JPH06215800A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH06215800A
JPH06215800A JP5284263A JP28426393A JPH06215800A JP H06215800 A JPH06215800 A JP H06215800A JP 5284263 A JP5284263 A JP 5284263A JP 28426393 A JP28426393 A JP 28426393A JP H06215800 A JPH06215800 A JP H06215800A
Authority
JP
Japan
Prior art keywords
lithium
active material
electrode active
positive electrode
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5284263A
Other languages
Japanese (ja)
Other versions
JP3339519B2 (en
Inventor
So Arai
創 荒井
Shigeto Okada
重人 岡田
Hideaki Otsuka
秀昭 大塚
Junichi Yamaki
準一 山木
Masahiro Ichimura
雅弘 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28426393A priority Critical patent/JP3339519B2/en
Publication of JPH06215800A publication Critical patent/JPH06215800A/en
Application granted granted Critical
Publication of JP3339519B2 publication Critical patent/JP3339519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To solve the existing problems such as insufficient charge and discharge capacity of a high voltage part and poor shelf life characteristic, and provide a lithium battery with large charge and discharge energy and excellent shelf life characteristic. CONSTITUTION:A lithium battery contains, as a positive electrode active material, a complex oxide represented by the composition formula: LiNi1-xM2O2 (M is an element capable of forming a positive ion other than Ni, Co which partially substitutes Ni of LiNiO2, 0<X<=0.5) in which the peak intensity of spacing 4.72+0.03 A to the peak intensity of spacing 2.03+0.02 A is 1.2 times or more. Thus, a small-sized lithium battery with large charge and discharge energy and good shelf life characteristic can be constituted, and utilized in various fields including a power source for various portable electronic equipments.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム電池、さらに詳
細には、充放電可能なリチウム二次電池に関し、特に充
放電エネルギーが大きく、かつ保存特性に優れた電池を
提供する正極活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly to a lithium secondary battery which can be charged and discharged, and more particularly to a positive electrode active material which provides a battery having large charge and discharge energy and excellent storage characteristics. Is.

【0002】[0002]

【従来の技術および問題点】リチウム等のアルカリ金属
およびその合金を負極活物質とする非水電解液電池は、
負極金属イオンの正極活物質へのインサーションもしく
はインターカレーション反応によって、その大放電容量
と充電可逆性を両立させている。従来から、リチウムを
負極活物質として用いる二次電池としては、二硫化チタ
ンや五酸化バナジウムなどの層状もしくはトンネル状酸
化物を正極活物質に用いた電池が提案されているが、こ
れらは電圧が低く、また充放電容量、ひいては充放電エ
ネルギーも充分とは言えなかった。
2. Description of the Related Art Non-aqueous electrolyte batteries using an alkali metal such as lithium and its alloys as a negative electrode active material are
The large discharge capacity and the reversibility of charge are made compatible by the insertion or intercalation reaction of the negative electrode metal ion to the positive electrode active material. Conventionally, as a secondary battery using lithium as a negative electrode active material, a battery using a layered or tunnel oxide such as titanium disulfide or vanadium pentoxide as a positive electrode active material has been proposed. It was low, and the charge / discharge capacity, and thus the charge / discharge energy, was not sufficient.

【0003】以上のような欠点を克服する方法として、
リチウムを含有する化合物を正極活物質として利用する
ことが提案されており、初期充電でリチウムを電気化学
的に脱離し同時に正極活物質の酸化反応を行なうことに
より電圧が4V付近と高く、しかもリチウムイオン導電
性に優れたリチウム電池を可能としている。この例とし
てはLiMn24(特許公報昭58−34414な
ど)、LiCoO2(Mizushima et al., Mat.Res.Bul
l., 15, 783 (1990)など)が挙げられる。
As a method for overcoming the above drawbacks,
It has been proposed to use a compound containing lithium as a positive electrode active material, and electrochemically desorbs lithium during initial charging to simultaneously carry out an oxidation reaction of the positive electrode active material, resulting in a high voltage of around 4 V. This enables lithium batteries with excellent ionic conductivity. Examples of this are LiMn 2 O 4 (Patent Publication No. 58-34414, etc.) and LiCoO 2 (Mizushima et al., Mat.Res.Bul).
l., 15 , 783 (1990)).

【0004】[0004]

【発明が解決しようとする課題】上記の4V系正極材料
は、いずれも高電圧部の充放電容量が不充分であるとい
う課題がある。LiMn24では、Li/Mn>0.5
以上の充電をするとヤーンテラー効果により電圧が3V
以下に降下すると考えられており、その4V領域は15
4mAh/gに限定されている(T. Ohzuku et al., J.
Electrochem. Soc., 137, 769 (1990)など)。LiC
oO2では、大容量化を狙って充電時に多くのリチウム
を脱離させると、酸素層の静電的な反発によって結晶構
造が保たれていないために、充分な充放電容量は得られ
ていない。またLiCoO2の場合、原材料であるコバ
ルト化合物が非常に高価であるという欠点もある。
All of the above 4V type positive electrode materials have a problem that the charge / discharge capacity of the high voltage part is insufficient. Li / Mn> 0.5 for LiMn 2 O 4.
With the above charging, the voltage is 3V due to the yarn teller effect.
It is thought that it will fall below, and its 4V region is 15
Limited to 4 mAh / g (T. Ohzuku et al., J.
Electrochem. Soc., 137 , 769 (1990)). LiC
In oO 2 , when a large amount of lithium is desorbed during charging for the purpose of increasing the capacity, a sufficient charge / discharge capacity cannot be obtained because the crystal structure is not maintained due to electrostatic repulsion of the oxygen layer. . Further, in the case of LiCoO 2 , there is a drawback that the cobalt compound as a raw material is very expensive.

【0005】LiNiO2は、LiMn24およびLi
CoO2に比べて良好な容量特性を有し、最も大きなエ
ネルギー密度を実現できる点で有望である。しかしLi
CoO2と同様、充電により多くのリチウム脱離をした
場合に結晶構造が保持されていないため、保存特性が悪
く、実用化が困難であるという欠点を有する。このため
置換系LiNi1-xCox2も検討されてきたが、保存
特性がやはり優れないという欠点があった。
LiNiO 2 is composed of LiMn 2 O 4 and Li
It has good capacity characteristics compared to CoO 2 and is promising in that it can realize the largest energy density. But Li
Similar to CoO 2 , the crystal structure is not retained when a large amount of lithium is desorbed by charging, so that it has poor storage characteristics and is difficult to put into practical use. Therefore, the substitution system LiNi 1-x Co x O 2 has also been studied, but it has a drawback that the storage characteristics are still not excellent.

【0006】[0006]

【発明の目的】本発明は、上記のように高電圧部の充放
電容量が不充分、保存特性が悪いといった現状の課題を
解決し、充放電エネルギーが大きく保存特性に優れたリ
チウム電池を提供することを目的とする。
An object of the present invention is to provide a lithium battery having a large charging / discharging energy and excellent storage characteristics, which solves the present problems that the charge / discharge capacity of the high voltage part is insufficient and the storage characteristics are poor. The purpose is to do.

【0007】[0007]

【問題点を解決するための手段】かかる目的を達成する
ために本発明リチウム電池では、X線回折分析において
面間隔2.03±0.02Åのピーク強度に対する面間
隔4.72±0.03Åのピーク強度が1.2倍以上で
ある組成式LiNi1-xx2(MはLiNiO2のNi
を部分的に置換するNi、Co以外の陽イオンとなり得
る元素、0<X≦0.5)で与えられる複酸化物、特に
原子比でLi/(Ni+M)≧2となるようにニッケル
塩と前記Mの塩およびリチウム塩を混合して加熱焼成し
た後過剰のリチウムを洗浄除去して得られる組成式Li
Ni1-xx2(0<X≦0.5)で与えられ、さらに
前記Mが周期律表のIIIA族あるいはIIIB族の元素であ
る複酸化物を正極活物質として含み、リチウムまたはそ
の化合物を負極活物質とし、前記正極活物質および前記
負極活物質に対して化学的に安定でありかつリチウムイ
オンが前記正極活物質あるいは前記負極活物質と電気化
学反応をするための移動を行い得る物質を電解質物質と
したことを特徴としている。
In order to achieve the above object, in the lithium battery of the present invention, in the X-ray diffraction analysis, the interplanar spacing is 4.72 ± 0.03Å with respect to the peak intensity of the interplanar spacing of 2.03 ± 0.02Å. Of the composition formula LiNi 1-x M x O 2 (M is LiNiO 2 Ni
An element that can be a cation other than Ni and Co that partially substitutes the element, a complex oxide given by 0 <X ≦ 0.5), especially a nickel salt so that Li / (Ni + M) ≧ 2 in atomic ratio. A composition formula Li obtained by mixing the M salt and the lithium salt, heating and baking the mixture, and then washing and removing excess lithium.
Ni 1-x M x O 2 (0 <X ≦ 0.5), wherein M is a group IIIA or IIIB element of the periodic table as a positive electrode active material, and lithium or Using the compound as a negative electrode active material, it is chemically stable to the positive electrode active material and the negative electrode active material, and lithium ions move to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material. It is characterized in that the substance to be obtained is an electrolyte substance.

【0008】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0009】発明者は充放電エネルギーが大きく保存特
性に優れた高エネルギー密度リチウム電池用材料を鋭意
探索した結果、上述のように、X線回折分析において面
間隔2.03±0.02Åのピーク強度に対する面間隔
4.72±0.03Åのピーク強度が1.2倍以上であ
る組成式LiNi1-xx2(MはLiNiO2のNiを
部分的に置換するNi、Co以外の陽イオンとなり得る
元素、0<X≦0.5)で与えられる複酸化物、特に原
子比でLi/(Ni+M)≧2となるようにニッケル塩
と前記Mの塩およびリチウム塩を混合して加熱焼成した
後過剰のリチウムを洗浄除去して得られる組成式LiN
1-xx2(0<X≦0.5)で与えられ、さらに前
記Mが周期律表のIIIA族あるいはIIIB族の元素である
複酸化物を正極活物質として用いることにより、従来の
リチウム電池より充放電エネルギーが大きく、保存特性
の良好なリチウム電池を構成できることを確かめ、その
認識の下に本発明を完成した。
As a result of an earnest search for a material for a high energy density lithium battery which has a large charge / discharge energy and excellent storage characteristics, the inventor has found that, as described above, the peak of the interplanar spacing of 2.03 ± 0.02Å in X-ray diffraction analysis. The composition formula LiNi 1-x M x O 2 (where M is Ni or Co other than Ni that partially replaces Ni of LiNiO 2) has a peak intensity of 1.22 times or more relative to the intensity of 1.22 or more. An element that can be a cation, a complex oxide given by 0 <X ≦ 0.5, especially a nickel salt, a salt of M and a lithium salt are mixed so that Li / (Ni + M) ≧ 2 in atomic ratio. Composition formula LiN obtained by heating and firing and then removing excess lithium by washing
i 1-x M x O 2 (0 <X ≦ 0.5), wherein M is an element of Group IIIA or IIIB of the periodic table is used as a positive electrode active material, It was confirmed that a lithium battery having higher charge / discharge energy and better storage characteristics than a conventional lithium battery can be constructed, and the present invention was completed based on this recognition.

【0010】本発明のリチウム電池が従来技術に比べ大
容量化が図られている理由は、次のように考えられる。
まずLiNi1-xx2(MはLiNiO2のNiを部分
的に置換するNi、Co以外の陽イオンとなり得る元
素、0<X≦0.5)中で活物質として働く成分である
LiNiO2の容量特性を充分に発現させるためには、
Mがニッケルと選択的に置換し、リチウムイオンが存在
する面へのニッケルおよび元素Mの混入が抑制され、リ
チウム電池の活物質として利用した際にリチウムイオン
導電性がよくなることが必要である。このためには、L
iNi1-xx2X線回折分析において面間隔2.03
±0.02Åのピーク強度に対する面間隔4.72±
0.03Åのピーク強度が1.2倍以上であることが必
要である。
The reason why the lithium battery of the present invention has a larger capacity than the prior art is considered as follows.
First, LiNi 1-x M x O 2 (M is an element that can become a cation other than Ni and Co that partially replaces Ni in LiNiO 2 , 0 <X ≦ 0.5) is a component that works as an active material. In order to fully express the capacity characteristics of LiNiO 2 ,
It is necessary that M is selectively replaced with nickel to suppress the mixing of nickel and the element M on the surface where lithium ions are present, and to improve the lithium ion conductivity when used as an active material of a lithium battery. To do this, L
iNi 1-x M x O 2 X-ray diffraction analysis revealed a plane spacing of 2.03
Distance between peaks of ± 0.02Å 4.72 ±
The peak intensity of 0.03Å must be 1.2 times or more.

【0011】また、保存特性の向上が図られている理由
は、充電により多量のリチウムを脱離した状態の構造安
定性が、元素Mの置換により向上したためと考えられ
る。但し、MがCoである場合には、保存特性の向上は
見られない。これは、LiCoO2を正極活物質とした
電池の保存特性が不良であり、従ってLiCoO2を部
分的に有しても安定性向上に寄与できないためと考えら
れる。また前記Mが周期律表のIIIA族あるいはIIIB族
の元素である場合は、結晶中に含まれるLiMO2成分
が充電によって酸化されることがなく、常に正極活物質
の安定性を保持する要素として働くため、特に優れた保
存特性を実現することができる。
The reason why the storage characteristics are improved is considered to be that the structural stability in the state where a large amount of lithium is desorbed by charging is improved by the substitution of the element M. However, when M is Co, the storage characteristics are not improved. It is considered that this is because the battery using LiCoO 2 as the positive electrode active material has poor storage characteristics, and therefore even if it partially contains LiCoO 2 , it cannot contribute to the improvement of stability. Further, when M is an element of Group IIIA or Group IIIB of the periodic table, the LiMO 2 component contained in the crystal is not oxidized by charging, and as a factor for always maintaining the stability of the positive electrode active material. Since it works, it is possible to realize particularly excellent storage characteristics.

【0012】以上のように、置換元素MはLiNiO2
の結晶構造を保つように固溶させ、選択的にニッケルと
置換するような元素が好ましい。この観点から、Mは陽
イオンとなり得る元素であることが必要であり、またニ
ッケルとイオン半径およびイオン価数が近い元素を用い
ることが好適である。具体的には、アルミニウム、ガリ
ウム、インジウム、マンガン、クロム、バナジウム、
鉄、チタン、銅、亜鉛、スカンジウム、インジウム、イ
ットリウム、ランタノイド、ホウ素などの一種以上が挙
げられる。特に保存特性の観点から、IIIA族およびIII
B族元素として、スカンジウム、イットリウム、ランタ
ノイド、ホウ素、アルミニウム、インジウムなどの一種
以上が有望な置換元素として挙げられる。
As described above, the substitution element M is LiNiO 2
An element that is solid-dissolved so as to maintain the crystal structure of and selectively replaces nickel is preferable. From this viewpoint, M needs to be an element that can be a cation, and it is preferable to use an element having an ionic radius and an ionic valence close to that of nickel. Specifically, aluminum, gallium, indium, manganese, chromium, vanadium,
One or more of iron, titanium, copper, zinc, scandium, indium, yttrium, lanthanoid, boron and the like can be mentioned. Particularly from the viewpoint of storage characteristics, Group IIIA and III
As the Group B element, one or more of scandium, yttrium, lanthanoid, boron, aluminum, indium and the like can be mentioned as promising substitution elements.

【0013】また、ニッケルの酸化還元対に基づく充分
な放電容量を保持するために、置換量Xは0.5以下で
あることが必要である。
In order to maintain a sufficient discharge capacity based on the redox couple of nickel, the substitution amount X needs to be 0.5 or less.

【0014】ここでLiNi1-xx2(0<X≦0.
5)を合成する際、原子比Li/(Ni+M)<2とし
て混合し、生成に必要な700℃以上の温度で焼成する
と、リチウム塩が昇華により失われるため、焼成物中の
原子比Li/(Ni+M)が1.0から著しく低下す
る。この場合、焼成物中のリチウムイオンが存在する面
にニッケルイオン、および置換元素Mのイオンが混入
し、リチウムイオンの伝導を阻害して低下する現象が見
られる。したがってリチウム塩の消失を防ぎ、LiNi
1-xx2(0<X≦0.5)における原子比Li/
(Ni+M)を1.0に近づけるために、合成時におい
て原子比でLi/(Ni+M)≧2となるようにニッケ
ル塩と置換元素Mの塩およびリチウム塩を混合して加熱
焼成することが好適である。
Here, LiNi 1-x M x O 2 (0 <X ≦ 0.
In the case of synthesizing 5), if the atomic ratio Li / (Ni + M) <2 is mixed and calcined at a temperature of 700 ° C. or higher necessary for generation, the lithium salt is lost by sublimation. (Ni + M) decreases significantly from 1.0. In this case, there is a phenomenon in which nickel ions and ions of the substituting element M are mixed into the surface of the calcined product where lithium ions are present, and conduction of lithium ions is obstructed and lowered. Therefore, the lithium salt is prevented from disappearing, and LiNi
1-x M x O 2 ( 0 <X ≦ 0.5) atomic ratio in Li /
In order to bring (Ni + M) close to 1.0, it is preferable to mix and heat the nickel salt, the salt of the substituting element M and the lithium salt so that Li / (Ni + M) ≧ 2 in atomic ratio during synthesis. Is.

