JP2012230779A - Method for manufacturing lithium ion secondary battery - Google Patents

Method for manufacturing lithium ion secondary battery Download PDF

Info

Publication number
JP2012230779A
JP2012230779A JP2011097130A JP2011097130A JP2012230779A JP 2012230779 A JP2012230779 A JP 2012230779A JP 2011097130 A JP2011097130 A JP 2011097130A JP 2011097130 A JP2011097130 A JP 2011097130A JP 2012230779 A JP2012230779 A JP 2012230779A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
silicon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011097130A
Other languages
Japanese (ja)
Other versions
JP5733000B2 (en
Inventor
Hideaki Ishikawa
英明 石川
Kimitoshi Murase
仁俊 村瀬
Manabu Miyoshi
学 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011097130A priority Critical patent/JP5733000B2/en
Publication of JP2012230779A publication Critical patent/JP2012230779A/en
Application granted granted Critical
Publication of JP5733000B2 publication Critical patent/JP5733000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium secondary battery excellent in cycle characteristics.SOLUTION: Initial charging and discharging of a battery body comprising a positive electrode comprising a positive electrode active material capable of absorbing and desorbing lithium ions, a negative electrode comprising a negative electrode active material capable of absorbing and desorbing lithium ions and comprising silicon or/and a silicon compound, a separator, and an electrolytic solution, are performed at temperatures of 35-80°C.

Description

本発明は、リチウムイオン二次電池の製造方法に関し、特に負極活物質として珪素を用いたリチウムイオン二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a lithium ion secondary battery, and more particularly to a method for manufacturing a lithium ion secondary battery using silicon as a negative electrode active material.

リチウムイオン二次電池などの二次電池は、小型で大容量であるため、携帯電話やノート型パソコンといった幅広い分野で用いられている。   Secondary batteries such as lithium ion secondary batteries are small and have a large capacity, and are therefore used in a wide range of fields such as mobile phones and notebook computers.

リチウムイオン二次電池は、正極と負極と電解液とセパレータとから構成されている。正極は、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などの、リチウムと遷移金属との金属複合酸化物からなる正極活物質と、正極活物質で被覆された集電体とからなる。   A lithium ion secondary battery is composed of a positive electrode, a negative electrode, an electrolytic solution, and a separator. The positive electrode is coated with a positive electrode active material made of a metal composite oxide of lithium and a transition metal, such as lithium / manganese composite oxide, lithium / cobalt composite oxide, lithium / nickel composite oxide, and the like. Current collector.

負極は、リチウムイオンを吸蔵・放出し得る負極活物質が集電体を被覆して形成されている。リチウムイオンを吸蔵・放出し得る負極活物質として、近年、酸化珪素(SiOx:0.5≦x≦1.5程度)の使用が検討されている。酸化珪素SiOxは、熱処理されると、SiとSiOとに分解することが知られている。これは、不均化反応といい、SiとOとの比が概ね1:1の均質な固体の一酸化珪素SiOが、固体の内部反応によりSi相とSiO相の二相に分離する反応である。分離して得られるSi相は非常に微細であり、SiO相により被覆されている。Si相は、Liイオンを吸蔵・放出し得る珪素単体を含み、Liイオンの膨張・収縮により体積が膨張したり収縮したりする。SiO相は、Si相の膨張・収縮を吸収し、また、電解液がSi相に接触することを防止することで電解液の分解反応を抑制して、電池のサイクル特性を向上させる。 The negative electrode is formed by covering a current collector with a negative electrode active material capable of inserting and extracting lithium ions. In recent years, the use of silicon oxide (SiOx: about 0.5 ≦ x ≦ 1.5) has been studied as a negative electrode active material capable of inserting and extracting lithium ions. It is known that silicon oxide SiOx decomposes into Si and SiO 2 when heat-treated. This is called a disproportionation reaction and is a reaction in which homogeneous solid silicon monoxide SiO having a ratio of Si to O of approximately 1: 1 is separated into two phases of Si phase and SiO 2 phase by solid internal reaction. It is. The Si phase obtained by separation is very fine and is covered with the SiO 2 phase. The Si phase contains silicon alone capable of inserting and extracting Li ions, and the volume expands and contracts due to the expansion and contraction of Li ions. The SiO 2 phase absorbs the expansion and contraction of the Si phase, and prevents the electrolytic solution from contacting the Si phase, thereby suppressing the decomposition reaction of the electrolytic solution and improving the cycle characteristics of the battery.

負極活物質として酸化珪素を用いたリチウム二次電池では、電池の性能を向上させるために、様々な処理が提案されている。例えば、特許文献1には、負極活物質からなる負極活物質層の表面にリチウム金属箔を積層して負極を構成し、この負極と正極とをセパレータを介して対向するように積層して、10〜70℃の温度下に静置(エージング)することが提案されている。特許文献1では、負極活物質層の表面にリチウム金属箔を積層しているため、所定温度下で静置することで、リチウム金属箔から負極活物質層にリチウムイオンがドープされて、電池の不可逆容量が補償される。   In a lithium secondary battery using silicon oxide as a negative electrode active material, various treatments have been proposed in order to improve battery performance. For example, in Patent Document 1, a negative electrode is formed by laminating a lithium metal foil on the surface of a negative electrode active material layer made of a negative electrode active material, and the negative electrode and the positive electrode are laminated so as to face each other with a separator interposed therebetween. It has been proposed to stand (aging) at a temperature of 10 to 70 ° C. In Patent Document 1, since the lithium metal foil is laminated on the surface of the negative electrode active material layer, the lithium ion is doped from the lithium metal foil into the negative electrode active material layer by leaving it at a predetermined temperature, and the battery Irreversible capacity is compensated.

特許文献2、3,4には、負極活物質が一酸化珪素ではなく、炭素系材料であるリチウムイオン二次電池に対して、所定の温度下で充放電(コンディショニング)を行うことが開示されている。   Patent Documents 2, 3, and 4 disclose that a negative electrode active material is not silicon monoxide but a lithium ion secondary battery that is a carbon-based material is charged and discharged (conditioning) at a predetermined temperature. ing.

特開2010−160983号公報JP 2010-160983 A 特開2004−296179号公報JP 2004-296179 A 特開2010−282874号公報JP 2010-282874 A 特開2006−351332号公報JP 2006-351332 A

しかしながら、特許文献1では、電池の不可逆容量を補償することを目的としており、電池のサイクル特性の向上については言及していない。   However, Patent Document 1 aims to compensate for the irreversible capacity of the battery, and does not mention improvement of the cycle characteristics of the battery.

特許文献2〜4では、負極として炭素系材料を用いているため、負極として酸化珪素を用いた場合に適用できるかが不明である。   In Patent Documents 2 to 4, since a carbon-based material is used as the negative electrode, it is unclear whether it can be applied when silicon oxide is used as the negative electrode.

本願発明者は、負極として酸化珪素を用いた場合について、電池のサイクル特性を向上させるべく、リチウムイオン二次電池のコンディショニング処理の条件を鋭意探求した。   This inventor earnestly searched for the condition of the conditioning process of a lithium ion secondary battery in order to improve the cycling characteristics of a battery about the case where silicon oxide is used as a negative electrode.

本発明はかかる事情に鑑みてなされたものであり、電池のサイクル特性に優れたリチウムイオン二次電池の製造方法を提供することを課題とする。   This invention is made | formed in view of this situation, and makes it a subject to provide the manufacturing method of the lithium ion secondary battery excellent in the cycling characteristics of a battery.

(1)本発明に係るリチウムイオン二次電池の製造方法は、リチウムイオンを吸蔵・放出可能な正極活物質をもつ正極と、リチウムイオンを吸蔵・放出可能であって珪素又は/及び珪素化合物からなる負極活物質をもつ負極と、セパレータと、電解液とからなる電池本体に、35〜80℃の温度条件で初期充放電を行うことを特徴とする。   (1) A method of manufacturing a lithium ion secondary battery according to the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, and lithium and / or silicon compounds capable of occluding and releasing lithium ions. A battery body comprising a negative electrode having a negative electrode active material, a separator, and an electrolytic solution is subjected to initial charge / discharge under a temperature condition of 35 to 80 ° C.

上記構成によれば、正極と負極とセパレータと電解液とからなる電池本体に35〜80℃の温度条件で初期充放電を行っている。このため、電池のサイクル特性が向上する。その理由は、以下のように考えられる。35〜80℃の温度条件で電池本体に初期充放電を行うと、負極活物質の表面に、比較的薄い安定な被膜が形成される。負極活物質は、酸化珪素からなり、Liイオンを吸蔵・放出することにより膨張・収縮する。負極活物質が膨張・収縮したときに、負極活物質表面の被膜は比較的薄いため、被膜の外表面に加わる応力が軽減され、被膜の外表面に亀裂や欠損を生じることを抑えることができる。それゆえ、負極活物質が電解液と接触し難く、電解液の分解反応を抑えることができる。したがって、電池のサイクル特性を高めることができる。   According to the said structure, the initial stage charge / discharge is performed on the battery main body which consists of a positive electrode, a negative electrode, a separator, and electrolyte solution on 35-80 degreeC temperature conditions. For this reason, the cycle characteristics of the battery are improved. The reason is considered as follows. When the battery body is initially charged and discharged under a temperature condition of 35 to 80 ° C., a relatively thin and stable film is formed on the surface of the negative electrode active material. The negative electrode active material is made of silicon oxide, and expands and contracts by inserting and extracting Li ions. When the negative electrode active material expands / shrinks, the coating on the surface of the negative electrode active material is relatively thin, so that the stress applied to the outer surface of the coating is reduced, and the occurrence of cracks and defects on the outer surface of the coating can be suppressed. . Therefore, it is difficult for the negative electrode active material to come into contact with the electrolytic solution, and the decomposition reaction of the electrolytic solution can be suppressed. Therefore, the cycle characteristics of the battery can be improved.

一方、初期充放電の温度が35℃未満の場合には、電池のサイクル特性が低下するおそれがある。初期充放電の温度が80℃を超える場合には、電解液の成分、特に溶媒が変質して電池特性が低下するおそれがある。   On the other hand, when the initial charge / discharge temperature is less than 35 ° C., the cycle characteristics of the battery may be deteriorated. When the initial charge / discharge temperature exceeds 80 ° C., the components of the electrolytic solution, particularly the solvent, may be altered to deteriorate the battery characteristics.

(2)前記電池本体に、40〜60℃の温度条件で初期充放電を行うことが好ましい。この場合には、電解液の劣化を抑えつつ、更に電池のサイクル特性を向上させることができる。   (2) It is preferable to perform initial charge / discharge on the battery body under a temperature condition of 40 to 60 ° C. In this case, the cycle characteristics of the battery can be further improved while suppressing the deterioration of the electrolytic solution.

(3)前記電解液は、フッ化塩を含むことが好ましい。この場合には、初期充放電時に、負極活物質が電解液のフッ化塩と反応して、負極活物質の表面に安定な被膜を形成する。このため、更に、優れたサイクル特性を発揮することができる。   (3) The electrolyte solution preferably contains a fluoride salt. In this case, during the initial charge / discharge, the negative electrode active material reacts with the fluoride salt of the electrolytic solution to form a stable film on the surface of the negative electrode active material. For this reason, it is possible to further exhibit excellent cycle characteristics.

(4)前記負極は、ポリアミドイミドにより前記負極活物質を結着させてなることが好ましい。ポリアミドイミドは、ポリイミドに比べて、リチウムイオンに対する不可逆容量が低く、電池の初期効率を高くする。このため、負極の不可逆容量を低く抑えつつ、欠損のない負極を形成することができる。   (4) The negative electrode is preferably formed by binding the negative electrode active material with polyamideimide. Polyamideimide has a lower irreversible capacity for lithium ions than polyimide, and increases the initial efficiency of the battery. For this reason, it is possible to form a negative electrode without defects while keeping the irreversible capacity of the negative electrode low.

本発明のリチウムイオン二次電池の製造方法によれば、電池本体に35〜80℃の温度条件で初期充放電を行っている。このため、サイクル特性に優れたリチウムイオン二次電池を作製することができる。   According to the method for producing a lithium ion secondary battery of the present invention, the battery body is initially charged and discharged under a temperature condition of 35 to 80 ° C. For this reason, the lithium ion secondary battery excellent in cycling characteristics can be produced.

被膜の膜厚が薄い場合(ケースA)の負極活物質粒子の断面説明図である。It is sectional explanatory drawing of the negative electrode active material particle when the film thickness of a film is thin (case A). 被膜の膜厚が厚み場合(ケースB)の負極活物質粒子の断面説明図である。It is sectional explanatory drawing of the negative electrode active material particle when the film thickness of a film is thick (case B). 実施例1及び比較例1の二次電池の各サイクル毎の放電容量維持率を示す線図である。It is a diagram which shows the discharge capacity maintenance factor for every cycle of the secondary battery of Example 1 and Comparative Example 1. 実施例1及び比較例1の二次電池の各サイクル毎の内部抵抗値を示す線図である。4 is a diagram showing internal resistance values for each cycle of the secondary batteries of Example 1 and Comparative Example 1. FIG. 実施例1の負極活物質粒子の0〜1000eVの範囲の結合エネルギーのスペクトルを示す線図である。2 is a diagram showing a spectrum of binding energy of a negative electrode active material particle of Example 1 in a range of 0 to 1000 eV. FIG. 実施例1の負極活物質粒子の680〜692eVの範囲の結合エネルギーのスペクトルを示す線図である。4 is a diagram showing a spectrum of binding energy in a range of 680 to 692 eV of negative electrode active material particles of Example 1. FIG. 比較例1の負極活物質粒子の0〜1000eVの範囲の結合エネルギーのスペクトルを示す線図である。4 is a diagram showing a spectrum of binding energy in a range of 0 to 1000 eV of negative electrode active material particles of Comparative Example 1. FIG.

本発明のリチウム二次電池の製造方法では、電池本体に、35〜80℃の温度条件で充放電を行う。以下、電池本体及び電池本体への充放電について詳細に説明する。   In the method for producing a lithium secondary battery of the present invention, the battery body is charged and discharged under a temperature condition of 35 to 80 ° C. Hereinafter, the battery main body and charging / discharging to the battery main body will be described in detail.

(電池本体)
電池本体は、正極と、負極と、セパレータと、電解液とからなる。
(Battery body)
The battery body includes a positive electrode, a negative electrode, a separator, and an electrolytic solution.

負極は、リチウムイオンを吸蔵・放出可能であって珪素又は/及び珪素化合物からなる負極活物質をもつ。負極活物質は、負極活物質層として集電体に圧着されることが一般的である。集電体は、例えば、銅や銅合金などの金属製のメッシュや金属箔を用いるとよい。   The negative electrode has a negative electrode active material that can occlude and release lithium ions and is made of silicon or / and a silicon compound. The negative electrode active material is generally pressure-bonded to a current collector as a negative electrode active material layer. As the current collector, for example, a metal mesh or metal foil such as copper or copper alloy may be used.

負極活物質は、粒子状又は粉末状を呈する負極活物質粒子を構成している。負極活物質粒子の平均粒径は、0.01〜10μm、更には、0.01〜5μmであることがよい。   The negative electrode active material constitutes negative electrode active material particles that are in the form of particles or powder. The average particle diameter of the negative electrode active material particles is preferably 0.01 to 10 μm, and more preferably 0.01 to 5 μm.

負極活物質粒子は、Si相と、SiO相とをもつ。Si相は、珪素単体からなり、Liイオンを吸蔵・放出し得る相であり、Liイオンの吸蔵・放出に伴って膨張・収縮する。SiO相は、SiOからなり、Si相の膨張・収縮を吸収する。Si相がSiO相により被覆されることで、Si相とSiO相とからなる負極活物質粒子を形成しているとよい。さらには、微細化された複数のSi相がSiO相により被覆されて一体となって、1つの粒子、即ち負極活物質粒子を形成しているとよい。この場合には、負極活物質粒子全体の体積変化を効果的に抑えることができる。 The negative electrode active material particles have a Si phase and a SiO 2 phase. The Si phase is composed of simple silicon, and is a phase that can occlude and release Li ions, and expands and contracts as Li ions are occluded and released. The SiO 2 phase is made of SiO 2 and absorbs expansion and contraction of the Si phase. By Si phase is covered by SiO 2 phase, it may form a negative electrode active material particles composed of the Si phase and SiO 2 phase. Furthermore, it is preferable that a plurality of refined Si phases are covered with a SiO 2 phase and integrated to form one particle, that is, a negative electrode active material particle. In this case, the volume change of the whole negative electrode active material particle can be suppressed effectively.

負極活物質粒子でのSi相に対するSiO相の質量比は、1〜3であることが好ましい。前記質量比が1未満の場合には、負極活物質粒子の膨張・収縮が大きく、負極活物質粒子から構成された負極活物質層にクラックが生じるおそれがある。一方、前記質量比が3を超える場合には、負極活物質粒子でのLiの吸蔵・放出量が少なく、電気容量が低くなるおそれがある。 The mass ratio of the SiO 2 phase to the Si phase in the negative electrode active material particles is preferably 1 to 3. When the mass ratio is less than 1, the negative electrode active material particles are greatly expanded and contracted, and there is a possibility that cracks may occur in the negative electrode active material layer composed of the negative electrode active material particles. On the other hand, when the mass ratio exceeds 3, the amount of insertion and extraction of Li in the negative electrode active material particles is small, and the electric capacity may be lowered.

負極活物質粒子は、Si相とSiO相とのみから構成されていてもよい。また、負極活物質粒子は、Si相とSiO相とを主成分としているが、その他に、負極活物質粒子の成分として、公知の活物質を含んでいても良く、具体的には、MeSi (MeはLi,Caなど)のうちの少なくとも1種を混合していてもよい。 The negative electrode active material particles may be composed only of the Si phase and the SiO 2 phase. Further, the negative electrode active material particles are mainly composed of a Si phase and a SiO 2 phase, but in addition, a known active material may be included as a component of the negative electrode active material particles, specifically, Me. At least one of x Si y O z (Me is Li, Ca, etc.) may be mixed.

負極活物質粒子の原料として、一酸化珪素を含む原料粉末を用いるとよい。この場合、原料粉末中の一酸化珪素を、SiO相とSi相との二相に不均化する。一酸化珪素の不均化では、SiとOとの原子比が概ね1:1の均質な固体である一酸化珪素(SiOn:nは0.5≦n≦1.5)が固体内部の反応により、SiO相とSi相との二相に分離する。不均化により得られる酸化珪素粉末は、SiO相とSi相とを含む。 As a raw material for the negative electrode active material particles, a raw material powder containing silicon monoxide may be used. In this case, silicon monoxide in the raw material powder is disproportionated into two phases of SiO 2 phase and Si phase. In disproportionation of silicon monoxide, silicon monoxide (SiOn: n is 0.5 ≦ n ≦ 1.5), which is a homogeneous solid having an atomic ratio of Si to O of approximately 1: 1, is a reaction inside the solid. To separate into two phases of SiO 2 phase and Si phase. The silicon oxide powder obtained by disproportionation includes a SiO 2 phase and a Si phase.

原料粉末の一酸化珪素の不均化は、原料粉末にエネルギーを与えることにより進行する。一例として、原料粉末を加熱する、ミリングする、などの方法が挙げられる。   The disproportionation of silicon monoxide in the raw material powder proceeds by applying energy to the raw material powder. As an example, a method of heating or milling the raw material powder can be mentioned.

原料粉末を加熱する場合、一般に、酸素を絶った状態であれば800℃以上で、ほぼすべての一酸化珪素が不均化して二相に分離すると言われている。具体的には、非結晶性の一酸化珪素粉末を含む原料粉末に対して、真空中又は不活性ガス中などの不活性雰囲気中で800〜1200℃、1〜5時間の熱処理を行うことにより、非結晶性のSiO相と結晶性のSi相の二相を含む酸化珪素粉末が得られる。 When the raw material powder is heated, it is generally said that almost all silicon monoxide is disproportionated and separated into two phases at 800 ° C. or higher if oxygen is removed. Specifically, the raw material powder containing the amorphous silicon monoxide powder is subjected to heat treatment at 800 to 1200 ° C. for 1 to 5 hours in an inert atmosphere such as vacuum or in an inert gas. A silicon oxide powder containing two phases of an amorphous SiO 2 phase and a crystalline Si phase is obtained.

原料粉末をミリングする場合には、ミリングの機械的エネルギーの一部が、原料粉末の固相界面における化学的な原子拡散に寄与し、酸化物相と珪素相などを生成する。ミリングでは、原料粉末を、真空中、アルゴンガス中などの不活性ガス雰囲気下で、V型混合機、ボールミル、アトライタ、ジェットミル、振動ミル、高エネルギーボールミル等を使用して混合するとよい。ミリング後にさらに熱処理を施すことで、一酸化珪素の不均化をさらに促進させてもよい。   When milling the raw material powder, part of the mechanical energy of the milling contributes to chemical atomic diffusion at the solid phase interface of the raw material powder, and generates an oxide phase, a silicon phase, and the like. In milling, the raw material powder may be mixed using a V-type mixer, a ball mill, an attritor, a jet mill, a vibration mill, a high energy ball mill or the like in an inert gas atmosphere such as vacuum or argon gas. Further heat treatment may be performed after milling to further promote disproportionation of silicon monoxide.

なお、上記の負極活物質粒子を主たる負極活物質とした上で、既に公知の他の負極活物質(たとえば黒鉛、Sn、Siなど)を添加して用いてもよい。   In addition, after making said negative electrode active material particle into the main negative electrode active material, you may add and use other well-known negative electrode active materials (for example, graphite, Sn, Si, etc.).

負極活物質層には、前記負極活物質の他に、結着剤や、導電助材などを含んでいても良い。   In addition to the negative electrode active material, the negative electrode active material layer may contain a binder, a conductive additive, and the like.

結着剤は、特に限定されるものではなく、既に公知のものを用いればよい。たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素樹脂など高電位においても分解しない樹脂を用いることができる。結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.05〜1:0.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The binder is not particularly limited, and a known one may be used. For example, a resin that does not decompose even at a high potential, such as a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, can be used. The blending ratio of the binder is preferably a mass ratio of negative electrode active material: binder = 1: 0.05 to 1: 0.5. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

導電助材としては、リチウム二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック(炭素質微粒子)、炭素繊維などの導電性炭素材料を用いるのが好ましく、導電性炭素材料の他にも、導電性有機化合物などの既知の導電助剤を用いてもよい。これらのうちの1種を単独でまたは2種以上を混合して用いるとよい。導電助材の配合割合は、質量比で、負極活物質:導電助材=1:0.01〜1:0.5であるのが好ましい。導電助材が少なすぎると効率のよい導電パスを形成できず、また、導電助材が多すぎると電極の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。   As the conductive aid, a material generally used for an electrode of a lithium secondary battery may be used. For example, it is preferable to use conductive carbon materials such as carbon black (carbonaceous fine particles) such as acetylene black and ketjen black, and carbon fibers. Besides conductive carbon materials, known conductive materials such as conductive organic compounds are also used. An auxiliary agent may be used. One of these may be used alone or in combination of two or more. The blending ratio of the conductive additive is preferably a mass ratio of negative electrode active material: conductive additive = 1: 0.01 to 1: 0.5. This is because if the amount of the conductive aid is too small, an efficient conductive path cannot be formed, and if the amount of the conductive aid is too large, the moldability of the electrode is deteriorated and the energy density of the electrode is lowered.

正極は、集電体と、集電体の表面を被覆する正極活物質層とからなる。正極活物質層は、リチウムイオンを吸蔵・放出可能な正極活物質を含み、好ましくは、更に、結着剤及び/又は導電助材を含む。導電助材および結着剤は、特に限定はなく、非水系二次電池で使用可能なものであればよい。正極活物質としては、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物を用いる。具体的には、LiCoO、LiNi1/3Co1/3Mn1/3、LiMnO、Sなどが挙げられる。また、集電体は、アルミニウム、ニッケル、ステンレス鋼など、非水系二次電池の正極に一般的に使用されるものであればよい。 The positive electrode includes a current collector and a positive electrode active material layer that covers the surface of the current collector. The positive electrode active material layer includes a positive electrode active material capable of inserting and extracting lithium ions, and preferably further includes a binder and / or a conductive aid. There are no particular limitations on the conductive additive and the binder, and any conductive auxiliary material and binder can be used as long as they can be used in non-aqueous secondary batteries. As the positive electrode active material, for example, a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide is used. Specific examples include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 , and S. The current collector may be any material that is generally used for the positive electrode of a non-aqueous secondary battery, such as aluminum, nickel, and stainless steel.

セパレータは、正極と負極とを分離し非水電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。   The separator separates the positive electrode and the negative electrode and holds the non-aqueous electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.

電解液は、非水電解液であるとよい。非水電解液は、有機溶媒に電解質であるフッ化塩を溶解させたものである。電解質であるフッ化塩は、有機溶媒に可溶なアルカリ金属フッ化塩であることが好ましい。アルカリ金属フッ化塩としては、例えば、LiPF、LiBF、LiAsF、NaPF、NaBF、及びNaAsFの群から選ばれる少なくとも1種を用いるとよい。非水電解液の有機溶媒は、非プロトン性有機溶媒であることがよく、たとえば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。 The electrolytic solution may be a nonaqueous electrolytic solution. The nonaqueous electrolytic solution is obtained by dissolving a fluoride salt as an electrolyte in an organic solvent. The electrolyte fluoride salt is preferably an alkali metal fluoride salt soluble in an organic solvent. The alkali metal fluoride salt, e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, NaBF 4, and may be used at least one selected from the group of NaAsF 6. The organic solvent of the non-aqueous electrolyte is preferably an aprotic organic solvent, such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( One or more selected from EMC) and the like can be used.

正極および負極にセパレータを挟装させ電極体とする。正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に電極体に非水電解液を含浸させて電池本体とするとよい。   A separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. It is preferable to connect the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that communicate with the outside using a current collecting lead or the like, and then impregnate the electrode body with a non-aqueous electrolyte to form a battery body. .

非水系二次電池の形状に特に限定はなく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。   The shape of the non-aqueous secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, a coin shape, and a laminated shape can be adopted.

(電池本体への初期充放電)
電池本体に、35℃以上80℃以下の温度条件下で初期充放電を行う。この初期充放電は、電池本体に対して初期に行う充放電であり、コンディショニング処理とも言われている。電池本体に初期充放電を行うことにより、電池本体を構成する負極の負極活物質の表面に被膜が形成されて、負極活物質からなるコア部と、コア部を被覆する被膜とからなる被覆粒子が形成される。
(Initial charge / discharge to the battery body)
The battery body is initially charged and discharged under a temperature condition of 35 ° C. or higher and 80 ° C. or lower. This initial charge / discharge is an initial charge / discharge performed on the battery body, and is also referred to as a conditioning process. By performing initial charge / discharge on the battery body, a film is formed on the surface of the negative electrode active material of the negative electrode constituting the battery body, and the coated particles are composed of a core part made of the negative electrode active material and a film covering the core part Is formed.

電池本体に初期充放電を施す際の温度は、35℃以上80℃以下であり、更にはその下限は40℃であることが好ましく、上限は60℃、更には55℃であることが好ましい。初期充放電を施す際の温度が低すぎると、被膜が厚くなり、コア部の膨張・収縮により、被膜最表面部に、亀裂や欠損が生じるおそれがある。被膜最表面部の亀裂や欠損した部分から電解液が浸透し、コア部内の珪素と反応して、電解液が劣化し、電池のサイクル特性が低くなるおそれがある。初期充放電処理の温度が高すぎると、電解液の成分、特に溶媒が変質し、電池特性が低下するおそれがある。   The temperature at which the battery body is initially charged / discharged is 35 ° C. or higher and 80 ° C. or lower. Further, the lower limit is preferably 40 ° C., and the upper limit is preferably 60 ° C., more preferably 55 ° C. If the temperature at the time of initial charge / discharge is too low, the coating becomes thick, and there is a possibility that cracks and defects may occur on the outermost surface of the coating due to expansion / contraction of the core. There is a possibility that the electrolytic solution permeates from cracks or missing portions on the outermost surface portion of the coating, reacts with silicon in the core portion, deteriorates the electrolytic solution, and lowers the cycle characteristics of the battery. If the temperature of the initial charge / discharge treatment is too high, the components of the electrolytic solution, particularly the solvent, may change, and the battery characteristics may deteriorate.

負極と正極とセパレータと電解液とからなる電池本体を、電池容器に収容し密封されることで、リチウムイオン二次電池が作製される。リチウムイオン二次電池の作製の中で電池本体への初期充放電をどの段階で行うかについては、特に限定しないが、例えば、第1に、負極と正極とセパレータとからなる電極体を電池容器内に収容し電解液を注入した後に、初期充放電を行い、密封する。第2に、電極体及び電解液を電池容器内に収容し密封することで二次電池組み付け後に初期充放電を行う。この中、充放電の作業性の観点から、二次電池組み付け後に、初期充放電を行うことがよい。   A battery body composed of a negative electrode, a positive electrode, a separator, and an electrolytic solution is housed in a battery container and sealed, thereby producing a lithium ion secondary battery. There is no particular limitation as to which stage the initial charging / discharging of the battery body is performed in the production of the lithium ion secondary battery. For example, first, an electrode body composed of a negative electrode, a positive electrode, and a separator is used as a battery container. After being accommodated in the container and injecting the electrolyte, initial charge / discharge is performed and sealed. Second, the electrode body and the electrolytic solution are accommodated in a battery container and sealed to perform initial charge / discharge after the secondary battery is assembled. Among these, from the viewpoint of workability of charge / discharge, it is preferable to perform initial charge / discharge after assembling the secondary battery.

電池本体に35℃以上80℃以下の温度条件下で初期充放電を行うことにより、負極活物質粒子の表面に比較的薄く安定な被膜が形成される。即ち、図1に示すように、負極活物質で構成されたコア部1と、コア部1の表面を被覆する被膜2とからなる被覆粒子3が形成される。被膜2は、Liイオンが通過可能な絶縁膜である。被膜2は、例えば、電解液中の成分がコア部1を構成する珪素と接触することで分解しその分解生成物がコア部1の表面に付着することで生成される。   By performing initial charge and discharge on the battery body under a temperature condition of 35 ° C. or higher and 80 ° C. or lower, a relatively thin and stable coating is formed on the surface of the negative electrode active material particles. That is, as shown in FIG. 1, coated particles 3 including a core portion 1 made of a negative electrode active material and a coating 2 that covers the surface of the core portion 1 are formed. The coating 2 is an insulating film through which Li ions can pass. The coating 2 is generated, for example, when a component in the electrolytic solution is decomposed by coming into contact with silicon constituting the core portion 1 and the decomposition product adheres to the surface of the core portion 1.

電解液がフッ化系塩を含む場合には、電池本体に初期充放電を行うことにより、負極活物質からなるコア部1の表面に、フッ化リチウムを含む被膜2が形成される。フッ化リチウム(LiF)は、電解液のフッ化系塩中のフッ化塩がコア部1を構成している珪素と接触することで下記の式(1)に示すように分解して形成されたものである。   When the electrolytic solution contains a fluorinated salt, initial charge / discharge is performed on the battery body to form a coating 2 containing lithium fluoride on the surface of the core portion 1 made of the negative electrode active material. Lithium fluoride (LiF) is formed by decomposing as shown in the following formula (1) when the fluoride salt in the fluorinated salt of the electrolytic solution comes into contact with silicon constituting the core portion 1. It is a thing.

LiPF → LiF + PF・・・(1)
被膜2の中には、フッ化リチウムのほかに、負極活物質の成分である珪素又は/及び珪素化合物や、電解液の成分などを含んでいても良い。この場合、被膜2中のフッ化リチウムの含有量は、被膜2の厚み方向に均一であっても良いし、被膜2の厚み方向に勾配があってもよい。後者の場合には、コア部1と被膜2の界面が最もフッ化リチウムの含有量が多く、被膜2の厚み方向外側に向かって徐々にフッ化リチウムの含有量が少なくなる場合が多いと考えられる。
LiPF 6 → LiF + PF 5 (1)
The coating 2 may contain, in addition to lithium fluoride, silicon or / and a silicon compound that is a component of the negative electrode active material, a component of an electrolytic solution, and the like. In this case, the content of lithium fluoride in the coating 2 may be uniform in the thickness direction of the coating 2 or may have a gradient in the thickness direction of the coating 2. In the latter case, it is considered that the interface between the core portion 1 and the coating 2 has the largest lithium fluoride content, and the lithium fluoride content gradually decreases toward the outside of the coating 2 in the thickness direction. It is done.

被膜2は、コア部1の全表面を被覆しているとよい。コア部1を構成している負極活物質が、電解液と接触して、電解液中の電解質を分解することを抑制し、また負極活物質に吸蔵されているLiイオンの溶出を抑制するためである。   The coating 2 may cover the entire surface of the core portion 1. In order to prevent the negative electrode active material constituting the core part 1 from coming into contact with the electrolytic solution and decomposing the electrolyte in the electrolytic solution, and to suppress the elution of Li ions occluded in the negative electrode active material It is.

被膜2の厚みは、例えば、上述のコンディショニング処理の温度条件により変化する。コンディショニング処理の温度が高いほど、薄く安定な被膜2が形成される。被膜2の厚みは、X線光電子分光法(XPS)により測定される。XPSでは、被膜2とのコア部1とからなる被覆粒子3にX線を照射し、被覆粒子3から放射される光電子のエネルギー強度を測定する。光電子のエネルギー強度を測定することで、被覆粒子3の表面に位置する元素を同定できる。また、X線を被覆粒子3の表面に照射したときに、被覆粒子3の表面から放出される光電子は、被覆粒子3の表面から所定の深さHまでの元素から放出されたものに限られる。このため、被覆粒子3の表面から所定の深さHまでに存在する元素を分析することができる。   The thickness of the film 2 varies depending on, for example, the temperature condition of the conditioning process described above. The higher the temperature of the conditioning process, the thinner and more stable the coating 2 is formed. The thickness of the coating 2 is measured by X-ray photoelectron spectroscopy (XPS). In XPS, X-rays are applied to the coated particle 3 composed of the core portion 1 with the coating 2 and the energy intensity of photoelectrons emitted from the coated particle 3 is measured. By measuring the energy intensity of the photoelectrons, the element located on the surface of the coated particle 3 can be identified. Further, when the surface of the coated particle 3 is irradiated with X-rays, the photoelectrons emitted from the surface of the coated particle 3 are limited to those emitted from an element from the surface of the coated particle 3 to a predetermined depth H. . For this reason, elements existing from the surface of the coated particle 3 to a predetermined depth H can be analyzed.

被覆粒子3の表面に形成された被膜2の厚みが変化すると、XPSで検出される元素も変化する。このことを、図1、図2を用いて、概念的に説明する。図1は、被膜2の厚みが、XPSで検出できる被覆粒子3の表面からの厚みHよりも小さい場合をケースAとして示す。ケースAの場合には、XPSでは、被膜2の元素だけでなく、コア部1の元素も検出される。被膜2は、フッ化リチウムを含み、コア部1は珪素又は/及び珪素化合物からなる。このため、XPSでは、被膜2に含まれるフッ素だけでなく、コア部1に含まれる珪素又は/及び珪素化合物も検出される。   When the thickness of the coating 2 formed on the surface of the coated particle 3 changes, the element detected by XPS also changes. This will be conceptually described with reference to FIGS. FIG. 1 shows a case A in which the thickness of the coating 2 is smaller than the thickness H from the surface of the coated particle 3 that can be detected by XPS. In case A, XPS detects not only the elements of the film 2 but also the elements of the core part 1. The coating 2 contains lithium fluoride, and the core 1 is made of silicon or / and a silicon compound. For this reason, XPS detects not only fluorine contained in the coating 2 but also silicon and / or silicon compounds contained in the core portion 1.

図2は、被膜2の厚みが、XPSで検出できる負極活物質粒子の表面からの厚みHよりも大きい場合をケースBとして示す。ケースBの場合には、XPSで検出される元素は、概ね被膜2の中のものに限られ、コア部1の中の元素は殆ど検出されない。このため、ケースBでは、ケースAよりも、フッ素の検出量が多くなり、珪素の検出量は少なくなる。   FIG. 2 shows a case B in which the thickness of the coating 2 is larger than the thickness H from the surface of the negative electrode active material particles that can be detected by XPS. In case B, the elements detected by XPS are generally limited to those in the coating 2, and almost no elements in the core portion 1 are detected. For this reason, in case B, the detected amount of fluorine is larger than in case A, and the detected amount of silicon is smaller.

このように、被膜2の厚みが変わると、XPSで検出される各元素の検出量も変わる。そこで、XPSで検出される被膜2中の物質から生じた光電子に起因する強度と、コア部1中の物質から生じた光電子に起因する強度との面積比から、被膜2の厚みを規定することができる。   Thus, when the thickness of the coating 2 changes, the detection amount of each element detected by XPS also changes. Therefore, the thickness of the coating 2 is defined from the area ratio between the intensity caused by the photoelectrons generated from the substance in the coating 2 detected by XPS and the intensity caused by the photoelectrons generated from the substance in the core 1. Can do.

即ち、XPSにより、負極活物質粒子表面の珪素の2p軌道に起因するピークに対するF(フッ素)の1s軌道に起因するピークの積分強度比を測定するとよい。珪素の2p軌道に起因するピークは、98〜105eVの結合エネルギー領域に出現する。F(フッ素)の1s軌道に起因するピークは、680〜692eVの結合エネルギー領域に出現する。負極活物質粒子表面の珪素の2p軌道に起因するピークに対するF(フッ素)の1s軌道に起因するピークの積分強度比を測定したときの積分強度比は、70以下であるとよい。この場合には、コア部1に含まれる珪素が比較的強いスペクトル強度を示す。このため、被膜2の厚みが薄く、その分だけ、被膜2よりも内側に存在するコア部1が、負極活物質粒子の表面からの所定の深さHの範囲内かそれともその近傍まで位置していることがわかる。   That is, the integrated intensity ratio of the peak caused by the 1s orbit of F (fluorine) to the peak caused by the 2p orbit of silicon on the surface of the negative electrode active material particles is preferably measured by XPS. The peak due to the 2p orbit of silicon appears in the bond energy region of 98 to 105 eV. The peak due to the 1s orbit of F (fluorine) appears in the binding energy region of 680 to 692 eV. The integrated intensity ratio when the integrated intensity ratio of the peak caused by the 1s orbit of F (fluorine) to the peak caused by the 2p orbit of silicon on the surface of the negative electrode active material particles is preferably 70 or less. In this case, silicon contained in the core portion 1 exhibits a relatively strong spectral intensity. For this reason, the thickness of the coating 2 is thin, and accordingly, the core portion 1 existing on the inner side of the coating 2 is located within a predetermined depth H from the surface of the negative electrode active material particles or to the vicinity thereof. You can see that

XPSでは、被覆粒子3に、励起X線としてAlKα線(単色)を照射するとよい。励起X線は、X線源であるX線管のAlKα極に、15kV、10mAの電流を印加することにより発生させる。印加する電流の電圧や電流値が変わると、検出できる被覆粒子3の表面からの深さも変わるため、15kV、10mAの電流を印加することとしている。15kV、10mAの電流をX線管に印加したときの被覆粒子3の表面から放出される光電子の発生位置は、被覆粒子3の最表面から深さHが5〜50nm程度までであるとされている。   In XPS, the coated particles 3 may be irradiated with AlKα rays (monochrome) as excitation X-rays. Excited X-rays are generated by applying a current of 15 kV and 10 mA to the AlKα pole of an X-ray tube that is an X-ray source. When the voltage or current value of the applied current changes, the depth from the surface of the coated particle 3 that can be detected also changes, so that a current of 15 kV and 10 mA is applied. The generation position of the photoelectrons emitted from the surface of the coated particle 3 when a current of 15 kV and 10 mA is applied to the X-ray tube is assumed to have a depth H of about 5 to 50 nm from the outermost surface of the coated particle 3. Yes.

ここで、珪素の2p軌道に起因するピークと、フッ素の1s軌道に起因するピークは、それぞれ山状に突出している。各ピークのエネルギー領域の両側の端部の間の山状のピーク部分には、珪素の2p軌道に起因するピークとフッ素の1s軌道に起因するピークとの重ね合わせに対応する山状のピーク部分が形成されている。このピーク部分の面積比が、積分強度比である。被覆粒子3の表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比が大きい場合、たとえば70、60さらには50を超える場合には、珪素を含む被膜2の厚みが、大きすぎて、被膜2の最表面が、コア部1の膨張・収縮に追従できず、応力が集中して、亀裂や欠陥が生じるおそれがある。つまり、被膜2の最表面の亀裂や欠陥を通じて、電解液がコア部に浸透したり、コア部1に吸蔵されているLiイオンが溶出したりして、電池のサイクル特性が低下するおそれがある。   Here, the peak caused by the 2p orbit of silicon and the peak caused by the 1s orbit of fluorine each protrude in a mountain shape. The peak-shaped peak portion between the end portions on both sides of the energy region of each peak includes a peak-shaped peak portion corresponding to the superposition of the peak caused by the silicon 2p orbit and the peak caused by the fluorine 1s orbit. Is formed. The area ratio of the peak portion is the integrated intensity ratio. When the integrated intensity ratio of the peak due to the 1s orbit of fluorine with respect to the peak due to the 2p orbit of silicon on the surface of the coated particle 3 is large, for example, when it exceeds 70, 60, or 50, the coating 2 containing silicon Since the thickness is too large, the outermost surface of the coating 2 cannot follow the expansion / contraction of the core portion 1, and stress may concentrate, causing cracks and defects. That is, the electrolytic solution may permeate into the core portion through the cracks and defects on the outermost surface of the coating 2 or Li ions occluded in the core portion 1 may be eluted, thereby reducing the cycle characteristics of the battery. .

被覆粒子3の表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比は、70以下、60以下、更には、50以下であるとよい。また、前記積分強度比の下限は、5であるとよく、更には、10であることが好ましい。この場合には、被膜2がコア部1の表面全体を被覆するため、コア部1に含まれる珪素が、電解液と接触することを抑えることができ、電解液の劣化を抑制し、電池の高いサイクル特性を発揮することができる。また、コア部1に吸蔵されているLiイオンの溶出を抑え、電池容量の低下を抑制することができる。   The integrated intensity ratio of the peak caused by the 1s orbit of fluorine to the peak caused by the 2p orbit of silicon on the surface of the coated particle 3 is preferably 70 or less, 60 or less, and further 50 or less. The lower limit of the integrated intensity ratio is preferably 5, and more preferably 10. In this case, since the coating 2 covers the entire surface of the core part 1, it is possible to suppress the silicon contained in the core part 1 from coming into contact with the electrolytic solution, to suppress the deterioration of the electrolytic solution, High cycle characteristics can be exhibited. Moreover, elution of Li ions occluded in the core part 1 can be suppressed, and a decrease in battery capacity can be suppressed.

一方、前記積分強度比が70を超えて大きい場合には、被膜2の表面の膨張・収縮が大きくなり、被膜に亀裂や欠損を生じやすくなる。亀裂から電解液が被膜に浸入し、コア部1まで到達し、コア部1内の珪素に接触し、電解液が劣化したり、コア部1内に吸蔵されているLiイオンが溶出したりして、電池のサイクル特性が低下するおそれがある。   On the other hand, when the integral intensity ratio is greater than 70, the surface of the coating 2 is greatly expanded and contracted, and cracks and defects are likely to occur in the coating. The electrolyte enters the coating from the crack, reaches the core 1 and contacts the silicon in the core 1, and the electrolyte is deteriorated or Li ions occluded in the core 1 are eluted. Thus, the cycle characteristics of the battery may be deteriorated.

(実施例1)
本例のリチウム二次電池を以下のように作製し、電池のサイクル評価試験を行った。
Example 1
The lithium secondary battery of this example was manufactured as follows, and the cycle evaluation test of the battery was performed.

まず、市販のSiO粉末と、導電助材としての黒鉛粉末と、ケッチェンブラックと、結着剤としてのポリアミドイミドとを混合し、溶媒を加えてスラリー状の混合物を得た。溶媒は、N‐メチル‐2‐ピロリドン(NMP)であった。負極活物質粒子と黒鉛粉末とケッチェンブラックとポリアミドイミドとの質量比は、百分率で、負極活物質粒子/黒鉛粉末/ケッチェンブラック/ポリアミドイミド=48/39.4/2.6/10であった。   First, commercially available SiO powder, graphite powder as a conductive aid, ketjen black, and polyamideimide as a binder were mixed, and a solvent was added to obtain a slurry mixture. The solvent was N-methyl-2-pyrrolidone (NMP). The mass ratio of the negative electrode active material particles, the graphite powder, the ketjen black, and the polyamideimide is a percentage, and the negative electrode active material particles / graphite powder / Ketjen black / polyamideimide = 48 / 39.4 / 2.6 / 10. there were.

次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔の片面に成膜し、所定の圧力でプレスし、200℃、2時間加熱し、放冷した。これにより、集電体表面に負極活物質層が固定されてなる負極が形成された。   Next, the slurry mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade, pressed at a predetermined pressure, heated at 200 ° C. for 2 hours, and allowed to cool. Thereby, the negative electrode formed by fixing the negative electrode active material layer on the current collector surface was formed.

次に、正極活物質としてのリチウム・ニッケル複合酸化物LiNi1/3Co1/3Mn1/3と、バインダーとしてのポリフッ化ビニリデン(PVDF)とを混合してスラリーとなし、このスラリーを集電体としてのアルミニウム箔の片面に塗布し、プレスし、焼成した。これにより、集電体の表面に正極活物質層を固定してなる正極を得た。正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んだ。この正極、セパレータ及び負極からなる電極体を複数積層した。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着をすることにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、積層された電極体を入れ、更に、電解液を入れた。電解液は、電解質としてのLiPFが、有機溶媒に溶解してなる。有機溶媒は、エチレンカーボネートとジエチルカーボネートとを、3質量部と、7質量部との配合比で混合して調製した。電解液中のLiPFの濃度は、1mol/Lであった。 Next, a lithium / nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material and polyvinylidene fluoride (PVDF) as a binder are mixed to form a slurry. Was applied to one side of an aluminum foil as a current collector, pressed and fired. This obtained the positive electrode formed by fixing a positive electrode active material layer on the surface of a collector. A polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode. A plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked. The periphery of the two aluminum films was sealed by heat-welding except for a part to make a bag shape. The laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put. The electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent. The organic solvent was prepared by mixing ethylene carbonate and diethyl carbonate in a mixing ratio of 3 parts by mass and 7 parts by mass. The concentration of LiPF 6 in the electrolytic solution was 1 mol / L.

その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側及び負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、ラミネート電池を得た。ラミネート電池にはコンディショニング処理(初期充放電)を行った。コンディショニング処理は、45℃で3回繰り返して行った。1回目は充電条件を0.2C、4.1VのCC(定電流)充電とし、放電条件を0.2C、3V、カットオフのCC放電とした。2回目は充電条件を0.2C、4.1VのCC−CV充電とし、放電条件を0.1C、3V、カットオフのCC放電とした。3回目は充電条件を1C、4.2VのCC−CV充電とし、放電条件を1C、3V、カットオフのCC放電とした。コンディショニング処理の後に、リチウムイオン二次電池を常温(25℃)に戻した。   Then, the opening part of the aluminum film was completely airtightly sealed while evacuating. At this time, the tips of the positive electrode side and negative electrode side current collectors were protruded from the edge portions of the film to enable connection to external terminals, thereby obtaining a laminated battery. The laminate battery was subjected to a conditioning treatment (initial charge / discharge). The conditioning treatment was repeated three times at 45 ° C. The first time, the charging condition was set to CC (constant current) charging at 0.2C and 4.1V, and the discharging condition was set to CC discharging at 0.2C, 3V and cut-off. For the second time, the charging condition was set to CC-CV charging of 0.2C and 4.1V, and the discharging condition was set to CC discharge of 0.1C, 3V and cut-off. In the third time, the charging condition was 1C, 4.2V CC-CV charging, and the discharging condition was 1C, 3V, cut-off CC discharge. After the conditioning treatment, the lithium ion secondary battery was returned to room temperature (25 ° C.).

コンディショニング処理により、負極活性物質粒子の表面には被膜が形成されて、負極活性物質からなるコア部と、被膜とからなる被覆粒子が得られた。   By the conditioning treatment, a film was formed on the surface of the negative electrode active material particles, and coated particles composed of a core portion made of the negative electrode active material and a film were obtained.

(比較例1)
本比較例においては、コンディショニング処理の温度を25℃とした以外は、実施例1と同様にリチウムイオン二次電池を作製した。
(Comparative Example 1)
In this comparative example, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the temperature of the conditioning treatment was 25 ° C.

<電池のサイクル実験>
実施例1及び比較例1のリチウムイオン二次電池のサイクル試験を行った。サイクル試験は、25℃で行い、充電条件を1C、4.2VのCC−CV(定電流定電圧)充電とし、放電条件を1C、2.5V、カットオフのCC放電とした。コンディショニング処理後の最初の充放電試験を1サイクル目とし、300サイクル目まで同様の充放電を繰り返し行った。各サイクル毎に、放電容量を測定し、各サイクルにおける放電容量維持率を算出した。放電容量維持率は、Nサイクル目の放電容量を初回の放電容量で除した値の百分率((Nサイクル目の放電容量)/(1サイクル目の放電容量)×100)で求められる値である。Nは1〜20の整数である。図3には、実施例1及び比較例1の各リチウムイオン二次電池についての各サイクル毎の放電容量維持率を示した。図4には、各サイクル毎に測定した実施例1及び比較例1の各リチウムイオン二次電池の内部抵抗値を示した。
<Battery cycle experiment>
The cycle test of the lithium ion secondary battery of Example 1 and Comparative Example 1 was performed. The cycle test was performed at 25 ° C., the charge condition was 1 C, 4.2 V CC-CV (constant current constant voltage) charge, and the discharge condition was 1 C, 2.5 V, cut-off CC discharge. The first charge / discharge test after the conditioning treatment was taken as the first cycle, and the same charge / discharge was repeated until the 300th cycle. The discharge capacity was measured for each cycle, and the discharge capacity retention rate in each cycle was calculated. The discharge capacity maintenance ratio is a value obtained by dividing the discharge capacity at the Nth cycle by the initial discharge capacity ((discharge capacity at the Nth cycle) / (discharge capacity at the first cycle) × 100). . N is an integer of 1-20. In FIG. 3, the discharge capacity maintenance factor for every cycle about each lithium ion secondary battery of Example 1 and Comparative Example 1 was shown. In FIG. 4, the internal resistance value of each lithium ion secondary battery of Example 1 and Comparative Example 1 measured for each cycle is shown.

図3に示すように、実施例1のリチウムイオン二次電池は、比較例1のものに比べて、放電容量維持率が高かった。図4に示すように、実施例1のリチウムイオン二次電池は、比較例1のものと比べて、初期のサイクル数のときには内部抵抗値はほぼ同じであった。しかし、サイクル数が増加するにつれて、比較例1の場合の内部抵抗値が実施例1の場合よりも徐々に大きくなった。このことから、初期充放電を45℃で行った実施例1の方が、電池のサイクル特性が優れていることがわかる。   As shown in FIG. 3, the lithium ion secondary battery of Example 1 had a higher discharge capacity retention rate than that of Comparative Example 1. As shown in FIG. 4, the lithium ion secondary battery of Example 1 had substantially the same internal resistance value at the initial number of cycles as compared with that of Comparative Example 1. However, as the number of cycles increased, the internal resistance value in Comparative Example 1 gradually increased from that in Example 1. From this, it can be seen that Example 1 in which the initial charge / discharge was performed at 45 ° C. is superior in the cycle characteristics of the battery.

<XPS>
実施例1及び比較例1のリチウムイオン二次電池の負極活物質粒子についてXPSにより結合エネルギーのスペクトル強度を測定した。XPSでは、25℃の温度下で、15kV、10mAの条件で放射されるAlKα線を、負極活物質粒子表面に照射した。図1に示すように、AlKα線の照射角度θは、負極活物質粒子の表面の接線に対して35°とした。図5は、実施例1の負極活物質粒子の0〜1000eVの範囲の結合エネルギーのスペクトルを示し、図6は、実施例1の負極活物質粒子の680〜692eVの範囲の結合エネルギーのスペクトルを示し、図7は、比較例1の負極活物質粒子の0〜1000eVの範囲の結合エネルギーのスペクトルを示した。
<XPS>
The spectral intensity of the binding energy of the negative electrode active material particles of the lithium ion secondary batteries of Example 1 and Comparative Example 1 was measured by XPS. In XPS, the surface of the negative electrode active material particles was irradiated with AlKα rays emitted at a temperature of 25 ° C. under conditions of 15 kV and 10 mA. As shown in FIG. 1, the irradiation angle θ of the AlKα ray was set to 35 ° with respect to the tangent to the surface of the negative electrode active material particles. FIG. 5 shows a spectrum of binding energy of the negative electrode active material particles of Example 1 in the range of 0 to 1000 eV, and FIG. 6 shows a spectrum of binding energy of the negative electrode active material particles of Example 1 in the range of 680 to 692 eV. FIG. 7 shows the spectrum of the binding energy of the negative electrode active material particles of Comparative Example 1 in the range of 0 to 1000 eV.

図5,図6に示すように、実施例1の負極活物質粒子から放出されるX線のスペクトルにおいて、結合エネルギーが680〜692eVの範囲に、フッ素の1s軌道に起因するピークが出現し、結合エネルギーが98〜105eVの範囲に、珪素の2P軌道に起因するピークが出現していた。フッ素の1s軌道は、Liと結合している軌道であるため、フッ素の1s軌道のピークが出現したことは、負極活物質粒子の表面にフッ素を含む化合物が生成していることを示している。図6において、フッ素の1sピークの中で684eV近傍に現れているピークはフッ化リチウム起因で出現する。つまり、684eV近傍のピークが出現したことは、負極活物質粒子の表面にフッ化リチウムが生成していることを示している。フッ素の1sのピークはフッ化リチウムが無くてもフッ素を含む化合物が存在すれば出現する。フッ化リチウム起因で出現するピークはフッ素の1sピークの中でも684eV近傍に現れているピークである(図6)。LiFのLi源およびフッ素源は、電解液の電解質LiPFであると推定される。即ち、電解質LiPFが下記の式(1)に示すように分解して、LiFが生成したものである。 As shown in FIGS. 5 and 6, in the X-ray spectrum emitted from the negative electrode active material particles of Example 1, a peak due to the 1s orbital of fluorine appears in the range where the binding energy is 680 to 692 eV, A peak due to the 2P orbital of silicon appeared in the range where the binding energy was 98 to 105 eV. Since the 1s orbital of fluorine is an orbital bonded to Li, the appearance of a peak of 1s orbital of fluorine indicates that a compound containing fluorine is generated on the surface of the negative electrode active material particles. . In FIG. 6, the peak appearing in the vicinity of 684 eV among the 1 s peak of fluorine appears due to lithium fluoride. That is, the appearance of a peak near 684 eV indicates that lithium fluoride is generated on the surface of the negative electrode active material particles. The peak of 1 s of fluorine appears even if there is a compound containing fluorine even without lithium fluoride. The peak that appears due to lithium fluoride is the peak that appears in the vicinity of 684 eV among the 1 s peak of fluorine (FIG. 6). It is estimated that the Li source and the fluorine source of LiF are the electrolyte LiPF 6 of the electrolytic solution. That is, the electrolyte LiPF 6 is decomposed as shown in the following formula (1) to generate LiF.

LiPF6→LiF+PF5・・・(1)
図5、図7に示すように、実施例1と比較例1の負極活物質粒子表面の珪素の2p軌道に起因するピークに対するフッ素の1s軌道に起因するピークの積分強度比を求めた。表1に示すように、実施例1の積分強度比は44であり、比較例1の積分強度比は77であった。実施例1の負極活物質粒子の方が、比較例1に比べてフッ素の1s軌道の相対的な強度が低いため、比較例1よりも、フッ素を含む被膜の厚みが薄いことがわかった。
LiPF 6 → LiF + PF 5 (1)
As shown in FIGS. 5 and 7, the integrated intensity ratio of the peak caused by the 1s orbit of fluorine to the peak caused by the 2p orbit of silicon on the negative electrode active material particle surfaces of Example 1 and Comparative Example 1 was determined. As shown in Table 1, the integrated intensity ratio of Example 1 was 44, and the integrated intensity ratio of Comparative Example 1 was 77. The negative electrode active material particles of Example 1 were found to have a thinner fluorine-containing film than Comparative Example 1 because the relative strength of the 1s orbit of fluorine was lower than that of Comparative Example 1.

Figure 2012230779
Figure 2012230779

上記のように、実施例1の負極の被覆粒子は、比較例1に比べて、電池のサイクル特定が良好であった。その理由は、コンディショニング処理時(初期充放電時)の温度が45℃と高温であるため、コア部表面に薄く安定な被膜が形成されて、コア部の膨張・収縮による被膜最表面の応力が低く抑えられ、被膜最表面に亀裂や欠損が生じにくかったためであると考えられる。   As described above, the coated particles of the negative electrode of Example 1 had better battery cycle identification than Comparative Example 1. The reason for this is that the temperature at the conditioning process (during initial charge / discharge) is as high as 45 ° C., so a thin and stable film is formed on the surface of the core, and the stress on the outermost surface of the film due to expansion / contraction of the core This is thought to be because the cracks and defects were hardly generated on the outermost surface of the coating.

1:コア部、2:被膜、3:被覆粒子。 1: Core part, 2: Coating, 3: Covered particle.

Claims (4)

リチウムイオンを吸蔵・放出可能な正極活物質をもつ正極と、リチウムイオンを吸蔵・放出可能であって珪素又は/及び珪素化合物からなる負極活物質をもつ負極と、セパレータと、電解液とからなる電池本体に、35〜80℃の温度条件で初期充放電を行うことを特徴とするリチウムイオン二次電池の製造方法。   A positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions and made of silicon or / and a silicon compound, a separator, and an electrolytic solution. A method for producing a lithium ion secondary battery, wherein the battery body is initially charged and discharged under a temperature condition of 35 to 80 ° C. 前記電池本体に、40〜60℃の温度条件で初期充放電を行う請求項1記載のリチウムイオン二次電池の製造方法。   The method for producing a lithium ion secondary battery according to claim 1, wherein the battery body is initially charged and discharged under a temperature condition of 40 to 60 ° C. 前記電解液は、フッ化塩を含む請求項1又は2に記載のリチウムイオン二次電池の製造方法。   The method for manufacturing a lithium ion secondary battery according to claim 1, wherein the electrolytic solution contains a fluoride salt. 前記負極は、ポリアミドイミドにより前記負極活物質を結着させてなる請求項1〜3のいずれか1項に記載のリチウムイオン二次電池の製造方法。   The method for producing a lithium ion secondary battery according to claim 1, wherein the negative electrode is formed by binding the negative electrode active material with polyamideimide.
JP2011097130A 2011-04-25 2011-04-25 Method for producing lithium ion secondary battery Expired - Fee Related JP5733000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097130A JP5733000B2 (en) 2011-04-25 2011-04-25 Method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097130A JP5733000B2 (en) 2011-04-25 2011-04-25 Method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012230779A true JP2012230779A (en) 2012-11-22
JP5733000B2 JP5733000B2 (en) 2015-06-10

Family

ID=47432178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097130A Expired - Fee Related JP5733000B2 (en) 2011-04-25 2011-04-25 Method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5733000B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256539A (en) * 2011-06-09 2012-12-27 Toyota Industries Corp Lithium ion secondary battery
JP2013020782A (en) * 2011-07-11 2013-01-31 Toyota Industries Corp Operation method of lithium ion secondary battery and battery device
JP2016028383A (en) * 2014-07-09 2016-02-25 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016028382A (en) * 2014-07-09 2016-02-25 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017027727A (en) * 2015-07-21 2017-02-02 株式会社豊田自動織機 Method of manufacturing lithium ion secondary battery
JP2017168466A (en) * 2013-08-21 2017-09-21 信越化学工業株式会社 Negative electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, method for manufacturing negative electrode, method for manufacturing negative electrode active substance, and method for manufacturing lithium ion secondary battery
JP2018160416A (en) * 2017-03-23 2018-10-11 株式会社東芝 Electrode, nonaqueous electrolyte battery, battery pack and vehicle
JP2019021492A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Method of manufacturing battery
US11118014B2 (en) 2016-10-06 2021-09-14 Kabushiki Kaisha Toyota Jidoshokki Polymer compound, intermediate composition, negative electrode, electricity storage device, and method for producing polymer compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023617A (en) * 1999-07-06 2001-01-26 Seimi Chem Co Ltd Manufacture of lithium secondary battery
JP2008016194A (en) * 2006-06-30 2008-01-24 Mitsui Mining & Smelting Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2010073571A (en) * 2008-09-19 2010-04-02 Panasonic Corp Lithium ion secondary battery and method of manufacturing the same
JP2010080299A (en) * 2008-09-26 2010-04-08 Nissan Motor Co Ltd Lithium ion battery system, and method for manufacturing the same
JP2011029139A (en) * 2009-06-24 2011-02-10 Toyota Motor Corp Lithium secondary battery and method of manufacturing the same
JP2011060701A (en) * 2009-09-14 2011-03-24 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2011187169A (en) * 2010-03-04 2011-09-22 Nec Energy Devices Ltd Secondary battery and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023617A (en) * 1999-07-06 2001-01-26 Seimi Chem Co Ltd Manufacture of lithium secondary battery
JP2008016194A (en) * 2006-06-30 2008-01-24 Mitsui Mining & Smelting Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2010073571A (en) * 2008-09-19 2010-04-02 Panasonic Corp Lithium ion secondary battery and method of manufacturing the same
JP2010080299A (en) * 2008-09-26 2010-04-08 Nissan Motor Co Ltd Lithium ion battery system, and method for manufacturing the same
JP2011029139A (en) * 2009-06-24 2011-02-10 Toyota Motor Corp Lithium secondary battery and method of manufacturing the same
JP2011060701A (en) * 2009-09-14 2011-03-24 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2011187169A (en) * 2010-03-04 2011-09-22 Nec Energy Devices Ltd Secondary battery and manufacturing method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256539A (en) * 2011-06-09 2012-12-27 Toyota Industries Corp Lithium ion secondary battery
JP2013020782A (en) * 2011-07-11 2013-01-31 Toyota Industries Corp Operation method of lithium ion secondary battery and battery device
JP2017168466A (en) * 2013-08-21 2017-09-21 信越化学工業株式会社 Negative electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, method for manufacturing negative electrode, method for manufacturing negative electrode active substance, and method for manufacturing lithium ion secondary battery
JP2016028383A (en) * 2014-07-09 2016-02-25 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016028382A (en) * 2014-07-09 2016-02-25 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017027727A (en) * 2015-07-21 2017-02-02 株式会社豊田自動織機 Method of manufacturing lithium ion secondary battery
US11118014B2 (en) 2016-10-06 2021-09-14 Kabushiki Kaisha Toyota Jidoshokki Polymer compound, intermediate composition, negative electrode, electricity storage device, and method for producing polymer compound
JP2018160416A (en) * 2017-03-23 2018-10-11 株式会社東芝 Electrode, nonaqueous electrolyte battery, battery pack and vehicle
JP2019021492A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Method of manufacturing battery
JP7107649B2 (en) 2017-07-18 2022-07-27 トヨタ自動車株式会社 Battery manufacturing method

Also Published As

Publication number Publication date
JP5733000B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5733000B2 (en) Method for producing lithium ion secondary battery
JP6705384B2 (en) Lithium secondary battery
JP5585470B2 (en) Lithium ion secondary battery
WO2017094416A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
WO2011121691A1 (en) Positive electrode for lithium ion battery, method for producing same, and lithium ion battery using the positive electrode
JP5783425B2 (en) Method for producing non-aqueous electrolyte secondary battery
EP3319161A1 (en) Non-aqueous electrolyte battery and method for manufacturing same
WO2017077986A1 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
CN111799439B (en) Lithium ion battery
JP2017152294A (en) Positive electrode active material and lithium ion secondary battery
CN107112501B (en) Nonaqueous electrolyte secondary battery, battery assembly and method for manufacturing same
JP7040460B2 (en) A method for manufacturing a graphite-based material for a lithium ion secondary battery, a method for manufacturing a negative electrode for a lithium ion secondary battery, and a method for manufacturing a lithium ion secondary battery.
CN110323419B (en) Negative electrode material, nonaqueous electrolyte secondary battery, and method for producing same
JP6683191B2 (en) Secondary battery
JP6184273B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP2012256539A (en) Lithium ion secondary battery
WO2018025469A1 (en) Lithium ion secondary battery and method for manufacturing same
CN109565032B (en) Negative electrode for nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP2013062026A (en) Lithium ion secondary battery and manufacturing method therefor
CN112018342A (en) Positive electrode active material and secondary battery using same
JP5776932B2 (en) Lithium ion secondary battery operating method and battery device
JPWO2019235469A1 (en) Reduced graphene material
WO2021111931A1 (en) Nonaqueous electrolyte secondary battery
EP3993099A1 (en) Secondary battery
JP6720974B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R151 Written notification of patent or utility model registration

Ref document number: 5733000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees