive electrode active substance
KR100821523B1 (en) * 2006-08-30 2008-04-14 주식회사 엘 앤 에프 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery coprising the same
JP2008198363A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2009099461A (en) * 2007-10-18 2009-05-07 Toyota Motor Corp Manufacturing method of cathode active material, cathode electrode plate for non-aqueous secondary battery, and non-aqueous secondary battery
WO2010064440A1 (en) 2008-12-04 2010-06-10 戸田工業株式会社 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
WO2011155523A1 (en) 2010-06-09 2011-12-15 戸田工業株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
US8158283B2 (en) 2006-03-30 2012-04-17 Sumitomo Metal Mining Co., Ltd. Lithium/nickel composite oxide positive electrode active material for non-aqueous electrolyte-based secondary battery and battery using the same
US8187747B2 (en) 2006-03-30 2012-05-29 Sumitomo Metal Mining Co., Ltd. Positive Electrode active material for non-aqueous electrolyte-based secondary battery, production method therefor and non-aqueous electrolyte-based secondary battery using the same
JP2017045633A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203549A (en) * 2000-12-28 2002-07-19 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and treatment method of the positive electrode active substance
US8158283B2 (en) 2006-03-30 2012-04-17 Sumitomo Metal Mining Co., Ltd. Lithium/nickel composite oxide positive electrode active material for non-aqueous electrolyte-based secondary battery and battery using the same
US8187747B2 (en) 2006-03-30 2012-05-29 Sumitomo Metal Mining Co., Ltd. Positive Electrode active material for non-aqueous electrolyte-based secondary battery, production method therefor and non-aqueous electrolyte-based secondary battery using the same
KR100821523B1 (en) * 2006-08-30 2008-04-14 주식회사 엘 앤 에프 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery coprising the same
JP2008198363A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2009099461A (en) * 2007-10-18 2009-05-07 Toyota Motor Corp Manufacturing method of cathode active material, cathode electrode plate for non-aqueous secondary battery, and non-aqueous secondary battery
WO2010064440A1 (en) 2008-12-04 2010-06-10 戸田工業株式会社 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
KR20170106519A (en) 2008-12-04 2017-09-20 도다 고교 가부시끼가이샤 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
WO2011155523A1 (en) 2010-06-09 2011-12-15 戸田工業株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP2017045633A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
EP3208872B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR100389052B1 (en) Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same
JP4137635B2 (en) Positive electrode active material and non-aqueous secondary battery
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JPH08138669A (en) Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
EP3778492A1 (en) Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
EP3678236B1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
KR20180069830A (en) A positive electrode active material for a lithium secondary battery, a method for producing a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery and a lithium secondary battery
JP2008120679A (en) Lithium-containing compound oxide, method for producing the same, and nonaqueous secondary battery
EP1009056B1 (en) Non-aqueous electrolyte secondary battery
KR20040111488A (en) Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
JP2003151549A (en) Layered oxide electrode material and its manufacturing method and battery using the same
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JPH09259879A (en) Manufacture of positive electrode active material for lithium battery
JP3667468B2 (en) Nonaqueous electrolyte lithium secondary battery and method for producing positive electrode material thereof
WO2011096236A1 (en) Process for production of composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP3532139B2 (en) Method for producing nickel-containing oxide electrode material and battery using the electrode material
EP3761413A1 (en) Lithium metal composite oxide, lithium secondary battery positive electrode active material, positive electrode, and lithium secondary battery
JPH08287914A (en) Lithium battery
JP3625629B2 (en) Nickel oxide cathode material manufacturing method and battery using nickel oxide manufactured by the method
JP3289256B2 (en) Method for producing positive electrode active material for lithium battery
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JP2001068113A (en) Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JPH06215800A (en) Lithium battery