JP2001023617A - Manufacture of lithium secondary battery - Google Patents

Manufacture of lithium secondary battery

Info

Publication number
JP2001023617A
JP2001023617A JP11192275A JP19227599A JP2001023617A JP 2001023617 A JP2001023617 A JP 2001023617A JP 11192275 A JP11192275 A JP 11192275A JP 19227599 A JP19227599 A JP 19227599A JP 2001023617 A JP2001023617 A JP 2001023617A
Authority
JP
Japan
Prior art keywords
active material
electrode active
secondary battery
lithium secondary
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11192275A
Other languages
Japanese (ja)
Other versions
JP4318270B2 (en
Inventor
Manabu Kazuhara
学 数原
Megumi Yugawa
めぐみ 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP19227599A priority Critical patent/JP4318270B2/en
Publication of JP2001023617A publication Critical patent/JP2001023617A/en
Application granted granted Critical
Publication of JP4318270B2 publication Critical patent/JP4318270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having a high energy density capable of being used at a high temperature in which an electric capacity is large and a charge/discharge cycle durability is excellent. SOLUTION: The lithium secondary battery provided with a positive electrode active substance represented by a formula: LixMnyM1-yO2 (M is one kind or more of Al, Fe, Co, Ni, Mg or Cr, 0<x<=1.1, 0.5<=y<=1); a negative electrode active substance and an organic electrolyte containing a lithium ion is charged at 4.0-4.8 V at 60-100 deg.C in a manufacture step. A time for applying a voltage of 4.0-4.8 V is 0.5 hours to 7 days.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
の製造方法に関する。
[0001] The present invention relates to a method for manufacturing a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が進むにつれ、小型、軽量でかつ高エネルギ密度を有
するリチウム二次電池に対する期待が高まっている。非
水電解液二次電池用の活物質としては、LiCoO2
LiNiO2、LiMn24、LiMnO2等の、リチウ
ムと遷移金属との複合酸化物が知られている。特に最近
では、安全性が高くかつ安価な材料としてリチウムとマ
ンガンの複合酸化物の研究が盛んである。そして、上記
活物質を正極活物質とし、リチウムを吸蔵、脱離できる
炭素材料等の負極活物質と組み合わせた、高電圧、高エ
ネルギ密度のリチウム二次電池の開発が進められてい
る。
2. Description of the Related Art In recent years, as devices have become more portable and cordless, expectations are growing for lithium secondary batteries that are small, lightweight, and have a high energy density. As an active material for a non-aqueous electrolyte secondary battery, LiCoO 2 ,
Composite oxides of lithium and a transition metal, such as LiNiO 2 , LiMn 2 O 4 , and LiMnO 2 , are known. In particular, recently, research on lithium and manganese composite oxides has been actively conducted as a highly safe and inexpensive material. Further, development of a high voltage, high energy density lithium secondary battery in which the above active material is used as a positive electrode active material and combined with a negative electrode active material such as a carbon material capable of inserting and extracting lithium has been promoted.

【0003】一般に、上記のような正極活物質は、複合
酸化物を構成する遷移金属の種類によって電気容量、リ
チウムイオンの吸蔵及び脱離の可逆性、作動電圧、安全
性等の電極特性が異なる。
In general, the above-mentioned positive electrode active materials have different electrode characteristics such as electric capacity, reversibility of occlusion and desorption of lithium ions, operating voltage and safety, depending on the type of transition metal constituting the composite oxide. .

【0004】例えば、LiCoO2及びLiNi0.8Co
0.22のようにコバルトやニッケルを含む層状岩塩構造
を有する複合酸化物を正極活物質に用いた非水電解液二
次電池は、それぞれ140〜160mAh/g及び19
0〜210mAh/gと比較的高い容量密度を達成で
き、かつ2.5〜4.3Vの高い電圧域では良好な充放
電特性を示す。しかし、電池を加温して充電した場合、
充電された正極活物質と電解液の溶媒とが反応して電池
が発熱しやすい問題、原料のコバルトやニッケルが高価
なため活物質のコストが高い問題、2.5〜3.5V領
域での容量が低い問題等がある。
For example, LiCoO 2 and LiNi 0.8 Co
Non-aqueous electrolyte secondary batteries using a composite oxide having a layered rock salt structure containing cobalt or nickel, such as 0.2 O 2 , as a positive electrode active material are 140 to 160 mAh / g and 19, respectively.
A relatively high capacity density of 0 to 210 mAh / g can be achieved, and good charge / discharge characteristics are exhibited in a high voltage range of 2.5 to 4.3 V. However, when the battery is heated and charged,
The problem that the charged positive electrode active material reacts with the solvent of the electrolytic solution to cause the battery to easily generate heat, the problem that the cost of the active material is high because cobalt or nickel as the raw material is expensive, and the problem in the 2.5 to 3.5 V region. There is a problem such as low capacity.

【0005】一方、比較的安価なマンガンを原料とする
LiMn24からなるスピネル型複合酸化物を活物質に
用いたリチウム二次電池は、充電時の正極活物質と電解
液溶媒との反応による電池の発熱は比較的起こりにくい
が、容量が100〜120mAh/gで上記のコバルト
又はニッケルを含む正極活物質を使用した場合に比べ低
い。また、常温では充放電サイクル耐久性があるが、3
V未満の低い電圧領域で急速に劣化し、比較的高温の5
0〜60℃で使用する場合には充放電サイクル耐久性が
乏しい。そのため、LiCoO2、LiNi0.8Co0.2
2及びLiMn 24を活物質に用いたリチウム二次電
池は、安全性、充放電サイクル耐久性等の問題により、
使用温度上限は60℃とされ、通常は50℃以下で充電
されている。
On the other hand, relatively inexpensive manganese is used as a raw material.
LiMnTwoOFour-Based spinel-type composite oxide as active material
The lithium secondary battery used was a cathode active material and an electrolytic
Heat generation of battery due to reaction with liquid solvent is relatively unlikely
Has a capacity of 100 to 120 mAh / g and
Or lower than when a positive electrode active material containing nickel is used
No. At room temperature, it has charge / discharge cycle durability.
Degrades rapidly in the low voltage region below V,
When used at 0-60 ° C, the charge / discharge cycle durability is
poor. Therefore, LiCoOTwo, LiNi0.8Co0.2
OTwoAnd LiMn TwoOFourLithium secondary battery using carbon as active material
Ponds are subject to safety, charge / discharge cycle durability, etc.
The upper limit of the operating temperature is 60 ° C, and it is usually charged below 50 ° C
Have been.

【0006】しかし、電力貯蔵等の用途では、熱収支の
見地より60℃以上で安全かつ耐久性良く作動する二次
電池が望まれているが、このような電池は未だ開発され
ていない。また、WO97/30487では、LiCo
2を正極活物質とするリチウム二次電池を製造する際
に、2〜30℃の低温及び40〜70℃の高温にて開路
電圧2.5〜3.8Vでエージングすると、容量又は充
放電サイクルによる劣化を改善できることが報告されて
いるが、この方法を用いても容量の絶対値は低く、充分
ではなかった。
However, for applications such as power storage, a secondary battery that operates safely and durably at 60 ° C. or higher is desired from the viewpoint of heat balance, but such a battery has not yet been developed. In WO97 / 30487, LiCo
When manufacturing a lithium secondary battery using O 2 as a positive electrode active material, aging at a low circuit temperature of 2 to 30 ° C. and a high temperature of 40 to 70 ° C. with an open circuit voltage of 2.5 to 3.8 V results in capacity or charge / discharge. Although it has been reported that deterioration due to cycling can be improved, the absolute value of the capacity was low even with this method, and was not sufficient.

【0007】一方、LiMnO2は原理的に高い容量が
期待できるため、有望視されている。LiMnO2の構
造は、β−NaMnO2型構造からなる斜方晶とα−N
aMnO2型構造からなる層状岩塩構造の単斜晶が知ら
れている。斜方晶LiMnO2は、2V前後の低い電圧
領域まで作動できるのでLiMn24より高い容量が期
待できるが、充放電の繰り返しにより徐々にスピネル相
に転移するため、充放電サイクル耐久性が乏しい問題が
ある。
[0007] On the other hand, LiMnO 2 is expected to have a high capacity in principle, and is therefore promising. LiMnO 2 has an orthorhombic structure composed of β-NaMnO 2 type structure and α-N
A monoclinic having a layered rock salt structure having an aMnO 2 type structure is known. Since orthorhombic LiMnO 2 can operate up to a low voltage range of about 2 V, it can be expected to have a higher capacity than LiMn 2 O 4 , but the charge / discharge cycle durability is poor because it gradually transitions to a spinel phase by repeated charge / discharge. There's a problem.

【0008】LiMnO2にFe、Ni、Co、Cr又
はAlを添加した正極活物質が特開平10−13481
2に開示されているが、合成されたLiMnM12(M
1=Fe、Co、Ni、Cr、Al)はいずれもX線回
折結果より斜方晶LiMnO 2構造を有しており、充放
電サイクルの安定性は不十分である。
LiMnOTwoFe, Ni, Co, Cr or
The positive electrode active material to which Al is added is disclosed in JP-A-10-13481.
2, the synthesized LiMnM1OTwo(M
1= Fe, Co, Ni, Cr, Al)
According to the results of the analysis, TwoStructure and charge and discharge
Electric cycle stability is inadequate.

【0009】また、単斜晶系のLiMnO2も充放電の
速度が遅く、充放電サイクルを10〜30サイクル程度
行わないと容量が発現しはじめない問題がある。具体的
には、単斜晶系層状岩塩構造のLiAl0.25Mn0.75
2は、室温でC/5の放電速度での1〜2サイクル目の
容量は110mAh/gであるが、15サイクル後に1
50mAh/gに上昇すること、C/15の放電速度で
は容量が180mAh/gに上昇することが報告されて
いる(Young−I.Jangら、Electroc
hem.Solid−State Lett.,1,1
3(1998))。
Further, monoclinic LiMnO 2 also has a problem that the charge / discharge speed is slow, and the capacity does not start to develop unless the charge / discharge cycle is performed for about 10 to 30 cycles. Specifically, LiAl 0.25 Mn 0.75 O having a monoclinic layered rock salt structure
2 shows that the capacity at the first and second cycles at a discharge rate of C / 5 at room temperature is 110 mAh / g.
It has been reported that the capacity increases to 180 mAh / g at a discharge rate of 50 mAh / g at a discharge rate of C / 15 (Young-I. Jang et al., Electroc).
hem. Solid-State Lett. , 1,1
3 (1998)).

【0010】また、単斜晶系層状岩塩構造及び斜方晶系
LiAl0.05Mn0.952、及び単斜晶系層状岩塩構造
のLiMnO2は、いずれも55℃において1〜2サイ
クル目の容量が10〜150mAh/gであり、充放電
サイクルが7〜30サイクルにならないと容量が増大し
た状態で安定にならず、かつ到達容量が低く、また急速
充放電すると急速に容量が低下する問題があることも報
告されている(Yet−Ming Chiangら、E
lectrochem.Solid−State Le
tt.,2,107(1999))。
Further, the monoclinic layered rock salt structure and the orthorhombic LiAl 0.05 Mn 0.95 O 2 , and the LiMnO 2 having the monoclinic layered rock salt structure all have a capacity of the first or second cycle at 55 ° C. If the charge / discharge cycle is not 7 to 30 cycles, the capacity is not stable in a state of increased capacity, the ultimate capacity is low, and the capacity is rapidly reduced when charged / discharged rapidly. (Yet-Ming Chiang et al., E
electrochem. Solid-State Le
tt. , 2, 107 (1999)).

【0011】単斜晶及び斜方晶LiMnO2の製造方法
としては、固相反応法による製造方法が上記2つの文献
に記載されている。また、単斜晶LiMnO2はリチウ
ム以外のアルカリ金属の水酸化物を含むリチウム塩水溶
液中でマンガン酸化物を水熱処理することにより直接製
造する方法が報告されている(特開平11−2112
8)。しかし、この方法で得られたものを正極活物質と
しても高温で安定に作動できるリチウム二次電池は得ら
れていない。
As a method for producing monoclinic and orthorhombic LiMnO 2, a production method by a solid phase reaction method is described in the above two documents. Further, a method has been reported in which monoclinic LiMnO 2 is directly produced by hydrothermally treating a manganese oxide in a lithium salt aqueous solution containing a hydroxide of an alkali metal other than lithium (JP-A-11-2112).
8). However, a lithium secondary battery that can operate stably at high temperatures even when the one obtained by this method is used as a positive electrode active material has not been obtained.

【0012】[0012]

【発明が解決しようとする課題】そこで本発明は、広い
電圧範囲で使用でき、高電流密度において容量が大き
く、高エネルギ密度であり、充放電サイクル耐久性に優
れ、高温作動が可能でかつ安全性の高いリチウム二次電
池の製造方法を提供することを目的とする。
Therefore, the present invention can be used in a wide voltage range, has a large capacity at a high current density, has a high energy density, has excellent charge / discharge cycle durability, can operate at high temperatures, and is safe. It is an object of the present invention to provide a method for manufacturing a highly reliable lithium secondary battery.

【0013】[0013]

【課題を解決するための手段】本発明は、LixMny
1-y2で表される(ただし、Mは、Al、Fe、Co、
Ni、Mg及びCrからなる群から選ばれる1種以上の
元素であり、0<x≦1.1、0.5≦y≦1であ
る。)複合酸化物を主成分とする正極活物質層と、リチ
ウムイオンを吸蔵・脱離可能な負極活物質層とを、セパ
レータを介して対向させ、リチウムイオンを含有する有
機電解液に含浸させた後、正極活物質層と負極活物質層
の間に60〜100℃にて4.0〜4.8Vの電圧を印
加することを特徴とするリチウム二次電池の製造方法を
提供する。
Means for Solving the Problems The present invention, Li x Mn y M
1-y O 2 (where M is Al, Fe, Co,
At least one element selected from the group consisting of Ni, Mg and Cr, where 0 <x ≦ 1.1 and 0.5 ≦ y ≦ 1. ) A positive electrode active material layer containing a composite oxide as a main component and a negative electrode active material layer capable of inserting and extracting lithium ions were opposed to each other via a separator, and were impregnated with an organic electrolyte solution containing lithium ions. Thereafter, there is provided a method for manufacturing a lithium secondary battery, wherein a voltage of 4.0 to 4.8 V is applied between a positive electrode active material layer and a negative electrode active material layer at 60 to 100 ° C.

【0014】また、本発明は、LixMny1-y2で表
される(ただし、Mは、Al、Fe、Co、Ni、Mg
及びCrからなる群から選ばれる1種以上の元素であ
り、0<x≦1.1、0.5≦y≦1である。)複合酸
化物を主成分とする正極活物質層と、リチウムイオンを
吸蔵・脱離可能な負極活物質層とを、リチウムイオンと
有機溶媒を含有するポリマー電解質を介して対向させた
後、正極活物質層と負極活物質層の間に60〜100℃
にて4.0〜4.8Vの電圧を印加することを特徴とす
るリチウム二次電池の製造方法を提供する。
Further, the present invention is represented by Li x Mn y M 1-y O 2 ( however, M is Al, Fe, Co, Ni, Mg
And Cr are at least one element selected from the group consisting of 0 <x ≦ 1.1 and 0.5 ≦ y ≦ 1. After the positive electrode active material layer mainly composed of a composite oxide and the negative electrode active material layer capable of inserting and extracting lithium ions are opposed to each other via a polymer electrolyte containing lithium ions and an organic solvent, 60 to 100 ° C. between the active material layer and the negative electrode active material layer
Wherein a voltage of 4.0 to 4.8 V is applied to the lithium secondary battery.

【0015】[0015]

【発明の実施の形態】本発明におけるLixMny1-y
2で表される複合酸化物におけるyは0.5以上1以
下である。yが0.5未満であると容量が低下する。容
量が大きくかつサイクル耐久性に優れる二次電池を得る
には、yは特に0.75〜0.99、さらには0.90
〜0.97であることが好ましい。
Li x Mn y M 1-y in DETAILED DESCRIPTION OF THE INVENTION The present invention
Y in the composite oxide represented by O 2 is 0.5 or more and 1 or less. If y is less than 0.5, the capacity decreases. In order to obtain a secondary battery having a large capacity and excellent cycle durability, y is particularly preferably 0.75 to 0.99, more preferably 0.90 to 0.90.
0.90.97 is preferred.