【0015】また、LiNi1-xx2(0<X≦0.
5)の合成において昇華せずかつ過剰にある未反応リチ
ウムは、酸化リチウム、炭酸リチウム、水酸化リチウム
などのリチウム塩となるため、焼成後の粉末はLiNi
1-xx2(0<X≦0.5)とこれら未反応リチウム
塩の混合物となっているが、この焼成粉末をこれらのリ
チウム塩の溶解度が高くLiNi1-xx2(0<X≦
0.5)を分解しない溶媒で洗浄することにより、過剰
のリチウム塩のみを溶出除去することができる。未反応
リチウムが混在したままで電池を作製すると、容量低
下、電池短絡を引き起こすため、洗浄除去作業が必要で
ある。
Further, LiNi 1-x M x O 2 (0 <X ≦ 0.
In the synthesis of 5), unreacted lithium that does not sublime and is in excess forms lithium salts such as lithium oxide, lithium carbonate, and lithium hydroxide, so the powder after firing is LiNi.
1-x M x O 2 ( 0 <X ≦ 0.5) and it has become a mixture thereof unreacted lithium salt, LiNi 1-x M x O 2 This calcined powder high solubility of these lithium salts (0 <X ≦
By washing 0.5) with a solvent that does not decompose, only the excess lithium salt can be eluted and removed. If a battery is manufactured with unreacted lithium still present, it causes a decrease in capacity and a battery short circuit, and therefore a cleaning / removal work is required.

【0016】ニッケル塩、置換元素Mの塩およびリチウ
ム塩には、水酸化物、炭酸塩、硫酸塩、硝酸塩、ハロゲ
ン化合物などを用いることができる。焼成温度は700
℃〜1000℃、さらに好ましくは、リチウム塩の消失
を最小限に抑えるために700℃から800℃である。
As the nickel salt, the salt of the substituting element M and the lithium salt, hydroxides, carbonates, sulfates, nitrates, halogen compounds and the like can be used. Firing temperature is 700
C. to 1000.degree. C., more preferably 700.degree. C. to 800.degree. C. to minimize loss of lithium salt.

【0017】本発明は、充放電エネルギーが大きい電池
を実現するのみならず、高価なコバルトに代わり安価な
ニッケルを多く利用する点でも、産業上の価値が高い。
The present invention has high industrial value not only in realizing a battery having a large charge and discharge energy but also in utilizing a large amount of inexpensive nickel instead of expensive cobalt.

【0018】この正極活物質を用いて正極を形成するに
は、前記複酸化物粉末とポリテトラフルオロエチレンの
ごとき結着剤粉末との混合物をステンレス等の支持体上
に圧着成型する、あるいは、かかる混合物粉末に導電性
を付与するためアセチレンブラックのような導電性粉末
を混合し、これにさらにポリテトラフルオロエチレンの
ような結着剤粉末を所要に応じて加え、この混合物を金
属容器に入れる、あるいは前述の混合物をステンレス等
の支持体に圧着成型する、あるいは前述の混合物をスラ
リー状にして金属基板上に塗布する、等の手段によって
形成される。
To form a positive electrode using this positive electrode active material, a mixture of the above-mentioned double oxide powder and a binder powder such as polytetrafluoroethylene is pressure-molded on a support such as stainless steel, or A conductive powder such as acetylene black is mixed in order to impart conductivity to the mixture powder, and a binder powder such as polytetrafluoroethylene is further added to the mixed powder as required, and the mixture is placed in a metal container. Alternatively, it is formed by means such as press-molding the above-mentioned mixture on a support such as stainless steel, or applying the above-mentioned mixture into a slurry form on a metal substrate.

【0019】負極活物質であるリチウムは一般のリチウ
ム電池のそれと同様にシート状として、またはそのシー
トをニッケル、ステンレス等の導電体網に圧着して負極
として形成される。また負極活物質としては、リチウム
以外にリチウム−アルミニウム合金などのリチウム合金
を用いることができる。さらに炭素など、いわゆるロッ
キングチェア電池用の負極を用いることもでき、本発明
の場合、充電反応により正極から供給されるリチウムイ
オンをドープし、炭素−リチウム負極などとすることが
できる。
Lithium, which is the negative electrode active material, is formed in the form of a sheet as in the case of a general lithium battery, or the sheet is pressure-bonded to a conductor network of nickel, stainless steel or the like to form a negative electrode. As the negative electrode active material, a lithium alloy such as a lithium-aluminum alloy can be used in addition to lithium. Further, a so-called negative electrode for a rocking chair battery such as carbon can be used. In the case of the present invention, a lithium ion supplied from the positive electrode by a charging reaction can be doped to form a carbon-lithium negative electrode.

【0020】電解質としては、例えばジメトキシエタ
ン、2−メチルテトラヒドロフラン、エチレンカーボネ
ート、メチルホルメート、ジメチルスルホキシド、プロ
ピレンカーボネート、アセトニトリル、ブチロラクト
ン、ジメチルホルムアミド、ジメチルカーボネート、ジ
エチルカーボネート等の有機溶媒に、LiAsF6、L
iBF4、LiPF6、LiAlCl4、LiClO4等の
ルイス酸を溶解した非水電解質溶媒、あるいは固体電解
質などが使用できる。
As the electrolyte, for example, LiAsF 6 , an organic solvent such as dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethyl formamide, dimethyl carbonate or diethyl carbonate, L
A non-aqueous electrolyte solvent in which a Lewis acid such as iBF 4 , LiPF 6 , LiAlCl 4 , or LiClO 4 is dissolved, or a solid electrolyte can be used.

【0021】さらに、セパレータ、構造材料(電池ケー
ス等)等の他の要素についても従来公知の各種材料が使
用でき、特に制限はない。
Furthermore, various other conventionally known materials can be used for other elements such as a separator and structural materials (battery case, etc.), and there is no particular limitation.

【0022】[0022]

【実施例】以下実施例によって本発明の方法をさらに具
体的に説明するが、本発明はこれらによりなんら制限さ
れるものではない。なお、実施例において電池の作成お
よび測定はアルゴン雰囲気下のドライボックス中で行な
った。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In addition, in the examples, the production and measurement of the battery were performed in a dry box under an argon atmosphere.

【0023】[0023]

【実施例1】図1は本発明による電池の一具体例である
コイン電池の断面図であり、図中1は封口板、2はガス
ケット、3は正極ケース、4は負極、5はセパレータ、
6は正極合剤ペレットを示す。
EXAMPLE 1 FIG. 1 is a cross-sectional view of a coin battery, which is a specific example of the battery according to the present invention, in which 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, 5 is a separator,
6 shows a positive electrode material mixture pellet.

【0024】正極活物質には、LiOH・H2OとNi
(NO32・6H2OとAl(NO33・9H2Oを2
0:4:1のモル比で混合し、700℃で12時間焼成
して得た粉末を100℃で真空乾燥することにより得た
LiNi0.8Al0.22を用いた。この試料をA−1と
する。銅Kα線を用いて試料A−1のX線回折特性図を
測定したところ、図2に示すような特性図が得られ、ジ
ョイント コミティーオブ パワー ディフレクション
ズ スタンダード(Joint committee of powder diffra
ction standards)の9−63に登録されたLiNiO2
のX線回折特性図と類似しており、同じ構造をもってい
ることがわかった。このX線回折特性図から計算され
た、六方晶単位格子の大きさを表に示す。また面間隔
2.03±0.02Åのピーク強度に対する面間隔4.
72±0.03Åのピーク強度をR値として表に示す。
The positive electrode active material includes LiOH.H 2 O and Ni.
(NO 3) 2 · 6H 2 O and Al (NO 3) 3 · 9H 2 O 2
LiNi 0.8 Al 0.2 O 2 obtained by mixing powders at a molar ratio of 0: 4: 1 and firing at 700 ° C. for 12 hours and vacuum-drying the powder at 100 ° C. was used. This sample is designated as A-1. When the X-ray diffraction characteristic diagram of the sample A-1 was measured using copper Kα ray, the characteristic diagram as shown in Fig. 2 was obtained, and the Joint Committee of Power Deflections Standard (Joint committee of powder diffra
ction standards) 9-63 registered LiNiO 2
It is similar to the X-ray diffraction characteristic diagram of No. 1 and has the same structure. The size of the hexagonal unit cell calculated from this X-ray diffraction characteristic chart is shown in the table. Also, the interplanar spacing for the peak intensity of interplanar spacing 2.03 ± 0.02Å is 4.
The peak intensity of 72 ± 0.03Å is shown in the table as the R value.

【0025】得られた試料A−1の粉末を導電剤(アセ
チレンブラック粉末)、結着剤(ポリテトラフルオロエ
チレン)と共に混合の上、ロール成型し、正極合剤ペレ
ット6(厚さ0.5mm、直径15mm)とした。ま
ず、ステンレス製の封口板1上に金属リチウムの負極4
を加圧配置したものをポリプロピレン製ガスケット2の
凹部に挿入し、負極4の上にポリプロピレン製で微孔性
のセパレータ5、正極合剤ペレット6をこの順序に配置
し、電解液としてプロピレンカーボネートとジメトキシ
エタンの等容積混合溶媒にLiClO4を溶解させた1
規定溶液を適量注入して含浸させた後に、ステンレス製
の正極ケース3を被せてかしめることにより、厚さ2m
m、直径23mmのコイン型電池を作製した。
The powder of the obtained sample A-1 was mixed with a conductive agent (acetylene black powder) and a binder (polytetrafluoroethylene), and the mixture was roll-molded to form a positive electrode mixture pellet 6 (thickness: 0.5 mm). , Diameter 15 mm). First, a metallic lithium negative electrode 4 is placed on a stainless steel sealing plate 1.
Was placed under pressure into the polypropylene gasket 2, and a polypropylene microporous separator 5 and a positive electrode material mixture pellet 6 were placed in this order on the negative electrode 4, and propylene carbonate was added as an electrolytic solution. LiClO 4 was dissolved in an equal volume mixed solvent of dimethoxyethane 1
After injecting and impregnating an appropriate amount of the specified solution, the positive electrode case 3 made of stainless steel is covered and caulked to have a thickness of 2 m.
A coin-type battery having a diameter of m and a diameter of 23 mm was produced.

【0026】このようにして合成した試料A−1を正極
活物質とする電池を、0.5mA/cm2の電流密度で
4.5Vまで充電し、その後3.0Vまで放電させた際
の充放電特性を表に示す。高電圧で大容量放電が可能で
あり、高エネルギー密度電池として利用できる利点を有
している。
The battery using the sample A-1 thus synthesized as a positive electrode active material was charged to 4.5 V at a current density of 0.5 mA / cm 2 and then discharged to 3.0 V. The discharge characteristics are shown in the table. It has a merit that it can discharge a large capacity at high voltage and can be used as a high energy density battery.

【0027】またこの電池を、0.5mA/cm2の充
放電電流密度で各々3.0V−4.5Vの電圧規制充放
電させた際の10回目の容量維持率(=10回目の放電
容量/1回目の放電容量)を表に示す。これから明らか
なようにサイクルによる容量低下が少ないことがわか
る。
In addition, this battery was subjected to a voltage regulation charge / discharge of 3.0 V to 4.5 V at a charge / discharge current density of 0.5 mA / cm 2 , respectively, and the capacity retention rate at the 10th cycle (= the discharge capacity at the 10th cycle). / (First discharge capacity) is shown in the table. As is apparent from this, it is understood that the capacity decrease due to the cycle is small.

【0028】[0028]

【実施例2〜16】実施例2〜16では、各々正極活物
質に以下のようにして合成した試料A2〜A16を用い
る他は、実施例1と同様にして作製したリチウム電池を
用いて、充放電特性の検討を行なった。
Examples 2 to 16 In Examples 2 to 16, lithium batteries prepared in the same manner as in Example 1 were used, except that Samples A2 to A16 synthesized as follows were used as the positive electrode active materials. The charge / discharge characteristics were examined.

【0029】まず、LiOH・H2OとNi(NO32
・6H2OとAl(NO33・9H2Oを10:4:1の
モル比で混合し、700℃で12時間焼成た後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.8Al0.22を得た。この試料をA
−2とする。
First, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Al (NO 3) 3 · 9H 2 O and 10: 4: 1 molar ratio, after was 12 hours firing at 700 ° C., baked product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.8 Al 0.2 O 2 . This sample is A
-2.

【0030】次に、LiOH・H2OとNi(NO32
・6H2OとAl(NO33・9H2Oを50:4:1の
モル比で混合し、700℃で12時間焼成た後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.8Al0.22を得た。この試料をA
−3とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Al (NO 3) 3 · 9H 2 O 50: 4: 1 molar ratio, after was 12 hours firing at 700 ° C., baked product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.8 Al 0.2 O 2 . This sample is A
-3.

【0031】次に、LiOH・H2OとNi(NO32
・6H2OとAl(NO33・9H2Oを40:7:3の
モル比で混合し、700℃で12時間焼成た後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.7Al0.32を得た。この試料をA
−4とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Al (NO 3) 3 · 9H 2 O 40: 7: were mixed in a molar ratio of 3, after was 12 hours firing at 700 ° C., baked product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.7 Al 0.3 O 2 . This sample is A
-4.

【0032】次に、LiOH・H2OとNi(NO32
・6H2OとAl(NO33・9H2Oを8:1:1のモ
ル比で混合し、700℃で12時間焼成た後、焼成物1
重量に対し、水50重量で4時間洗浄し、ろ過によりろ
液を分離して得た粉末を100℃で真空乾燥することに
より、LiNi0.5Al0.52を得た。この試料をA−
5とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Al (NO 3) 3 · 9H 2 O 8: 1: 1 molar ratio, after was 12 hours firing at 700 ° C., fired product 1
LiNi 0.5 Al 0.5 O 2 was obtained by washing the powder with 50 parts by weight of water for 4 hours, and separating the filtrate by filtration to obtain a powder, which was vacuum dried at 100 ° C. This sample is A-
Set to 5.

【0033】次に、LiOH・H2OとNi(NO32
・6H2OとGa(NO33・9H2Oを20:4:1の
モル比で混合し、700℃で12時間焼成た後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.8Ga0.22を得た。この試料をA
−6とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Ga (NO 3) 3 · 9H 2 O and 20: 4: 1 molar ratio, after was 12 hours firing at 700 ° C., baked product 1 by weight to 4 hours with water 50 weight LiNi 0.8 Ga 0.2 O 2 was obtained by vacuum-drying the powder obtained by washing and filtering the filtrate by filtration. This sample is A
-6.

【0034】次に、LiOH・H2OとNi(NO32
・6H2OとB23を40:8:1のモル比で混合し、
700℃で12時間焼成た後、焼成物1重量に対し、水
50重量で4時間洗浄し、ろ過によりろ液を分離して得
た粉末を100℃で真空乾燥することにより、LiNi
0.80.22を得た。この試料をA−7とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
Mixing 6H 2 O and B 2 O 3 in a molar ratio of 40: 8: 1,
After firing at 700 ° C. for 12 hours, 1 weight of the fired product was washed with 50 weight of water for 4 hours, the filtrate was separated by filtration, and the obtained powder was vacuum dried at 100 ° C. to obtain LiNi.
0.8 B 0.2 O 2 was obtained. This sample is designated as A-7.

【0035】次に、LiOH・H2OとNi(NO32
・6H2OとSc23を40:8:1のモル比で混合
し、700℃で12時間焼成た後、焼成物1重量に対
し、水50重量で4時間洗浄し、ろ過によりろ液を分離
して得た粉末を100℃で真空乾燥することにより、L
iNi0.8Al0.22を得た。この試料をA−8とす
る。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
・ 6H 2 O and Sc 2 O 3 were mixed in a molar ratio of 40: 8: 1, and calcined at 700 ° C. for 12 hours, then washed with 50 weight of water for 4 hours per 1 weight of calcined product, and filtered by filtration. The powder obtained by separating the liquid was vacuum dried at 100 ° C. to obtain L
iNi 0.8 Al 0.2 O 2 was obtained. This sample is designated as A-8.

【0036】次に、LiOH・H2OとNi(NO3)2
・6H2OとAl(NO33・9H2Oを40:9:1の
モル比で混合し、700℃で12時間焼成た後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.9Al0.12を得た。この試料をA
−9とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Al (NO 3) 3 · 9H 2 O and 40: 9: 1 molar ratio, after was 12 hours firing at 700 ° C., baked product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.9 Al 0.1 O 2 . This sample is A
-9.

【0037】次に、LiOH・H2OとNi(NO32
・6H2OとGa(NO33・9H2Oを40:9:1の
モル比で混合し、700℃で12時間焼成た後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.9Ga0.12を得た。この試料をA
−10とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Ga (NO 3) 3 · 9H 2 O and 40: 9: 1 molar ratio, after was 12 hours firing at 700 ° C., baked product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.9 Ga 0.1 O 2 . This sample is A
-10.

【0038】次に、LiOH・H2OとNi(NO32
・6H2OとB23を80:18:1のモル比で混合
し、700℃で12時間焼成た後、焼成物1重量に対
し、水50重量で4時間洗浄し、ろ過によりろ液を分離
して得た粉末を100℃で真空乾燥することにより、L
iNi0.90.12を得た。この試料をA−11とす
る。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
6H 2 O and B 2 O 3 were mixed in a molar ratio of 80: 18: 1, and calcined at 700 ° C. for 12 hours, then washed with 50 parts by weight of water for 4 hours and filtered by filtration. The powder obtained by separating the liquid was vacuum dried at 100 ° C. to obtain L
iNi 0.9 B 0.1 O 2 was obtained. This sample is designated as A-11.

【0039】次に、LiOH・H2OとNi(NO32
・6H2OとSc23を80:18:1のモル比で混合
し、700℃で12時間焼成た後、焼成物1重量に対
し、水50重量で4時間洗浄し、ろ過によりろ液を分離
して得た粉末を100℃で真空乾燥することにより、L
iNi0.9Al0.12を得た。この試料をA−12とす
る。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
・ 6H 2 O and Sc 2 O 3 were mixed at a molar ratio of 80: 18: 1, and calcined at 700 ° C. for 12 hours, then washed with 50 weight of water for 4 hours per 1 weight of calcined product, and filtered by filtration. The powder obtained by separating the liquid was vacuum dried at 100 ° C. to obtain L
iNi 0.9 Al 0.1 O 2 was obtained. This sample is designated as A-12.

【0040】次に、LiOH・H2OとNi(NO32
・6H2OとFe(NO33・9H2Oを40:9:1の
モル比で混合し、700℃で12時間焼成た後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.9Fe0.12を得た。この試料をA
−13とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Fe (NO 3) 3 · 9H 2 O and 40: 9: 1 molar ratio, after was 12 hours firing at 700 ° C., baked product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.9 Fe 0.1 O 2 . This sample is A
-13.

【0041】次に、LiOH・H2OとNi(NO32
・6H2OとMnOを40:9:1のモル比で混合し、
700℃で12時間焼成た後、焼成物1重量に対し、水
50重量で4時間洗浄し、ろ過によりろ液を分離して得
た粉末を100℃で真空乾燥することにより、LiNi
0.9Mn0.12を得た。この試料をA−14とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and the MnO 40: 9: 1 molar ratio,
After firing at 700 ° C. for 12 hours, 1 weight of the fired product was washed with 50 weight of water for 4 hours, the filtrate was separated by filtration, and the obtained powder was vacuum dried at 100 ° C. to obtain LiNi.
0.9 Mn 0.1 O 2 was obtained. This sample is designated as A-14.

【0042】次に、LiOH・H2OとNi(NO32
・6H2OとCr(NO33・9H2Oを40:9:1の
モル比で混合し、700℃で12時間焼成た後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.9Cr0.12を得た。この試料をA
−15とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Cr (NO 3) 3 · 9H 2 O and 40: 9: 1 molar ratio, after was 12 hours firing at 700 ° C., baked product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.9 Cr 0.1 O 2 . This sample is A
-15.

【0043】次に、LiOH・H2OとNi(NO32
・6H2OとTiO2を40:9:1のモル比で混合し、
700℃で12時間焼成た後、焼成物1重量に対し、水
50重量で4時間洗浄し、ろ過によりろ液を分離して得
た粉末を100℃で真空乾燥することにより、LiNi
0.9Ti0.12を得た。この試料をA−16とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
Mixing 6H 2 O and TiO 2 in a molar ratio of 40: 9: 1,
After firing at 700 ° C. for 12 hours, 1 weight of the fired product was washed with 50 weight of water for 4 hours, the filtrate was separated by filtration, and the obtained powder was vacuum dried at 100 ° C. to obtain LiNi.
0.9 Ti 0.1 O 2 was obtained. This sample is designated as A-16.

【0044】銅Kα線を用いた試料A−2〜A−16の
X線回折特性図を測定したところ、いずれもジョイント
コミティー オブ パワー ディフレクションズ ス
タンダード(Joint committee of powder diffraction
standards)の9−63に登録されたLiNiO2のX線
回折特性図と類似しており、同じ構造をもっていること
がわかる。また、X線回折特性図から計算された、六方
晶単位格子の大きさを表に示す。また面間隔2.03±
0.02Åのピーク強度に対する面間隔4.72±0.
03Åのピーク強度をR値として表に示す。またA−9
のX線回折特性図を図3に示す。
When the X-ray diffraction characteristics of the samples A-2 to A-16 using copper Kα rays were measured, they were joint committee of power deflections standard (Joint committee of powder diffraction).
It is similar to the X-ray diffraction characteristic diagram of LiNiO 2 registered in 9-63 of the standards), and it can be seen that it has the same structure. The size of the hexagonal unit cell calculated from the X-ray diffraction characteristic chart is shown in the table. Also, the surface spacing is 2.03 ±
The interplanar spacing for the peak intensity of 0.02Å 4.72 ± 0.
The peak intensity of 03Å is shown as R value in the table. Also A-9
FIG. 3 shows the X-ray diffraction characteristic chart of

【0045】このようにして合成した試料A−2〜A−
16を正極活物質とする電池を、0.5mA/cm2
電流密度で4.5Vまで充電し、その後3.0Vまで放
電させた際の充放電特性を表に示す。いずれも高電圧で
大容量放電が可能であり、高エネルギー密度電池として
利用できる利点を有している。
Samples A-2 to A- synthesized in this way
The table shows the charge / discharge characteristics when a battery using 16 as the positive electrode active material was charged to 4.5 V at a current density of 0.5 mA / cm 2 and then discharged to 3.0 V. Both of them can discharge a large capacity at a high voltage and have an advantage that they can be used as a high energy density battery.

【0046】またこれらの電池を、0.5mA/cm2
の充放電電流密度で各々3.0V−4.5Vの電圧規制
充放電させた際の10回目の容量維持率(=10回目の
放電容量/1回目の放電容量)を表に示す。これから明
らかなようにいずれもサイクルによる容量低下が少ない
ことがわかる。
Further, these batteries were treated with 0.5 mA / cm 2
Table 10 shows the 10th capacity retention ratio (= 10th discharge capacity / 1st discharge capacity) when the voltage-regulated charge / discharge of 3.0V-4.5V was performed at the respective charge / discharge current densities. As is clear from the above, it can be seen that the capacity decrease due to the cycle is small in all cases.

【0047】実施例1〜16では置換元素Mの種類、お
よび置換の割合の異なるLiNi1 -xx2(0<X≦
0.5)を正極活物質に用いて作製した電池の充放電特
性について示したが、これらの置換元素Mの種類、置換
の割合に限定されるものではなく、X線回折分析におい
て面間隔2.03±0.02Åのピーク強度に対する面
間隔4.72±0.03Åのピーク強度が1.2倍以上
である組成式LiNi1-xx2(MはLiNiO2のN
iを部分的に置換するNi、Co以外の陽イオンとなり
得る元素、0<X≦0.5)、特に原子比でLi/(N
i+M)≧2となるようにニッケル塩と陽イオンとなり
得る元素Mの塩およびリチウム塩を混合して加熱焼成し
た後過剰のリチウムを洗浄除去して得られる組成式Li
Ni1-xx2(0<X≦0.5)で与えられる複酸化
物を正極活物質として用いる場合は同様な効果を生じる
ことはいうまでもない。
In Examples 1 to 16, LiNi 1 -x M x O 2 (0 <X ≦ is different in the kind of the substitution element M and the substitution ratio.
0.5) was shown for the charge and discharge characteristics of the battery produced by using the positive electrode active material, but the type and substitution ratio of the substitution element M are not limited, and the interplanar spacing 2 is determined by X-ray diffraction analysis. The composition formula LiNi 1-x M x O 2 (M is N of LiNiO 2) in which the peak intensity of 4.72 ± 0.03Å is 1.2 times or more the peak intensity of 0.03 ± 0.02Å
Elements that can be cations other than Ni and Co that partially substitute i, 0 <X ≦ 0.5, especially Li / (N in atomic ratio
i + M) ≧ 2, a nickel salt, a salt of an element M that can become a cation, and a lithium salt are mixed, heated and baked, and excess lithium is removed by washing to obtain a composition formula Li.
It goes without saying that similar effects are produced when the composite oxide given by Ni 1-x M x O 2 (0 <X ≦ 0.5) is used as the positive electrode active material.

【0048】[0048]

【実施例17】試料A−1〜A−16を正極活物質とす
るコイン電池を実施例1〜16と同様にして新たに作製
し、次のように保存特性試験を行なった。まずこれらの
電池を25℃において0.5mA/cm2の電流密度で
3.0V−4.5Vの電圧規制範囲で10回サイクル充
放電させ、10回目の放電容量を測定し、その後充電し
4.5Vに到達後、4.5Vのまま1時間定電圧充電
し、過充電状態とした。次にこれらの電池を60℃で1
ケ月保存し、再度25℃で11回目の放電を行ない、放
電容量を測定し、保存後の容量維持率=(11回目の放
電容量)/(10回目の容量)を調べた。結果を表に示
す。これから明らかなように、試料A−1〜A−16の
電池は、良好な保存特性を有することがわかる。またM
が周期律表のIIIA族あるいはIIIB族の元素である場合
には、特に良好な保存を有することがわかる。
Example 17 A coin battery using Samples A-1 to A-16 as a positive electrode active material was newly prepared in the same manner as in Examples 1 to 16 and a storage characteristic test was conducted as follows. First, these batteries were cycle-charged and discharged 10 times in a voltage regulation range of 3.0V-4.5V at a current density of 0.5 mA / cm 2 at 25 ° C., the discharge capacity at the 10th time was measured, and then charged. After reaching 0.5 V, the battery was charged at a constant voltage for 1 hour while keeping it at 4.5 V to make it overcharged. Then these batteries at 60 ° C for 1 hour
It was stored for a month, discharged again at 25 ° C. for the 11th time, the discharge capacity was measured, and the capacity retention ratio after storage = (11th discharge capacity) / (10th capacity) was examined. The results are shown in the table. As is clear from this, it is understood that the batteries of Samples A-1 to A-16 have good storage characteristics. Also M
It can be seen that when is a group IIIA or IIIB element of the periodic table, it has particularly good conservation.

【0049】実施例17では置換元素Mの種類、および
置換の割合の異なるLiNi1-xx2(0<X≦0.
5)を正極活物質に用いて作製した電池の保存特性につ
いて示したが、これらの置換元素Mの種類、置換の割合
に限定されるものではなく、X線回折分析において面間
隔2.03±0.02Åのピーク強度に対する面間隔
4.72±0.03Åのピーク強度が1.2倍以上であ
る組成式LiNi1-xx2(MはLiNiO2のNiを
部分的に置換するNi、Co以外の陽イオンとなり得る
元素、0<X≦0.5)、特に原子比でLi/(Ni+
M)≧2となるようにニッケル塩と陽イオンとなり得る
元素Mの塩およびリチウム塩を混合して加熱焼成した後
過剰のリチウムを洗浄除去して得られる組成式LiNi
1-xx2(0<X≦0.5)で与えられ、さらに前記
Mが周期律表のIIIA族あるいはIIIB族の元素であるよ
うな複酸化物を正極活物質として用いる場合は同様な効
果が生じることはいうまでもない。
In Example 17, LiNi 1-x M x O 2 (0 <X ≦ 0.
5) shows the storage characteristics of the battery prepared by using the positive electrode active material, but it is not limited to the kind of the substitution element M and the substitution ratio, and the interplanar spacing of 2.03 ± The compositional formula LiNi 1-x M x O 2 (M is a partial replacement of Ni in LiNiO 2) in which the peak intensity of 0.02 Å is 1.2 times or more the peak intensity of 4.72 ± 0.03 Å Elements other than Ni and Co that can be cations, 0 <X ≦ 0.5, especially Li / (Ni +) in atomic ratio
M) ≧ 2, a composition formula LiNi obtained by mixing a nickel salt, a salt of an element M that can be a cation, and a lithium salt, heating and firing the mixture, and then washing and removing excess lithium.
In the case of using a complex oxide, which is given by 1-x M x O 2 (0 <X ≦ 0.5) and in which M is an element of Group IIIA or IIIB of the periodic table, as a positive electrode active material, It goes without saying that the same effect will occur.

【0050】[0050]

【比較例1〜12】比較例1〜12では、各々正極活物
質に以下のようにして合成した試料B1〜B12を用い
る他は、実施例1と同様にして作製したリチウム電池を
用いて、充放電特性、および保存特性の検討を行なっ
た。
Comparative Examples 1 to 12 In Comparative Examples 1 to 12, lithium batteries prepared in the same manner as in Example 1 were used, except that Samples B1 to B12 synthesized as follows were used as the positive electrode active materials. The charge / discharge characteristics and storage characteristics were examined.

【0051】まず、LiOH・H2OとNi(NO32
・6H2Oを1:1のモル比で混合し、800℃で12
時間焼成した後、焼成物1重量に対し、水50重量で4
時間洗浄し、ろ過によりろ液を分離して得た粉末を10
0℃で真空乾燥することにより、LiNiO2を得た。
この試料をB−1とする。銅Kα線を用いて試料B−1
のX線回折特性図を測定したところ、ジョイント コミ
ティー オブ パワーディフレクションズ スタンダー
ド(Joint committee of powder diffractionstandard
s)の9−63に登録されたパターンと一致し、B−1
はLiNiO2であると同定された。X線回折特性図か
ら計算された、六方晶単位格子の大きさを表に示す。ま
た、面間隔2.03±0.02Åのピーク強度に対する
面間隔4.72±0.03Åのピーク強度をR値として
表に示す。
First, LiOH.H 2 O and Ni (NO 3 ) 2
・ Mix 6H 2 O at a molar ratio of 1: 1 and mix at 12
After firing for 4 hours, 50 wt.
After washing for 10 hours, the filtrate is separated by filtration to obtain 10
LiNiO 2 was obtained by vacuum drying at 0 ° C.
This sample is designated as B-1. Sample B-1 using copper Kα ray
The X-ray diffraction characteristics of the joint were measured and found to be the Joint committee of powder diffraction standard.
s), which matches the pattern registered in 9-63, and B-1
Was identified as LiNiO 2 . The size of the hexagonal unit cell calculated from the X-ray diffraction characteristic chart is shown in the table. Further, the peak intensity of the interplanar spacing of 4.72 ± 0.03Å against the peak intensity of the interplanar spacing of 2.03 ± 0.02Å is shown in the table as an R value.

【0052】次に、LiOH・H2OとNi(NO32
・6H2Oを4:1のモル比で混合し、700℃で12
時間焼成た後、焼成物1重量に対し、水50重量で4時
間洗浄し、ろ過によりろ液を分離して得た粉末を100
℃で真空乾燥することにより、LiNiO2を得た。こ
の試料をB−2とする。銅Kα線を用いて試料B−2の
X線回折特性図を測定したところ、ジョイント コミテ
ィー オブ パワー ディフレクションズ スタンダー
ド(Joint committee of powder diffraction standard
s)の9−63に登録されたパターンと一致し、B−2
はLiNiO2であると同定された。X線回折特性図か
ら計算された、六方晶単位格子の大きさを表に示す。ま
た面間隔2.03±0.02Åのピーク強度に対する面
間隔4.72±0.03Åのピーク強度をR値として表
に示す。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
・ 6H 2 O was mixed at a molar ratio of 4: 1 and the mixture was heated at 700 ° C. for 12 hours.
After firing for 1 hour, 1 weight of the fired product was washed with 50 weight of water for 4 hours, and the filtrate was separated by filtration to obtain 100 powder.
LiNiO 2 was obtained by vacuum drying at ℃. This sample is designated as B-2. When the X-ray diffraction characteristic diagram of Sample B-2 was measured using copper Kα rays, the Joint Committee of powder diffraction standard (Joint committee of powder diffraction standard)
s) the pattern registered in 9-63, and B-2
Was identified as LiNiO 2 . The size of the hexagonal unit cell calculated from the X-ray diffraction characteristic chart is shown in the table. Further, the peak intensity of the interplanar spacing of 4.72 ± 0.03Å against the peak intensity of the interplanar spacing of 2.03 ± 0.02Å is shown in the table as an R value.

【0053】次に、Li2CO3とCoCO3を1:2の
モル比で混合し、次に900℃で1日間焼成することに
より、黒色の粉末を得た。この試料をB−3とする。銅
Kα線を用いて試料B−1のX線回折特性図を測定した
ところ、ジョイント コミッティー オブ パワー デ
ィフレクションズ スタンダード(Joint committeeof
powder diffraction standards)の16−427に登録
されたパターンと一致し、B−3はLiCoO2である
と同定された。X線回折特性図から計算された、六方晶
単位格子の大きさを表に示す。また面間隔2.03±
0.04Åのピーク強度に対する面間隔4.72±0.
05Åのピーク強度をR値として表に示す。
Next, Li 2 CO 3 and CoCO 3 were mixed at a molar ratio of 1: 2 and then calcined at 900 ° C. for 1 day to obtain a black powder. This sample is designated as B-3. When the X-ray diffraction diagram of Sample B-1 was measured using copper Kα rays, the Joint Committee of Power Deflections Standard (Joint committee of
B-3 was identified as LiCoO 2 in agreement with the pattern registered in 16-427 of powder diffraction standards). The size of the hexagonal unit cell calculated from the X-ray diffraction characteristic chart is shown in the table. Also, the surface spacing is 2.03 ±
The interplanar spacing for the peak intensity of 0.04Å 4.72 ± 0.
The peak intensity of 05Å is shown in the table as an R value.

【0054】次に、Li2CO3とCoCO3を2:1の
モル比で混合し、次に900℃で1日間焼成することに
より、黒色の粉末を得た。この試料をB−4とする。銅
Kα線を用いて試料B−1のX線回折特性図を測定した
ところ、ジョイント コミティー オブ パワー ディ
フレクションズ スタンダード(Joint committee ofpo
wder diffraction standards)の16−427に登録さ
れたパターンと一致し、B−4はLiCoO2であると
同定された。X線回折特性図から計算された、六方晶単
位格子の大きさを表に示す。また面間隔2.03±0.
04Åのピーク強度に対する面間隔4.72±0.05
Åのピーク強度をR値として表に示す。
Next, Li 2 CO 3 and CoCO 3 were mixed at a molar ratio of 2: 1 and then calcined at 900 ° C. for 1 day to obtain a black powder. This sample is designated as B-4. When the X-ray diffraction characteristic diagram of Sample B-1 was measured using copper Kα rays, the Joint Committee of Power Deflections Standard (Joint committee of po
B-4 was identified as LiCoO 2 in agreement with the pattern registered in 16-427 of the wder diffraction standards). The size of the hexagonal unit cell calculated from the X-ray diffraction characteristic chart is shown in the table. The surface spacing is 2.03 ± 0.
The surface spacing for the peak intensity of 04Å 4.72 ± 0.05
The peak intensity of Å is shown in the table as an R value.

【0055】次に、LiOH・H2OとNi(NO32
・6H2OとCo(NO33・6H2Oを10:9:1の
モル比で混合し、700℃で12時間焼成した後、焼成
物1重量に対し、水50重量で4時間洗浄し、ろ過によ
りろ液を分離して得た粉末を100℃で真空乾燥するこ
とにより、LiNi0.9Co0.12を得た。この試料を
B−5とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
・ 6H 2 O and Co (NO 3 ) 3 .6H 2 O were mixed at a molar ratio of 10: 9: 1, and calcined at 700 ° C. for 12 hours. LiNi 0.9 Co 0.1 O 2 was obtained by vacuum-drying the powder obtained by washing and filtering the filtrate by filtration. This sample is designated as B-5.

【0056】次に、LiOH・H2OとNi(NO32
・6H2OとCo(NO33・6H2Oを40:9:1の
モル比で混合し、700℃で12時間焼成した後、焼成
物1重量に対し、水50重量で4時間洗浄し、ろ過によ
りろ液を分離して得た粉末を100℃で真空乾燥するこ
とにより、LiNi0.9Co0.12を得た。この試料を
B−6とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
・ 6H 2 O and Co (NO 3 ) 3 .6H 2 O are mixed at a molar ratio of 40: 9: 1, and calcined at 700 ° C. for 12 hours. LiNi 0.9 Co 0.1 O 2 was obtained by vacuum-drying the powder obtained by washing and filtering the filtrate by filtration. This sample is designated as B-6.

【0057】次に、LiOH・H2OとNi(NO32
・6H2OとCo(NO33・6H2Oを5:4:1のモ
ル比で混合し、700℃で12時間焼成した後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.8Co0.22を得た。この試料をB
−7とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
・ 6H 2 O and Co (NO 3 ) 3 .6H 2 O are mixed at a molar ratio of 5: 4: 1, and calcined at 700 ° C. for 12 hours. LiNi 0.8 Co 0.2 O 2 was obtained by vacuum-drying the powder obtained by washing and filtering the filtrate by filtration. This sample is B
-7.

【0058】次に、LiOH・H2OとNi(NO32
・6H2OとCo(NO33・6H2Oを20:4:1の
モル比で混合し、700℃で12時間焼成した後、焼成
物1重量に対し、水50重量で4時間洗浄し、ろ過によ
りろ液を分離して得た粉末を100℃で真空乾燥するこ
とにより、LiNi0.8Co0.22を得た。この試料を
B−8とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
・ 6H 2 O and Co (NO 3 ) 3 .6H 2 O are mixed at a molar ratio of 20: 4: 1 and baked at 700 ° C. for 12 hours. LiNi 0.8 Co 0.2 O 2 was obtained by vacuum-drying the powder obtained by washing and filtering the filtrate by filtration. This sample is designated as B-8.

【0059】次に、LiOH・H2OとNi(NO32
・6H2OとAl(NO33・9H2Oを10:9:1の
モル比で混合し、700℃で12時間焼成した後、焼成
物1重量に対し、水50重量で4時間洗浄し、ろ過によ
りろ液を分離して得た粉末を100℃で真空乾燥するこ
とにより、LiNi0.9Al0.12を得た。この試料を
B−9とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Al (NO 3) 3 · 9H 2 O and 10: 9: 1 molar ratio, after firing at 700 ° C. 12 hours, calcined product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.9 Al 0.1 O 2 . This sample is designated as B-9.

【0060】次に、LiOH・H2OとNi(NO32
・6H2OとAl(NO33・9H2Oを15:9:1の
モル比で混合し、700℃で12時間焼成した後、焼成
物1重量に対し、水50重量で4時間洗浄し、ろ過によ
りろ液を分離して得た粉末を100℃で真空乾燥するこ
とにより、LiNi0.9Al0.12を得た。この試料を
B−10とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Al (NO 3) 3 · 9H 2 O and 15: 9: 1 molar ratio, after firing at 700 ° C. 12 hours, calcined product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.9 Al 0.1 O 2 . This sample is designated as B-10.

【0061】次に、LiOH・H2OとNi(NO32
・6H2OとAl(NO33・9H2Oを5:4:1のモ
ル比で混合し、700℃で12時間焼成した後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.8Al0.22を得た。この試料をB
−11とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Al (NO 3) 3 · 9H 2 O 5: 4: 1 molar ratio, after firing at 700 ° C. 12 hours, calcined product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.8 Al 0.2 O 2 . This sample is B
-11.

【0062】次に、LiOH・H2OとNi(NO32
・6H2OとAl(NO33・9H2Oを7:4:1のモ
ル比で混合し、700℃で12時間焼成した後、焼成物
1重量に対し、水50重量で4時間洗浄し、ろ過により
ろ液を分離して得た粉末を100℃で真空乾燥すること
により、LiNi0.8Al0.22を得た。この試料をB
−12とする。
Next, LiOH.H 2 O and Ni (NO 3 ) 2
· 6H 2 O and Al (NO 3) 3 · 9H 2 O 7: 4: 1 molar ratio, after firing at 700 ° C. 12 hours, calcined product 1 by weight to 4 hours with water 50 weight The powder obtained by washing and separating the filtrate by filtration was vacuum dried at 100 ° C. to obtain LiNi 0.8 Al 0.2 O 2 . This sample is B
-12.

【0063】銅Kα線を用いた試料B−5〜B−12の
X線回折特性図を測定したところ、いずれもジョイント
コミティー オブ パワー ディフレクションズ ス
タンダード(Joint committee of powder diffraction
standards)の9−63に登録されたLiNiO2のX線
回折特性図と類似しており、同じ構造をもっていること
がわかる。またX線回折特性図から計算された、六方晶
単位格子の大きさを表に示す。また面間隔2.03±
0.02Åのピーク強度に対する面間隔4.72±0.
03Åのピーク強度をR値として表に示す。
When the X-ray diffraction characteristics of samples B-5 to B-12 using copper Kα rays were measured, they were all joint committees of power deflections standard (Joint committee of powder diffraction).
It is similar to the X-ray diffraction characteristic diagram of LiNiO 2 registered in 9-63 of the standards), and it can be seen that it has the same structure. The size of the hexagonal unit cell calculated from the X-ray diffraction characteristic chart is shown in the table. Also, the surface spacing is 2.03 ±
The interplanar spacing for the peak intensity of 0.02Å 4.72 ± 0.
The peak intensity of 03Å is shown as R value in the table.

【0064】このようにして合成した試料B−1〜B−
12を正極活物質とする電池を、0.5mA/cm2
電流密度で4.5Vまで充電し、その後3.0Vまで放
電させた際の充放電特性を表に示す。
Samples B-1 to B- synthesized in this way
The table shows the charge / discharge characteristics when a battery using 12 as the positive electrode active material was charged to 4.5 V at a current density of 0.5 mA / cm 2 and then discharged to 3.0 V.

【0065】これらのうち、B−1〜B−4、B−9〜
B12を正極活物質とする電池は、どれも放電容量が少
なく、これらの電池と比較すると、本発明の実施例で作
製した電池は、優れた特性を有することがわかる。
Of these, B-1 to B-4 and B-9 to
All the batteries using B12 as the positive electrode active material have a small discharge capacity, and it can be seen that the batteries produced in the examples of the present invention have excellent characteristics as compared with these batteries.

【0066】また試料B1〜B−12を正極活物質とす
るコイン電池を同様にして新たに作製し、次のように保
存特性試験を行なった。まずこれらの電池を25℃にお
いて0.5mA/cm2の電流密度で3.0V−4.5
Vの電圧規制範囲で10回サイクル充放電させ、10回
目の放電容量を測定し、その後充電し4.5Vに到達
後、4.5Vののまま1時間定電圧充電し、過充電状態
とした。次にこれらの電池を60℃で1ケ月保存し、再
度25℃で11回目の放電を行ない、放電容量を測定
し、保存後の容量維持率=(11回目の放電容量)/
(10回目の容量)を調べた。結果を表に示す。
A coin battery using Samples B1 to B-12 as a positive electrode active material was newly prepared in the same manner, and a storage characteristic test was conducted as follows. First, these batteries were subjected to 3.0 V-4.5 at a current density of 0.5 mA / cm 2 at 25 ° C.
The battery was charged and discharged 10 times in the voltage regulation range of V, the discharge capacity at the 10th time was measured, and after charging and reaching 4.5V, constant voltage charging was performed for 1 hour at 4.5V, and an overcharged state was set. . Next, these batteries were stored at 60 ° C. for 1 month, discharged again at 25 ° C. for the 11th time, the discharge capacity was measured, and the capacity retention rate after storage = (11th discharge capacity) /
(10th capacity) was examined. The results are shown in the table.

【0067】これらの電池と比較すると、本発明の実施
例で作製した電池は、保存特性に優れていることがわか
る。置換を行なっていない試料B−1、B−2、および
Coを置換元素とした試料B−5〜B−10を正極活物
質とする電池は、表に見られるとおり、特に保存特性が
悪い。したがって、本実施例のように、置換元素として
Co以外の陽イオンとなり得る元素を添加することによ
り、保存特性が向上することがわかる。
When compared with these batteries, it can be seen that the batteries produced in the examples of the present invention have excellent storage characteristics. As shown in the table, the storage characteristics of the batteries having no substitution, Samples B-1, B-2, and B-5 to B-10 containing Co as a substitution element are particularly poor. Therefore, it can be seen that the storage characteristics are improved by adding an element other than Co, which can be a cation, as the substituting element as in this example.

【0068】また、比較例B−9〜B−12は、M=A
lにおいて、X線回折分析において面間隔2.03±
0.02Åのピーク強度に対する面間隔4.72±0.
03Åのピーク強度が1.2倍未満の試料であるが、こ
れらはいずれも放電容量が少ない。これに対して、本実
施例のように、X線回折分析において面間隔2.03±
0.02Åのピーク強度に対する面間隔4.72±0.
03Åのピーク強度が1.2倍以上である組成式LiN
1-xx2(MはLiNiO2のNiを部分的に置換す
るNi、Co以外の陽イオンとなり得る元素、0<X≦
0.5)を用いる場合は、放電容量が大きく、優れた特
性を有することがわかる。
In Comparative Examples B-9 to B-12, M = A
at l, the interplanar spacing was 2.03 ± in the X-ray diffraction analysis.
The interplanar spacing for the peak intensity of 0.02Å 4.72 ± 0.
Although the peak intensity of 03Å is less than 1.2 times, these samples all have a small discharge capacity. On the other hand, as in this example, in the X-ray diffraction analysis, the plane spacing is 2.03 ±
The interplanar spacing for the peak intensity of 0.02Å 4.72 ± 0.
Compositional formula LiN whose peak intensity of 03Å is 1.2 times or more
i 1-x M x O 2 (M is an element that can be a cation other than Ni and Co that partially substitutes Ni of LiNiO 2 , 0 <X ≦
It can be seen that when 0.5) is used, the discharge capacity is large and the characteristics are excellent.

【0069】 [0069]

【0070】 [0070]

【0071】 [0071]

【0072】 [0072]

【0073】 [0073]

【0074】 [0074]

【0075】[0075]

【発明の効果】以上説明したように、本発明によれば、
小形で充放電エネルギーが大きく保存特性が良好なリチ
ウム電池を構成することができ、携帯用の種々の電子機
器の電源を始め、様々な分野に利用できるという利点を
有する。
As described above, according to the present invention,
A lithium battery having a small size and large charge / discharge energy and good storage characteristics can be constructed, and it has an advantage that it can be used in various fields including power sources of various portable electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるコイン電池の構成例を
示す断面図。
FIG. 1 is a cross-sectional view showing a configuration example of a coin battery according to an embodiment of the present invention.

【図2】本発明の実施例2におけるLiNi0.8Al0.2
2のX線回折特性図。
FIG. 2 LiNi 0.8 Al 0.2 in Example 2 of the present invention
X-ray diffraction characteristic diagram of O 2 .

【図3】本発明の実施例9におけるLiNi0.9Al0.1
2のX線回折特性図。
FIG. 3 LiNi 0.9 Al 0.1 in Example 9 of the present invention
X-ray diffraction characteristic diagram of O 2 .

【符号の説明】[Explanation of symbols]

1 封口板 2 ガスケット 3 正極ケース 4 負極 5 セパレータ 6 正極合剤ペレット 1 Sealing Plate 2 Gasket 3 Positive Electrode Case 4 Negative Electrode 5 Separator 6 Positive Electrode Mixture Pellets

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山木 準一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 市村 雅弘 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Yamaki 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (72) Inventor Masahiro Ichimura 1-1-1 Uchisaiwaicho, Chiyoda-ku, Tokyo No. 6 Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】X線回折分析において面間隔2.03±
0.02Åのピーク強度に対する面間隔4.72±0.
03Åのピーク強度が1.2倍以上である組成式LiN
1-xx2(MはLiNiO2のNiを部分的に置換す
るNi、Co以外の陽イオンとなり得る元素、0<X≦
0.5)で与えられる複酸化物を正極活物質として含
み、リチウムまたはその化合物を負極活物質とし、前記
正極活物質および前記負極活物質に対して化学的に安定
でありかつリチウムイオンが前記正極活物質あるいは前
記負極活物質と電気化学反応をするための移動を行い得
る物質を電解質物質としたことを特徴とするリチウム電
池。
1. A plane spacing of 2.03 ± in X-ray diffraction analysis.
The interplanar spacing for the peak intensity of 0.02Å 4.72 ± 0.
Compositional formula LiN whose peak intensity of 03Å is 1.2 times or more
i 1-x M x O 2 (M is an element that can be a cation other than Ni and Co that partially substitutes Ni of LiNiO 2 , 0 <X ≦
0.5) containing a complex oxide as a positive electrode active material, lithium or a compound thereof as a negative electrode active material, and chemically stable with respect to the positive electrode active material and the negative electrode active material, and having a lithium ion as described above. A lithium battery, characterized in that an electrolyte material is used as a material capable of carrying out an electrochemical reaction with the positive electrode active material or the negative electrode active material.
【請求項2】前記正極活物質が原子比でLi/(Ni+
M)≧2となるようにニッケル塩と前記Mの塩およびリ
チウム塩を混合して加熱焼成した後過剰のリチウムを洗
浄除去して得られる組成式LiNi1-xx2(0<X
≦0.5)で与えられる複酸化物であることを特徴とす
る請求項1記載のリチウム電池。
2. The positive electrode active material comprises Li / (Ni +) in atomic ratio.
M) ≧ 2, a nickel salt, the above M salt and a lithium salt are mixed, heated and calcined, and then excess lithium is washed away to obtain a composition formula LiNi 1-x M x O 2 (0 <X
The lithium battery according to claim 1, wherein the lithium battery is a complex oxide given by ≦ 0.5).
【請求項3】前記Mが周期律表のIIIA族あるいはIIIB
族の元素であることを特徴とする請求項1および2記載
のリチウム電池。
3. The M is a group IIIA or IIIB of the periodic table.
The lithium battery according to claim 1 or 2, wherein the lithium battery is a group element.
JP28426393A 1992-10-19 1993-10-19 Lithium battery Expired - Fee Related JP3339519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28426393A JP3339519B2 (en) 1992-10-19 1993-10-19 Lithium battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30600092 1992-10-19
JP4-306000 1992-10-19
JP28426393A JP3339519B2 (en) 1992-10-19 1993-10-19 Lithium battery

Publications (2)

Publication Number Publication Date
JPH06215800A true JPH06215800A (en) 1994-08-05
JP3339519B2 JP3339519B2 (en) 2002-10-28

Family

ID=26555399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28426393A Expired - Fee Related JP3339519B2 (en) 1992-10-19 1993-10-19 Lithium battery

Country Status (1)

Country Link
JP (1) JP3339519B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209649A (en) * 2004-01-19 2005-08-04 Samsung Sdi Co Ltd Cathode active material for lithium secondary battery and lithium secondary battery using this
JP2007242288A (en) * 2006-03-06 2007-09-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
WO2010113403A1 (en) * 2009-03-31 2010-10-07 パナソニック株式会社 Method for producing positive electrode for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using the positive electrode
US8771876B2 (en) 2009-04-22 2014-07-08 Sony Corporation Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
JP2014229614A (en) * 2013-05-20 2014-12-08 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Quality-modification method for lithium ion battery positive electrode material
WO2016181927A1 (en) * 2015-05-11 2016-11-17 日本電気株式会社 Lithium-ion battery
JP2021084856A (en) * 2019-11-29 2021-06-03 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Lithium composite oxide and lithium secondary battery comprising the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209649A (en) * 2004-01-19 2005-08-04 Samsung Sdi Co Ltd Cathode active material for lithium secondary battery and lithium secondary battery using this
US7601462B2 (en) 2004-01-19 2009-10-13 Samsung Sdi Co., Ltd. Cathode active material for lithium rechargeable battery and lithium rechargeable battery using the same
JP4637592B2 (en) * 2004-01-19 2011-02-23 三星エスディアイ株式会社 Cathode active material for lithium secondary battery and lithium secondary battery using the same
JP2007242288A (en) * 2006-03-06 2007-09-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
WO2010113403A1 (en) * 2009-03-31 2010-10-07 パナソニック株式会社 Method for producing positive electrode for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using the positive electrode
US8771876B2 (en) 2009-04-22 2014-07-08 Sony Corporation Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
JP2014229614A (en) * 2013-05-20 2014-12-08 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Quality-modification method for lithium ion battery positive electrode material
WO2016181927A1 (en) * 2015-05-11 2016-11-17 日本電気株式会社 Lithium-ion battery
JPWO2016181927A1 (en) * 2015-05-11 2018-03-01 日本電気株式会社 Lithium ion battery
JP2021084856A (en) * 2019-11-29 2021-06-03 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Lithium composite oxide and lithium secondary battery comprising the same
JP2022141690A (en) * 2019-11-29 2022-09-29 エコプロ ビーエム カンパニー リミテッド Lithium composite oxide and lithium secondary battery using the same

Also Published As

Publication number Publication date
JP3339519B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP7180532B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP5418664B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
US20070122705A1 (en) Electrode active material powder with size dependent composition and method to prepare the same
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
JP4813453B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery
KR20200128673A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
KR20140031018A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN115286054A (en) Lithium-containing transition metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JPWO2012032709A1 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP5370501B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2013173632A (en) Lithium-manganese-based composite oxide, positive electrode active material for secondary battery, and secondary battery
JP3339519B2 (en) Lithium battery
JP3289256B2 (en) Method for producing positive electrode active material for lithium battery
JP5828282B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery and secondary battery using the same
KR101298719B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN111373583A (en) Positive electrode active material for lithium ion secondary battery and method for producing same
JPH08287914A (en) Lithium battery
KR20210088494A (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JPH0935711A (en) Lithium secondary battery
KR101575476B1 (en) Metal oxide composite, preparation method thereof and secondary battery containing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees