JP7107649B2 - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP7107649B2
JP7107649B2 JP2017138738A JP2017138738A JP7107649B2 JP 7107649 B2 JP7107649 B2 JP 7107649B2 JP 2017138738 A JP2017138738 A JP 2017138738A JP 2017138738 A JP2017138738 A JP 2017138738A JP 7107649 B2 JP7107649 B2 JP 7107649B2
Authority
JP
Japan
Prior art keywords
battery
voltage
foreign matter
negative electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017138738A
Other languages
Japanese (ja)
Other versions
JP2019021492A (en
Inventor
雅則 北吉
久尚 小島
哲司 平藤
卓 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017138738A priority Critical patent/JP7107649B2/en
Publication of JP2019021492A publication Critical patent/JP2019021492A/en
Application granted granted Critical
Publication of JP7107649B2 publication Critical patent/JP7107649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池などの電池の製造方法に関する。 The present invention relates to a method for manufacturing a battery such as a lithium ion secondary battery.

リチウムイオン二次電池などの電池の製造に当たっては、鉄や銅などの金属異物が電極体の内部に混入することが考えられる。このような金属異物は、組み立てた電池内に電解液を注液した後に電解液中に徐々に溶解するため、金属異物の近傍には金属異物由来の金属イオンが高い濃度で存在する。本充電の際、負極電位が低下して、この濃度の高い金属イオンが負極板上で集中的にデンドライト状に析出すると、セパレータを突き破って負極板から正極板まで達し、短絡を生じるおそれがある。 In manufacturing a battery such as a lithium ion secondary battery, it is conceivable that metal foreign matters such as iron and copper are mixed into the electrode body. Such metallic foreign matter gradually dissolves in the electrolytic solution after the electrolytic solution is injected into the assembled battery, so that metal ions derived from the metallic foreign matter are present at a high concentration in the vicinity of the metallic foreign matter. During main charging, if the potential of the negative electrode drops and the high-concentration metal ions precipitate on the negative plate in a dendrite-like form, they may break through the separator and reach from the negative plate to the positive plate, causing a short circuit. .

このような短絡が生じるのを防止するべく、例えば特許文献1では、正極電位が金属異物の溶解電位を上回る電位となるまで電池を充電(予備充電)した上で、この正極電位で電池を所定時間にわたり放置し、その後、この電池に初期コンディショニング充電(本充電)を行うことが記載されている(特許文献1の請求項1等を参照)。放置により、金属異物を電解液中に溶解させると共に、金属異物由来の金属イオンを金属異物が存在していた場所から広範囲に拡散させて、その後の本充電で金属異物由来の金属が負極板上で集中的にデンドライト状に析出するのを防止し、短絡を防止できるためと考えられる。 In order to prevent such a short circuit from occurring, for example, in Patent Document 1, the battery is charged (preliminarily charged) until the positive electrode potential exceeds the dissolution potential of the metallic foreign matter, and then the battery is charged at this positive electrode potential. It is described that the battery is left for a period of time and then subjected to an initial conditioning charge (main charge) (see claim 1 of Patent Document 1, etc.). By standing, the metal foreign matter is dissolved in the electrolytic solution, and the metal ions derived from the metal foreign matter are diffused over a wide range from the place where the metal foreign matter was present. It is thought that this is because it is possible to prevent intensive dendrite-like precipitation at , thereby preventing a short circuit.

国際公開第2013/035187号WO2013/035187

しかしながら、上述の特許文献1の手法では、予備充電後の電池の放置のみによって金属異物由来の金属イオンの拡散を行っているので、金属異物由来の金属が負極板上に集中的にデンドライト状に析出して短絡が生じるのを防止するには、電池の放置時間を長くとる必要があった。 However, in the method of Patent Document 1 described above, the metal ions derived from the metallic foreign matter are diffused only by leaving the battery after precharging, so the metal derived from the metallic foreign matter concentrates on the negative electrode plate to form dendrites. In order to prevent short-circuiting due to deposition, it was necessary to leave the battery for a long time.

本発明は、かかる現状に鑑みてなされたものであって、電解液中に溶解した金属異物由来の金属イオンの拡散を促進させて、金属異物に起因した短絡を防止できる電池の製造方法を提供することを目的とする。 The present invention has been made in view of such a situation, and provides a method for manufacturing a battery that can prevent short circuits caused by metallic foreign matter by promoting the diffusion of metal ions derived from metallic foreign matter dissolved in an electrolytic solution. intended to

上記課題を解決するための本発明の一態様は、電池の製造方法であって、上記電池は、正極活物質にリチウム遷移金属複合酸化物を含み、負極活物質に炭素材料を含むリチウムイオン二次電池であり、未注液の電池内に電解液を注液する注液工程と、上記注液工程の後に、電池をコンディショニング充電する本充電工程と、上記注液工程の後、上記本充電工程の前に、上記電池の電池温度Teを30℃以上とした上で、上記電池の電池電圧Veを上下に変動させて、上記電解液中に溶解した金属異物由来の金属イオンの拡散を促進させる電圧変動工程と、上記注液工程の後、上記電圧変動工程の前に、上記電池を、上記本充電工程で到達させる電池電圧V1よりも低く、かつ、正極電位が鉄の溶解電位よりも高く、負極電位が上記電解液中に溶解した鉄イオンの析出電位よりも高い電池電圧V2まで予備充電する予備充電工程と、を備える電池の製造方法である。 One aspect of the present invention for solving the above problems is a method for manufacturing a battery, wherein the battery includes a lithium ion diode containing a lithium transition metal composite oxide as a positive electrode active material and a carbon material as a negative electrode active material. An injection step of injecting an electrolytic solution into a battery that is a secondary battery and has not been injected, a main charging step of conditioning charging the battery after the above injection step, and a main charging step after the above injection step Before the process, the battery temperature Te of the battery is set to 30 ° C. or higher, and the battery voltage Ve of the battery is fluctuated up and down to promote diffusion of metal ions derived from metallic foreign substances dissolved in the electrolyte. After the voltage change step, the liquid injection step, and before the voltage change step, the battery voltage is lower than the battery voltage V1 reached in the main charging step, and the positive electrode potential is higher than the iron dissolution potential. a pre-charging step of pre-charging to a battery voltage V2 which is high and the negative electrode potential is higher than the deposition potential of the iron ions dissolved in the electrolytic solution.

上述の電池の製造方法では、注液工程後、本充電工程前に、電圧変動工程において、電池電圧Veを上下に変動させる。この電圧変動工程では、電池電圧Veが高くなると、正極板と負極板とが引き合って互いの間隔が狭くなる一方、電池電圧Veが低くなると、セパレータの弾性等により正極板と負極板の間隔が広くなる。このようにして、正極板と負極板の間隔が振動変化する。これにより、正極板と負極板の間における電解液の移動が促進され、この電解液に含まれる金属異物由来の金属イオンの拡散が促進される。かくして、製造過程で電極体内に金属異物が混入したとしても、金属異物由来の金属イオンの拡散を促進させて、金属異物に起因した短絡を防止できる。
更に、正極活物質にリチウム遷移金属複合酸化物を含み、負極活物質に炭素材料を含むリチウムイオン二次電池において、電圧変動工程の前に上述の電池電圧V2まで予備充電する予備充電工程を行うと、正極電位が高くなって、正極板上で金属異物(特に鉄の異物)が電解液中に溶解し易くなる。一方、負極電位は低くなり過ぎず、負極板上で金属異物(特に鉄の異物)由来の金属が析出し難い。そして、前述した電圧変動工程において、この金属異物由来の金属イオンの拡散を促進させることができるので、金属異物に起因した短絡をより確実に防止できる。
In the battery manufacturing method described above, the battery voltage Ve is fluctuated up and down in the voltage fluctuation step after the injection step and before the main charging step. In this voltage fluctuation step, when the battery voltage Ve increases, the positive electrode plate and the negative electrode plate attract each other and the distance between them narrows. get wider. In this manner, the interval between the positive plate and the negative plate vibrates. This promotes movement of the electrolytic solution between the positive electrode plate and the negative electrode plate, and promotes diffusion of metal ions derived from metallic foreign matter contained in the electrolytic solution. Thus, even if metallic foreign matter is mixed into the electrode body during the manufacturing process, the diffusion of metal ions derived from the metallic foreign matter can be promoted to prevent a short circuit caused by the metallic foreign matter.
Furthermore, in a lithium ion secondary battery containing a lithium transition metal composite oxide as a positive electrode active material and a carbon material as a negative electrode active material, a preliminary charging step of precharging to the battery voltage V2 described above is performed before the voltage changing step. As a result, the potential of the positive electrode increases, and foreign metal particles (especially foreign particles of iron) tend to dissolve in the electrolytic solution on the positive electrode plate. On the other hand, the negative electrode potential does not become too low, and metals derived from foreign metals (especially iron foreign substances) are less likely to deposit on the negative electrode plate. In addition, in the voltage variation step described above, the diffusion of the metal ions derived from the metallic foreign matter can be promoted, so that the short circuit caused by the metallic foreign matter can be prevented more reliably.

なお、「電圧変動工程」における電池電圧Veの上下変動は、その周波数feを0.1~100Hzとする(電池電圧Veの上下変動を1秒間に0.1~100回繰り返す)のが好ましく、更には、その周波数feを0.1~10Hzとする(電池電圧Veの上下変動を1秒間に0.1~10回繰り返す)のが特に好ましい。このように低周波にすると、正極板と負極板の間隔がゆっくり変化するため、この間隔変化に合わせて電解液が移動し易くなり、金属異物由来の金属イオンの拡散がより促進されるからである。 The frequency fe of the vertical fluctuation of the battery voltage Ve in the "voltage fluctuation step" is preferably 0.1 to 100 Hz (the vertical fluctuation of the battery voltage Ve is repeated 0.1 to 100 times per second). Furthermore, it is particularly preferable to set the frequency fe to 0.1 to 10 Hz (the battery voltage Ve repeats vertical fluctuations 0.1 to 10 times per second). When the frequency is set to such a low frequency, the gap between the positive electrode plate and the negative electrode plate changes slowly, so that the electrolyte solution moves easily according to the change in the gap, and the diffusion of metal ions derived from metallic foreign matter is further promoted. be.

また、「電圧変動工程」を行う時間は、0.5分以上、更には、1分以上とするのが特に好ましい。このように電圧変動工程を行う時間を長くすることで、正極板と負極板の間隔が変化する回数が多くなるため、電解液の移動がより促進され、金属異物由来の金属イオンの拡散がより促進されるからである。一方で、電圧変動工程の時間は、10分以下、更には、3分以下として、電圧変動工程に係る時間を短くするのが好ましい。 Moreover, it is particularly preferable that the time for performing the "voltage change step" is 0.5 minutes or longer, and more preferably 1 minute or longer. By lengthening the time for performing the voltage fluctuation step in this way, the number of times the interval between the positive electrode plate and the negative electrode plate changes increases, so the movement of the electrolyte solution is further promoted, and the diffusion of metal ions derived from the metal foreign matter is further facilitated. because it promotes On the other hand, it is preferable to shorten the time required for the voltage change process by setting the time of the voltage change process to 10 minutes or less, more preferably 3 minutes or less.

また、「電圧変動工程」は、電池温度Teを30℃以上として行う。電池温度Teを高くすると、電解液の粘度が下がるため、正極板と負極板の間における電解液の移動が促進され、金属異物由来の金属イオンの拡散が促進されるからである。一方で、電圧変動工程は、電池温度Teを60℃以下、更には、50℃以下として行うのが特に好ましい。電池温度Teを高くし過ぎると、電池が劣化するなど電池の特性が変化するおそれがあるからである。 Also, the "voltage change process" is performed with the battery temperature Te set to 30 ° C. or higher . This is because, when the battery temperature Te is increased, the viscosity of the electrolyte decreases, which promotes the movement of the electrolyte between the positive electrode plate and the negative electrode plate, thereby facilitating the diffusion of metal ions derived from metallic foreign matter. On the other hand, it is particularly preferable to perform the voltage fluctuation step at a battery temperature Te of 60° C. or lower, more preferably 50° C. or lower. This is because if the battery temperature Te is too high, the characteristics of the battery may change, such as deterioration of the battery.

「本充電工程」における「コンディショニング充電」とは、電池性能を安定化させるために行う充電である。具体的には、電池をSOC70%に相当する電池電圧以上、更には、SOC90%に相当する電池電圧以上に充電するのが好ましい。このように高い充電状態まで充電を行うことで、この本充電工程の際に金属異物が残っている場合でも、この金属異物を正極板上で溶解させることができる。また、例えばリチウムイオン二次電池では、良好なSEI(Solid Electrolyte Interphase)皮膜が負極板で形成され、電池のサイクル特性が良好になるなど、電池性能が向上し得るからである。 "Conditioning charge" in the "main charge step" is charge performed to stabilize battery performance. Specifically, it is preferable to charge the battery to a battery voltage corresponding to SOC 70% or more, and further to a battery voltage corresponding to SOC 90% or more. By charging the battery to a high state of charge in this manner, even if metallic foreign matter remains in the main charging process, the metallic foreign matter can be dissolved on the positive electrode plate. In addition, for example, in a lithium ion secondary battery, a good SEI (Solid Electrolyte Interphase) film is formed on the negative electrode plate, and the battery performance can be improved, such as good cycle characteristics of the battery.

更に、上記の電池の製造方法であって、前記予備充電工程の後、前記電圧変動工程の前に、前記電池を0.5時間以上放置する変動前放置工程を備える電池の製造方法とするのが好ましい。 Further, the above battery manufacturing method further comprises a pre-variation leaving step of leaving the battery for 0.5 hours or longer after the preliminary charging step and before the voltage changing step. is preferred.

予備充電工程後、電圧変動工程前に上述の変動前放置工程を行って電池を0.5時間以上放置することで、この放置中にも正極板上に存在する金属異物が電解液中に溶解するので、金属異物をより確実に電解液中に溶解させることができる。そして、前述した電圧変動工程において、この金属異物由来の金属イオンの拡散を促進させることができるので、金属異物に起因した短絡をより確実に防止できる。なお、この変動前放置工程で電池を放置する時間は、1時間以上とするのが更に好ましい。 After the pre-charging step and before the voltage fluctuation step, the above-described standing step before fluctuation is performed and the battery is left for 0.5 hours or longer. Therefore, it is possible to more reliably dissolve the metallic foreign matter in the electrolytic solution. In addition, in the voltage variation step described above, the diffusion of the metal ions derived from the metallic foreign matter can be promoted, so that the short circuit caused by the metallic foreign matter can be prevented more reliably. It is more preferable that the battery is left to stand in this pre-variation leaving step for one hour or longer.

更に、上記のいずれかに記載の電池の製造方法であって、前記電圧変動工程の後に、前記本充電工程の前に、前記電池を0.5時間以上放置する変動後放置工程を備える電池の製造方法とするのが好ましい。 Further, the method for manufacturing a battery according to any one of the above, further comprising a post-variation leaving step of leaving the battery for 0.5 hours or longer after the voltage changing step and before the main charging step. A manufacturing method is preferred.

電圧変動工程後、本充電工程前に上述の変動後放置工程を行って電池を0.5時間以上放置することで、この放置中にも金属異物由来の金属イオンが拡散するので、金属異物に起因した短絡をより確実に防止できる。なお、この変動後放置工程で電池を放置する時間は、1時間以上とするのが更に好ましい。 After the voltage fluctuation step and before the main charging step, the post-variation leaving step is performed and the battery is left for 0.5 hours or longer. The resulting short circuit can be prevented more reliably. It is more preferable that the battery is left to stand in this post-variation standing step for one hour or longer.

実施形態及び参考形態に係る電池の斜視図である。1 is a perspective view of a battery according to an embodiment and reference form; FIG. 実施形態及び参考形態に係る電池の断面図である。1 is a cross-sectional view of a battery according to an embodiment and a reference form; FIG. 実施形態実施例1,2及び参考例4,5に係る電池の製造工程を示すフローチャートである。2 is a flow chart showing a manufacturing process of batteries according to an embodiment , Examples 1 and 2, and Reference Examples 4 and 5. FIG. 実施形態に係る電圧変動工程について、電池に印加した印加電圧の波形と電池電圧Veの上下変動との関係を示すグラフである。5 is a graph showing the relationship between the waveform of the applied voltage applied to the battery and the vertical fluctuation of the battery voltage Ve in the voltage fluctuation process according to the embodiment. 参考形態及び参考例1~3に係る電池の製造工程を示すフローチャートである。3 is a flow chart showing a manufacturing process of a battery according to Reference Embodiment and Reference Examples 1 to 3. FIG. 実施例1,2、参考例1~及び比較例1,2に係る電池の平面図である。1 is a plan view of batteries according to Examples 1 and 2 , Reference Examples 1 to 5 , and Comparative Examples 1 and 2. FIG. 実施例1,2、参考例1~及び比較例1,2に係る電極体等の平面図である。FIG. 2 is a plan view of electrode bodies and the like according to Examples 1 and 2 , Reference Examples 1 to 5 , and Comparative Examples 1 and 2; 比較例1に係る電池の製造工程を示すフローチャートである。5 is a flow chart showing a manufacturing process of a battery according to Comparative Example 1. FIG. 比較例2に係る電池の製造工程を示すフローチャートである。6 is a flow chart showing a manufacturing process of a battery according to Comparative Example 2. FIG.

(実施形態)
以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係る電池1の斜視図及び断面図を示す。なお、以下では、電池1の電池縦方向BH、電池横方向CH及び電池厚み方向DHを、図1及び図2に示す方向と定めて説明する。この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。
(embodiment)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a perspective view and a cross-sectional view of a battery 1 according to this embodiment. In the following description, the battery vertical direction BH, the battery horizontal direction CH, and the battery thickness direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2 . This battery 1 is a prismatic sealed lithium ion secondary battery mounted in a vehicle such as a hybrid car, a plug-in hybrid car, an electric car, or the like. The battery 1 includes a battery case 10, an electrode body 20 housed therein, a positive electrode terminal member 50 and a negative electrode terminal member 60 supported by the battery case 10, and the like. Further, the battery case 10 contains an electrolytic solution 17 , part of which is impregnated in the electrode assembly 20 .

このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。 Among them, the battery case 10 has a rectangular parallelepiped box shape and is made of metal (aluminum in this embodiment). The battery case 10 is composed of a case main body member 11 in the shape of a bottomed square cylinder with an opening only on the upper side, and a case cover member 13 in the shape of a rectangular plate welded so as to close the opening of the case main body member 11 . be. A positive electrode terminal member 50 made of aluminum is fixed to the case lid member 13 while being insulated from the case lid member 13 . The positive electrode terminal member 50 is connected to the positive electrode plate 21 of the electrode body 20 in the battery case 10 to be conductive, and extends through the case lid member 13 to the outside of the battery. A negative electrode terminal member 60 made of copper is fixed to the case lid member 13 while being insulated from the case lid member 13 . The negative electrode terminal member 60 is connected to the negative electrode plate 31 of the electrode body 20 in the battery case 10 for electrical continuity, and extends through the case lid member 13 to the outside of the battery.

電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状で樹脂製の多孔質膜からなる一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。 The electrode body 20 has a flat shape and is accommodated in the battery case 10 in a laid down state. Between the electrode body 20 and the battery case 10, a bag-shaped insulating film enclosure 19 made of an insulating film is arranged. The electrode body 20 is formed by stacking a strip-shaped positive electrode plate 21 and a strip-shaped negative electrode plate 31 with a pair of strip-shaped porous resin membrane separators 41 interposed therebetween, and wound around an axis to form a flat shape. It is compressed.

正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質層を帯状に設けてなる。この正極活物質層は、正極活物質、導電材及び結着剤からなる。本実施形態では、正極活物質として、リチウム遷移金属複合酸化物、具体的には、リチウムニッケルコバルトマンガン系複合酸化物を用いている。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質層を帯状に設けてなる。この負極活物質層は、負極活物質、結着剤及び増粘剤からなる。本実施形態では、負極活物質として、炭素材料、具体的には、黒鉛を用いている。 The positive electrode plate 21 is formed by providing strip-shaped positive electrode active material layers at predetermined positions on both main surfaces of a positive electrode collector foil made of strip-shaped aluminum foil. This positive electrode active material layer is composed of a positive electrode active material, a conductive material, and a binder. In this embodiment, a lithium-transition metal composite oxide, specifically a lithium-nickel-cobalt-manganese-based composite oxide, is used as the positive electrode active material. Further, the negative electrode plate 31 is formed by providing strip-shaped negative electrode active material layers at predetermined positions on both main surfaces of a negative electrode collector foil made of strip-shaped copper foil. This negative electrode active material layer is composed of a negative electrode active material, a binder, and a thickener. In this embodiment, a carbon material, specifically graphite, is used as the negative electrode active material.

次いで、上記電池1の製造方法について説明する(図3参照)。まず、「組立工程S1」において、未注液の電池1xを組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。次に、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。かくして、未注液の電池1xが形成される。なお、この組立工程S1において、電池1xの電極体20内、具体的には正極板21とセパレータ41との間に、鉄や銅などの金属異物が混入することがある。 Next, a method for manufacturing the battery 1 will be described (see FIG. 3). First, in the "assembling step S1", the unfilled battery 1x is assembled. Specifically, the positive electrode plate 21 and the negative electrode plate 31 are stacked and wound with a pair of separators 41 interposed therebetween, and compressed into a flat shape to form the electrode body 20 . Next, the case lid member 13 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixed thereto (see FIGS. 1 and 2). After that, the positive electrode terminal member 50 and the negative electrode terminal member 60 are welded to the positive electrode plate 21 and the negative electrode plate 31 of the electrode assembly 20, respectively. Next, the electrode body 20 is covered with the insulating film surrounding body 19 and inserted into the case body member 11 , and the opening of the case body member 11 is closed with the case lid member 13 . Then, the battery case 10 is formed by welding the case body member 11 and the case lid member 13 together. Thus, an unfilled battery 1x is formed. In this assembly step S1, foreign metal such as iron or copper may enter the electrode body 20 of the battery 1x, specifically between the positive electrode plate 21 and the separator 41. FIG.

次に、「注液工程S2」において、この未注液の電池1x内に電解液17を注液する。具体的には、電解液17を注液孔13hから電池ケース10内に注液して、その後、封止部材15で注液孔13hを封止する。その後、この電池1を0.5時間放置して、注液した電解液17を更に電極体20内に含浸させる。この注液工程S2は、20℃の温度下で行う。なお、組立工程S1で混入した金属異物は、電解液17の注液後に電解液17中に徐々に溶解する。 Next, in the "filling step S2", the electrolytic solution 17 is injected into the unfilled battery 1x. Specifically, the electrolytic solution 17 is injected into the battery case 10 through the injection hole 13 h , and then the injection hole 13 h is sealed with the sealing member 15 . After that, the battery 1 is left to stand for 0.5 hours to further impregnate the electrode body 20 with the injected electrolytic solution 17 . This liquid injection step S2 is performed at a temperature of 20.degree. It should be noted that the metal foreign matter mixed in the assembly step S1 gradually dissolves in the electrolytic solution 17 after the electrolytic solution 17 is injected.

次に、「予備充電工程S3」において、電池1を電池電圧V2(本実施形態では、V2=1.5V)まで予備充電する。この電池電圧V2は、後述する本充電工程S7で到達させる電池電圧V1(本実施形態では、V1=4.1V)よりも低く、かつ、正極電位が鉄が溶解する溶解電位(3.2V vs. Li/Li+)よりも高く、負極電位が電解液17中に溶解した鉄イオンが析出する析出電位(2.3V vs. Li/Li+)よりも高くなる電池電圧である。具体的には、電池1に充放電装置を接続して、20℃の温度下において、定電流定電圧(CCCV)充電により、0.5Cの定電流で電池電圧Veが約0Vから電池電圧V2=1.5Vになるまで充電した後、この電池電圧V2=1.5Vを2分間維持した。このような予備充電工程S3を行うと、正極電位が高くなり鉄の溶解電位を超えて、正極板21上で金属異物が電解液17中に溶解し易くなる。一方、負極電位は低くなり過ぎないため(鉄イオンの析出電位よりも高い状態のままであるため)、負極板31上で金属異物由来の金属が析出し難い。 Next, in a "preliminary charging step S3", the battery 1 is preliminarily charged to a battery voltage V2 (V2=1.5 V in this embodiment). This battery voltage V2 is lower than the battery voltage V1 (V1=4.1 V in this embodiment) reached in the main charging step S7 described later, and the positive electrode potential is the melting potential at which iron dissolves (3.2 V vs. Li/Li+), and the negative electrode potential is higher than the deposition potential (2.3 V vs. Li/Li+) at which iron ions dissolved in the electrolytic solution 17 are deposited. Specifically, a charging/discharging device is connected to the battery 1, and at a temperature of 20° C., constant current constant voltage (CCCV) charging is performed to increase the battery voltage Ve from about 0 V to the battery voltage V2 at a constant current of 0.5 C. = 1.5 V, this battery voltage V2 = 1.5 V was maintained for 2 minutes. When the preliminary charging step S<b>3 is performed as described above, the potential of the positive electrode increases and exceeds the dissolution potential of iron. On the other hand, since the negative electrode potential does not become too low (because it remains higher than the deposition potential of iron ions), it is difficult for the metal derived from metallic foreign matter to deposit on the negative electrode plate 31 .

次に、「変動前放置工程S4」において、電池1を放置する。本実施形態では、電池1を3時間放置する。この変動前放置工程S4は20℃の温度下で行う。但し、放置開始から2時間経過後(放置終了の1時間前)から電池1を30℃の恒温槽に移した。このため、変動前放置工程S4の終了時には、電池1の電池温度Teは30℃となっており、後述する電圧変動工程S5を電池温度Te=30℃で行うことができる。このような変動前放置工程S4を行うことで、この放置中にも正極板21上に存在する金属異物が電解液17中に溶解する。このため、金属異物をより確実に電解液17中に溶解させることができる。 Next, the battery 1 is left in the "pre-change leaving step S4". In this embodiment, the battery 1 is left for 3 hours. This standing step S4 before change is performed at a temperature of 20.degree. However, the battery 1 was transferred to a constant temperature bath at 30° C. after 2 hours from the start of standing (1 hour before the end of standing). Therefore, the battery temperature Te of the battery 1 is 30° C. at the end of the standing-before-change step S4, and the voltage change step S5, which will be described later, can be performed at the battery temperature Te=30° C. FIG. By performing such standing-before-variation step S<b>4 , metallic foreign matter existing on the positive electrode plate 21 dissolves in the electrolytic solution 17 even during this standing. Therefore, it is possible to more reliably dissolve the metallic foreign matter in the electrolytic solution 17 .

次に、「電圧変動工程S5」において、電池1の電池電圧Veを上下に変動させる。本実施形態では、この電圧変動工程S5を、前述のように電池温度Teを30℃として行う。まず、電池1にインピーダンス測定器(ソーラトロン社製:1255WB)を接続する。その際、電池1の負極端子部材60とインピーダンス測定器の正極端子との間に、10Ωの電流制限抵抗を直列に接続する。 Next, in the "voltage fluctuation step S5", the battery voltage Ve of the battery 1 is fluctuated up and down. In this embodiment, the voltage change step S5 is performed with the battery temperature Te set to 30° C. as described above. First, an impedance measuring device (manufactured by Solartron: 1255WB) is connected to the battery 1 . At that time, a current limiting resistor of 10Ω is connected in series between the negative terminal member 60 of the battery 1 and the positive terminal of the impedance measuring instrument.

そして、インピーダンス測定器の上限印加電圧を3.2V、下限印加電圧を-3.2V、周波数feをfe=2.0Hzに設定し、図4に示すように、電池1に双方向の矩形状のパルス電圧を印加して、電池電圧Veを上下に変動させる。このパルス電圧の印加(電池電圧Veの上下変動)は2分間行う。図4に示すように、インピーダンス測定器から電池1に高いパルス電圧が印加されると、電池電圧Veが徐々に上昇し、逆に、低いパルス電圧が印加されると、電池電圧Veが徐々に減少して、電池電圧Veが三角波状に上下変動する。但し、この電圧変動工程S5の前後においては、電池電圧Veは変動しない(電池電圧Ve=電池電圧V2=1.5V)。 Then, the upper limit applied voltage of the impedance measuring instrument was set to 3.2 V, the lower limit applied voltage to −3.2 V, and the frequency fe to fe=2.0 Hz. is applied to vary the battery voltage Ve up and down. This application of the pulse voltage (the fluctuation of the battery voltage Ve up and down) is performed for 2 minutes. As shown in FIG. 4, when a high pulse voltage is applied to the battery 1 from the impedance measuring device, the battery voltage Ve gradually increases. Conversely, when a low pulse voltage is applied, the battery voltage Ve gradually increases. As a result, the battery voltage Ve fluctuates up and down like a triangular wave. However, before and after this voltage change step S5, the battery voltage Ve does not change (battery voltage Ve=battery voltage V2=1.5V).

この電圧変動工程S5において、電池電圧Veが高くなると、正極板21と負極板31とが引き合って互いの間隔が狭くなる一方、電池電圧Veが低くなると、セパレータ41の弾性等により正極板21と負極板31の間隔が広くなる。このようにして、正極板21と負極板31の間隔が振動変化する。これにより、正極板21と負極板31の間における電解液17の移動が促進され、この電解液17に含まれる金属異物由来の金属イオンの拡散が促進される。 In this voltage change step S5, when the battery voltage Ve increases, the positive electrode plate 21 and the negative electrode plate 31 attract each other and the distance between them narrows. The interval between the negative electrode plates 31 is widened. In this way, the interval between the positive electrode plate 21 and the negative electrode plate 31 vibrates. This promotes the movement of the electrolytic solution 17 between the positive electrode plate 21 and the negative electrode plate 31 , thereby promoting the diffusion of metal ions derived from metallic foreign matter contained in the electrolytic solution 17 .

次に、「変動後放置工程S6」において、電池1を放置する。本実施形態では、電池1を20℃の恒温槽に移して、2時間放置する。このような変動後放置工程S6を行うことで、この放置中にも金属異物由来の金属イオンが拡散する。 Next, the battery 1 is left in the "post-variation leaving step S6". In this embodiment, the battery 1 is transferred to a constant temperature bath at 20° C. and left for 2 hours. By performing such a post-change standing step S6, the metal ions derived from the metallic foreign matter are diffused even during this standing.

次に、「本充電工程S7」において、電池1に本充電(コンディショニング充電)を行う。具体的には、電池1に充放電装置を接続して、20℃の温度下において、定電流定電圧(CCCV)充電により、1Cの定電流で電池電圧Veが電池電圧V1=4.1Vになるまで充電した後、この電池電圧V1=4.1Vを2分間維持した。この本充電工程S7を行うと、負極電位が下がり、鉄イオンの析出電位よりも低くなるため、負極板31上で鉄等の金属異物由来の金属が析出し易くなる。しかし、本実施形態では、本充電工程S7の開始時には、既に金属異物由来の金属イオンが、金属異物が存在した場所から広範囲に拡散しており、金属イオンの濃度の高い所が存在しない。このため、金属異物由来の金属が負極板31上で集中的にデンドライト状に析出することがなく、金属異物に起因した短絡が生じない。 Next, in the "main charging step S7", the battery 1 is subjected to main charging (conditioning charging). Specifically, a charging/discharging device is connected to the battery 1, and at a temperature of 20° C., the battery voltage Ve changes to the battery voltage V1=4.1 V at a constant current of 1 C by constant current constant voltage (CCCV) charging. After the battery was charged to V1, this battery voltage V1=4.1 V was maintained for 2 minutes. When this main charging step S7 is performed, the potential of the negative electrode decreases and becomes lower than the deposition potential of iron ions, so metals derived from metallic foreign matter such as iron are likely to be deposited on the negative electrode plate 31 . However, in this embodiment, at the start of the main charging step S7, the metal ions derived from the metal foreign matter have already diffused over a wide range from the place where the metal foreign matter was present, and there is no place where the concentration of metal ions is high. Therefore, the metal derived from the metallic foreign matter does not precipitate intensively on the negative electrode plate 31 in the form of dendrites, and the short circuit due to the metallic foreign matter does not occur.

次に、「エージング工程S8」において、電池1を放置してエージングする。具体的には、本充電後の電池1を、60℃の温度下において、端子開放した状態で20時間にわたり放置してエージングする。 Next, in the "aging step S8", the battery 1 is left to age. Specifically, the battery 1 after the main charge is aged by being left at a temperature of 60° C. for 20 hours with the terminals open.

次に、「短絡検知工程S9」において、電池1を端子開放した状態で放置して放電させて(自己放電させて)、放置中の電池電圧Veの電圧低下量ΔVeを測定し、当該電池1の内部短絡の有無を検知する。具体的には、電池1を20℃の温度下で端子開放した状態で放置して、エージング工程S8の終了時(短絡検知工程S9の開始時)から2日経過後に測定した電池電圧Vaと、エージング工程S8の終了時(短絡検知工程S9の開始時)から7日経過後に測定した電池電圧Vbとから、電圧低下量ΔVe=Va-Vbを算出する。そして、取得した当該電池1の電圧低下量ΔVeを、予め定めた基準低下量ΔVrと比較し、電圧低下量ΔVeが基準低下量ΔVrよりも大きい場合(ΔVe>ΔVr)に、当該電池1に内部短絡が生じている不良品と判定し、その電池1を除去する。一方、当該電池1の電圧低下量ΔVeが基準低下量ΔVrよりも小さい場合(ΔVe≦ΔVr)には、当該電池1を内部短絡の無い良品と判定する。
短絡検知工程S9の後は、良品と判定された電池1について、他の各種検査を行う。かくして、電池1が完成する。
Next, in a "short-circuit detection step S9", the battery 1 is discharged (self-discharged) by being left with the terminals open, and the amount of voltage drop ΔVe of the battery voltage Ve during the standing is measured. Detects the presence or absence of an internal short circuit. Specifically, the battery voltage Va measured after two days from the end of the aging step S8 (the start of the short-circuit detection step S9) after the battery 1 is left open at a temperature of 20° C., The amount of voltage drop ΔVe=Va−Vb is calculated from the battery voltage Vb measured seven days after the end of the aging step S8 (the start of the short-circuit detection step S9). Then, the obtained voltage drop amount ΔVe of the battery 1 is compared with a predetermined reference drop amount ΔVr. The battery 1 is determined to be defective with a short circuit and removed. On the other hand, when the amount of voltage drop ΔVe of the battery 1 is smaller than the reference amount of drop ΔVr (ΔVe≦ΔVr), the battery 1 is judged to be non-defective with no internal short circuit.
After the short-circuit detection step S9, various other tests are performed on the battery 1 determined to be non-defective. Thus, the battery 1 is completed.

(参考形態)
次いで、参考形態について説明する。実施形態では、注液工程S2の後、予備充電工程S3及び変動前放置工程S4を行ってから、電圧変動工程S5を行った(図3参照)。これに対し、本参考形態では、予備充電工程S3及び変動前放置工程S4は行わずに、注液工程S2に続いて電圧変動工程S5を行う点が異なる(図5参照)。なお、本参考形態では、電圧変動工程S5を開始する1時間前に、電池1を30℃の恒温槽に移して、電池温度Teを30℃とした。また、変動後放置工程S6における放置時間は、実施形態では2時間としたが、本参考形態では6時間とした。
(Reference form)
Next, a reference form will be described. In the embodiment, after the liquid injection step S2, the preliminary charging step S3 and the standing-before-change step S4 are performed, and then the voltage variation step S5 is performed (see FIG. 3). On the other hand, in the present embodiment, the pre-charging step S3 and the standing-before-fluctuation step S4 are not performed, and the voltage-fluctuation step S5 is performed following the injection step S2 (see FIG. 5). In this reference embodiment, the battery temperature Te was set to 30.degree. Also, the standing time in the post-change standing step S6 was set to 2 hours in the embodiment, but was set to 6 hours in the present embodiment.

前述したように、電解液17を電池1x内に注液した後は、電解液17中に金属異物が徐々に溶解する。このため、本参考形態の電圧変動工程S5の開始時には、金属異物の全部または一部が溶解して電解液17中に金属イオンが生じている。従って、電池電圧Veの上下変動により正極板21と負極板31の間における電解液17の移動が促進されると、この電解液17に含まれる金属異物由来の金属イオンの拡散が促進されるので、金属異物に起因した短絡を防止できる。 As described above, after the electrolytic solution 17 is injected into the battery 1x, metallic foreign substances are gradually dissolved in the electrolytic solution 17. FIG. Therefore, at the start of the voltage change step S<b>5 of the present embodiment, all or part of the metallic foreign matter is dissolved and metallic ions are generated in the electrolytic solution 17 . Therefore, when the movement of the electrolytic solution 17 between the positive electrode plate 21 and the negative electrode plate 31 is promoted by the vertical fluctuation of the battery voltage Ve, the diffusion of the metal ions derived from the metallic foreign matter contained in the electrolytic solution 17 is promoted. , it is possible to prevent a short circuit caused by metallic foreign matter.

(実施例、参考例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。実施例1,2、参考例1~及び比較例1,2として、図6及び図7に示すラミネート型のリチウムイオン二次電池(以下、単に「電池」ともいう)100をそれぞれ製造した。
これらの電池100は、ラミネートフィルムを袋状にした外装体110の内部に、電極体120、電解液117等が収容されている。このうち電極体120は、1枚の矩形状の正極板121と、1枚の矩形状の負極板131とを、1枚の矩形状のセパレータ141を介して互いに重ねたものである。
(Examples, reference examples and comparative examples)
Next, the results of tests conducted to verify the effects of the present invention will be described. As Examples 1 and 2 , Reference Examples 1 to 5 , and Comparative Examples 1 and 2, laminated lithium ion secondary batteries (hereinafter also simply referred to as “batteries”) 100 shown in FIGS. 6 and 7 were manufactured.
In these batteries 100, an electrode assembly 120, an electrolytic solution 117, and the like are housed inside an exterior body 110 made of a laminated film in the form of a bag. Among them, the electrode body 120 is formed by stacking one rectangular positive electrode plate 121 and one rectangular negative electrode plate 131 with one rectangular separator 141 interposed therebetween.

正極板121は、矩形状のアルミニウム箔からなる正極集電箔の一方の主面(負極板131と対向する側の主面)の所定位置に、正極活物質層を23mm×23mmの大きさに矩形状に設けてなる。また、この正極板121には、帯状のアルミニウム板からなる正極タブ150が接合され、外装体110の内部から外部に延出している。一方、負極板131は、矩形状の銅箔からなる負極集電箔の一方の主面(正極板121と対向する側の主面)の所定位置に、負極活物質層を25mm×25mmの大きさに矩形状に設けてなる。また、この負極板131には、帯状の銅板からなる負極タブ160が接合され、外装体110の内部から外部に延出している。 The positive electrode plate 121 has a positive electrode active material layer with a size of 23 mm×23 mm at a predetermined position on one main surface (the main surface facing the negative electrode plate 131) of a positive current collecting foil made of rectangular aluminum foil. It is provided in a rectangular shape. A positive electrode tab 150 made of a strip-shaped aluminum plate is joined to the positive electrode plate 121 and extends from the inside of the exterior body 110 to the outside. On the other hand, in the negative electrode plate 131, a negative electrode active material layer having a size of 25 mm×25 mm is placed at a predetermined position on one main surface (the main surface facing the positive electrode plate 121) of a negative electrode collector foil made of rectangular copper foil. It is provided in a rectangular shape. A negative electrode tab 160 made of a strip-shaped copper plate is joined to the negative electrode plate 131 and extends from the inside of the exterior body 110 to the outside.

なお、これらの電池100においては、未注液の電池100xを組み立てる際に、正極板121の正極活物質層の中央部とセパレータ141との間に、金属異物として、直径200μm、厚み10μmの大きさの円板状をなす鉄の塊をそれぞれ配置した。 In these batteries 100, when assembling the unfilled battery 100x, a metallic foreign matter having a diameter of 200 μm and a thickness of 10 μm was placed between the central portion of the positive electrode active material layer of the positive electrode plate 121 and the separator 141. Disc-shaped iron lumps were placed in each of them.

実施例1,2及び参考例4,5では、実施形態と同様に(図3参照)、未注液の電池100xに注液工程S2を行った後、予備充電工程S3、変動前放置工程S4、電圧変動工程S5及び変動後放置工程S6を行った。その後は、本充電工程S7以降の各工程S7~S9は行わずに、電池100を解体して、正極板121のうち金属異物と接触していた部分、及び、セパレータ141のうち金属異物と接触していた部分を、走査型電子顕微鏡でそれぞれ観察し、金属異物の溶解状態(溶け残り具合)をそれぞれ調査した。 In Examples 1 and 2 and Reference Examples 4 and 5 , similarly to the embodiment (see FIG. 3), after performing the liquid injection step S2 on the unfilled battery 100x, the pre-charging step S3 and the standing-before-fluctuation step S4 were performed. , the voltage change step S5 and the post-change leaving step S6 were performed. After that, without performing the respective steps S7 to S9 after the main charging step S7, the battery 100 was disassembled, and the portion of the positive electrode plate 121 that was in contact with the foreign metal and the portion of the separator 141 that was in contact with the foreign metal were removed. The dissolution state (undissolved state) of the metal foreign matter was investigated by observing each of the dissolving portions with a scanning electron microscope.

なお、実施例1,2及び参考例4,5の相違点は、表1に示す通りである。即ち、電圧変動工程S5について、実施例1では、電池電圧Veを上下変動させる周波数feを1.0Hz、電池温度Teを30℃とした。また、参考例4では、電池電圧Veの上下変動の周波数feを1.0Hz、電池温度Teを25℃とした。また、実施例では、電池電圧Veの上下変動の周波数feを2.0Hz、電池温度Teを30℃とした。また、参考例5では、電池電圧Veの上下変動の周波数feを2.0Hz、電池温度Teを25℃とした。 The differences between Examples 1 and 2 and Reference Examples 4 and 5 are as shown in Table 1. That is, in the voltage fluctuation step S5, in Example 1, the frequency fe for fluctuating the battery voltage Ve up and down was set to 1.0 Hz, and the battery temperature Te was set to 30.degree. Further, in Reference Example 4 , the frequency fe of the vertical fluctuation of the battery voltage Ve was set to 1.0 Hz, and the battery temperature Te was set to 25°C. In Example 2 , the frequency fe of fluctuations in the battery voltage Ve was set to 2.0 Hz, and the battery temperature Te was set to 30°C. In Reference Example 5 , the frequency fe of the vertical fluctuation of the battery voltage Ve was set to 2.0 Hz, and the battery temperature Te was set to 25°C.

Figure 0007107649000001
Figure 0007107649000001

また、参考例1~3は、参考形態と同様に(図5参照)、予備充電工程S3及び変動前放置工程S4は行わずに、注液工程S2に続いて電圧変動工程S5及び変動後放置工程S6を行った。その後は、実施例1,2及び参考例4,5と同様に、本充電工程S7以降の各工程S7~S9は行わずに電池100を解体して、金属異物の溶解状態をそれぞれ調査した。
なお、参考例1~3の相違点は、表1に示す通りである。即ち、電圧変動工程S5について、電池電圧Veの上下変動の周波数feを、参考例1では2.0Hz、参考例2では5.0Hz、参考例3では100Hzとした。なお、電圧変動工程S5における電池温度Teは、参考例1~3のいずれも25℃とした。
Further, in Reference Examples 1 to 3, similarly to the reference embodiment (see FIG. 5), the pre-charging step S3 and the standing-before-fluctuation step S4 were not performed, and the injection step S2 followed by the voltage-fluctuation step S5 and the standing-after-fluctuation step S5 were performed. Step S6 was performed. Thereafter, in the same manner as in Examples 1 and 2 and Reference Examples 4 and 5, the steps S7 to S9 after the main charging step S7 were not performed, and the battery 100 was disassembled to investigate the dissolution state of the metallic foreign matter.
The differences between Reference Examples 1 to 3 are as shown in Table 1. That is, in the voltage fluctuation step S5, the frequency fe of the vertical fluctuation of the battery voltage Ve was set to 2.0 Hz in Reference Example 1, 5.0 Hz in Reference Example 2, and 100 Hz in Reference Example 3. The battery temperature Te in the voltage change step S5 was set to 25° C. in all of Reference Examples 1-3.

一方、比較例1では、図8に示すように、注液工程S2の後、予備充電工程S3及び放置工程S4Aを行った(電圧変動工程S5は行わなかった)。放置工程S4Aは、20℃の温度下で24時間行った。その後は、実施例1,2及び参考例1~と同様に、本充電工程S7以降の各工程S7~S9は行わずに電池100を解体して、金属異物の溶解状態を調査した。
更に、比較例2では、図9に示すように、予備充電工程S3は行わずに、注液工程S2の後、放置工程S4Bを行った(電圧変動工程S5は行わなかった)。なお、放置工程S4Bは、20℃の温度下で6時間行った。その後は、実施例1,2、参考例1~及び比較例1と同様に、本充電工程S7以降の各工程S7~S9は行わずに電池100を解体して、金属異物の溶解状態を調査した。
On the other hand, in Comparative Example 1, as shown in FIG. 8, after the injection step S2, the preliminary charging step S3 and the standing step S4A were performed (the voltage change step S5 was not performed). The standing step S4A was performed at a temperature of 20° C. for 24 hours. Thereafter, in the same manner as in Examples 1 and 2 and Reference Examples 1 to 5 , the steps S7 to S9 after the main charging step S7 were not performed, but the battery 100 was disassembled and the state of dissolution of the metallic foreign matter was investigated.
Furthermore, in Comparative Example 2, as shown in FIG. 9, the preliminary charging step S3 was not performed, and the standing step S4B was performed after the liquid injection step S2 (the voltage change step S5 was not performed). Note that the standing step S4B was performed at a temperature of 20° C. for 6 hours. Thereafter, in the same manner as in Examples 1 and 2, Reference Examples 1 to 5 , and Comparative Example 1, the steps S7 to S9 after the main charging step S7 were not performed, and the battery 100 was disassembled to check the dissolved state of the metallic foreign matter. investigated.

そして、金属異物の溶解状態に基づいて、実施例1,2、参考例1~及び比較例1,2の各電池100を評価した。その結果、比較例1,2では、金属異物が多く残っており、不良であった(表1において×印)。
これらに対し、実施例1,では、金属異物が完全に溶解して全く残っておらず、特に良好であった(表1において◎印)。また、参考例4,5では、金属異物が殆ど溶解しており、特に良好であった(表1において○印)。また、参考例1,2では、金属異物の大部分が溶解して金属異物の一部しか残っておらず、良好であった(表1において●印)。また、参考例3では、参考例1,2よりは金属異物が残っていたが、その量は少なく良好であった(表1において△印)。このような結果となった理由は、以下であると考えられる。
Then, the batteries 100 of Examples 1 and 2, Reference Examples 1 to 5 , and Comparative Examples 1 and 2 were evaluated based on the dissolved state of the metal foreign matter. As a result, in Comparative Examples 1 and 2, a large amount of metal foreign matter remained, and they were unsatisfactory (marked with x in Table 1).
On the other hand, in Examples 1 and 2 , the metal foreign matter was completely dissolved and not left at all, which was particularly good (marked with ⊚ in Table 1). Moreover, in Reference Examples 4 and 5, most of the metallic foreign matter was dissolved, which was particularly good (marked with ○ in Table 1). Moreover, in Reference Examples 1 and 2, most of the metal foreign matter was dissolved and only a part of the metal foreign matter remained, which was good (marked ● in Table 1). Also, in Reference Example 3, metal foreign matter remained more than in Reference Examples 1 and 2, but the amount was small and good (marked Δ in Table 1). The reason for such results is considered as follows.

即ち、比較例1,2では、電圧変動工程S5を行っていないため、正極板121と負極板131の間における電解液117が移動し難く、この電解液117に含まれる金属(鉄)異物由来の金属(鉄)イオンが拡散し難い。このため、金属異物の近傍には金属異物由来の金属イオンが高い濃度で存在し続けるので、金属異物の溶解が進み難かったと考えられる。なお、比較例1,2のように、本充電工程S7前に金属異物が多く残っている場合には、本充電工程S7の際に負極板131上で金属が集中的にデンドライト状に析出して短絡が生じ易いことが判っている。 That is, in Comparative Examples 1 and 2, since the voltage variation step S5 was not performed, the electrolyte solution 117 hardly moved between the positive electrode plate 121 and the negative electrode plate 131, and the metal (iron) foreign matter contained in the electrolyte solution 117 metal (iron) ions are difficult to diffuse. For this reason, metal ions derived from the metallic foreign matter continued to exist in the vicinity of the metallic foreign matter at a high concentration. As in Comparative Examples 1 and 2, when a large amount of metallic foreign matter remains before the main charging step S7, the metal precipitates intensively in a dendrite form on the negative electrode plate 131 during the main charging step S7. It has been found that short circuits are likely to occur

これらに対し、実施例1,2及び参考例1~では、電圧変動工程S5を行っているため、正極板121と負極板131の間における電解液117の移動が促進され、この電解液117に含まれる金属異物由来の金属イオンの拡散が促進される。このため、金属異物の近傍で金属異物由来の金属イオンの濃度が高くならずに、金属異物の溶解が促進されたと考えられる。なお、実施例1,2及び参考例1~のように、本充電工程S7前に残っている金属異物が少ない場合には、金属異物が少ないほど、本充電工程S7の際に負極板131上で金属が集中的にデンドライト状に析出し難く、短絡が生じ難いことが判っている。 On the other hand, in Examples 1 and 2 and Reference Examples 1 to 5 , since the voltage change step S5 is performed, the movement of the electrolytic solution 117 between the positive electrode plate 121 and the negative electrode plate 131 is promoted, and the electrolytic solution 117 Diffusion of metal ions derived from metal foreign substances contained in is promoted. For this reason, it is considered that the concentration of metal ions derived from the metallic foreign matter did not increase in the vicinity of the metallic foreign matter, and the dissolution of the metallic foreign matter was promoted. As in Examples 1 and 2 and Reference Examples 1 to 5 , when the amount of metallic foreign matter remaining before the main charging step S7 is small, the smaller the amount of metallic foreign matter, the more the negative electrode plate 131 is removed during the main charging step S7. It has been found that the metal is less likely to deposit intensively in the form of dendrites, and that short circuits are less likely to occur.

実施例1,2及び参考例1~で比較すると、参考例4,5では、金属異物が僅かに残存していたのに対し、実施例1,では、金属異物が完全に溶解したのは、電圧変動工程S5を行う際の電池温度Teを、参考例4,5(Te=25℃)よりも実施例1,(Te=30℃)で高くしたからである。電池温度Teを高くすると、電解液117の粘度が下がるため、正極板121と負極板131の間における電解液117の移動が促進され、金属異物由来の金属イオンの拡散が促進されたと考えられる。 Comparing Examples 1 and 2 with Reference Examples 1 to 5 , in Reference Examples 4 and 5 , the metal foreign matter remained slightly, but in Examples 1 and 2 , the metal foreign matter was completely dissolved. This is because the battery temperature Te during the voltage change step S5 was higher in Examples 1 and 2 (Te=30° C.) than in Reference Examples 4 and 5 (Te=25° C.). When the battery temperature Te is increased, the viscosity of the electrolytic solution 117 is lowered, so that the movement of the electrolytic solution 117 between the positive electrode plate 121 and the negative electrode plate 131 is promoted, and diffusion of metal ions derived from metallic foreign matter is promoted.

また、参考例1~3に比べて実施例1,2及び参考例4,5で残った金属異物が少なかったのは、実施例1,2及び参考例4,5では予備充電工程S3及び変動前放置工程S4を行ったためである。予備充電工程S3を行うと、正極電位が鉄の溶解電位よりも高くなり、正極板121上で金属(鉄)異物が電解液117中に溶解し易くなる。更に、変動前放置工程S4においても、正極板21上に存在する金属異物が電解液117中に溶解する。更に、電圧変動工程S5において、金属異物由来の金属イオンの拡散が促進されるので、金属異物の溶解が促進されたと考えられる。 In addition, the reason why the residual metallic foreign matter was less in Examples 1 and 2 and Reference Examples 4 and 5 than in Reference Examples 1 and 3 is that in Examples 1 and 2 and Reference Examples 4 and 5 , the preliminary charging step S3 and the variation This is because the pre-leaving step S4 was performed. When the preliminary charging step S<b>3 is performed, the potential of the positive electrode becomes higher than the dissolution potential of iron, and metal (iron) foreign matter on the positive electrode plate 121 is easily dissolved in the electrolytic solution 117 . Furthermore, in the standing-before-fluctuation step S<b>4 , metallic foreign matter existing on the positive electrode plate 21 dissolves in the electrolytic solution 117 . Furthermore, in the voltage variation step S5, diffusion of the metal ions derived from the metallic foreign matter is promoted, so that the dissolution of the metallic foreign matter is considered to have been promoted.

また、参考例3に比べて参考例1,2で残った金属異物が少なかったのは、参考例1,2では電圧変動工程S5における電池電圧Veの上下変動の周波数feを10Hz以下としているからである。このように周波数feを低くしたことで、正極板121と負極板131の間隔がゆっくり変化するため、この間隔変化に合わせて電解液117が移動し易くなり、金属異物由来の金属イオンの拡散がより促進されたと考えられる。 In addition, the reason why the remaining metal foreign matter was less in Reference Examples 1 and 2 than in Reference Example 3 is that in Reference Examples 1 and 2, the frequency fe of the vertical fluctuation of the battery voltage Ve in the voltage fluctuation step S5 was set to 10 Hz or less. is. Since the interval between the positive electrode plate 121 and the negative electrode plate 131 changes slowly by lowering the frequency fe in this way, the electrolytic solution 117 is easily moved according to the interval change, and the diffusion of metal ions derived from metallic foreign matter is prevented. thought to have been facilitated.

次に、参考例1~3について、金属(鉄)異物を電極体120内に配置しないで、電池100をそれぞれ製造し、初期充放電効率Ce(%)をそれぞれ求めた。具体的には、図5に示したように、組立工程S1~変動後放置工程S6を行った後、本充電工程S7において、電池100を電池電圧Ve=3.0Vから4.1Vに充電するまでの間に電池100に充電した充電電気量Qaを求める。続いて、電池100を電池電圧Ve=4.1Vから3.0Vまで放電させて、この放電の間に電池100から放電された放電電気量Qbを求める。そして、Ce=(Qb/Qa)×100(%)により、初期充放電効率Ceをそれぞれ算出した。その結果を表1に示す。 Next, for Reference Examples 1 to 3, the batteries 100 were manufactured without arranging the metal (iron) foreign matter in the electrode assembly 120, and the initial charge/discharge efficiency Ce (%) was determined. Specifically, as shown in FIG. 5, after performing the assembly step S1 to the post-variation leaving step S6, the battery 100 is charged from the battery voltage Ve=3.0V to 4.1V in the main charging step S7. A charged quantity of electricity Qa with which the battery 100 is charged during the period is obtained. Subsequently, the battery 100 is discharged from the battery voltage Ve=4.1V to 3.0V, and the discharged electric quantity Qb discharged from the battery 100 during this discharge is obtained. Then, the initial charge/discharge efficiency Ce was calculated by Ce=(Qb/Qa)×100(%). Table 1 shows the results.

参考例3(初期充放電効率Ce=80%)よりも参考例2(初期充放電効率Ce=83%)で初期充放電効率Ceが高く、更に参考例2(初期充放電効率Ce=83%)よりも参考例1(初期充放電効率Ce=84%)で、初期充放電効率Ceが高くなったのは、参考例3に比べて参考例2で、更に参考例2に比べて参考例1で、電圧変動工程S5における電池電圧Veの上下変動の周波数feを低くしているからである。このように周波数feを低くしたことで、前述のように、正極板121と負極板131の間隔がゆっくり変化するため、この間隔変化に合わせて電解液117が移動し易くなる。このため、この電圧変動工程S5において、電解液117の電極体120内部への浸透が促進された。その結果、初期充放電効率Ceが高くなったと考えられる。 The initial charge-discharge efficiency Ce is higher in Reference Example 2 (initial charge-discharge efficiency Ce = 83%) than in Reference Example 3 (initial charge-discharge efficiency Ce = 80%), and further Reference Example 2 (initial charge-discharge efficiency Ce = 83%) ), the initial charge-discharge efficiency Ce was higher in Reference Example 1 (initial charge-discharge efficiency Ce = 84%) than in Reference Example 2, and in Reference Example 2 compared to Reference Example 2. 1, the frequency fe of the vertical fluctuation of the battery voltage Ve in the voltage fluctuation step S5 is lowered. Since the interval between the positive electrode plate 121 and the negative electrode plate 131 changes slowly by lowering the frequency fe as described above, the electrolytic solution 117 can easily move in accordance with the change in the interval. Therefore, in this voltage change step S5, penetration of the electrolytic solution 117 into the electrode body 120 was promoted. As a result, the initial charge/discharge efficiency Ce is considered to have increased.

以上で説明したように、実施形態及び参考形態の電池1の製造方法では、注液工程S2の後、本充電工程S7の前に、電圧変動工程S5において、電池電圧Veを上下に変動させている。この電圧変動工程S5では、電池電圧Veが高くなると、正極板21と負極板31とが引き合って互いの間隔が狭くなる一方、電池電圧Veが低くなると、セパレータ41の弾性等により正極板21と負極板31の間隔が広くなる。このようにして、正極板21と負極板31の間隔が振動変化する。これにより、正極板21と負極板31の間における電解液17の移動が促進され、この電解液17に含まれる金属異物由来の金属イオンの拡散が促進される。かくして、製造過程で電池1の電極体20内に鉄や銅等の金属異物が混入したとしても、金属異物由来の金属イオンの拡散を促進させて、金属異物に起因した短絡を防止できる。 As described above, in the manufacturing method of the battery 1 of the embodiment and the reference form, after the injection step S2 and before the main charging step S7, the battery voltage Ve is fluctuated up and down in the voltage fluctuation step S5. there is In this voltage change step S5, when the battery voltage Ve increases, the positive electrode plate 21 and the negative electrode plate 31 attract each other and the distance between them narrows. The interval between the negative electrode plates 31 is widened. In this way, the interval between the positive electrode plate 21 and the negative electrode plate 31 vibrates. This promotes the movement of the electrolytic solution 17 between the positive electrode plate 21 and the negative electrode plate 31 , thereby promoting the diffusion of metal ions derived from metallic foreign matter contained in the electrolytic solution 17 . Thus, even if metal foreign matter such as iron or copper is mixed in the electrode body 20 of the battery 1 during the manufacturing process, diffusion of metal ions derived from the metal foreign matter can be promoted to prevent a short circuit caused by the metal foreign matter.

また、実施形態及び参考形態では、電圧変動工程S5における電池電圧Veの上下変動の周波数feを0.1~100Hz、更には、0.1~10Hzとしているため、正極板21と負極板31の間隔がゆっくり変化する。このため、この間隔変化に合わせて電解液17が移動し易くなり、金属異物由来の金属イオンの拡散がより促進される。
また、電圧変動工程S5を行う時間を、0.5分以上、更には、1分以上と長くすることで、正極板21と負極板31の間隔が変化する回数が多くなるため、電解液17の移動がより促進され、金属異物由来の金属イオンの拡散がより促進される。一方で、電圧変動工程S5の時間を、10分以下、更には、3分以下としているので、電圧変動工程S5に係る時間を短くできる。
Further, in the embodiment and the reference embodiment, the frequency fe of the vertical fluctuation of the battery voltage Ve in the voltage fluctuation step S5 is 0.1 to 100 Hz, further 0.1 to 10 Hz. Intervals change slowly. Therefore, the electrolytic solution 17 is easily moved according to the change in the distance, and the diffusion of the metal ions derived from the metallic foreign matter is further promoted.
Further, by increasing the time for performing the voltage change step S5 to 0.5 minutes or longer, or further to 1 minute or longer, the number of times the interval between the positive electrode plate 21 and the negative electrode plate 31 changes increases. is further promoted, and the diffusion of metal ions derived from metallic foreign matter is further promoted. On the other hand, the time required for the voltage change step S5 is set to 10 minutes or less, or even 3 minutes or less, so that the time required for the voltage change step S5 can be shortened.

また、実施形態では、電圧変動工程S5は、電池温度Teを30℃以上として行っている。電池温度Teを高くすると、電解液17の粘度が下がるため、正極板21と負極板31の間における電解液17の移動が促進され、金属異物由来の金属イオンの拡散が促進される。一方で、電池温度Teを60℃以下、更には、50℃以下として行っているので、電池温度Teが高すぎて電池が劣化するなど、電池の特性が変化するのを防止できる。 Further, in the embodiment, the voltage change step S5 is performed with the battery temperature Te set to 30 ° C. or higher. When the battery temperature Te is increased, the viscosity of the electrolytic solution 17 is lowered, so the movement of the electrolytic solution 17 between the positive electrode plate 21 and the negative electrode plate 31 is promoted, and the diffusion of metal ions derived from metallic foreign matter is promoted. On the other hand, since the battery temperature Te is set at 60° C. or lower, further 50° C. or lower, it is possible to prevent deterioration of the battery due to excessively high battery temperature Te.

更に、実施形態では、電圧変動工程S5の前に予備充電工程S3を行っているので、正極電位が高くなり、正極板21上で金属異物が電解液17中に溶解し易くなる。一方、負極電位は低くなり過ぎず、負極板31上で金属異物由来の金属が析出し難い。負極板上で金属異物(特に鉄の異物)由来の金属が析出し難い。そして、電圧変動工程S5において、この金属異物由来の金属イオンの拡散を促進させることができるので、金属異物に起因した短絡をより確実に防止できる。 Furthermore, in the embodiment, since the pre-charging step S3 is performed before the voltage change step S5, the positive electrode potential is increased, and metal foreign matter on the positive electrode plate 21 is easily dissolved in the electrolytic solution 17. On the other hand, the negative electrode potential does not become too low, and metal derived from metallic foreign matter is less likely to deposit on the negative electrode plate 31 . It is difficult for metals derived from foreign metals (particularly iron foreign substances) to deposit on the negative electrode plate. In the voltage variation step S5, the diffusion of the metal ions derived from the metallic foreign matter can be promoted, so that the short circuit caused by the metallic foreign matter can be prevented more reliably.

また、実施形態では、予備充電工程S3の後、電圧変動工程S5の前に変動前放置工程S4を行って電池1を放置することで、この放置中にも正極板21上に存在する金属異物が電解液17中に溶解するので、金属異物をより確実に電解液17中に溶解させることができる。そして、電圧変動工程S5において、この金属異物由来の金属イオンの拡散を促進させることができるので、金属異物に起因した短絡をより確実に防止できる。 In the embodiment, after the pre-charging step S3 and before the voltage fluctuation step S5, the pre-change standing step S4 is performed and the battery 1 is left to stand. is dissolved in the electrolytic solution 17, the metallic foreign matter can be dissolved in the electrolytic solution 17 more reliably. In the voltage variation step S5, the diffusion of the metal ions derived from the metallic foreign matter can be promoted, so that the short circuit caused by the metallic foreign matter can be prevented more reliably.

また、実施形態及び参考形態では、電圧変動工程S5の後、本充電工程S7の前に変動後放置工程S6を行って電池1を放置することで、この放置中にも金属異物由来の金属イオンが拡散する。これにより、金属異物に起因した短絡をより確実に防止できる。 Further, in the embodiment and the reference form, after the voltage change step S5 and before the main charging step S7, the post-change standing step S6 is performed and the battery 1 is left to stand. diffuses. This makes it possible to more reliably prevent short circuits caused by metallic foreign matter.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態及び参考形態では、電圧変動工程S5において、双方向の矩形状のパルス電圧を電池1に印加して電池電圧Veを上下に変動させたが、印加するパルス電圧の波形はこれに限られない。例えば、正弦波のパルス電圧や双方向の三角状のパルス電圧を電池1に印加して電池電圧Veを上下に変動させてもよい。
Although the present invention has been described above with reference to the embodiments, it goes without saying that the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist of the present invention.
For example, in the embodiment and the reference embodiment, in the voltage fluctuation step S5, a bidirectional rectangular pulse voltage is applied to the battery 1 to fluctuate the battery voltage Ve up and down. Not limited. For example, a sinusoidal pulse voltage or a bidirectional triangular pulse voltage may be applied to the battery 1 to vary the battery voltage Ve up and down.

1,100 電池
1x,100x (未注液の)電池
17,117 電解液
20,120 電極体
21,121 正極板
31,131 負極板
41,141 セパレータ
S1 組立工程
S2 注液工程
S3 予備充電工程
S4 変動前放置工程
S5 電圧変動工程
S6 変動後放置工程
S7 本充電工程
S8 エージング工程
S9 短絡検知工程
S4A,S4B 放置工程
1,100 Battery 1x, 100x (Unfilled) Battery 17, 117 Electrolyte 20, 120 Electrode body 21, 121 Positive plate 31, 131 Negative plate 41, 141 Separator S1 Assembly step S2 Filling step S3 Preliminary charging step S4 Standing process before fluctuation S5 Voltage fluctuation process S6 Standing process after fluctuation S7 Main charging process S8 Aging process S9 Short-circuit detection process S4A, S4B Standing process

Claims (1)

電池の製造方法であって、
上記電池は、正極活物質にリチウム遷移金属複合酸化物を含み、負極活物質に炭素材料を含むリチウムイオン二次電池であり、
未注液の電池内に電解液を注液する注液工程と、
上記注液工程の後に、電池をコンディショニング充電する本充電工程と、
上記注液工程の後、上記本充電工程の前に、上記電池の電池温度Teを30℃以上とした上で、上記電池の電池電圧Veを上下に変動させて、上記電解液中に溶解した金属異物由来の金属イオンの拡散を促進させる電圧変動工程と、
上記注液工程の後、上記電圧変動工程の前に、上記電池を、上記本充電工程で到達させる電池電圧V1よりも低く、かつ、正極電位が鉄の溶解電位よりも高く、負極電位が上記電解液中に溶解した鉄イオンの析出電位よりも高い電池電圧V2まで予備充電する予備充電工程と、を備える
電池の製造方法。
A method for manufacturing a battery,
The battery is a lithium ion secondary battery containing a lithium transition metal composite oxide as a positive electrode active material and a carbon material as a negative electrode active material,
an injection step of injecting an electrolyte into an uninjected battery;
After the liquid injection step, a main charging step of conditioning charging the battery;
After the liquid injection step and before the main charging step, the battery temperature Te of the battery was set to 30° C. or higher, and the battery voltage Ve of the battery was fluctuated up and down to dissolve in the electrolytic solution. a voltage variation step for promoting diffusion of metal ions derived from metal foreign matter;
After the liquid injection step and before the voltage change step, the battery is set to a voltage lower than the battery voltage V1 reached in the main charging step, a positive electrode potential higher than the iron dissolution potential, and a negative electrode potential and a precharging step of precharging to a battery voltage V2 higher than the deposition potential of iron ions dissolved in the electrolytic solution.
JP2017138738A 2017-07-18 2017-07-18 Battery manufacturing method Active JP7107649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017138738A JP7107649B2 (en) 2017-07-18 2017-07-18 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017138738A JP7107649B2 (en) 2017-07-18 2017-07-18 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2019021492A JP2019021492A (en) 2019-02-07
JP7107649B2 true JP7107649B2 (en) 2022-07-27

Family

ID=65354749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017138738A Active JP7107649B2 (en) 2017-07-18 2017-07-18 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP7107649B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230779A (en) 2011-04-25 2012-11-22 Toyota Industries Corp Method for manufacturing lithium ion secondary battery
WO2013121563A1 (en) 2012-02-16 2013-08-22 トヨタ自動車株式会社 Method for manufacturing secondary cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165591A (en) * 2003-12-02 2005-06-23 Murata Mach Ltd Communication equipment and data conversion device
JP4784194B2 (en) * 2005-08-04 2011-10-05 パナソニック株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
JP2010165591A (en) * 2009-01-16 2010-07-29 Panasonic Corp Method of manufacturing battery
JP5344236B2 (en) * 2009-06-05 2013-11-20 トヨタ自動車株式会社 Method for manufacturing lithium secondary battery
JP5552941B2 (en) * 2010-07-28 2014-07-16 日産自動車株式会社 Electrolytic solution impregnation method and electrolytic solution impregnation apparatus
JP6071225B2 (en) * 2012-03-29 2017-02-01 日立造船株式会社 Manufacturing method of all-solid-state secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230779A (en) 2011-04-25 2012-11-22 Toyota Industries Corp Method for manufacturing lithium ion secondary battery
WO2013121563A1 (en) 2012-02-16 2013-08-22 トヨタ自動車株式会社 Method for manufacturing secondary cell

Also Published As

Publication number Publication date
JP2019021492A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CN108780127B (en) Method and apparatus for detecting low voltage defect of secondary battery
US9255972B2 (en) Method of testing secondary battery
EP2680361A1 (en) Jelly roll-type electrode assembly with active material pattern-coated thereon, and secondary battery having same
CN105304853B (en) Rechargeable battery
JP2011249239A (en) Method of inspecting lithium ion secondary battery
KR20180071798A (en) Apparatus and method for inspecting low voltage defect of secondary battery
JP4179528B2 (en) Secondary battery inspection method
JP4887581B2 (en) Battery inspection method and inspection apparatus
US20150221946A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, method for manufacturing negative electrode for nonaqueous electrolyte secondary batteries, and method for manufacturing nonaqueouselectrolyte secondary battery
KR20120094994A (en) Secondary battery
JP7107649B2 (en) Battery manufacturing method
JP2014203551A (en) Method for manufacturing nonaqueous electrolyte secondary battery
KR20180014763A (en) A method for determining an anode potential and / or a cathode potential in a battery cell
JP2014026918A (en) Lithium ion secondary battery
JP2012113866A (en) Battery pack manufacturing method and battery pack
JP7052697B2 (en) Manufacturing method of lithium ion secondary battery
KR20110134010A (en) Second battery
JP7137750B2 (en) Reuse method of lithium ion secondary battery
JP6946803B2 (en) Manufacturing method of lithium ion secondary battery
JP2014137883A (en) Secondary battery and method for manufacturing secondary battery
JP2018067498A (en) Method of manufacturing battery
US9806324B2 (en) Secondary battery
JP6693393B2 (en) Battery manufacturing method
DE102015222051A1 (en) Electrode unit for a battery cell and method for examining an electrode unit
CN112753118A (en) Method for manufacturing electricity storage element, and electricity storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210929

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220329

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220524

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220621

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220714

R151 Written notification of patent or utility model registration

Ref document number: 7107649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151