【0016】本発明では、正極活物質層と負極活物質層
とをセパレータを介して対向させ、特定の有機電解液を
含浸させた後、充電する。又は、正極活物質層と負極活
物質層とを特定のポリマー電解質を介して対向させた
後、充電する。本発明の製造方法において正極活物質層
と負極活物質層の間に60〜100℃にて4.0〜4.
8Vの電圧を印加してこの電圧範囲に保持する(以下、
この操作を電圧保持という)工程は、上記の充電を60
〜100℃にて4.0〜4.8Vの電圧で行うことで実
施してもよいし、上記の充電後に60〜100℃にて
4.0〜4.8Vの開路電圧を印加することで実施して
もよい。
In the present invention, the positive electrode active material layer and the negative electrode active material layer are opposed to each other with a separator interposed therebetween, and are impregnated with a specific organic electrolyte and then charged. Alternatively, charging is performed after the positive electrode active material layer and the negative electrode active material layer are opposed to each other via a specific polymer electrolyte. In the production method of the present invention, between the positive electrode active material layer and the negative electrode active material layer at 4.0 to 100 ° C., 4.0 to 4.0.
A voltage of 8 V is applied and maintained in this voltage range (hereinafter, referred to as “V”).
This operation is referred to as voltage holding).
It may be carried out by applying a voltage of 4.0 to 4.8 V at 100100 ° C., or by applying an open circuit voltage of 4.0 to 4.8 V at 60 to 100 ° C. after the above charging. May be implemented.

【0017】電圧保持温度が60℃未満であると電圧保
持による容量増大効果及び急速充放電性能向上効果が少
ない。また、電圧保持温度が100℃を超えると電極や
電解液の電気化学的劣化が著しくなる。電圧保持温度は
70〜90℃が特に好ましい。また、電圧保持の電圧が
4.0V未満であると電圧保持による容量増大効果及び
急速充放電性能向上効果が少ない。電圧保持の電圧が
4.8Vを超えると電極や電解液の電気化学的劣化が大
きくなる。電圧保持の電圧は4.2〜4.5Vが特に好
ましい。
When the voltage holding temperature is lower than 60 ° C., the effect of increasing the capacity by the voltage holding and the effect of improving the rapid charge / discharge performance are small. On the other hand, when the voltage holding temperature exceeds 100 ° C., the electrochemical deterioration of the electrodes and the electrolyte becomes remarkable. The voltage holding temperature is particularly preferably from 70 to 90C. On the other hand, when the voltage for holding the voltage is less than 4.0 V, the capacity increasing effect and the rapid charge / discharge performance improving effect by the voltage holding are small. If the voltage for holding the voltage exceeds 4.8 V, the electrochemical deterioration of the electrodes and the electrolyte will increase. The voltage for holding the voltage is particularly preferably 4.2 to 4.5 V.

【0018】上記電圧保持の時間は特に限定されない
が、0.5時間〜7日間が好ましい。0.5時間未満で
あると容量増大効果が少ない。特に好ましくは2時間〜
5日間である。また、電圧保持の温度と電圧の関係は上
記範囲内において、温度を高めに設定する場合は電圧を
低めに設定し、温度を低めに設定する場合は電圧を高め
に設定するとよい。
The voltage holding time is not particularly limited, but is preferably 0.5 hours to 7 days. When the time is less than 0.5 hour, the effect of increasing the capacity is small. Particularly preferably 2 hours or more
5 days. In addition, the relationship between the temperature and the voltage for holding the voltage may be set within the above-described range, in which case the voltage is set lower when the temperature is set higher, and the voltage is set higher when the temperature is set lower.

【0019】本発明におけるLixMny1-y2で表さ
れる複合酸化物は、電圧保持前の状態において単斜晶系
の層状岩塩構造又は斜方晶であるが、単斜晶系の層状岩
塩構造である方が好ましい。単斜晶系の層状岩塩構造で
あると、本発明で得られるリチウム二次電池の充放電サ
イクル耐久性が高くなる。
The composite oxide represented by Li x Mn y M 1-y O 2 in the present invention is a layered rock salt structure or orthorhombic monoclinic in a state before voltage holding monoclinic It is preferred that the system has a layered rock salt structure. When the monoclinic layered rock salt structure is used, the charge / discharge cycle durability of the lithium secondary battery obtained by the present invention is increased.

【0020】本発明において電圧保持により容量が増大
したり急速充放電性能が向上する理由は明確ではない
が、LixMny1-y2が充電によりリチウムが脱ドー
プした状態で60℃以上の高温に保持されると、結晶構
造の何らかの変化が加速して起こるためと推察される。
The reason why the capacitance by the voltage held in the present invention is rapid charge and discharge performance is improved or increased is not clear, 60 ° C. in a state in which the Li x Mn y M 1-y O 2 lithium by charging is dedoped It is presumed that when the temperature is maintained at the above high temperature, some change in the crystal structure occurs at an accelerated rate.

【0021】本発明では電圧保持前のLixMny1-y
2は単斜晶系の層状岩塩構造又は斜方晶であるが、製
造工程における電圧保持後又は二次電池が製造された後
の充放電サイクル後には、必ずしももとの層状岩塩構造
又は斜方晶を保持する必要はない。LixMny1-y2
は、充放電サイクル後は、層状構造からかなりの程度非
晶質に変化しており、スピネル相のX線回折スペクトル
が得られる場合もあるが、容量向上等の高い効果が得ら
れている。
The previous voltage holding in the present invention Li x Mn y M 1-y
O 2 has a monoclinic layered rock salt structure or orthorhombic structure, but after a voltage holding in a manufacturing process or a charge / discharge cycle after a secondary battery is manufactured, the original layered rock salt structure or an oblique crystal is not always required. It is not necessary to keep the tetragon. Li x Mn y M 1-y O 2
After the charge / discharge cycle, the layer structure has changed from the layered structure to an amorphous state to a considerable extent, and an X-ray diffraction spectrum of the spinel phase may be obtained in some cases, but a high effect such as improvement in capacity is obtained.

【0022】本発明における正極活物質層は、例えば以
下のように形成される。すなわち、リチウム−マンガン
複合酸化物の粉末にアセチレンブラック、黒鉛、ケッチ
ェンブラック等のカーボン系導電材と結合材と結合材の
溶媒又は分散媒を混合することによりスラリ又は混練物
を形成し、スラリの場合は正極集電体に塗布し又は担持
させ、混練物の場合はプレス圧延又は押圧して正極活物
質層を正極集電体上に形成する。このとき、結合材には
ポリフッ化ビニリデン、ポリテトラフルオロエチレン、
ポリアミド、カルボキシメチルセルロース、アクリル樹
脂等が用いられる。正極集電体としてはアルミニウム
箔、ステンレス鋼箔等が用いられる。
The positive electrode active material layer in the present invention is formed, for example, as follows. That is, a slurry or a kneaded material is formed by mixing a carbon-based conductive material such as acetylene black, graphite, and Ketjen black with a binder or a solvent or a dispersion medium of the binder in the lithium-manganese composite oxide powder, In the case of (1), the positive electrode current collector is applied or supported, and in the case of a kneaded material, a positive electrode active material layer is formed on the positive electrode current collector by press rolling or pressing. At this time, polyvinylidene fluoride, polytetrafluoroethylene,
Polyamide, carboxymethyl cellulose, acrylic resin and the like are used. Aluminum foil, stainless steel foil, or the like is used as the positive electrode current collector.

【0023】本発明において、正極活物質層の空隙率は
27〜37%であることが好ましい。空隙率が27%未
満であると電解液が電極に含浸されにくくなり電池の内
部抵抗が高くなりやすい。37%を超えると正極活物質
層の体積が増加し、単位体積あたりの充放電容量が低下
しやすい。空隙率は特に30〜35%が好ましい。正極
活物質層の空隙率は、正極活物質層を正極集電体上に形
成してなる正極体をプレス圧延する際のプレス条件や、
スラリ又は混練物を形成する際の溶媒又は分散媒の含量
により制御できる。
In the present invention, the porosity of the positive electrode active material layer is preferably 27 to 37%. When the porosity is less than 27%, the electrolyte is less likely to be impregnated into the electrodes, and the internal resistance of the battery tends to increase. If it exceeds 37%, the volume of the positive electrode active material layer increases, and the charge / discharge capacity per unit volume tends to decrease. The porosity is particularly preferably 30 to 35%. The porosity of the positive electrode active material layer is determined by pressing conditions for press-rolling the positive electrode body formed by forming the positive electrode active material layer on the positive electrode current collector,
It can be controlled by the content of the solvent or the dispersion medium when forming the slurry or the kneaded material.

【0024】本発明に用いるLixMny1-y2で表さ
れる複合酸化物は、例えば金属元素Mを含む化合物とマ
ンガン化合物とリチウム化合物との混合物を固相法によ
り500〜1000℃で焼成、又は100〜300℃で
水熱合成することにより製造される。単斜晶系の層状岩
塩構造を有する複合酸化物を得る場合は、リチウム元素
及びリチウム以外のアルカリ金属の水酸化物を含有する
水溶液中にマンガン化合物と金属元素Mを含む化合物と
を加え、130〜300℃にて水熱合成することにより
製造することが好ましい。
The composite oxide represented by Li x Mn y M 1-y O 2 used in the present invention include a mixture of the compound and a manganese compound and a lithium compound containing a metal element M by the solid phase method 500-1000 It is manufactured by calcining at 100C or hydrothermal synthesis at 100-300C. When obtaining a composite oxide having a monoclinic layered rock salt structure, a manganese compound and a compound containing a metal element M are added to an aqueous solution containing a lithium element and a hydroxide of an alkali metal other than lithium. It is preferable to produce by hydrothermal synthesis at ~ 300 ° C.

【0025】水熱合成で製造する場合、リチウム以外の
アルカリ金属の水酸化物としては高濃度の水酸化カリウ
ム又は水酸化ナトリウムを含有していることが好まし
い。また、マンガン化合物と金属元素Mを含む化合物と
は、マンガンと金属元素Mの共沈水酸化物、共沈酸化物
又は共沈オキシ水酸化物の状態でリチウムイオンとリチ
ウム以外のアルカリ金属の水酸化物を含有する水溶液中
に加えることが特に好ましい。
When produced by hydrothermal synthesis, it is preferable that the hydroxide of an alkali metal other than lithium contains a high concentration of potassium hydroxide or sodium hydroxide. In addition, the manganese compound and the compound containing the metal element M are the same as the coprecipitated hydroxide, coprecipitated oxide or coprecipitated oxyhydroxide of manganese and metal element M. It is particularly preferable to add the compound to an aqueous solution containing the substance.

【0026】原料となるマンガン化合物としては、酸化
物(Mn23、MnO、MnO2等)又はその水和物、
オキシ水酸化物等が挙げられる。またマンガン化合物中
のマンガンの原子価は、3価であることが好ましい。マ
ンガン化合物は、1種のものを単独で使用しても2種以
上を混合して使用してもよい。
The manganese compound used as a raw material includes oxides (Mn 2 O 3 , MnO, MnO 2, etc.) or hydrates thereof,
Oxyhydroxide and the like. The valence of manganese in the manganese compound is preferably trivalent. The manganese compounds may be used alone or as a mixture of two or more.

【0027】また、リチウム−マンガン複合酸化物を固
相法で製造する場合は、例えば硝酸マンガンと金属元素
Mの硝酸塩とを含む水溶液にアンモニア等のアルカリを
添加して共沈水酸化物を生成し、この共沈水酸化物の粉
末を水酸化リチウム水溶液に分散させ、このスラリを蒸
発乾固させて得られる固形物を、酸素分圧を10-2から
10-7気圧までの範囲に制御して800〜960℃で焼
成することにより得られる。このとき、酸素分圧及び焼
成温度を調整することにより、単斜晶と斜方晶をつくり
分けることができる。
When the lithium-manganese composite oxide is produced by a solid phase method, for example, an alkali such as ammonia is added to an aqueous solution containing manganese nitrate and a nitrate of the metal element M to form a coprecipitated hydroxide. This coprecipitated hydroxide powder is dispersed in an aqueous lithium hydroxide solution, and the solid obtained by evaporating the slurry to dryness is controlled by controlling the oxygen partial pressure in a range from 10 -2 to 10 -7 atm. It is obtained by firing at 800 to 960 ° C. At this time, by adjusting the oxygen partial pressure and the firing temperature, monoclinic crystals and orthorhombic crystals can be separately formed.

【0028】原料となる金属元素Mを含む化合物として
は、水酸化物、酸化物、オキシ水酸化物、塩化物、硝酸
塩等が使用される。金属元素Mを含む化合物のかわりに
単体金属Mを使用してもよい。これらは、1種のものを
単独で使用してもよく、2種以上を混合して使用しても
よい。
As the compound containing the metal element M as a raw material, hydroxide, oxide, oxyhydroxide, chloride, nitrate and the like are used. A simple metal M may be used instead of the compound containing the metal element M. These may be used alone or as a mixture of two or more.

【0029】本発明のリチウム二次電池において、有機
電解液の溶媒又はポリマー電解質に含まれる有機溶媒と
しては炭酸エステルが好ましい。炭酸エステルは環状、
鎖状いずれも使用できる。環状炭酸エステルとしてはプ
ロピレンカーボネート、エチレンカーボネート(以下、
ECという)等が例示される。鎖状炭酸エステルとして
はジメチルカーボネート、ジエチルカーボネート(以
下、DECという)、エチルメチルカーボネート、メチ
ルプロピルカーボネート、メチルイソプロピルカーボネ
ート等が例示される。本発明では上記炭酸エステルを単
独で又は2種以上を混合して使用できる。また、他の溶
媒と混合して使用してもよい。また、負極活物質の材料
によっては、鎖状炭酸エステルと環状炭酸エステルを併
用すると、放電特性、サイクル耐久性、充放電効率が改
良できる場合がある。
In the lithium secondary battery of the present invention, carbonate is preferable as the solvent of the organic electrolyte or the organic solvent contained in the polymer electrolyte. Carbonate is cyclic,
Any chain type can be used. As the cyclic carbonate, propylene carbonate, ethylene carbonate (hereinafter, referred to as “carbonate”)
EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (hereinafter referred to as DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like. In the present invention, the above carbonates can be used alone or in combination of two or more. Moreover, you may mix and use it with another solvent. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonate and a cyclic carbonate may improve the discharge characteristics, cycle durability, and charge / discharge efficiency.

【0030】有機電解液の溶質及びポリマー電解質に含
まれる溶質としては、ClO4 -、CF3SO3 -、B
4 -、PF6 -、AsF6 -、SbF6 -、CF3CO2 -
(CF3SO22-等をアニオンとするリチウム塩が好
ましく、これらのいずれか1種以上を使用することが好
ましい。
The solute contained in the organic electrolyte and the polymer electrolyte includes ClO 4 , CF 3 SO 3 , B
F 4 , PF 6 , AsF 6 , SbF 6 , CF 3 CO 2 ,
A lithium salt having (CF 3 SO 2 ) 2 N or the like as an anion is preferable, and it is preferable to use at least one of them.

【0031】ポリマー電解質を使用する場合は、上記有
機溶媒にフッ化ビニリデン/ヘキサフルオロプロピレン
共重合体(例えば、商品名:カイナー、アトケム社
製)、特開平10−294131に開示されたフッ化ビ
ニリデン/パーフルオロ(プロピルビニルエーテル)共
重合体等を添加し、上記溶質を加えることによりゲル状
のポリマー電解質として使用することが好ましい。
When a polymer electrolyte is used, a vinylidene fluoride / hexafluoropropylene copolymer (for example, trade name: Kayner, manufactured by Atochem Co.) may be used as the organic solvent, or vinylidene fluoride disclosed in JP-A-10-294131. It is preferable to add a perfluoro (propyl vinyl ether) copolymer or the like and add the above solute to use it as a gel polymer electrolyte.

【0032】上記の有機電解液又はポリマー電解質にお
いて、リチウム塩からなる電解質は0.2〜2.0モル
/リットル含まれることが好ましい。この範囲を逸脱す
ると、イオン伝導度が低下し、電解質の電気伝導度が低
下する。より好ましくは0.5〜1.5モル/リットル
である。
In the above-mentioned organic electrolytic solution or polymer electrolyte, it is preferable that the electrolyte composed of a lithium salt is contained in an amount of 0.2 to 2.0 mol / l. Outside of this range, the ionic conductivity decreases and the electrical conductivity of the electrolyte decreases. More preferably, it is 0.5 to 1.5 mol / liter.

【0033】本発明における負極活物質は、リチウムイ
オンを吸蔵、脱離可能な材料である。負極活物質を形成
する材料は特に限定されないが、例えばリチウム金属、
リチウム合金、炭素材料、周期表14、15族の金属を
主体とする酸化物、炭化ケイ素や炭化ホウ素等の炭化
物、酸化ケイ素化合物、硫化チタン等が挙げられる。炭
素材料としては、有機物を様々な熱分解条件で熱分解し
たものや人造黒鉛、天然黒鉛、土状黒鉛、膨張黒鉛、鱗
片状黒鉛等が使用できる。また、酸化物としては、酸化
スズを主体とする化合物が使用できる。
The negative electrode active material in the present invention is a material capable of inserting and extracting lithium ions. The material forming the negative electrode active material is not particularly limited, for example, lithium metal,
Examples thereof include a lithium alloy, a carbon material, an oxide mainly containing a metal belonging to Groups 14 and 15 of the periodic table, a carbide such as silicon carbide and boron carbide, a silicon oxide compound, and titanium sulfide. As the carbon material, those obtained by thermally decomposing an organic substance under various thermal decomposition conditions, artificial graphite, natural graphite, earth graphite, expanded graphite, flaky graphite and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used.

【0034】負極活物質層は負極集電体上に形成される
ことが好ましく、負極集電体としては銅箔、ニッケル箔
等が用いられる。また、有機電解液を使用する場合の正
極活物質層と負極活物質層との間に介在するセパレータ
には、多孔質ポリエチレンフィルム、多孔質ポリプロピ
レンフィルム等が好ましく使用される。
The negative electrode active material layer is preferably formed on a negative electrode current collector. As the negative electrode current collector, a copper foil, a nickel foil or the like is used. When an organic electrolyte is used, a porous polyethylene film, a porous polypropylene film, or the like is preferably used as a separator interposed between the positive electrode active material layer and the negative electrode active material layer.

【0035】本発明で得られるリチウム二次電池は特に
60℃以上の高温で、従来品に比べて高エネルギ密度か
つ高出力密度を有しているので、60〜85℃で作動さ
せることが好ましい。したがって、特に周辺温度が比較
的高温となりやすい電力貯蔵の用途、ロードレベリン
グ、電気自動車、ハイブリッド自動車用主電源又は補助
電源として有用である。本発明で得られるリチウム二次
電池の形状には特に制約はない。シート状(いわゆるフ
イルム状)、折り畳み状、巻回型有底円筒形、コイン形
等が用途に応じて選択される。
Since the lithium secondary battery obtained by the present invention has a high energy density and a high output density as compared with conventional products, particularly at a high temperature of 60 ° C. or higher, it is preferable to operate the battery at 60 to 85 ° C. . Therefore, it is particularly useful as an electric power storage application in which the ambient temperature tends to be relatively high, a load leveling, a main power supply or an auxiliary power supply for electric vehicles and hybrid vehicles. The shape of the lithium secondary battery obtained by the present invention is not particularly limited. A sheet shape (a so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a coin shape, and the like are selected according to the application.

【0036】[0036]

【実施例】以下に実施例(例1〜7)及び比較例(例8
〜13)により本発明を具体的に説明するが、本発明は
これらに限定されない。
The following examples (Examples 1 to 7) and comparative examples (Example 8)
To 13), the present invention will be specifically described, but the present invention is not limited thereto.

【0037】[例1]硝酸マンガンと硝酸クロムを含む
水溶液に水酸化アンモニウム水溶液を加えて共沈させ、
150℃で加熱、乾燥して、マンガン−クロム共沈水酸
化物を得た。水酸化リチウム水溶液に上記マンガン−ク
ロム共沈水酸化物を添加し、撹拌後溶媒を蒸発させ乾固
して固形物を得た。この固形物を950℃で3時間、常
圧下、酸素分圧10-6気圧にて焼成し、粉末を得た。
Example 1 An aqueous solution containing manganese nitrate and chromium nitrate was co-precipitated by adding an aqueous solution of ammonium hydroxide.
Heating and drying at 150 ° C. yielded a manganese-chromium coprecipitated hydroxide. The manganese-chromium coprecipitated hydroxide was added to the aqueous lithium hydroxide solution, and after stirring, the solvent was evaporated to dryness to obtain a solid. This solid was calcined at 950 ° C. for 3 hours under normal pressure at an oxygen partial pressure of 10 −6 atm to obtain a powder.

【0038】上記粉末のCuKα線によるX線回折分析
の結果、2θ=18度、37度、39度、45度、61
度、65度及び67度に回折ピークが認められ、単斜晶
相を有する空間群C2/mに属する層状岩塩型のLiM
nO2構造であることがわかった。また、粉末の元素分
析により、粉末はLiMn0.95Cr0.052であること
がわかった。
As a result of X-ray diffraction analysis of the powder by CuKα ray, 2θ = 18 °, 37 °, 39 °, 45 °, 61 °
, 65 ° and 67 ° diffraction peaks, and a layered rock salt type LiM belonging to the space group C2 / m having a monoclinic phase
nO it was found to be 2 structure. The elemental analysis of the powder revealed that the powder was LiMn 0.95 Cr 0.05 O 2 .

【0039】上記粉末を正極活物質とし、正極活物質と
アセチレンブラックとポリテトラフルオロエチレンとを
混合し(重量比で80/15/5)、トルエンを加えつ
つ混練し、シート状に成形した。このシートを直径13
mmに打ち抜き、180℃にて2時間真空乾燥した。ア
ルゴングローブボックス内で上記シートを正極活物質層
とし、直径18mmで厚さ20μmのアルミニウム箔正
極集電体上に載置した。
The above powder was used as a positive electrode active material, and the positive electrode active material, acetylene black and polytetrafluoroethylene were mixed (80/15/5 by weight), kneaded while adding toluene, and formed into a sheet. This sheet has a diameter of 13
mm and vacuum dried at 180 ° C. for 2 hours. The above sheet was used as a positive electrode active material layer in an argon glove box and placed on an aluminum foil positive electrode current collector having a diameter of 18 mm and a thickness of 20 μm.

【0040】セパレータには厚さ25μmの多孔質ポリ
プロピレンを用いた。また、厚さ500μmの金属リチ
ウム箔を負極活物質層とし、負極集電体にはSUS31
6Lからなる箔を使用した。電解液にはLiPF6を1
モル/リットルとなるようにECとDECの1:1の混
合溶媒に溶解した溶液を用いた。アルゴングローブボッ
クス内で、SUS316Lからなるケースが正極側、S
US316Lからなるキャップが負極側となるように、
正極活物質層と負極活物質層とをセパレータを介して対
向させ集電体とともにケースに収容して、直径20m
m、厚さ3.2mmのコインセルを組立てた。
As the separator, a porous polypropylene having a thickness of 25 μm was used. Further, a metal lithium foil having a thickness of 500 μm was used as the negative electrode active material layer, and the negative electrode current collector was made of SUS31.
A 6 L foil was used. 1 LiPF 6 for electrolyte
A solution dissolved in a 1: 1 mixed solvent of EC and DEC so as to have a mole / liter was used. In the argon glove box, the case made of SUS316L is
So that the cap made of US316L is on the negative electrode side,
The positive electrode active material layer and the negative electrode active material layer face each other with a separator interposed therebetween and are housed in a case together with a current collector, and have a diameter of 20 m.
m, a coin cell having a thickness of 3.2 mm was assembled.

【0041】このコインセルを用い、大気中、75℃の
恒温槽中にて、正極活物質1gあたり150mAの電流
密度で4.3Vまで定電流充電し、その後4.3Vの定
電圧で充電して充電開始後10時間で4.3Vの電圧印
加を終了し、リチウム二次電池を得た。なお、この充電
において、4.0V以上での保持時間は9.0時間であ
り、4.2V以上での電圧保持時間は8.5時間であっ
た。
Using this coin cell, the battery was charged at a constant current of 4.3 mA at a current density of 150 mA per gram of the positive electrode active material in a constant temperature bath at 75 ° C. in the air, and then charged at a constant voltage of 4.3 V. Ten hours after the start of charging, the application of the voltage of 4.3 V was completed, and a lithium secondary battery was obtained. In this charging, the holding time at 4.0 V or more was 9.0 hours, and the voltage holding time at 4.2 V or more was 8.5 hours.

【0042】上記リチウム二次電池を50℃にて正極活
物質1gあたり30mAの電流密度で上限電圧4.3V
として定電流充電し、50℃にて正極活物質1gあたり
30mAの電流密度で下限電圧2.0Vとして定電流放
電し、2サイクル目の放電容量と放電エネルギを求めた
ところ、それぞれ202mAh/g、615mWh/g
であった。さらに充放電サイクルを繰り返したところ、
10サイクル目の放電容量と放電エネルギはそれぞれ2
00mAh/g、608mWh/gを維持していた。
The above lithium secondary battery was charged at 50 ° C. with a current density of 30 mA per gram of the positive electrode active material and an upper limit voltage of 4.3 V.
And constant current discharge at 50 ° C. at a current density of 30 mA per 1 g of the positive electrode active material and a lower limit voltage of 2.0 V. The discharge capacity and discharge energy in the second cycle were determined to be 202 mAh / g, respectively. 615mWh / g
Met. After repeating the charge and discharge cycle further,
The discharge capacity and discharge energy at the 10th cycle were 2
00 mAh / g and 608 mWh / g were maintained.

【0043】[例2]例1と同様にして得られたリチウ
ム二次電池を、75℃にて正極活物質1gあたり150
mAの電流密度で2.0Vまで定電流で放電し、放電開
始後10時間で放電を終了した。放電容量及び放電エネ
ルギはそれぞれ285mAh/g、720mWh/gで
あった。285mAh/gの放電容量のうち正極活物質
1gあたり150mAの電流密度での放電容量は230
mAh/gであり、急速放電性能も良好であった。
Example 2 A lithium secondary battery obtained in the same manner as in Example 1 was heated at 75 ° C. for 150 g per 1 g of the positive electrode active material.
Discharge was performed at a constant current of 2.0 V at a current density of mA, and the discharge was terminated 10 hours after the start of discharge. The discharge capacity and discharge energy were 285 mAh / g and 720 mWh / g, respectively. Of the discharge capacity of 285 mAh / g, the discharge capacity at a current density of 150 mA per 1 g of the positive electrode active material was 230.
mAh / g, and the rapid discharge performance was also good.

【0044】[例3]例1と同様にして得られたリチウ
ム二次電池を、65℃にて正極活物質1gあたり30m
Aの電流密度で下限電圧2.0Vとして定電流放電し、
2サイクル目の放電容量と放電エネルギを求めたとこ
ろ、それぞれ225mAh/g、645mWh/gであ
った。
Example 3 A lithium secondary battery obtained in the same manner as in Example 1 was heated at 65 ° C. for 30 g per 1 g of the positive electrode active material.
A constant current discharge at a current density of A with a lower limit voltage of 2.0 V,
When the discharge capacity and discharge energy in the second cycle were determined, they were 225 mAh / g and 645 mWh / g, respectively.

【0045】[例4]例1と同様にして得られたリチウ
ム二次電池を、30℃にて正極活物質1gあたり30m
Aの電流密度で下限電圧2.0Vとして定電流放電し、
2サイクル目の放電容量と放電エネルギを求めたとこ
ろ、それぞれ130mAh/g、420mWh/gであ
った。
Example 4 A lithium secondary battery obtained in the same manner as in Example 1 was treated at 30 ° C. for 30 m / g of the positive electrode active material.
A constant current discharge at a current density of A with a lower limit voltage of 2.0 V,
When the discharge capacity and discharge energy in the second cycle were determined, they were 130 mAh / g and 420 mWh / g, respectively.

【0046】[例5]充電を70℃、4.4Vで行った
以外は例1と同様にしてリチウム二次電池を得た。この
リチウム二次電池を50℃にて正極活物質1gあたり3
0mAの電流密度で上限電圧4.3Vとして定電流充電
し、50℃にて正極活物質1gあたり30mAの電流密
度で下限電圧2.0Vとして定電流放電し、2サイクル
目の放電容量と放電エネルギを求めたところ、それぞれ
195mAh/g、592mWh/gであった。
Example 5 A lithium secondary battery was obtained in the same manner as in Example 1 except that charging was performed at 70 ° C. and 4.4 V. This lithium secondary battery is heated at 50 ° C. for 3 g per 1 g of the positive electrode active material.
Constant current charging at a current density of 0 mA and an upper limit voltage of 4.3 V, constant current discharge at 50 ° C. at a current density of 30 mA per 1 g of the positive electrode active material and a lower limit voltage of 2.0 V, and discharge capacity and discharge energy in the second cycle Were 195 mAh / g and 592 mWh / g, respectively.

【0047】[例6]硝酸クロムのかわりに硝酸鉄を使
用した以外は例1と同様にしてリチウム−マンガン−鉄
複合酸化物の粉末を得た。X線回折分析により生成した
粉末は例1と同様に単斜晶系の層状岩塩型のLiMnO
2構造であることがわかった。また、粉末の元素分析に
より組成がLiMn0.95Fe0.052であることがわか
った。
Example 6 A powder of a lithium-manganese-iron composite oxide was obtained in the same manner as in Example 1 except that iron nitrate was used instead of chromium nitrate. The powder produced by X-ray diffraction analysis was a monoclinic layered rock salt type LiMnO as in Example 1.
It turns out that it has two structures. Further, elemental analysis of the powder revealed that the composition was LiMn 0.95 Fe 0.05 O 2 .

【0048】例1と同様にコインセルを作製し、例1と
同様に80℃の恒温槽中にて、正極活物質1gあたり1
50mAの電流密度で4.3Vまで定電流充電し、その
後4.3Vの定電圧で充電して充電開始後10時間で
4.3Vの電圧印加を終了しリチウム二次電池を得た。
なお、この充電において4.0V以上での電圧保持時間
は8.8時間であり、4.2V以上での電圧保持時間は
8.3時間であった。
A coin cell was prepared in the same manner as in Example 1, and the same amount as in Example 1 was obtained in a constant temperature bath at 80 ° C. for 1 g of the positive electrode active material.
The battery was charged at a constant current of 4.3 V at a current density of 50 mA, and then charged at a constant voltage of 4.3 V. The application of a voltage of 4.3 V was terminated 10 hours after the start of charging to obtain a lithium secondary battery.
In this charging, the voltage holding time at 4.0 V or more was 8.8 hours, and the voltage holding time at 4.2 V or more was 8.3 hours.

【0049】上記リチウム二次電池を用い、80℃に
て、正極活物質1gあたり30mAの電流密度で上限電
圧4.3Vとして定電流充電し、正極活物質1gあたり
30mAの電流密度で下限電圧2.0Vとしてて定電流
放電し2サイクル目の放電容量と放電エネルギを求めた
ところ、それぞれ233mAh/g、638mWh/g
であった。
Using the above lithium secondary battery, constant current charging was performed at 80 ° C. at a current density of 30 mA per gram of the positive electrode active material and an upper limit voltage of 4.3 V, and at a current density of 30 mA per gram of the positive electrode active material and a lower limit voltage of 2 V. The discharge capacity and the discharge energy in the second cycle were determined by discharging at a constant current of 0.0 V, and were 233 mAh / g and 638 mWh / g, respectively.
Met.

【0050】[例7]硝酸クロムのかわりに硝酸アルミ
ニウムを使用した以外は例1と同様にしてマンガン−ア
ルミニウム共沈水酸化物を合成し、例1と同様にリチウ
ム−マンガン−アルミニウム複合酸化物を得た。X線回
折分析により生成した粉末は単斜晶系の層状岩塩型のL
iMnO2構造であることがわかった。また、粉末の元
素分析によりLiMn0.93Al0.072であることがわ
かった。
[Example 7] A manganese-aluminum coprecipitated hydroxide was synthesized in the same manner as in Example 1 except that aluminum nitrate was used instead of chromium nitrate. Obtained. The powder produced by X-ray diffraction analysis is a monoclinic layered rock salt type L
It was found that the structure was iMnO 2 . Further, elemental analysis of the powder revealed that the powder was LiMn 0.93 Al 0.07 O 2 .

【0051】例1と同様に例1と同様にコインセルを作
製し、例1と同様に75℃恒温槽中にて、正極活物質1
gにつき150mAで4.3Vまで定電流充電し、その
後4.3Vの定電圧で充電して充電開始後10時間で
4.3Vの電圧印加を終了しリチウム二次電池を得た。
なお、この充電において、4.0V以上での保持時間は
8.8時間であり、4.2V以上での保持時間は8.3
時間であった。
A coin cell was prepared in the same manner as in Example 1 and the positive electrode active material 1 was placed in a thermostat at 75 ° C. in the same manner as in Example 1.
The battery was charged at a constant current of 4.3 mA at 150 mA per g, and then charged at a constant voltage of 4.3 V. The application of a voltage of 4.3 V was terminated 10 hours after the start of charging to obtain a lithium secondary battery.
In this charging, the holding time at 4.0 V or more was 8.8 hours, and the holding time at 4.2 V or more was 8.3.
It was time.

【0052】上記リチウム二次電池を用いて、75℃に
て、正極活物質1gあたり30mAの電流密度で上限電
圧4.3Vとして定電流充電し、正極活物質1gあたり
30mAの電流密度で下限電圧2.0Vとして定電流放
電し2サイクル目の放電容量と放電エネルギを求めたと
ころ、それぞれ213mAh/g、615mWh/gで
あった。
Using the above-mentioned lithium secondary battery, constant current charging was performed at 75 ° C. at a current density of 30 mA per 1 g of the positive electrode active material and an upper limit voltage of 4.3 V, and at a current density of 30 mA per 1 g of the positive electrode active material and the lower limit voltage. The discharge capacity and discharge energy in the second cycle after constant current discharge at 2.0 V were determined to be 213 mAh / g and 615 mWh / g, respectively.

【0053】[例8]75℃での電圧保持を行わなかっ
た以外は例1と同様にしてリチウム二次電池を作製し
た。このリチウム二次電池を用い、例1と同様に充放電
を行い、2サイクル目の放電容量と放電エネルギを求め
たところ、それぞれ135mAh/g、435mWh/
gであった。
Example 8 A lithium secondary battery was manufactured in the same manner as in Example 1 except that the voltage was not held at 75 ° C. Using this lithium secondary battery, charging and discharging were performed in the same manner as in Example 1, and the discharge capacity and discharge energy at the second cycle were determined. The results were 135 mAh / g and 435 mWh /, respectively.
g.

【0054】[例9]75℃での電圧保持を行わなかっ
た以外は例3と同様にしてリチウム二次電池を作製し
た。このリチウム二次電池を用い、例3と同様に充放電
を行い、2サイクル目の放電容量と放電エネルギを求め
たところ、それぞれ160mAh/g、505mWh/
gであった。
[Example 9] A lithium secondary battery was fabricated in the same manner as in Example 3, except that the voltage was not held at 75 ° C. Using this lithium secondary battery, charging and discharging were performed in the same manner as in Example 3, and the discharge capacity and discharge energy at the second cycle were determined. The results were 160 mAh / g and 505 mWh /, respectively.
g.

【0055】[例10]75℃での電圧保持を行わなか
った以外は例4と同様にしてリチウム二次電池を作製し
た。このリチウム二次電池を用い、例4と同様に充放電
を行い、2サイクル目の放電容量と放電エネルギを求め
たところ、それぞれ92mAh/g、301mWh/g
であった。
Example 10 A lithium secondary battery was manufactured in the same manner as in Example 4 except that the voltage was not held at 75 ° C. Using this lithium secondary battery, charging and discharging were performed in the same manner as in Example 4, and the discharge capacity and discharge energy at the second cycle were determined. The results were 92 mAh / g and 301 mWh / g, respectively.
Met.

【0056】[例11]電圧保持の電圧を3.9Vに変
更した以外は例1と同様にしてリチウム二次電池を作製
した。このリチウム二次電池を用い、例1と同様に充放
電を行い、2サイクル目の放電容量と放電エネルギを求
めたところ、それぞれ155mAh/g、510mWh
/gであった。
[Example 11] A lithium secondary battery was manufactured in the same manner as in Example 1 except that the voltage for holding the voltage was changed to 3.9V. Using this lithium secondary battery, charging and discharging were performed in the same manner as in Example 1, and the discharge capacity and discharge energy in the second cycle were determined.
/ G.

【0057】[例12]電圧保持の温度を30℃に変更
した以外は例1と同様にしてリチウム二次電池を作製し
た。このリチウム二次電池を用い、例1と同様に充放電
を行い、2サイクル目の放電容量と放電エネルギを求め
たところ、それぞれ150mAh/g、482mWh/
gであった。
Example 12 A lithium secondary battery was manufactured in the same manner as in Example 1 except that the voltage holding temperature was changed to 30 ° C. Using this lithium secondary battery, charging and discharging were performed in the same manner as in Example 1, and the discharge capacity and discharge energy at the second cycle were determined. The results were 150 mAh / g and 482 mWh /, respectively.
g.

【0058】[例13]電圧保持を行わなかった他は例
6と同様にしてリチウム二次電池を作製した。このリチ
ウム二次電池を用い、例6と同様に充放電を行い、2サ
イクル目の放電容量と放電エネルギを求めたところ、そ
れぞれ180mAh/g、572mWh/gであった。
Example 13 A lithium secondary battery was fabricated in the same manner as in Example 6, except that the voltage was not held. Using this lithium secondary battery, charging and discharging were performed in the same manner as in Example 6, and the discharge capacity and discharge energy in the second cycle were found to be 180 mAh / g and 572 mWh / g, respectively.

【0059】[0059]

【発明の効果】本発明によれば、広い電圧範囲で使用で
き、高電流密度での容量が大きく、エネルギ密度が高
く、安全性が高く、60℃以上でも使用できる充放電サ
イクル耐久性が良好なリチウム二次電池を得ることがで
きる。
According to the present invention, it can be used in a wide voltage range, has a large capacity at a high current density, has a high energy density, has high safety, and has good charge / discharge cycle durability which can be used even at 60 ° C. or higher. A lithium secondary battery can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA02 AA04 AA10 BA01 BA02 BA07 BB05 BC01 BC06 BD00 BD01 5H014 AA01 AA06 BB01 BB08 BB12 EE10 HH00 HH04 5H029 AJ03 AJ05 AJ12 AK03 AL12 AM03 AM04 AM05 AM07 CJ02 CJ15 CJ16 DJ16 DJ17 HJ02 HJ14 HJ18  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) HJ18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】LixMny1-y2で表される(ただし、
Mは、Al、Fe、Co、Ni、Mg及びCrからなる
群から選ばれる1種以上の元素であり、0<x≦1.
1、0.5≦y≦1である。)複合酸化物を主成分とす
る正極活物質層と、リチウムイオンを吸蔵・脱離可能な
負極活物質層とを、セパレータを介して対向させ、リチ
ウムイオンを含有する有機電解液に含浸させた後、正極
活物質層と負極活物質層の間に60〜100℃にて4.
0〜4.8Vの電圧を印加することを特徴とするリチウ
ム二次電池の製造方法。
Represented by 1. A Li x Mn y M 1-y O 2 ( where
M is one or more elements selected from the group consisting of Al, Fe, Co, Ni, Mg and Cr, and 0 <x ≦ 1.
1, 0.5 ≦ y ≦ 1. ) A positive electrode active material layer containing a composite oxide as a main component and a negative electrode active material layer capable of inserting and extracting lithium ions were opposed to each other via a separator, and were impregnated with an organic electrolyte solution containing lithium ions. Then, between 60 to 100 ° C. between the positive electrode active material layer and the negative electrode active material layer.
A method for producing a lithium secondary battery, comprising applying a voltage of 0 to 4.8 V.
【請求項2】LixMny1-y2で表される(ただし、
Mは、Al、Fe、Co、Ni、Mg及びCrからなる
群から選ばれる1種以上の元素であり、0<x≦1.
1、0.5≦y≦1である。)複合酸化物を主成分とす
る正極活物質層と、リチウムイオンを吸蔵・脱離可能な
負極活物質層とを、リチウムイオンと有機溶媒を含有す
るポリマー電解質を介して対向させた後、正極活物質層
と負極活物質層の間に60〜100℃にて4.0〜4.
8Vの電圧を印加することを特徴とするリチウム二次電
池の製造方法。
Represented by wherein Li x Mn y M 1-y O 2 ( where
M is one or more elements selected from the group consisting of Al, Fe, Co, Ni, Mg and Cr, and 0 <x ≦ 1.
1, 0.5 ≦ y ≦ 1. After the positive electrode active material layer mainly composed of a composite oxide and the negative electrode active material layer capable of inserting and extracting lithium ions are opposed to each other via a polymer electrolyte containing lithium ions and an organic solvent, 4.0 to 4.0 at 60 to 100 ° C. between the active material layer and the negative electrode active material layer.
A method for manufacturing a lithium secondary battery, comprising applying a voltage of 8V.
【請求項3】4.0〜4.8Vの電圧を印加する時間
が、0.5時間〜7日間である請求項1又は2に記載の
リチウム二次電池の製造方法。
3. The method for producing a lithium secondary battery according to claim 1, wherein the time for applying a voltage of 4.0 to 4.8 V is 0.5 hours to 7 days.
【請求項4】前記複合酸化物は、4.0〜4.8Vの電
圧を印加する前の状態において、単斜晶系の層状岩塩構
造を有している請求項1、2又は3に記載のリチウム二
次電池の製造方法。
4. The composite oxide according to claim 1, wherein the composite oxide has a monoclinic layered rock salt structure before applying a voltage of 4.0 to 4.8 V. Of manufacturing a lithium secondary battery.
【請求項5】請求項1、2、3又は4に記載の製造方法
により得られるリチウム二次電池を60〜85℃で作動
させることを特徴とするリチウム二次電池の使用方法。
5. A method of using a lithium secondary battery obtained by operating the lithium secondary battery obtained by the production method according to claim 1, at a temperature of 60 to 85 ° C.
JP19227599A 1999-07-06 1999-07-06 Method for manufacturing lithium secondary battery Expired - Fee Related JP4318270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19227599A JP4318270B2 (en) 1999-07-06 1999-07-06 Method for manufacturing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19227599A JP4318270B2 (en) 1999-07-06 1999-07-06 Method for manufacturing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001023617A true JP2001023617A (en) 2001-01-26
JP4318270B2 JP4318270B2 (en) 2009-08-19

Family

ID=16288577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19227599A Expired - Fee Related JP4318270B2 (en) 1999-07-06 1999-07-06 Method for manufacturing lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4318270B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122628A (en) * 1999-10-27 2001-05-08 Sakai Chem Ind Co Ltd Lithium-manganese multi-component oxide particulate composition, method for manufacturing the same and secondary battery
JP2002321920A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
JP2004055539A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and method for charging the same
JP2004538610A (en) * 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
WO2004107480A3 (en) * 2003-05-28 2005-11-03 Ca Nat Research Council Lithium metal oxide electrodes for lithium cells and batteries
US7056622B2 (en) 2001-05-31 2006-06-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2006313719A (en) * 2005-04-04 2006-11-16 Sony Corp Battery
JP2007516583A (en) * 2003-12-23 2007-06-21 トロノックス エルエルシー High voltage thin layer cathode material for lithium rechargeable battery and method for producing the same
US7674556B2 (en) 2002-05-30 2010-03-09 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for charging the same
JP2011225450A (en) * 2011-08-01 2011-11-10 Sakai Chem Ind Co Ltd Element-substituted lithium-manganese composite oxide particle composition, method for producing the composition, and secondary battery using the composition
JP2012221945A (en) * 2011-04-07 2012-11-12 Lico Technology Corp C2/m-structured cathode material for lithium-ion battery
JP2012230779A (en) * 2011-04-25 2012-11-22 Toyota Industries Corp Method for manufacturing lithium ion secondary battery
JP2014510372A (en) * 2011-09-26 2014-04-24 エルジー・ケム・リミテッド Positive electrode active material with improved safety and life characteristics and lithium secondary battery including the same
JP2014534574A (en) * 2011-10-21 2014-12-18 コリア インスティテュート オブ インダストリアル テクノロジー High energy density cathode composite material synthesis and electrode manufacturing technology for lithium secondary batteries for electric vehicles

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122628A (en) * 1999-10-27 2001-05-08 Sakai Chem Ind Co Ltd Lithium-manganese multi-component oxide particulate composition, method for manufacturing the same and secondary battery
JP4524821B2 (en) * 1999-10-27 2010-08-18 堺化学工業株式会社 Lithium manganese composite oxide particulate composition, method for producing the same, and secondary battery
JP2002321920A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
US7056622B2 (en) 2001-05-31 2006-06-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2004538610A (en) * 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
JP4955193B2 (en) * 2001-08-07 2012-06-20 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
US7674556B2 (en) 2002-05-30 2010-03-09 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for charging the same
JP2004055539A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and method for charging the same
JP4583727B2 (en) * 2002-05-30 2010-11-17 パナソニック株式会社 Non-aqueous electrolyte secondary battery charging method
JP2007503102A (en) * 2003-05-28 2007-02-15 ナショナル・リサーチ・カウンシル・オブ・カナダ Lithium oxide electrodes for lithium cells and batteries
WO2004107480A3 (en) * 2003-05-28 2005-11-03 Ca Nat Research Council Lithium metal oxide electrodes for lithium cells and batteries
JP2007516583A (en) * 2003-12-23 2007-06-21 トロノックス エルエルシー High voltage thin layer cathode material for lithium rechargeable battery and method for producing the same
JP2006313719A (en) * 2005-04-04 2006-11-16 Sony Corp Battery
JP2012221945A (en) * 2011-04-07 2012-11-12 Lico Technology Corp C2/m-structured cathode material for lithium-ion battery
JP2012230779A (en) * 2011-04-25 2012-11-22 Toyota Industries Corp Method for manufacturing lithium ion secondary battery
JP2011225450A (en) * 2011-08-01 2011-11-10 Sakai Chem Ind Co Ltd Element-substituted lithium-manganese composite oxide particle composition, method for producing the composition, and secondary battery using the composition
JP2014510372A (en) * 2011-09-26 2014-04-24 エルジー・ケム・リミテッド Positive electrode active material with improved safety and life characteristics and lithium secondary battery including the same
US9570742B2 (en) 2011-09-26 2017-02-14 Lg Chem, Ltd. Positive electrode active material having improved safety and lifetime characteristics and lithium secondary battery comprising the same
JP2014534574A (en) * 2011-10-21 2014-12-18 コリア インスティテュート オブ インダストリアル テクノロジー High energy density cathode composite material synthesis and electrode manufacturing technology for lithium secondary batteries for electric vehicles
US9478993B2 (en) 2011-10-21 2016-10-25 Korea Institute Of Industrial Technology Cathode composite material synthesis having high energy density for lithium secondary battery for electric vehicle and electrode manufacturing technology thereof

Also Published As

Publication number Publication date
JP4318270B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP6861399B2 (en) battery
EP1909345B1 (en) Cathode active material for a lithium battery
KR100583384B1 (en) Positive electrode active material for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery
KR101206037B1 (en) Cathode active material for lithium battery, cathode including the same and lithium battery using the same
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
KR100797099B1 (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2000277116A (en) Lithium secondary battery
JP2001196063A (en) Active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
US7306779B2 (en) Lithium-cobalt composite oxide, process for its production, positive electrode for lithium secondary cell employing it, and lithium secondary cell
KR20130001703A (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
JPH11204110A (en) Manufacture of anode material for lithium ion battery
WO2018163518A1 (en) Positive electrode active material, and cell
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2003242976A (en) Manufacturing method of positive active material for lithium secondary battery
JP2003203633A (en) Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4318270B2 (en) Method for manufacturing lithium secondary battery
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
JP3325423B2 (en) Non-aqueous electrolyte secondary battery, positive electrode active material for battery and method for producing the same
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
KR100490613B1 (en) A positive active material for a lithium secondary battery and a method of preparing the same
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2003002661A (en) Method for producing lithium cobalt composite oxide
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051229

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees