JP6693393B2 - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP6693393B2
JP6693393B2 JP2016223305A JP2016223305A JP6693393B2 JP 6693393 B2 JP6693393 B2 JP 6693393B2 JP 2016223305 A JP2016223305 A JP 2016223305A JP 2016223305 A JP2016223305 A JP 2016223305A JP 6693393 B2 JP6693393 B2 JP 6693393B2
Authority
JP
Japan
Prior art keywords
battery
battery voltage
resistance value
negative electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016223305A
Other languages
Japanese (ja)
Other versions
JP2018081823A (en
Inventor
友秀 角
友秀 角
陽祐 志村
陽祐 志村
博昭 池田
博昭 池田
拓也 大友
拓也 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016223305A priority Critical patent/JP6693393B2/en
Publication of JP2018081823A publication Critical patent/JP2018081823A/en
Application granted granted Critical
Publication of JP6693393B2 publication Critical patent/JP6693393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、電池のIV抵抗値Raを取得し、このIV抵抗値Raに基づいて、その電池の良否を判定するIV抵抗検査工程を備える電池の製造方法に関する。   The present invention relates to a battery manufacturing method including an IV resistance inspection step of acquiring an IV resistance value Ra of a battery and determining the quality of the battery based on the IV resistance value Ra.

リチウムイオン二次電池などの電池の製造過程において、電池の内部抵抗の検査が行われている。具体的には、組み立てた電池を初充電した後、電池電圧が安定するまで電池を放置する。その後、電池のIV抵抗値Raを取得し、このIV抵抗値Raが基準抵抗値Rsよりも大きい場合に(Ra>Rs)、その電池を不良品と判定する。なお、関連する従来技術として、特許文献1が挙げられる。   BACKGROUND ART In the process of manufacturing a battery such as a lithium ion secondary battery, the internal resistance of the battery is inspected. Specifically, after the assembled battery is initially charged, the battery is left to stand until the battery voltage becomes stable. After that, the IV resistance value Ra of the battery is acquired, and when the IV resistance value Ra is larger than the reference resistance value Rs (Ra> Rs), the battery is determined as a defective product. As a related conventional technique, there is Patent Document 1.

特開2014−185927号公報JP, 2014-185927, A

しかしながら、初充電後の電池電圧の低下は、時間が経過するにつれて小さくなるが、電池電圧が安定するまでには、例えば数日掛かる。このため、初充電の終了後、電池電圧が安定してからIV抵抗検査(IV抵抗値Raの測定)を行おうとすると、長い時間が掛かるという課題がある。   However, the decrease in the battery voltage after the initial charging becomes smaller as time passes, but it takes, for example, several days until the battery voltage becomes stable. Therefore, there is a problem that it takes a long time to perform the IV resistance test (measurement of the IV resistance value Ra) after the battery voltage becomes stable after the completion of the initial charge.

一方、初充電後、早期にIV抵抗値Raの測定を行えば、初充電の終了時からIV抵抗値Raの測定までの時間を短くできる。しかし、上述のように、初充電後は電池電圧の低下が大きいため(単位時間当たりの電圧低下量が大きいため)、何らかの理由でIV抵抗値Raの測定タイミングが基準とするタイミングからズレると、測定されるIV抵抗値Raが大きく変化する(後述するように、例えばIV抵抗値Raの測定タイミングが基準とするタイミングから8分間ズレただけで、IV抵抗値Raが44.4%も異なってしまう)。このため、IV抵抗値Raを適切に測定するのが難しい。   On the other hand, if the IV resistance value Ra is measured early after the initial charge, the time from the end of the initial charge to the measurement of the IV resistance value Ra can be shortened. However, as described above, since the battery voltage drops largely after the initial charge (the voltage drop amount per unit time is large), if the measurement timing of the IV resistance value Ra deviates from the reference timing for some reason, The measured IV resistance value Ra changes greatly (as will be described later, for example, when the measurement timing of the IV resistance value Ra is shifted from the reference timing by 8 minutes, the IV resistance value Ra differs by 44.4%. End). Therefore, it is difficult to properly measure the IV resistance value Ra.

本発明は、かかる現状に鑑みてなされたものであって、初充電工程の終了時からIV抵抗値Raを測定するまでの期間を短くできると共に、IV抵抗値Raを適切に測定できる電池の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is capable of shortening the period from the end of the initial charging step to measuring the IV resistance value Ra and manufacturing the battery capable of appropriately measuring the IV resistance value Ra. The purpose is to provide a method.

上記課題を解決するための本発明の一態様は、正極板及び負極板をセパレータを介して重ねた電極体と、上記電極体に含浸した電解液と、を備え、上記負極板の負極活物質層は、上記正極板の正極活物質層に正対する正対部と、上記正極活物質層に正対しない非正対部と、を有する電池の製造方法であって、室温(25±5℃)下において、上記電池を第1電池電圧V1まで初充電する初充電工程と、上記初充電工程に続いて、上記電池を第2電池電圧V2まで放電させる放電工程と、上記放電工程に続いて室温(25±5℃)下において、上記電池を上記第1電池電圧V1よりも低い第3電池電圧V3(V2<V3<V1)まで再充電する再充電工程と、上記再充電工程の後、上記電池のIV抵抗値Raを取得し、このIV抵抗値Raに基づいて、当該電池の良否を判定するIV抵抗検査工程と、を備える電池の製造方法である。 One embodiment of the present invention for solving the above problems comprises an electrode body in which a positive electrode plate and a negative electrode plate are stacked via a separator, and an electrolytic solution impregnated in the electrode body, and the negative electrode active material of the negative electrode plate. The layer is a method for producing a battery, which has a facing portion that faces the positive electrode active material layer of the positive electrode plate and a non-facing portion that does not face the positive electrode active material layer, and is a room temperature (25 ± 5 ° C. ) in the lower, the initial charging step of the initial charge of the battery to the first battery voltage V1, subsequent to the first charging step, a discharge step of discharging the battery to the second battery voltage V2, subsequent to the discharging process A recharging step of recharging the battery to a third battery voltage V3 (V2 <V3 <V1) lower than the first battery voltage V1 at room temperature (25 ± 5 ° C.), and after the recharging step , The IV resistance value Ra of the battery is acquired, and based on this IV resistance value Ra Then, it is a manufacturing method of the battery provided with the IV resistance inspection process which determines the quality of the said battery.

上述の電池の製造方法では、上述の初充電工程の後に、放電工程及び再充電工程を行ってから、IV抵抗検査工程を行う。このようにすることで、再充電工程後の電池電圧(両端子開放電圧)の低下が、初充電工程に続いてIV抵抗検査工程を行う場合における初充電工程後の電池電圧の低下に比べて小さくなる。このため、何らかの理由でIV抵抗値Raの測定タイミングが基準とするタイミングからズレたとしても、取得されるIV抵抗値Raの差を、初充電工程に続いてIV抵抗検査工程を行う場合よりも小さくできる。従って、IV抵抗値Raの測定タイミングを厳密に管理する必要がなく、また、IV抵抗値Raを適切に測定できる。加えて、上述の電池の製造方法では、再充電工程後の電池電圧の低下が小さいため、電池電圧が安定するまで長時間にわたり電池を放置する必要がない。従って、初充電工程の終了時からIV抵抗値Raを測定するまでの期間を短くできる。   In the battery manufacturing method described above, the IV resistance inspection step is performed after the discharging step and the recharging step are performed after the initial charging step. By doing so, the decrease in the battery voltage (both terminals open voltage) after the recharging process is lower than the decrease in the battery voltage after the initial charging process when the IV resistance inspection process is performed after the initial charging process. Get smaller. For this reason, even if the measurement timing of the IV resistance value Ra deviates from the reference timing for some reason, the difference in the acquired IV resistance value Ra is smaller than that in the case where the IV resistance inspection step is performed subsequent to the initial charging step. Can be made smaller. Therefore, it is not necessary to strictly manage the measurement timing of the IV resistance value Ra, and the IV resistance value Ra can be appropriately measured. In addition, in the battery manufacturing method described above, since the decrease in the battery voltage after the recharging step is small, it is not necessary to leave the battery for a long time until the battery voltage becomes stable. Therefore, the period from the end of the initial charging process to the measurement of the IV resistance value Ra can be shortened.

なお、再充電工程後の電池電圧の低下が、初充電工程に続いてIV抵抗検査工程を行う場合における初充電工程後の電池電圧の低下よりも小さくなる理由は、以下であると考えられる。即ち、初充電工程に続いてIV抵抗検査工程を行う場合において、当初から第3電池電圧V3まで電池を初充電したとする。すると、初充電工程後の電池電圧は長時間にわたり大きく低下する。これは、初充電により負極活物質層の正対部内に挿入されたリチウムイオンなどの電気伝導を担うイオンが、初充電後に、負極活物質層の非正対部に徐々に拡散する。すると、負極活物質層の正対部からイオンが抜けるにつれて、負極板の負極電位が高くなり、その分だけ正極電位と負極電位との差である電池電圧が低下して見える。このようにして、初充電工程に続いてIV抵抗検査工程を行う場合は、初充電工程後(IV抵抗検査前の第3電池電圧V3まで充電した後)の電池電圧が長時間にわたり大きく低下すると考えられる。   The reason why the decrease in the battery voltage after the recharging step is smaller than the decrease in the battery voltage after the initial charging step when the IV resistance inspection step is performed after the initial charging step is considered to be as follows. That is, it is assumed that the battery is initially charged to the third battery voltage V3 from the beginning when the IV resistance inspection process is performed after the initial charging process. Then, the battery voltage after the initial charging process drops significantly for a long time. This is because ions that are responsible for electrical conduction, such as lithium ions inserted into the facing portion of the negative electrode active material layer by initial charging, gradually diffuse into the non-facing portion of the negative electrode active material layer after initial charging. Then, as the ions escape from the front facing portion of the negative electrode active material layer, the negative electrode potential of the negative electrode plate increases, and the battery voltage, which is the difference between the positive electrode potential and the negative electrode potential, appears to decrease correspondingly. In this way, when the IV resistance inspection process is performed after the initial charging process, if the battery voltage after the initial charging process (after charging to the third battery voltage V3 before the IV resistance inspection) drops significantly for a long time. Conceivable.

これに対し、上述の電池の製造方法では、一旦、初充電工程で第3電池電圧V3よりも高い第1電池電圧V1(V1>V3)まで電池を初充電する。このため、初充電工程で第3電池電圧V3まで充電した上述の場合に比べて、一旦、多くのイオンが負極活物質層の正対部に挿入され、これに伴って非正対部にも多くのイオンが拡散する。そして、この状態で、放電工程及び再充電工程を行って電池電圧を第3電池電圧V3に調整するので、再充電工程の終了時には、上述の場合における初充電工程の終了時よりも多くのイオンが非正対部内に存在している。このため、上述の場合の初充電工程後に比して、再充電工程後の正対部から非正対部へのイオンの拡散が抑制され、これに伴って負極電位が高くなり電池電圧が低下するのが抑制される。かくして、初充電工程に続いてIV抵抗検査工程を行う場合に比して、再充電工程後(IV抵抗検査前の第3電池電圧V3まで充電した後)の電池電圧の低下が小さくなると考えられる。   On the other hand, in the battery manufacturing method described above, the battery is initially charged to the first battery voltage V1 (V1> V3) higher than the third battery voltage V3 in the initial charging step. Therefore, as compared with the above case in which the battery is charged to the third battery voltage V3 in the initial charging step, many ions are once inserted in the facing portion of the negative electrode active material layer, and accordingly, the non-facing portion is also charged. Many ions diffuse. Then, in this state, the discharging step and the recharging step are performed to adjust the battery voltage to the third battery voltage V3. Therefore, at the end of the recharging step, more ions are generated than at the end of the initial charging step in the above case. Exists in the non-face-to-face section. Therefore, compared to after the initial charging process in the above-mentioned case, the diffusion of ions from the facing portion to the non-facing portion after the recharging step is suppressed, and the negative electrode potential is accordingly increased and the battery voltage is lowered. Is suppressed. Thus, it is considered that the decrease in the battery voltage after the recharging process (after charging to the third battery voltage V3 before the IV resistance inspection) is smaller than in the case where the IV resistance inspection process is performed subsequent to the initial charging process. ..

なお、IV抵抗検査工程において「IV抵抗値Raに基づいて、当該電池の良否を判定する」具体的な手法としては、例えば、検査した電池のIV抵抗値Raが、予め定めた基準抵抗値Rsよりも大きい場合に(Ra>Rs)、その電池を不良品と判定する方法が挙げられる。また、例えばこの電池と同一製造ロットの複数の電池について同様に得たIV抵抗値Raから基準抵抗値Rsを定めて、この基準抵抗値Rsよりも大きい場合に、その電池を不良品と判定する方法も挙げられる。   As a specific method of “determining the quality of the battery based on the IV resistance value Ra” in the IV resistance inspection step, for example, the IV resistance value Ra of the inspected battery is set to a predetermined reference resistance value Rs. If it is larger than (Ra> Rs), the battery may be determined to be defective. Further, for example, a reference resistance value Rs is determined from the IV resistance value Ra obtained in the same manner for a plurality of batteries in the same manufacturing lot as this battery, and when the reference resistance value Rs is larger than the reference resistance value Rs, the battery is determined as a defective product. The method is also included.

また、「IV抵抗値Ra」の具体的な取得方法としては、電池を所定の電流(電流値I)で放電させて、この放電開始からTa秒後の電池電圧VaとTb秒後の電池電圧Vbとをそれぞれ測定し、Ra=(Va−Vb)/Iにより、IV抵抗値Raを算出する方法が挙げられる。   In addition, as a specific method for obtaining the “IV resistance value Ra”, the battery is discharged at a predetermined current (current value I), and the battery voltage Va after Ta seconds and the battery voltage after Tb seconds after the start of the discharge. A method of measuring Vb and calculating IV resistance Ra by Ra = (Va−Vb) / I can be mentioned.

電池の「電極体」としては、例えば、帯状の正極板及び帯状の負極板を帯状の一対のセパレータと交互に重ねて、軸線周りに円筒状または扁平状に捲回した捲回型の電極体が挙げられる。また、各々所定形状(例えば矩形状など)をなす複数の正極板及び負極板をセパレータを介して交互に複数積層した積層型の電極体も挙げられる。   As the “electrode body” of the battery, for example, a wound type electrode body in which a strip-shaped positive electrode plate and a strip-shaped negative electrode plate are alternately stacked with a pair of strip-shaped separators and wound around an axis in a cylindrical or flat shape. Is mentioned. Further, a laminated electrode body in which a plurality of positive electrode plates and a plurality of negative electrode plates each having a predetermined shape (for example, rectangular shape) are alternately laminated with a separator interposed is also included.

更に、上記の電池の製造方法であって、前記初充電工程及び前記再充電工程は、それぞれ定電流定電圧(CCCV)充電により前記電池を充電し、前記放電工程は、定電流(CC)放電により上記電池を放電させる電池の製造方法とするのが好ましい。   Furthermore, in the above-mentioned battery manufacturing method, the initial charging step and the recharging step charge the battery by constant current constant voltage (CCCV) charging, and the discharging step discharges constant current (CC). Therefore, it is preferable that the battery is manufactured by discharging the battery.

実施形態に係る電池の斜視図である。It is a perspective view of the battery which concerns on embodiment. 実施形態に係る電池の縦断面図である。It is a longitudinal section of a battery concerning an embodiment. 実施形態に係る電極体の斜視図である。It is a perspective view of the electrode body which concerns on embodiment. 実施形態に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す、電極体の展開図である。FIG. 3 is a development view of an electrode body showing a state in which a positive electrode plate and a negative electrode plate are stacked on each other with a separator interposed therebetween according to the embodiment. 実施形態に係る電池の製造工程を示すフローチャートである。5 is a flowchart showing a manufacturing process of the battery according to the embodiment. 実施形態に係り、初充電工程開始時からの経過時間Teと電池電圧Veとの関係を示すグラフである。9 is a graph showing the relationship between the elapsed time Te from the start of the initial charging process and the battery voltage Ve according to the embodiment. 比較例に係り、初充電工程開始時からの経過時間Teと電池電圧Veとの関係を示すグラフである。9 is a graph showing a relationship between the elapsed time Te from the start of the initial charging process and the battery voltage Ve according to the comparative example.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係る電池1の斜視図及び縦断面図を示す。また、図3及び図4に、電池1を構成する電極体20の斜視図及び展開図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。
この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are a perspective view and a vertical sectional view of a battery 1 according to this embodiment. 3 and 4 are a perspective view and a developed view of the electrode body 20 that constitutes the battery 1. In the following description, the battery thickness direction BH, the battery horizontal direction CH, and the battery vertical direction DH of the battery 1 are described as the directions shown in FIGS. 1 and 2.
The battery 1 is a square and sealed lithium-ion secondary battery mounted in a vehicle such as a hybrid car, a plug-in hybrid car, an electric vehicle, or the like. The battery 1 includes a battery case 10, an electrode body 20 housed inside the battery case 10, a positive electrode terminal member 50 and a negative electrode terminal member 60 supported by the battery case 10. Further, the electrolytic solution 17 is contained in the battery case 10, and a part of the electrolytic solution 17 is impregnated in the electrode body 20.

このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21の正極露出部21mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31の負極露出部31mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。   Of these, the battery case 10 has a rectangular parallelepiped box shape and is made of metal (aluminum in the present embodiment). The battery case 10 is composed of a bottomed rectangular tubular case body member 11 that is open only on the upper side, and a rectangular plate-shaped case lid member 13 welded to close the opening of the case body member 11. It A positive electrode terminal member 50 made of aluminum is fixed to the case lid member 13 in a state of being insulated from the case lid member 13. The positive electrode terminal member 50 is connected to the positive electrode exposed portion 21m of the positive electrode plate 21 of the electrode body 20 in the battery case 10 so as to be conductive, and extends through the case cover member 13 to the outside of the battery. Further, a negative electrode terminal member 60 made of copper is fixed to the case lid member 13 while being insulated from the case lid member 13. The negative electrode terminal member 60 is connected to the negative electrode exposed portion 31m of the negative electrode plate 31 of the electrode body 20 in the battery case 10 so as to be conductive, and extends through the case cover member 13 to the outside of the battery.

電極体20(図3及び図4参照)は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状で樹脂製の多孔質膜からなる一対のセパレータ41,41を介して互いに重ね、軸線AX周りに捲回して扁平状に圧縮したものである。   The electrode body 20 (see FIGS. 3 and 4) has a flat shape and is accommodated in the battery case 10 in a state of being laid sideways. A bag-shaped insulating film surrounding body 19 made of an insulating film is arranged between the electrode body 20 and the battery case 10. The electrode body 20 includes a strip-shaped positive electrode plate 21 and a strip-shaped negative electrode plate 31, which are stacked on each other via a pair of separators 41 and 41 made of a resin-made porous film and wound around the axis AX to have a flat shape. It is compressed into.

正極板21は、帯状のアルミニウム箔からなる正極集電箔22の両主面の所定位置に、正極活物質層23を帯状に設けてなる。この正極活物質層23は、正極活物質(本実施形態ではリチウム遷移金属複合酸化物)、導電材(本実施形態ではアセチレンブラック)及び結着剤(本実施形態ではポリフッ化ビニリデン)からなる。正極板21のうち、幅方向の一方の端部(図4中、上側の端部)は、厚み方向に正極活物質層23が存在せず、正極集電箔22が厚み方向に露出した正極露出部21mとなっている。この正極露出部21mには、前述の正極端子部材50に溶接されている。   The positive electrode plate 21 is provided with a positive electrode active material layer 23 in a band shape at predetermined positions on both main surfaces of a positive electrode current collector foil 22 made of a band-shaped aluminum foil. The positive electrode active material layer 23 includes a positive electrode active material (lithium transition metal composite oxide in this embodiment), a conductive material (acetylene black in this embodiment), and a binder (polyvinylidene fluoride in this embodiment). One end of the positive electrode plate 21 in the width direction (upper end in FIG. 4) does not have the positive electrode active material layer 23 in the thickness direction, and the positive electrode current collector foil 22 is exposed in the thickness direction. The exposed part is 21 m. The positive electrode exposed portion 21m is welded to the positive electrode terminal member 50 described above.

負極板31は、帯状の銅箔からなる負極集電箔32の両主面の所定位置に、負極活物質層33を帯状に設けてなる。この負極活物質層33は、負極活物質(本実施形態では黒鉛)、結着剤(本実施形態ではスチレンブタジエンゴム)及び増粘剤(本実施形態ではカルボシキメチルセルロース)からなる。負極板31のうち、幅方向EH(図4中、上下方向)の他方の端部(図4中、下側の端部)は、厚み方向に負極活物質層33が存在せず、負極集電箔32が厚み方向に露出した負極露出部31mとなっている。この負極露出部31mには、前述の負極端子部材60に溶接されている。   The negative electrode plate 31 has a negative electrode active material layer 33 provided in a strip shape at predetermined positions on both main surfaces of a negative electrode current collector foil 32 made of a strip copper foil. The negative electrode active material layer 33 includes a negative electrode active material (graphite in this embodiment), a binder (styrene-butadiene rubber in this embodiment), and a thickener (carbomethylmethylcellulose in this embodiment). The other end portion (lower end portion in FIG. 4) of the negative electrode plate 31 in the width direction EH (upper and lower direction in FIG. 4) does not have the negative electrode active material layer 33 in the thickness direction, so The foil 32 is a negative electrode exposed portion 31m exposed in the thickness direction. The negative electrode exposed portion 31m is welded to the negative electrode terminal member 60 described above.

負極活物質層33は、正極板21の正極活物質層23よりも幅方向EHに大きく形成されている。負極板31をセパレータ41を介して正極板21と重ねた状態で、負極活物質層33のうち、幅方向EHの両端部は、それぞれ正極活物質層23と正対しない非正対部33b,33bとなっている。一方、負極活物質層33のうち、非正対部33b,33b同士の間の部位は、正極活物質層23と正対する正対部33aとなっている。   The negative electrode active material layer 33 is formed to be larger in the width direction EH than the positive electrode active material layer 23 of the positive electrode plate 21. In the state where the negative electrode plate 31 is superposed on the positive electrode plate 21 via the separator 41, both ends of the negative electrode active material layer 33 in the width direction EH are not directly facing the positive electrode active material layer 23. 33b. On the other hand, a portion of the negative electrode active material layer 33 between the non-facing portions 33b and 33b is a facing portion 33a that faces the positive electrode active material layer 23.

次いで、上記電池1の製造方法について説明する(図5参照)。まず、「組立工程S1」において、電池1を組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する(図4及び図3参照)。次に、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、電解液17を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、封止部材15で注液孔13hを封止する。   Next, a method for manufacturing the battery 1 will be described (see FIG. 5). First, in the "assembly step S1", the battery 1 is assembled. Specifically, the positive electrode plate 21 and the negative electrode plate 31 are wound on top of each other with the pair of separators 41, 41 interposed therebetween, and compressed into a flat shape to form the electrode body 20 (see FIGS. 4 and 3). Next, the case lid member 13 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixedly mounted on the case lid member 13 (see FIGS. 1 and 2). Then, the positive electrode terminal member 50 and the negative electrode terminal member 60 are welded to the positive electrode plate 21 and the negative electrode plate 31 of the electrode body 20, respectively. Next, the electrode body 20 is covered with the insulating film surrounding body 19, these are inserted into the case body member 11, and the opening of the case body member 11 is closed with the case lid member 13. Then, the case body member 11 and the case lid member 13 are welded together to form the battery case 10. After that, the electrolytic solution 17 is injected into the battery case 10 through the injection hole 13h to impregnate the inside of the electrode body 20. After that, the sealing member 15 seals the liquid injection hole 13h.

次に、「初充電工程S2」において、この電池1に初充電を行う。なお、図6に、この初充電工程S2の開始時からの経過時間Teと電池電圧Veとの関係を示す。具体的には、電池1に充放電装置を接続して、室温(25±5℃)下において、定電流定電圧(CCCV)充電により、第1電池電圧V1=3.55Vまで電池1に初充電する。本実施形態では、5Cの定電流で電池電圧Veが第1電池電圧V1=3.55Vになるまで充電した後、充電電流値が0.25Cになるまでこの第1電池電圧V1=3.55Vを維持した。なお、この第1電池電圧V1=3.55Vにおける電池1の充電状態は、SOC30%である。   Next, in the "initial charging step S2", the battery 1 is initially charged. Note that FIG. 6 shows the relationship between the elapsed time Te from the start of the initial charging step S2 and the battery voltage Ve. Specifically, by connecting a charging / discharging device to the battery 1 and charging the battery 1 at a room temperature (25 ± 5 ° C.) with constant current / constant voltage (CCCV), the first battery voltage V1 = 3.55V. To charge. In the present embodiment, after charging the battery voltage Ve with the constant current of 5C until the first battery voltage V1 = 3.55V, the first battery voltage V1 = 3.55V until the charging current value reaches 0.25C. Maintained. The state of charge of the battery 1 at the first battery voltage V1 = 3.55V is SOC 30%.

続いて、「放電工程S3」において、電池1を放電させる。具体的には、電池1に接続した充放電装置を用いて、定電流(CC)放電により、5Cの定電流で電池電圧Veが第2電池電圧V2=3.30V(V2<V1)になるまで電池1を放電させる。なお、この第2電池電圧V2=3.30Vにおける電池1の充電状態は、SOC5%である。   Subsequently, in the "discharge step S3", the battery 1 is discharged. Specifically, by using a charging / discharging device connected to the battery 1, the battery voltage Ve becomes the second battery voltage V2 = 3.30V (V2 <V1) at a constant current of 5C by constant current (CC) discharge. Until the battery 1 is discharged. The state of charge of the battery 1 at the second battery voltage V2 = 3.30V is SOC 5%.

続いて、「再充電工程S4」において、この電池1に再び充電を行う。具体的には、電池1に接続した充放電装置を用いて、室温(25±5℃)下において、定電流定電圧(CCCV)充電により、第1電池電圧V1よりも低い第3電池電圧V3=3.43V(V2<V3<V1)まで電池1を再充電する。本実施形態では、5Cの定電流で電池電圧Veが第3電池電圧V3=3.43Vになるまで充電した後、充電電流値が0.25Cになるまでこの第3電池電圧V3=3.43Vを維持した。   Then, in the "recharging step S4", the battery 1 is charged again. Specifically, using a charging / discharging device connected to the battery 1, at room temperature (25 ± 5 ° C.), the third battery voltage V3 lower than the first battery voltage V1 by constant current constant voltage (CCCV) charging. = Recharge Battery 1 to 3.43V (V2 <V3 <V1). In the present embodiment, after charging the battery voltage Ve with the constant current of 5C until the third battery voltage V3 = 3.43V, the third battery voltage V3 = 3.43V until the charging current value reaches 0.25C. Maintained.

続いて、「IV抵抗検査工程S5」において、電池1のIV抵抗値Raを取得し、このIV抵抗値Raに基づいて、その電池1の良否を判定する。具体的には、再充電工程S4の終了時(=IV抵抗検査工程S5の開始時To)から2分経過した時間T(2)に、電池1を所定の電流値I(本実施形態では、I=3.5C)で放電させて、この放電開始からTa秒(本実施形態では、Ta=0.0秒)後の電池電圧VaとTb秒(本実施形態では、Tb=4.0秒)後の電池電圧Vbとをそれぞれ測定し、Ra=(Va−Vb)/Iにより、IV抵抗値Ra(2)を算出した。そして、このIV抵抗値Ra(2)が、予め定めた基準抵抗値Rsよりも大きい場合(Ra(2)>Rs)に、その電池1を不良品と判定し、電池1を除去する。一方、測定したIV抵抗値Ra(2)が、基準抵抗値Rsよりも小さい場合(Ra(2)≦Rs)には、その電池1を良品と判定する。   Subsequently, in the "IV resistance inspection step S5", the IV resistance value Ra of the battery 1 is acquired, and the quality of the battery 1 is determined based on the IV resistance value Ra. Specifically, at the time T (2) at which 2 minutes have elapsed from the end of the recharging step S4 (= the start time To of the IV resistance inspection step S5), the battery 1 is charged with a predetermined current value I (in the present embodiment, I = 3.5 C), and Ta voltage (Ta = 0.0 seconds in this embodiment) and battery voltage Va and Tb seconds (Tb = 4.0 seconds in this embodiment) after the start of this discharge. After that, the battery voltage Vb was measured, and the IV resistance value Ra (2) was calculated by Ra = (Va−Vb) / I. When the IV resistance value Ra (2) is larger than a predetermined reference resistance value Rs (Ra (2)> Rs), the battery 1 is determined to be defective and the battery 1 is removed. On the other hand, when the measured IV resistance value Ra (2) is smaller than the reference resistance value Rs (Ra (2) ≦ Rs), the battery 1 is determined as a good product.

IV抵抗検査工程S5の後は、この電池1について他の各種検査を行う。かくして、電池1が完成する。   After the IV resistance inspection step S5, various other inspections are performed on the battery 1. Thus, the battery 1 is completed.

(実施例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。実施例1として、前述の実施形態の製造方法により電池1を製造した。実施形態の電池1の製造方法では、前述のように、初充電工程S2において、CCCV充電により、5Cの定電流で第1電池電圧V1=3.55Vまで電池1を充電した(表1も参照)。その後、放電工程S3において、CC放電により、5Cの定電流で第2電池電圧V2=3.30Vまで電池1を放電させた。そして、再充電工程S4において、CCCV充電により、5Cの定電流で第3電池電圧V3=3.43Vまで電池1を再充電し、その後、IV抵抗検査工程S5を行った。
(Examples and comparative examples)
Next, the results of tests conducted to verify the effects of the present invention will be described. As Example 1, the battery 1 was manufactured by the manufacturing method of the above-described embodiment. In the method for manufacturing the battery 1 of the embodiment, as described above, in the initial charging step S2, the battery 1 is charged to the first battery voltage V1 = 3.55V with a constant current of 5 C in the CCCV charging (see also Table 1). ). Then, in the discharging step S3, the battery 1 was discharged by CC discharge to a second battery voltage V2 = 3.30V at a constant current of 5C. Then, in the recharge step S4, the CCCV charge was used to recharge the battery 1 to a third battery voltage V3 = 3.43 V at a constant current of 5 C, and then the IV resistance inspection step S5 was performed.

Figure 0006693393
Figure 0006693393

また、実施例2として、初充電工程S2において、CCCV充電により、2.5Cの定電流で第1電池電圧V1=3.60Vまで電池1を充電した。その後、放電工程S3において、CC放電により、2.5Cの定電流で第2電池電圧V2=3.40Vまで電池1を放電させた。そして、再充電工程S4において、CCCV充電により、2.5Cの定電流で第3電池電圧V3=3.43Vまで電池1を再充電し、その後、IV抵抗検査工程S5を行った。それ以外は、実施形態と同様にして電池1を製造した。   Further, as Example 2, in the initial charging step S2, the battery 1 was charged by CCCV charging with a constant current of 2.5 C to the first battery voltage V1 = 3.60 V. Then, in the discharging step S3, the battery 1 was discharged by CC discharge to a second battery voltage V2 = 3.40V at a constant current of 2.5C. Then, in the recharging step S4, the CCCV charging was used to recharge the battery 1 to a third battery voltage V3 = 3.43 V at a constant current of 2.5 C, and then the IV resistance inspection step S5 was performed. Other than that, the battery 1 was manufactured in the same manner as in the embodiment.

また、実施例3として、初充電工程S2において、CCCV充電により、5Cの定電流で第1電池電圧V1=3.60Vまで電池1を充電した。その後、放電工程S3において、CC放電により、2.5Cの定電流で第2電池電圧V2=3.40Vまで電池1を放電させた。そして、再充電工程S4において、CCCV充電により、2.5Cの定電流で第3電池電圧V3=3.43Vまで電池1を再充電し、その後、IV抵抗検査工程S5を行った。それ以外は、実施形態と同様にして電池1を製造した。   Also, as Example 3, in the initial charging step S2, the battery 1 was charged by CCCV charging with a constant current of 5 C to the first battery voltage V1 = 3.60 V. Then, in the discharging step S3, the battery 1 was discharged by CC discharge to a second battery voltage V2 = 3.40V at a constant current of 2.5C. Then, in the recharging step S4, the CCCV charging was used to recharge the battery 1 to a third battery voltage V3 = 3.43 V at a constant current of 2.5 C, and then the IV resistance inspection step S5 was performed. Other than that, the battery 1 was manufactured in the same manner as in the embodiment.

また、実施例4として、初充電工程S2において、CCCV充電により、5Cの定電流で第1電池電圧V1=3.55Vまで電池1を充電した。その後、放電工程S3において、CC放電により、5Cの定電流で第2電池電圧V2=3.40Vまで電池1を放電させた。そして、再充電工程S4において、CCCV充電により、5Cの定電流で第3電池電圧V3=3.43Vまで電池1を再充電し、その後、IV抵抗検査工程S5を行った。それ以外は、実施形態と同様にして電池1を製造した。   Further, as Example 4, in the initial charging step S2, the battery 1 was charged by CCCV charging with a constant current of 5C to the first battery voltage V1 = 3.55V. Then, in the discharging step S3, the battery 1 was discharged by CC discharge to a second battery voltage V2 = 3.40V at a constant current of 5C. Then, in the recharge step S4, the CCCV charge was used to recharge the battery 1 to a third battery voltage V3 = 3.43 V at a constant current of 5 C, and then the IV resistance inspection step S5 was performed. Other than that, the battery 1 was manufactured in the same manner as in the embodiment.

一方、比較例として、以下の製造方法により電池1を製造した。即ち、比較例では、実施形態と同様に組立工程S1を行った後、初充電工程S2において、CCCV充電により、5Cの定電流で3.43V(各実施例1〜4の第3電池電圧V3と同じ)まで電池1を初充電した。その後、放電工程S3及び再充電工程S4は行わずに、この初充電工程S2に続いて、実施形態と同様のIV抵抗検査工程S5を行った。なお、図7に、この比較例についての初充電工程S2開始時からの経過時間Teと電池電圧Veとの関係を示す。   On the other hand, as a comparative example, Battery 1 was manufactured by the following manufacturing method. That is, in the comparative example, after performing the assembling step S1 as in the embodiment, in the initial charging step S2, CCCV charging was performed at a constant current of 5 C to obtain 3.43 V (third battery voltage V3 in each of Examples 1 to 4). Same as the above), battery 1 was first charged. After that, without performing the discharging step S3 and the recharging step S4, the IV resistance inspection step S5 similar to the embodiment was performed following the initial charging step S2. Note that FIG. 7 shows the relationship between the elapsed time Te from the start of the initial charging step S2 and the battery voltage Ve for this comparative example.

なお、実施例1〜4及び比較例では、IV抵抗検査工程S5において、実施形態と同様に、IV抵抗検査工程S5の開始時Toから2分経過した時間T(2)に、IV抵抗値Ra(2)を測定したのに加え、IV抵抗検査工程S5の開始時Toから10分経過した時間T(10)にも、IV抵抗値Ra(10)を測定した。更に、IV抵抗値Ra(2)とIV抵抗値Ra(10)との抵抗変化率Rh=(|Ra(10)−Ra(2)|/Ra(2))×100(%)を算出した。これらの結果も表1に示す。   In addition, in Examples 1 to 4 and Comparative Example, in the IV resistance inspection step S5, as in the embodiment, at a time T (2) when 2 minutes have elapsed from the start time To of the IV resistance inspection step S5, the IV resistance value Ra is increased. In addition to the measurement of (2), the IV resistance value Ra (10) was also measured at time T (10) 10 minutes after the start To of the IV resistance inspection step S5. Furthermore, the rate of resistance change Rh = (| Ra (10) −Ra (2) | / Ra (2)) × 100 (%) between the IV resistance value Ra (2) and the IV resistance value Ra (10) was calculated. .. These results are also shown in Table 1.

表1から明らかなように、比較例では、抵抗変化率Rhが大きく、44.4%であった。つまり、比較例では、IV抵抗値Raの測定タイミングが、時間T(2)から時間T(10)に8分間遅れただけで、測定されるIV抵抗値Raの大きさが44.4%も異なることを示している。このため、IV抵抗値Raの測定タイミングを逸すると、電池1の良否判定を適切に行うことができない。   As is clear from Table 1, in the comparative example, the resistance change rate Rh was large and was 44.4%. In other words, in the comparative example, the measurement timing of the IV resistance value Ra is delayed from the time T (2) to the time T (10) by 8 minutes, and the measured IV resistance value Ra is 44.4%. It shows that they are different. Therefore, if the measurement timing of the IV resistance value Ra is missed, the quality of the battery 1 cannot be properly determined.

これに対し、実施例1〜4では、抵抗変化率Rhが比較例よりも大幅に小さく、6.5%以下(実施例1では0.6%、実施例2では6.5%、実施例3では4.1%、実施例4では2.9%)に抑えられている。つまり、実施例1〜4では、IV抵抗値Raの測定タイミングが、時間T(2)から時間T(10)に8分間遅れても、測定されるIV抵抗値Raの違いは、6.5%以下に抑えられる。このため、IV抵抗値Raの測定タイミングを厳密に管理しなくても、電池1の良否判定を適切に行うことができる。   On the other hand, in Examples 1 to 4, the resistance change rate Rh was significantly smaller than that in Comparative Example, and was 6.5% or less (0.6% in Example 1, 6.5% in Example 2, and No. 3 is 4.1%, and in Example 4 is 2.9%). That is, in Examples 1 to 4, even if the measurement timing of the IV resistance value Ra was delayed from time T (2) to time T (10) by 8 minutes, the difference in the measured IV resistance value Ra was 6.5. % Or less. Therefore, the quality of the battery 1 can be appropriately determined without strictly managing the measurement timing of the IV resistance value Ra.

このような結果を生じた理由は、以下であると考えられる。即ち、比較例では、初充電工程S2後の電池電圧Ve(両端子開放電圧)は長時間にわたり大きく低下する。これは、初充電により負極活物質層33の正対部33a内に挿入されたリチウムイオンが、初充電後に、負極活物質層33の非正対部33b,33bに徐々に拡散する。すると、負極活物質層33の正対部33aからリチウムイオンが抜けるにつれて、負極板31の負極電位が高くなり、その分だけ正極電位と負極電位との差である電池電圧Veが低下して見える。このようにして、比較例の電池1では、初充電工程S2後(IV抵抗検査前の3.43Vまで充電した後)の電池電圧Veが長時間にわたり大きく低下する。このため、IV抵抗値Raの測定タイミングが時間T(2)から時間T(10)に8分間遅れただけで、測定されるIV抵抗値Raが大きく異なったと考えられる。   The reason for producing such a result is considered to be as follows. That is, in the comparative example, the battery voltage Ve (both terminals open circuit voltage) after the initial charging step S2 greatly decreases for a long time. This is because the lithium ions inserted into the facing portion 33a of the negative electrode active material layer 33 by the initial charging gradually diffuse into the non-facing portions 33b and 33b of the negative electrode active material layer 33 after the initial charging. Then, as lithium ions escape from the facing portion 33a of the negative electrode active material layer 33, the negative electrode potential of the negative electrode plate 31 increases, and the battery voltage Ve, which is the difference between the positive electrode potential and the negative electrode potential, appears to decrease correspondingly. .. In this way, in the battery 1 of the comparative example, the battery voltage Ve after the initial charging step S2 (after charging to 3.43 V before the IV resistance test) is greatly reduced for a long time. Therefore, it is considered that the measured IV resistance value Ra greatly differs only when the measurement timing of the IV resistance value Ra is delayed from the time T (2) to the time T (10) by 8 minutes.

これに対し、実施例1〜4では、一旦、初充電工程S2で第3電池電圧V3=3.43Vよりも高い第1電池電圧V1(3.55Vまたは3.60V)まで初充電する。このため、初充電工程S2で第3電池電圧V3=3.43Vまで充電した比較例に比べて、一旦、多くのリチウムイオンが負極活物質層33の正対部33aに挿入され、これに伴って非正対部33bにも多くのリチウムイオンが拡散する。そして、この状態で、放電工程S3及び再充電工程S4を行って電池電圧Veを第3電池電圧V3=3.43Vに調整するので、再充電工程S4の終了時(=IV抵抗検査工程S5の開始時To)には、比較例における初充電工程S2の終了時(=IV抵抗検査工程S5の開始時To)よりも多くのリチウムイオンが非正対部33b内に存在している。   On the other hand, in Examples 1 to 4, once in the initial charging step S2, initial charging is performed to the first battery voltage V1 (3.55V or 3.60V) higher than the third battery voltage V3 = 3.43V. Therefore, as compared with the comparative example in which the third battery voltage V3 = 3.43 V is charged in the initial charging step S2, a large amount of lithium ions are once inserted into the facing portion 33a of the negative electrode active material layer 33, which is accompanied by this. As a result, many lithium ions diffuse into the non-facing portion 33b. Then, in this state, the discharging step S3 and the recharging step S4 are performed to adjust the battery voltage Ve to the third battery voltage V3 = 3.43V, so at the end of the recharging step S4 (= the IV resistance inspection step S5 At the start time To), more lithium ions are present in the non-facing portion 33b than at the end of the initial charging step S2 (= start time To of the IV resistance inspection step S5) in the comparative example.

このため、比較例の初充電工程S2後に比して、再充電工程S4後の正対部33aから非正対部33bへのリチウムイオンの拡散が抑制され、これに伴って負極電位が高くなり電池電圧Veが低下するのが抑制される。かくして、放電工程S3及び再充電工程S4を設けず、初充電工程S2に続いてIV抵抗検査工程S5を行った比較例に比して、再充電工程S4後(IV抵抗検査前の3.43Vまで充電した後)の電池電圧Veの低下が小さくなる。このため、IV抵抗値Raの測定タイミングが時間T(2)から時間T(10)に8分間遅れたとしても、測定されるIV抵抗値Raは、あまり違わない値となったと考えられる。   Therefore, compared to after the initial charging step S2 of the comparative example, the diffusion of lithium ions from the facing portion 33a to the non-facing portion 33b after the recharging step S4 is suppressed, and the negative electrode potential increases accordingly. It is possible to prevent the battery voltage Ve from decreasing. Thus, as compared with the comparative example in which the discharge step S3 and the recharge step S4 are not provided and the IV resistance inspection step S5 is performed after the initial charge step S2, after the recharge step S4 (3.43V before the IV resistance inspection). (After charging up to), the decrease in the battery voltage Ve becomes small. Therefore, it is considered that even if the measurement timing of the IV resistance value Ra is delayed from the time T (2) to the time T (10) by 8 minutes, the measured IV resistance value Ra does not differ much.

また、実施例1に比べて実施例2で抵抗変化率Rhが大きくなったのは、以下の理由であると考えられる。即ち、実施例2の初充電工程S2における第1電池電圧V1=3.60Vは、実施例1の第1電池電圧V1=3.55Vよりも高く、IV抵抗検査工程S5前の第3電池電圧V3=3.43Vとの電圧差が、実施例2(3.60−3.43=0.17V)の方が、実施例1(3.55−3.43=0.12V)よりも大きい。このように第1電池電圧V1と第3電池電圧V3との電圧差が大きすぎると、第3電池電圧V3に調整した後の電池電圧Veの変化が大きくなる。このため、実施例2の方が実施例1よりも抵抗変化率Rhが大きくなったと考えられる。   The reason why the resistance change rate Rh was larger in Example 2 than in Example 1 is considered to be due to the following reason. That is, the first battery voltage V1 = 3.60V in the initial charging step S2 of the second embodiment is higher than the first battery voltage V1 = 3.55V of the first embodiment, and the third battery voltage before the IV resistance inspection step S5. The voltage difference with V3 = 3.43V is larger in Example 2 (3.60-3.43 = 0.17V) than in Example 1 (3.55-3.43 = 0.12V). .. In this way, when the voltage difference between the first battery voltage V1 and the third battery voltage V3 is too large, the change in the battery voltage Ve after adjusting to the third battery voltage V3 becomes large. Therefore, it is considered that the resistance change rate Rh in Example 2 was larger than that in Example 1.

また、実施例2に比べて実施例3で抵抗変化率Rhが小さくなったのは、以下の理由であると考えられる。即ち、実施例3の初充電工程S2における充電電流値=5Cは、実施例2の充電電流値=2.5Cよりも大きいため、初充電工程S2終了時に測定される電池電圧Veは、表1に示すように第1電池電圧V1=3.60Vで同じであっても、実際の電池電圧は、実施例3の方が実施例2よりも低くなっている。このため、IV抵抗検査工程S5前の第3電池電圧V3=3.43Vとの電圧差は、実施例3の方が実施例2よりも小さい。このように実施例3は実施例2ほど第1電池電圧V1と第3電池電圧V3との電圧差が大きすぎないので、第3電池電圧V3に調整した後の電池電圧Veの変化が小さくなる。その結果、実施例3の方が実施例2よりも抵抗変化率Rhが小さくなったと考えられる。   The reason why the resistance change rate Rh was smaller in Example 3 than in Example 2 is considered to be due to the following reasons. That is, since the charging current value = 5C in the initial charging step S2 of Example 3 is larger than the charging current value = 2.5C of Example 2, the battery voltage Ve measured at the end of the initial charging step S2 is shown in Table 1. As shown in, even if the first battery voltage V1 is equal to 3.60 V, the actual battery voltage is lower in the third embodiment than in the second embodiment. Therefore, the voltage difference between the third battery voltage V3 before the IV resistance inspection step S5 and 3.43 V is smaller in the third embodiment than in the second embodiment. As described above, in the third embodiment, since the voltage difference between the first battery voltage V1 and the third battery voltage V3 is not too large as in the second embodiment, the change in the battery voltage Ve after adjusting to the third battery voltage V3 is small. .. As a result, it is considered that the resistance change rate Rh of Example 3 was smaller than that of Example 2.

また、実施例3に比べて実施例4で抵抗変化率Rhが小さくなったのは、以下の理由であると考えられる。即ち、実施例4の初充電工程S2における第1電池電圧V1=3.55Vは、実施例3の第1電池電圧V1=3.60Vよりも低く、IV抵抗検査工程S5前の第3電池電圧V3=3.43Vとの電圧差が、実施例4(3.55−3.43=0.12V)の方が、実施例3(3.60−3.43=0.17V)よりも小さい。このように実施例4は第1電池電圧V1と第3電池電圧V3との電圧差が大きすぎないので、第3電池電圧V3に調整した後の電池電圧Veの変化が小さくなる。その結果、実施例4の方が実施例3よりも抵抗変化率Rhが小さくなったと考えられる。
これら実施例1〜4の結果から、第1電池電圧V1と第3電池電圧V3との電圧差が大きすぎると、抵抗変化率Rhが大きくなるため、第3電池電圧V3との電圧差を考慮して第1電池電圧V1の値を設定するのが好ましい。
The reason why the resistance change rate Rh was smaller in Example 4 than in Example 3 is considered to be as follows. That is, the first battery voltage V1 = 3.55V in the initial charging step S2 of the fourth embodiment is lower than the first battery voltage V1 = 3.60V of the third embodiment, and the third battery voltage before the IV resistance inspection step S5. The voltage difference with V3 = 3.43V is smaller in Example 4 (3.55-3.43 = 0.12V) than in Example 3 (3.60-3.43 = 0.17V). .. As described above, in the fourth embodiment, since the voltage difference between the first battery voltage V1 and the third battery voltage V3 is not too large, the change in the battery voltage Ve after adjusting to the third battery voltage V3 is small. As a result, it is considered that the resistance change rate Rh of Example 4 was smaller than that of Example 3.
From the results of Examples 1 to 4, when the voltage difference between the first battery voltage V1 and the third battery voltage V3 is too large, the resistance change rate Rh increases, so the voltage difference from the third battery voltage V3 is considered. Then, it is preferable to set the value of the first battery voltage V1.

一方、実施例1に比べて実施例4で抵抗変化率Rhが大きくなったのは、以下の理由であると考えられる。実施例4の放電工程S3における第2電池電圧V2=3.40Vは、実施例1の第2電池電圧V2=3.30Vよりも高く、IV抵抗検査工程S5前の第3電池電圧V3=3.43Vとの差が小さすぎる(0.03Vしかない)。このため、実施例4では、放電工程S3で一旦、電池電圧Veを低下させる効果が得られ難く、実施例4の方が実施例1よりも抵抗変化率Rhが大きくなったと考えられる。
実施例1,4の結果から、第2電池電圧V2と第3電池電圧V3との電圧差が小さすぎると、抵抗変化率Rhが大きくなるため、第3電池電圧V3との電圧差を考慮して第2電池電圧V2の値を設定するのが好ましい。
On the other hand, it is considered that the reason why the resistance change rate Rh was larger in Example 4 than in Example 1 is as follows. The second battery voltage V2 = 3.40V in the discharging step S3 of the fourth embodiment is higher than the second battery voltage V2 = 3.30V of the first embodiment, and the third battery voltage V3 = 3 before the IV resistance inspection step S5. The difference from 0.43V is too small (only 0.03V). Therefore, in Example 4, it is difficult to obtain the effect of once reducing the battery voltage Ve in the discharging step S3, and it is considered that the rate of resistance change Rh in Example 4 was larger than that in Example 1.
From the results of Examples 1 and 4, if the voltage difference between the second battery voltage V2 and the third battery voltage V3 is too small, the rate of change in resistance Rh increases, so the voltage difference from the third battery voltage V3 is taken into consideration. It is preferable to set the value of the second battery voltage V2.

以上で説明したように、電池1の製造方法では、初充電工程S2の後に、放電工程S3及び再充電工程S4を行ってから、IV抵抗検査工程S5を行う。このようにすることで、再充電工程S4後の電池電圧Veの低下が、初充電工程S2に続いてIV抵抗検査工程S5を行う場合(前述の比較例)における初充電工程S2後の電池電圧Veの低下に比べて小さくなる。このため、何らかの理由でIV抵抗値Raの測定タイミングが基準とするタイミングからズレたとしても、取得されるIV抵抗値Raの差を、初充電工程S2に続いてIV抵抗検査工程S5を行う場合(比較例)よりも小さくできる。従って、IV抵抗値Raの測定タイミングを厳密に管理する必要がなく、また、IV抵抗値Raを適切に測定できる。加えて、電池1の製造方法では、再充電工程S4後の電池電圧Veの低下が小さいため、電池電圧Veが安定するまで長時間にわたり電池1を放置する必要がない。従って、初充電工程S2の終了時からIV抵抗値Raを測定するまでの期間を短くできる。   As described above, in the manufacturing method of the battery 1, after the initial charging step S2, the discharging step S3 and the recharging step S4 are performed, and then the IV resistance inspection step S5 is performed. By doing so, the decrease in the battery voltage Ve after the recharging step S4 is caused by the battery voltage after the initial charging step S2 in the case where the IV resistance inspection step S5 is performed after the initial charging step S2 (the above-described comparative example). It becomes smaller than the decrease in Ve. For this reason, even if the measurement timing of the IV resistance value Ra deviates from the reference timing for some reason, the difference in the IV resistance values Ra obtained is subjected to the IV resistance inspection step S5 subsequent to the initial charging step S2. It can be made smaller than (Comparative example). Therefore, it is not necessary to strictly manage the measurement timing of the IV resistance value Ra, and the IV resistance value Ra can be appropriately measured. In addition, in the method of manufacturing the battery 1, since the decrease in the battery voltage Ve after the recharging step S4 is small, it is not necessary to leave the battery 1 for a long time until the battery voltage Ve becomes stable. Therefore, the period from the end of the initial charging step S2 to the measurement of the IV resistance value Ra can be shortened.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   Although the present invention has been described above according to the embodiments, it goes without saying that the present invention is not limited to the above-described embodiments and can be appropriately modified and applied without departing from the scope of the invention.

1 電池
10 電池ケース
20 電極体
21 正極板
23 正極活物質層
31 負極板
33 負極活物質層
33a (負極活物質層の)正対部
33b (負極活物質層の)非正対部
41 セパレータ
S1 組立工程
S2 初充電工程
S3 放電工程
S4 再充電工程
S5 IV抵抗検査工程
Ve 電池電圧
V1 第1電池電圧
V2 第2電池電圧
V3 第3電池電圧
Ra,Ra(2),Ra(10) IV抵抗値
DESCRIPTION OF SYMBOLS 1 Battery 10 Battery case 20 Electrode body 21 Positive electrode plate 23 Positive electrode active material layer 31 Negative electrode plate 33 Negative electrode active material layer 33a (Negative electrode active material layer) facing portion 33b (Negative electrode active material layer) non-facing portion 41 Separator S1 Assembly step S2 Initial charging step S3 Discharging step S4 Recharging step S5 IV resistance inspection step Ve Battery voltage V1 First battery voltage V2 Second battery voltage V3 Third battery voltage Ra, Ra (2), Ra (10) IV resistance value

Claims (1)

正極板及び負極板をセパレータを介して重ねた電極体と、上記電極体に含浸した電解液と、を備え、
上記負極板の負極活物質層は、上記正極板の正極活物質層に正対する正対部と、上記正極活物質層に正対しない非正対部と、を有する
電池の製造方法であって、
室温(25±5℃)下において、上記電池を第1電池電圧V1まで初充電する初充電工程と、
上記初充電工程に続いて、上記電池を第2電池電圧V2まで放電させる放電工程と、
上記放電工程に続いて室温(25±5℃)下において、上記電池を上記第1電池電圧V1よりも低い第3電池電圧V3(V2<V3<V1)まで再充電する再充電工程と、
上記再充電工程の後、上記電池のIV抵抗値Raを取得し、このIV抵抗値Raに基づいて、当該電池の良否を判定するIV抵抗検査工程と、を備える
電池の製造方法。
An electrode body in which a positive electrode plate and a negative electrode plate are stacked via a separator, and an electrolytic solution impregnated in the electrode body are provided,
The negative electrode active material layer of the negative electrode plate is a method for producing a battery, which includes a facing portion that faces the positive electrode active material layer of the positive electrode plate and a non-facing portion that does not face the positive electrode active material layer. ,
An initial charging step of initially charging the battery to a first battery voltage V1 at room temperature (25 ± 5 ° C.) ;
Following the initial charging step , a discharging step of discharging the battery to a second battery voltage V2,
Following the discharging step , a recharging step of recharging the battery to a third battery voltage V3 (V2 <V3 <V1) lower than the first battery voltage V1 at room temperature (25 ± 5 ° C.) ,
After the recharging step, the IV resistance value Ra of the battery is acquired, and an IV resistance inspection step of judging whether the battery is good or bad based on the IV resistance value Ra.
JP2016223305A 2016-11-16 2016-11-16 Battery manufacturing method Active JP6693393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016223305A JP6693393B2 (en) 2016-11-16 2016-11-16 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016223305A JP6693393B2 (en) 2016-11-16 2016-11-16 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2018081823A JP2018081823A (en) 2018-05-24
JP6693393B2 true JP6693393B2 (en) 2020-05-13

Family

ID=62197203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223305A Active JP6693393B2 (en) 2016-11-16 2016-11-16 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6693393B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997699B2 (en) * 2004-12-10 2012-08-08 新神戸電機株式会社 Lithium secondary battery
JP2011124055A (en) * 2009-12-10 2011-06-23 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP5719623B2 (en) * 2011-02-14 2015-05-20 株式会社日立製作所 Lithium ion battery recovery method and power supply system
JP2015220173A (en) * 2014-05-20 2015-12-07 トヨタ自動車株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2018081823A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6885236B2 (en) Short-circuit inspection method for power storage devices and manufacturing method for power storage devices
JP5464119B2 (en) Method for producing lithium ion secondary battery
JP5464117B2 (en) Method for producing lithium ion secondary battery
JP7074731B2 (en) Inspection method of power storage device and manufacturing method of power storage device
JP5974967B2 (en) Battery inspection method and battery manufacturing method
JP2014035958A (en) Battery manufacturing method and battery
JP5985280B2 (en) Inspection method for lithium ion secondary battery
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP6693393B2 (en) Battery manufacturing method
US20150140382A1 (en) Electric storage device and electric storage device module
JP6374193B2 (en) Self-discharge inspection method for non-aqueous electrolyte secondary battery
KR20180014763A (en) A method for determining an anode potential and / or a cathode potential in a battery cell
JP2014192015A (en) Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2018067498A (en) Method of manufacturing battery
JP7052697B2 (en) Manufacturing method of lithium ion secondary battery
JP7011782B2 (en) Secondary battery inspection method
JP7107649B2 (en) Battery manufacturing method
JP6058968B2 (en) Manufacturing method of secondary battery
JP2018092790A (en) Method for manufacturing lithium ion secondary battery
JP2017126539A (en) Method for manufacturing secondary battery
JP5880972B2 (en) Secondary battery inspection method
JP6743758B2 (en) Battery manufacturing method
JP2018055878A (en) Manufacturing method of battery
JP6996470B2 (en) Battery manufacturing method
JP2017199577A (en) Manufacturing method of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R151 Written notification of patent or utility model registration

Ref document number: 6693393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151