JP2018055878A - Manufacturing method of battery - Google Patents

Manufacturing method of battery Download PDF

Info

Publication number
JP2018055878A
JP2018055878A JP2016188163A JP2016188163A JP2018055878A JP 2018055878 A JP2018055878 A JP 2018055878A JP 2016188163 A JP2016188163 A JP 2016188163A JP 2016188163 A JP2016188163 A JP 2016188163A JP 2018055878 A JP2018055878 A JP 2018055878A
Authority
JP
Japan
Prior art keywords
battery
voltage
short circuit
internal short
adjustment step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016188163A
Other languages
Japanese (ja)
Inventor
極 小林
Kyoku Kobayashi
極 小林
嘉夫 松山
Yoshio Matsuyama
嘉夫 松山
勇矢 肥後
Yuya Higo
勇矢 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016188163A priority Critical patent/JP2018055878A/en
Publication of JP2018055878A publication Critical patent/JP2018055878A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a battery capable of shortening the time required for a short-circuiting detection step of detecting the presence/absence of internal short-circuiting in the battery.SOLUTION: A manufacturing method of a battery 1 includes a charge step S2, an aging step S3, a voltage regulation step S4 and a short-circuiting detection step S5. The battery 1 has a property that, when the battery is left in a terminal open state after the voltage regulation step S4, a battery voltage Ve gradually rises, achieves a peak after the lapse of a peak achievement time TP, and then gradually decreases. The short-circuiting detection step S5 is a step for detecting the presence/absence of internal short-circuiting in the battery 1 on the basis of a level of a voltage rising amount ΔV with a third battery voltage V3 defined as a reference after the lapse of (TP/40 to TP/15) from the end of the voltage regulation step S4 while leaving the battery 1 in the terminal open state.SELECTED DRAWING: Figure 3

Description

本発明は、電池に内部短絡が有るか否かを検知する短絡検知工程を備える電池の製造方法に関する。   The present invention relates to a battery manufacturing method including a short-circuit detection step for detecting whether or not an internal short circuit is present in a battery.

リチウムイオン二次電池などの電池の製造過程において、電池に内部短絡が生じているか否かの短絡検査を行うことが知られている。具体的には、電池を初充電し、高温下で放置してエージングした後、電池を強制的に放電させて電池電圧を所定の値に調整する。その後、短絡検知工程を行う。具体的には、電池を端子開放した状態で放電させ(自己放電させ)、電圧低下量ΔVpを求める。そして、この電圧低下量ΔVpが基準低下量ΔVqよりも大きい場合に(ΔVp>ΔVq)、その電池に内部短絡が生じていると判定する。例えば特許文献1に、電池の製造過程で内部短絡の有無の検査を行うことが開示されている(特許文献1の図2等を参照)。   In the process of manufacturing a battery such as a lithium ion secondary battery, it is known to perform a short circuit inspection to determine whether an internal short circuit has occurred in the battery. Specifically, after the battery is initially charged and left at high temperature for aging, the battery is forcibly discharged to adjust the battery voltage to a predetermined value. Then, a short circuit detection process is performed. Specifically, the battery is discharged with its terminals open (self-discharged), and the voltage drop amount ΔVp is obtained. When this voltage drop amount ΔVp is larger than the reference drop amount ΔVq (ΔVp> ΔVq), it is determined that an internal short circuit has occurred in the battery. For example, Patent Document 1 discloses that an inspection for the presence of an internal short circuit is performed in the battery manufacturing process (see FIG. 2 of Patent Document 1).

特開2014−134395号公報JP 2014-134395 A

しかしながら、電池電圧を下げて電池電圧を調整した直後には、電池電圧が自然上昇するため、上記のように電圧低下量ΔVpに基づいて内部短絡の有無を検知する場合には、電池電圧の上昇が収まるまで待機しなければならず、電池電圧の上昇が収まった後の電池電圧の減少から電圧低下量ΔVpを求めている。このため、自己放電を行う時間が長く掛かり、短絡検知工程に掛かる時間が長かった。   However, immediately after adjusting the battery voltage by lowering the battery voltage, the battery voltage naturally rises. Therefore, when detecting the presence or absence of an internal short circuit based on the voltage drop amount ΔVp as described above, the battery voltage rises. The voltage drop amount ΔVp is obtained from the decrease in the battery voltage after the increase in the battery voltage has stopped. For this reason, it took a long time to perform self-discharge, and a long time was required for the short-circuit detection process.

本発明は、かかる現状に鑑みてなされたものであって、電池に内部短絡が有るか否かを検知する短絡検知工程に掛かる時間を短くできる電池の製造方法を提供することを目的とする。   This invention is made | formed in view of this present condition, Comprising: It aims at providing the manufacturing method of the battery which can shorten the time concerning the short circuit detection process which detects whether the battery has an internal short circuit.

上記課題を解決するための本発明の一態様は、電池を初充電する充電工程と、上記充電工程の後、40〜85℃の温度下で上記電池を放置するエージング工程と、上記電池の電池電圧を、上記エージング工程直後の第1電池電圧V1よりも低い第2電池電圧V2に調整する電圧調整工程と、上記電圧調整工程の後、上記電池の内部短絡の有無を検知する短絡検知工程と、を備える電池の製造方法であって、上記電池は、上記電圧調整工程の後に端子開放した状態で放置したとき、電池電圧が、上記電圧調整工程の終了時から徐々に上昇して、上記終了時からピーク到達時間TP経過後にピークに達し、その後、徐々に低下する特性を有し、上記短絡検知工程は、上記電圧調整工程の後、端子開放した状態で上記電池を放置して、上記電圧調整工程の上記終了時から(TP/40〜TP/15)経過後の第3電池電圧V3を基準とした電圧上昇量ΔVの多寡に基づいて、上記電池の内部短絡の有無を検知する工程である電池の製造方法である。   One aspect of the present invention for solving the above problems includes a charging step of initially charging a battery, an aging step of leaving the battery at a temperature of 40 to 85 ° C. after the charging step, and a battery of the battery A voltage adjustment step of adjusting the voltage to a second battery voltage V2 lower than the first battery voltage V1 immediately after the aging step; and a short-circuit detection step of detecting the presence or absence of an internal short circuit of the battery after the voltage adjustment step; When the battery is left in a terminal open state after the voltage adjustment step, the battery voltage gradually rises from the end of the voltage adjustment step, and the end. It has a characteristic that it reaches a peak after elapse of the peak arrival time TP from time and then gradually decreases, and the short-circuit detection step leaves the battery in a state where the terminal is opened after the voltage adjustment step. Adjustment It is a step of detecting the presence or absence of an internal short circuit of the battery based on the amount of voltage increase ΔV with respect to the third battery voltage V3 after the lapse of (TP / 40 to TP / 15) from the end of the above. It is a manufacturing method of a battery.

上述の電池の製造方法では、電池電圧を下げる電圧調整工程後に行う短絡検知工程において、電圧調整工程の終了時から(TP/40〜TP/15)経過後の第3電池電圧V3を基準とした電圧上昇量ΔVの多寡に基づいて、電池に内部短絡が有るか否かを検知する。
本発明者が調査した結果、内部短絡が生じている電池では、上述の電圧上昇量ΔVが大きくなり、内部短絡の無い電池では、この電圧上昇量ΔVが小さくなることが判った。従って、電圧上昇量ΔVの多寡によって電池に内部短絡が有るか否かを検知できる。
しかも、従来は、電圧調整後の電池電圧の上昇が収まるのを待ってから電圧低下量ΔVpを測定していたのに対し、上述の電池の製造方法では、電圧調整後の電池電圧の上昇中に測定した電圧上昇量ΔVに基づいて内部短絡の有無を検知する。このため、短絡検知工程に掛かる時間を短くできる。
In the battery manufacturing method described above, the third battery voltage V3 after the lapse of (TP / 40 to TP / 15) from the end of the voltage adjustment process is used as a reference in the short-circuit detection process performed after the voltage adjustment process for reducing the battery voltage. Based on the amount of voltage increase ΔV, it is detected whether or not the battery has an internal short circuit.
As a result of investigation by the present inventor, it was found that the above-mentioned voltage increase ΔV is large in a battery in which an internal short circuit occurs, and the voltage increase ΔV is small in a battery without an internal short circuit. Therefore, it is possible to detect whether or not the battery has an internal short circuit based on the amount of voltage increase ΔV.
Moreover, conventionally, the voltage drop amount ΔVp is measured after waiting for the increase in the battery voltage after voltage adjustment to stop, whereas in the above-described battery manufacturing method, the battery voltage after voltage adjustment is increasing. The presence or absence of an internal short circuit is detected on the basis of the voltage increase amount ΔV measured. For this reason, the time required for the short circuit detection step can be shortened.

なお、「充電工程」では、例えばSOC60%に相当する電池電圧以上に電池を初充電するのが好ましい。この充電後の電池電圧の値が高いほど、その後のエージング工程で電池のエージングが進み易くなるからである。一方、充電後の電池電圧の値が高いほど、充電工程に掛かる時間が長くなる。従って、これらを考慮して充電工程における電池電圧の値を設定するのが好ましい。   In the “charging process”, for example, it is preferable to initially charge the battery at a voltage equal to or higher than the battery voltage corresponding to SOC 60%. This is because the higher the value of the battery voltage after charging, the easier the aging of the battery proceeds in the subsequent aging process. On the other hand, the higher the value of the battery voltage after charging, the longer the time taken for the charging process. Therefore, it is preferable to set the value of the battery voltage in the charging process in consideration of these.

「エージング工程」では、例えば8〜48hrにわたり電池を放置するエージングを行うのが好ましい。この放置時間は、充電工程における充電後の電池の電池電圧の値やエージング工程を行う温度などを考慮して設定するのが好ましい。また、エージング工程は、電池を端子開放した状態で行ってもよいし、電池に電源を接続し定電圧に維持した状態で行ってもよい。   In the “aging step”, for example, it is preferable to perform aging in which the battery is left for 8 to 48 hours. This standing time is preferably set in consideration of the value of the battery voltage of the battery after charging in the charging process, the temperature at which the aging process is performed, and the like. Moreover, the aging process may be performed in a state where the terminal of the battery is open, or may be performed in a state where a power source is connected to the battery and maintained at a constant voltage.

「電圧調整工程」では、放電のみを行って電池電圧を第1電池電圧V1から第2電池電圧V2まで調整する他、放電と充電を併用し最後に放電を行うことにより、電池電圧を第1電池電圧V1から第2電池電圧V2まで調整することもできる。例えば、第1電池電圧V1からこれより低い第5電池電圧V5まで強制放電させた後、第5電池電圧V5から、第2電池電圧V2より高い第6電池電圧V6まで充電する。その後、第6電池電圧V6から第2電池電圧V2まで強制放電させる手法が挙げられる。また、第2電池電圧V2は、例えばSOC10〜60%の範囲内のSOCに相当する電池電圧とするのが好ましい。   In the “voltage adjustment step”, only the discharge is performed to adjust the battery voltage from the first battery voltage V1 to the second battery voltage V2, and the battery voltage is changed to the first by discharging together with the discharge and finally discharging. It is also possible to adjust from the battery voltage V1 to the second battery voltage V2. For example, after forcibly discharging the first battery voltage V1 to the fifth battery voltage V5 lower than the first battery voltage V1, the battery is charged from the fifth battery voltage V5 to the sixth battery voltage V6 higher than the second battery voltage V2. Thereafter, a method of forcibly discharging from the sixth battery voltage V6 to the second battery voltage V2 can be mentioned. The second battery voltage V2 is preferably a battery voltage corresponding to an SOC within a range of 10 to 60% SOC, for example.

「短絡検知工程」において「電圧上昇量ΔVの多寡に基づいて、電池の内部短絡の有無を検知する」具体的な手法としては、例えば、検査した電池の電圧上昇量ΔVが、予め定めた基準上昇量ΔVrよりも大きい場合に(ΔV>ΔVr)、その電池に内部短絡が生じていると判定する方法が挙げられる。また、検査した電池の電圧上昇量ΔVを、例えばこの電池と同一製造ロットの複数の電池から求めた電圧上昇量ΔVの平均値や中央値と比較して、その電池に内部短絡が生じているか否かを判定する方法も挙げられる。   As a specific method of “detecting the presence or absence of an internal short circuit of the battery based on the amount of the voltage increase ΔV” in the “short circuit detection step”, for example, the voltage increase ΔV of the inspected battery is a predetermined standard. A method of determining that an internal short circuit has occurred in the battery when the amount of increase ΔVr is larger (ΔV> ΔVr) is mentioned. Also, whether the voltage increase ΔV of the inspected battery is compared with, for example, the average value or the median value of the voltage increase ΔV obtained from a plurality of batteries of the same production lot as this battery, and whether or not an internal short circuit has occurred in the battery. There is also a method of determining whether or not.

上記の電池の製造方法であって、前記電圧上昇量ΔVは、前記電圧調整工程の前記終了時から(TP/5〜TP)経過した時点での電圧上昇量である電池の製造方法とするのが好ましい。   In the battery manufacturing method described above, the voltage increase amount ΔV is a battery manufacturing method that is a voltage increase amount when (TP / 5 to TP) has elapsed since the end of the voltage adjustment step. Is preferred.

電圧上昇量ΔVは、電圧調整工程の終了時から、ある程度期間をとって測定するのが好ましい。一方、電圧調整工程の終了時からの期間が長すぎると、内部短絡を有する電池では、電池電圧が上昇してピークに達した後、電池電圧が大きく低下していく。このため、内部短絡を有する電池の電圧上昇量ΔVと、内部短絡の無い電池の電圧上昇量ΔVとの電圧差が小さくなりがちで、電圧上昇量ΔVに基づいて内部短絡の有無を検知し難くなる。
これに対し、上述の電池の製造方法では、電圧上昇量ΔVを、電圧調整工程の終了時から(TP/5〜TP)経過した時点での電圧上昇量としているので、電圧上昇量ΔVに基づいて、より確実に内部短絡が生じている電池を検知できる。
The voltage increase amount ΔV is preferably measured after a certain period from the end of the voltage adjustment step. On the other hand, if the period from the end of the voltage adjustment process is too long, in a battery having an internal short circuit, the battery voltage rises and reaches a peak, and then the battery voltage greatly decreases. For this reason, the voltage difference between the voltage increase amount ΔV of the battery having the internal short circuit and the voltage increase amount ΔV of the battery without the internal short circuit tends to be small, and it is difficult to detect the presence or absence of the internal short circuit based on the voltage increase amount ΔV. Become.
On the other hand, in the above-described battery manufacturing method, the voltage increase amount ΔV is the voltage increase amount when (TP / 5 to TP) has elapsed since the end of the voltage adjustment step. Thus, a battery in which an internal short circuit has occurred can be detected more reliably.

実施形態に係る電池の斜視図である。It is a perspective view of the battery which concerns on embodiment. 実施形態に係る電池の縦断面図である。It is a longitudinal cross-sectional view of the battery which concerns on embodiment. 実施形態に係る電池の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the battery which concerns on embodiment. 内部短絡が生じている不良品の電池の一例及び内部短絡の無い良品の平均的な電池について、電圧調整工程の終了時からの経過時間Taと電池電圧Veとの関係を示すグラフである。It is a graph which shows the relationship between the elapsed time Ta from the time of completion | finish of a voltage adjustment process, and the battery voltage Ve about an example of the defective battery in which the internal short circuit has arisen, and the non-defective average battery without an internal short circuit. 図4に示した不良品及び良品の各電池について、電圧調整工程の終了時からの経過時間Taと、電圧調整工程の終了時から3.25hr経過した時点を基準(=0mV)とした電圧変化量ΔVaとの関係を示すグラフである。For each of the defective and non-defective batteries shown in FIG. 4, the voltage change with reference to the elapsed time Ta from the end of the voltage adjustment process and 3.25 hr from the end of the voltage adjustment process as a reference (= 0 mV) It is a graph which shows the relationship with quantity (DELTA) Va. 図4に示した不良品及び良品の各電池について、電圧調整工程の終了時からの経過時間Taと、電圧調整工程の終了時から5.08hr経過した時点を基準(=0mV)とした電圧変化量ΔVbとの関係を示すグラフである。For each of the defective and non-defective batteries shown in FIG. 4, the voltage change based on the elapsed time Ta from the end of the voltage adjustment process and 5.08 hr from the end of the voltage adjustment process as a reference (= 0 mV) It is a graph which shows the relationship with quantity (DELTA) Vb. 図4に示した不良品及び良品の各電池について、電圧調整工程の終了時からの経過時間Taと、電圧調整工程の終了時から72.0hr経過した時点を基準(=0mV)とした電圧変化量ΔVcとの関係を示すグラフである。For each of the defective and non-defective batteries shown in FIG. 4, the voltage change with reference to the elapsed time Ta from the end of the voltage adjustment process and 72.0 hours after the end of the voltage adjustment process (= 0 mV) It is a graph which shows the relationship with quantity (DELTA) Vc.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係る電池1の斜視図及び縦断面図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、非水電解液19が収容されており、その一部は電極体20内に含浸されている。   Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a perspective view and a longitudinal sectional view of a battery 1 according to this embodiment. In the following description, the battery thickness direction BH, the battery lateral direction CH, and the battery vertical direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2. The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric car. The battery 1 includes a battery case 10, an electrode body 20 accommodated therein, a positive terminal member 50 and a negative terminal member 60 supported by the battery case 10, and the like. In addition, a non-aqueous electrolyte 19 is accommodated in the battery case 10, and a part thereof is impregnated in the electrode body 20.

このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。   Among these, the battery case 10 has a rectangular parallelepiped box shape and is made of metal (in this embodiment, aluminum). The battery case 10 is composed of a bottomed rectangular tube-shaped case main body member 11 that is open only on the upper side, and a rectangular plate-shaped case lid member 13 that is welded in a form that closes the opening of the case main body member 11. The A positive terminal member 50 made of aluminum is fixed to the case lid member 13 while being insulated from the case lid member 13. The positive electrode terminal member 50 is connected to the positive electrode plate 21 of the electrode body 20 in the battery case 10 to be conductive, and extends through the case lid member 13 to the outside of the battery. Further, a negative electrode terminal member 60 made of copper is fixed to the case lid member 13 while being insulated from the case lid member 13. The negative electrode terminal member 60 is connected to and conductive with the negative electrode plate 31 of the electrode body 20 in the battery case 10, and extends through the case lid member 13 to the outside of the battery.

電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体17が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状の一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質層を帯状に設けてなる。この正極活物質層は、正極活物質(本実施形態ではリチウム遷移金属複合酸化物)、導電材(本実施形態ではアセチレンブラック)及び結着剤(本実施形態ではポリフッ化ビニリデン)からなる。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質層を設けてなる。この負極活物質層は、負極活物質(本実施形態では黒鉛)、結着剤(本実施形態ではスチレンブタジエンゴム)及び増粘剤(本実施形態ではカルボシキメチルセルロース)からなる。また、セパレータ41は、樹脂からなる多孔質膜であり、帯状でフィルム状をなす。   The electrode body 20 has a flat shape and is accommodated in the battery case 10 in a laid-down state. Between the electrode body 20 and the battery case 10, a bag-shaped insulating film enclosure 17 made of an insulating film is disposed. The electrode body 20 is formed by laminating a belt-like positive electrode plate 21 and a belt-like negative electrode plate 31 with a pair of strip-like separators 41 and 41 wound around each other and compressed in a flat shape. The positive electrode plate 21 is provided with a positive electrode active material layer in a band shape at predetermined positions on both main surfaces of a positive electrode current collector foil made of a band-shaped aluminum foil. This positive electrode active material layer is composed of a positive electrode active material (lithium transition metal composite oxide in this embodiment), a conductive material (acetylene black in this embodiment), and a binder (polyvinylidene fluoride in this embodiment). Moreover, the negative electrode plate 31 is provided with a negative electrode active material layer at a predetermined position on both main surfaces of a negative electrode current collector foil made of a strip-shaped copper foil. This negative electrode active material layer is composed of a negative electrode active material (graphite in this embodiment), a binder (styrene butadiene rubber in this embodiment), and a thickener (carboxymethyl cellulose in this embodiment). The separator 41 is a porous film made of a resin and has a strip shape and a film shape.

次いで、上記電池1の製造方法について説明する(図3参照)。まず、「組立工程S1」において、電池1を組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。次に、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体17を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、非水電解液19を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、封止部材15で注液孔13hを封止する。   Next, a method for manufacturing the battery 1 will be described (see FIG. 3). First, in the “assembly process S1”, the battery 1 is assembled. Specifically, the positive electrode plate 21 and the negative electrode plate 31 are overlapped with each other via a pair of separators 41 and 41 and wound into a flat shape to form the electrode body 20. Next, the case lid member 13 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixed thereto (see FIGS. 1 and 2). Thereafter, the positive electrode terminal member 50 and the negative electrode terminal member 60 are welded to the positive electrode plate 21 and the negative electrode plate 31 of the electrode body 20, respectively. Next, the electrode body 20 is covered with the insulating film enclosure 17 and inserted into the case main body member 11, and the opening of the case main body member 11 is closed with the case lid member 13. The case body member 11 and the case lid member 13 are welded to form the battery case 10. Thereafter, the nonaqueous electrolytic solution 19 is injected into the battery case 10 through the injection hole 13 h and impregnated in the electrode body 20. Thereafter, the injection hole 13 h is sealed with the sealing member 15.

次に、「充電工程S2」を行うのに先立ち、電池1を拘束する。具体的には、電池ケース10の幅広な側面を一対の板状の押圧治具で電池厚み方向BHに挟んで、電池1を電池厚み方向BHに押圧した状態で拘束する。なお、本実施形態では、以下に説明する「充電工程S2」から「短絡検知工程S5」までを、このように電池1を拘束した状態で行う。
電池1を拘束した後、「充電工程S2」において、この電池1に初充電を行う。具体的には、電池1に充放電装置を接続して、室温(25±5℃)下において、定電流定電圧(CCCV)充電により、電池電圧Ve=4.1V(SOC100%)まで初充電する。本実施形態では、1Cの定電流で電池電圧Veが4.1Vになるまで充電した後、充電電流値が1.0Aになるまでこの電池電圧Ve=4.1Vを維持した。
Next, the battery 1 is restrained prior to performing the “charging step S2”. Specifically, the wide side surface of the battery case 10 is sandwiched in the battery thickness direction BH by a pair of plate-shaped pressing jigs, and the battery 1 is restrained while being pressed in the battery thickness direction BH. In the present embodiment, the “charging process S2” to the “short circuit detecting process S5” described below are performed in a state where the battery 1 is restrained in this manner.
After the battery 1 is restrained, the battery 1 is initially charged in “charging step S2”. Specifically, a charging / discharging device is connected to the battery 1 and the battery is initially charged to a voltage Ve = 4.1 V (SOC 100%) by constant current and constant voltage (CCCV) charging at room temperature (25 ± 5 ° C.). To do. In the present embodiment, the battery voltage Ve is maintained at 4.1 V until the battery voltage Ve reaches 4.1 V with a constant current of 1 C until the battery voltage Ve reaches 1.0 A.

次に、「エージング工程S3」において、電池1を高温下で放置してエージングする。具体的には、初充電後の電池1を40〜85℃の温度(本実施形態では63℃)下において、端子開放した状態で、20hrにわたって放置してエージングする。このエージング工程S3を行うと、電池電圧Veがごく僅か低下する(SOCが下がる)。本実施形態では、エージング工程S3直後の電池電圧Ve(第1電池電圧V1)は、約4.1V(SOCは約99%)である。   Next, in the “aging step S3”, the battery 1 is left at high temperature for aging. Specifically, the battery 1 after initial charging is aged by leaving it open for 20 hours at a temperature of 40 to 85 ° C. (63 ° C. in this embodiment) with the terminals open. If this aging process S3 is performed, the battery voltage Ve will fall very slightly (SOC will fall). In the present embodiment, the battery voltage Ve (first battery voltage V1) immediately after the aging step S3 is about 4.1 V (SOC is about 99%).

次に、「電圧調整工程S4」において、電池1の電池電圧Veを、エージング工程S3直後の第1電池電圧V1(本実施形態では、約4.1V)よりも低い第2電池電圧V2(本実施形態では、2.8V)に調整する。具体的には、電池1に充放電装置を接続して、室温(25±5℃)下において、定電流定電圧(CCCV)放電により、第1電池電圧V1=約4.1Vから第2電池電圧V2=2.8Vまで強制的に放電させる。本実施形態では、1Cの定電流で電池電圧Veが2.8Vになるまで放電させた後、放電電流値が1.0Aになるまでこの電池電圧Ve=2.8Vを維持した。   Next, in the “voltage adjustment step S4”, the battery voltage Ve of the battery 1 is set to a second battery voltage V2 (mainly lower than the first battery voltage V1 immediately after the aging step S3 (about 4.1 V in this embodiment)). In the embodiment, it is adjusted to 2.8V). Specifically, a charging / discharging device is connected to the battery 1, and the first battery voltage V1 = about 4.1V is discharged from the first battery voltage V1 = about 4.1V by constant current constant voltage (CCCV) discharge at room temperature (25 ± 5 ° C.) The battery is forcibly discharged to a voltage V2 = 2.8V. In the present embodiment, the battery voltage Ve was maintained at 2.8V until the discharge current value reached 1.0 A after discharging at a constant current of 1 C until the battery voltage Ve reached 2.8V.

続いて、「短絡検知工程S5」において、端子開放した状態で電池1を放置して(自己放電させて)、電圧上昇量ΔVを取得し、当該電池1の内部短絡の有無を検知する。
前述のように、電池電圧を下げる電圧調整工程S4の後に電池1を端子開放した状態で放置したとき、電池電圧Veは、電圧調整工程S4の終了時から徐々に上昇してピークに達した後、徐々に低下していく(図4参照)。なお、図4は、内部短絡が生じている電池1の一例、及び、内部短絡の無い平均的な電池1について、電圧調整工程S4の終了時からの経過時間Ta(hr)と電池電圧Ve(V)との関係を示している。電圧調整工程S4の終了時から電池電圧Veがピークに達するまでの時間(ピーク到達時間)TPは、内部短絡の無い良品の電池1では、平均してTP=93.3hrである。
Subsequently, in the “short circuit detection step S5”, the battery 1 is left with the terminals opened (self-discharged), the voltage increase amount ΔV is acquired, and the presence or absence of the internal short circuit of the battery 1 is detected.
As described above, when the battery 1 is left with the terminal open after the voltage adjustment step S4 for reducing the battery voltage, the battery voltage Ve gradually increases from the end of the voltage adjustment step S4 and reaches a peak. It gradually decreases (see FIG. 4). FIG. 4 shows an example of the battery 1 in which an internal short circuit has occurred and an average battery 1 without an internal short circuit, the elapsed time Ta (hr) from the end of the voltage adjustment step S4 and the battery voltage Ve ( V). The time (peak arrival time) TP from the end of the voltage adjustment step S4 until the battery voltage Ve reaches a peak is TP = 93.3 hr on average in the non-defective battery 1 without an internal short circuit.

短絡検知工程S5では、電圧調整工程S4の後、端子開放した状態で電池1を放置して、電圧調整工程S4の終了時から(TP/40〜TP/15:本実施形態では、2.33〜6.22hr)経過後に第3電池電圧V3を、電圧調整工程S4の終了時から(TP/5〜TP:本実施形態では、18.7〜93.3hr)経過後に第4電池電圧V4をそれぞれ測定する(図5参照)。   In the short-circuit detection step S5, after the voltage adjustment step S4, the battery 1 is left in a state where the terminals are opened, and from the end of the voltage adjustment step S4 (TP / 40 to TP / 15: 2.33 in the present embodiment). The third battery voltage V3 is set to the third battery voltage V4 after the lapse of the voltage adjustment step S4 (TP / 5 to TP: 18.7 to 93.3 hours in this embodiment) after the lapse of .about.6.22 hr). Each is measured (see FIG. 5).

具体的には、電池1を20℃の環境下で端子開放した状態で放置して、図5に示すように、電圧調整工程S4の終了時から3.25hr経過後に第3電池電圧V3を測定し、電圧調整工程S4の終了時から48.0hr経過後に第4電池電圧V4を測定した。そして、当該電池1の電圧上昇量ΔV=V4−V3を算出した。なお、図5は、図4で示した不良品及び良品の各電池について、電圧調整工程S4の終了時からの経過時間Ta(hr)と、電圧調整工程S4の終了時から3.25hr経過した時点を基準(=0mV)とした電圧変化量ΔVa(mV)との関係を示す。   Specifically, the battery 1 is left with the terminals open in an environment of 20 ° C., and the third battery voltage V3 is measured after 3.25 hours from the end of the voltage adjustment step S4 as shown in FIG. The fourth battery voltage V4 was measured after 48.0 hours had elapsed from the end of the voltage adjustment step S4. And the voltage increase amount (DELTA) V = V4-V3 of the said battery 1 was computed. In FIG. 5, for each of the defective and non-defective batteries shown in FIG. 4, the elapsed time Ta (hr) from the end of the voltage adjustment step S4 and 3.25 hours have elapsed from the end of the voltage adjustment step S4. The relationship with the voltage change amount ΔVa (mV) with the time point as the reference (= 0 mV) is shown.

そして、取得した当該電池1の電圧上昇量ΔVを、予め定めた基準上昇量ΔVr(本実施形態では、ΔVr=25.4mV)と比較し、電圧上昇量ΔVが基準上昇量ΔVrよりも大きい場合(ΔV>ΔVr)に、当該電池1に内部短絡が生じている不良品と判定し、その電池1を除去する。例えば内部短絡が生じている電池1では、図5に示すように、電圧上昇量ΔV=26.6mVであり、ΔV>ΔVrであるため、不良品と判定される。
一方、当該電池1の電圧上昇量ΔVが基準上昇量ΔVrよりも小さい場合(ΔV≦ΔVr)には、当該電池1を内部短絡の無い良品と判定する。良品の平均的な電池1では、図5に示すように、電圧上昇量ΔV=24.3mVであり、ΔV≦ΔVrであるため、良品と判定される。
短絡検知工程S5を終えた後は、電池1を拘束している拘束治具を取り外し、電池1の拘束状体を解除する。かくして、電池1が完成する。
Then, the obtained voltage increase amount ΔV of the battery 1 is compared with a predetermined reference increase amount ΔVr (in this embodiment, ΔVr = 25.4 mV), and the voltage increase amount ΔV is larger than the reference increase amount ΔVr. When (ΔV> ΔVr), the battery 1 is determined as a defective product in which an internal short circuit has occurred, and the battery 1 is removed. For example, in the battery 1 in which an internal short circuit occurs, as shown in FIG. 5, the voltage increase amount ΔV = 26.6 mV and ΔV> ΔVr, and therefore, it is determined as a defective product.
On the other hand, when the voltage increase amount ΔV of the battery 1 is smaller than the reference increase amount ΔVr (ΔV ≦ ΔVr), the battery 1 is determined to be a good product without an internal short circuit. As shown in FIG. 5, the average battery 1 of the non-defective product is determined as non-defective because the voltage increase amount ΔV = 24.3 mV and ΔV ≦ ΔVr.
After finishing short circuit detection process S5, the restraining jig | tool which restrains the battery 1 is removed, and the restraint-like body of the battery 1 is cancelled | released. Thus, the battery 1 is completed.

ここで、本実施形態では、前述のように、短絡検知工程S5において、電池電圧Veの上昇中に第3電池電圧V3及び第4電池電圧V4を測定して電圧上昇量ΔVを求め、この電圧上昇量ΔVの多寡に基づいて電池1の内部短絡の有無を検知した。
これに対し、比較例として(図7参照)、短絡検知工程S5において、電池電圧Veが上昇してピークに達した後に徐々に低下する過程において、第7電池電圧V7及び第8電池電圧V8を測定して、電圧低下量ΔVp=V7−V8を求め、この電圧低下量ΔVpの多寡に基づいて電池1の内部短絡の有無を検知する場合を説明する。なお、図7は、図4で示した不良品及び良品の各電池について、電圧調整工程S4の終了時からの経過時間Ta(hr)と、電圧調整工程S4の終了時から3.0日(72.0hr)経過した時点を基準(=0mV)とした電圧変化量ΔVc(mV)との関係を示す。
Here, in the present embodiment, as described above, in the short circuit detection step S5, the third battery voltage V3 and the fourth battery voltage V4 are measured while the battery voltage Ve is increasing to obtain the voltage increase amount ΔV, and this voltage The presence or absence of an internal short circuit of the battery 1 was detected based on the amount of increase ΔV.
On the other hand, as a comparative example (see FIG. 7), in the short-circuit detection step S5, in the process in which the battery voltage Ve rises and reaches a peak, the seventh battery voltage V7 and the eighth battery voltage V8 are gradually reduced. A case where the voltage drop amount ΔVp = V7−V8 is obtained by measurement and the presence or absence of an internal short circuit of the battery 1 is detected based on the amount of the voltage drop amount ΔVp will be described. FIG. 7 shows an elapsed time Ta (hr) from the end of the voltage adjustment step S4 and 3.0 days from the end of the voltage adjustment step S4 for each of the defective and non-defective batteries shown in FIG. 72.0 hr) shows the relationship with the voltage change amount ΔVc (mV) with the elapsed time as a reference (= 0 mV).

この比較例では、電圧調整工程S4の終了時から3.0日(72hr)経過後に第7電池電圧V7を、電圧調整工程S4の終了時から10.0日(240hr)経過後に第8電池電圧V8を測定して、電圧低下量ΔVp=V7−V8を算出する。
そして、取得した当該電池1の電圧低下量ΔVpが、予め定めた基準低下量ΔVq(本比較例では、ΔVq=1.4mV)よりも大きい場合(ΔVp>ΔVq)に、当該電池1に内部短絡が生じている不良品と判定する。例えば内部短絡が生じている電池1では、電圧低下量ΔVp=2.2mV(図7においては、電圧変化量ΔVc=−2.2mV)であり、ΔVp>ΔVqであるため、不良品と判定される。
一方、当該電池1の電圧低下量ΔVpが基準低下量ΔVqよりも小さい場合(ΔVp≦ΔVq)には、当該電池1を内部短絡の無い良品と判定する。良品の平均的な電池1では、電圧低下量ΔVp=0.6mV(図7においては、電圧変化量ΔVc=−0.6mV)であり、ΔVp≦ΔVrであるため、良品と判定される。
In this comparative example, the seventh battery voltage V7 is passed after 3.0 days (72 hours) from the end of the voltage adjustment step S4, and the eighth battery voltage is passed after 10.0 days (240 hours) from the end of the voltage adjustment step S4. V8 is measured, and a voltage drop amount ΔVp = V7−V8 is calculated.
When the acquired voltage drop amount ΔVp of the battery 1 is larger than a predetermined reference drop amount ΔVq (ΔVq = 1.4 mV in this comparative example) (ΔVp> ΔVq), the battery 1 is internally short-circuited. It is determined that the product is defective. For example, in the battery 1 in which an internal short circuit has occurred, the voltage drop amount ΔVp = 2.2 mV (in FIG. 7, the voltage change amount ΔVc = −2.2 mV) and ΔVp> ΔVq, and therefore, it is determined as a defective product. The
On the other hand, when the voltage drop amount ΔVp of the battery 1 is smaller than the reference drop amount ΔVq (ΔVp ≦ ΔVq), the battery 1 is determined to be a good product without an internal short circuit. In the non-defective battery 1, the voltage drop amount ΔVp = 0.6 mV (in FIG. 7, the voltage change amount ΔVc = −0.6 mV) and ΔVp ≦ ΔVr.

このように、短絡検知工程S5で電圧低下量ΔVpを取得することによっても、電池1の内部短絡の有無を検知できる。但し、この比較例では、第7電池電圧V7及び第8電池電圧V8を測定して電圧低下量ΔVpを取得するために、電圧調整工程S4の終了時から10日(240hr)も必要であり、短絡検知工程S5が長くなる。
これに対し、上記実施形態では、第3電池電圧V3及び第4電池電圧V4を測定して電圧上昇量ΔVを取得するのに、電圧調整工程S4の終了時から2日(48.0hr)で足りる。従って、上記実施形態では、比較例に比べて、短絡検知工程S5に掛かる時間を大幅に短くできることが判る。
Thus, the presence or absence of the internal short circuit of the battery 1 can also be detected by acquiring the voltage drop amount ΔVp in the short circuit detection step S5. However, in this comparative example, in order to measure the seventh battery voltage V7 and the eighth battery voltage V8 and obtain the voltage drop amount ΔVp, 10 days (240 hours) from the end of the voltage adjustment step S4 are necessary, Short circuit detection process S5 becomes long.
On the other hand, in the above embodiment, the third battery voltage V3 and the fourth battery voltage V4 are measured and the voltage increase amount ΔV is acquired in two days (48.0 hr) from the end of the voltage adjustment step S4. It ’s enough. Therefore, in the said embodiment, it turns out that the time concerning short circuit detection process S5 can be shortened significantly compared with a comparative example.

加えて、この比較例では、内部短絡が生じている電池1で電圧低下量ΔVp=2.2mVであり、良品の平均的な電池1で電圧低下量ΔVp=0.6mVであるため、良品の電池1と不良品の電池1との電圧差が、2.2−0.6=1.6mVである(図7参照)。
これに対し、上記実施形態では、内部短絡が生じている電池1で電圧上昇量ΔV=26.6mVであり、良品の平均的な電池1で電圧上昇量ΔV=24.3mVであるため、良品の電池1と不良品の電池1との電圧差が、26.6−24.3=2.3mVもある(図5参照)。従って、上記実施形態では、比較例に比べて、より確実に内部短絡が生じている不良品の電池1を検知できることも判る。
In addition, in this comparative example, the voltage drop ΔVp = 2.2 mV in the battery 1 in which the internal short circuit occurs, and the voltage drop ΔVp = 0.6 mV in the non-defective battery 1, The voltage difference between the battery 1 and the defective battery 1 is 2.2−0.6 = 1.6 mV (see FIG. 7).
On the other hand, in the above embodiment, the voltage increase ΔV = 26.6 mV in the battery 1 in which the internal short circuit occurs, and the voltage increase ΔV = 24.3 mV in the non-defective battery 1. The voltage difference between the battery 1 and the defective battery 1 is 26.6 to 24.3 = 2.3 mV (see FIG. 5). Therefore, in the said embodiment, it turns out that the defective battery 1 which the internal short circuit has produced can be detected more reliably compared with the comparative example.

なお、上記実施形態の短絡検知工程S5では、前述のように、電圧調整工程S4の終了時から3.25hr経過後に第3電池電圧V3を測定したが、第3電池電圧V3の測定タイミングは、電圧調整工程S4の終了時から(TP/40〜TP/15:本実施形態では、2.33〜6.22hr)の範囲内で適宜変更できる。また、第4電池電圧V4の測定タイミングは、電圧調整工程S4の終了時から(TP/5〜TP:本実施形態では、18.7〜93.3hr)の範囲内で適宜変更できる。   In the short circuit detection step S5 of the above embodiment, as described above, the third battery voltage V3 is measured after 3.25 hours from the end of the voltage adjustment step S4. However, the measurement timing of the third battery voltage V3 is: It can be appropriately changed within the range of (TP / 40 to TP / 15: 2.33 to 6.22 hr in this embodiment) from the end of the voltage adjustment step S4. Further, the measurement timing of the fourth battery voltage V4 can be appropriately changed within the range of (TP / 5 to TP: 18.7 to 93.3 hr in the present embodiment) from the end of the voltage adjustment step S4.

図6に、図4で示した不良品及び良品の各電池について、電圧調整工程S4の終了時からの経過時間Ta(hr)と、電圧調整工程S4の終了時から5.08hr経過した時点を基準(=0mV)とした電圧変化量ΔVb(mV)との関係を示す。第3電池電圧V3の測定タイミングを、電圧調整工程S4の終了時から5.08hr経過後とし、第4電池電圧V4の測定タイミングを、電圧調整工程S4の終了時から48.0hr経過後とした場合、基準上昇量ΔVrは、例えばΔVr=14.6mVに設定する。   FIG. 6 shows the elapsed time Ta (hr) from the end of the voltage adjustment step S4 and the time point when 5.08 hr has elapsed from the end of the voltage adjustment step S4 for each of the defective and non-defective batteries shown in FIG. A relationship with a voltage change amount ΔVb (mV) as a reference (= 0 mV) is shown. The measurement timing of the third battery voltage V3 is set after 5.08 hr from the end of the voltage adjustment step S4, and the measurement timing of the fourth battery voltage V4 is set after 48.0 hr after the end of the voltage adjustment step S4. In this case, the reference increase amount ΔVr is set to ΔVr = 14.6 mV, for example.

そして、取得した当該電池1の電圧上昇量ΔVがこの基準上昇量ΔVrよりも大きい場合(ΔV>ΔVr)に、当該電池1を内部短絡が生じている不良品と判定する。例えば内部短絡が生じている電池1では、図6に示すように、電圧上昇量ΔV=14.9mVであり、ΔV>ΔVrであるため、不良品と判定される。
一方、電圧上昇量ΔVがこの基準上昇量ΔVrよりも小さい場合(ΔV≦ΔVr)には、当該電池1を内部短絡の無い良品と判定する。良品の平均的な電池1では、図6に示すように、電圧上昇量ΔV=14.3mVであり、ΔV≦ΔVrであるため、良品と判定される。
When the acquired voltage increase amount ΔV of the battery 1 is larger than the reference increase amount ΔVr (ΔV> ΔVr), the battery 1 is determined as a defective product in which an internal short circuit has occurred. For example, in the battery 1 in which an internal short circuit has occurred, as shown in FIG. 6, the voltage increase amount ΔV = 14.9 mV and ΔV> ΔVr, and therefore, it is determined as a defective product.
On the other hand, when the voltage increase amount ΔV is smaller than the reference increase amount ΔVr (ΔV ≦ ΔVr), the battery 1 is determined to be a good product without an internal short circuit. As shown in FIG. 6, the average battery 1 of the non-defective product is determined as non-defective because the voltage increase ΔV = 14.3 mV and ΔV ≦ ΔVr.

以上で説明したように、電池1の製造方法では、電池電圧を下げる電圧調整工程S4後に行う短絡検知工程S5において、電圧調整工程S4の終了時から(TP/40〜TP/15)経過後の第3電池電圧V3を基準とした電圧上昇量ΔVの多寡に基づいて、電池1に内部短絡が有るか否かを検知する。前述のように、内部短絡が生じている電池1では、前述のように電圧上昇量ΔVが大きくなり、内部短絡の無い電池1では、この電圧上昇量ΔVが小さくなる。従って、電圧上昇量ΔVの多寡によって電池1に内部短絡が有るか否かを検知できる。
しかも、従来は、電圧調整後の電池電圧Veの上昇が収まるのを待ってから電圧低下量ΔVpを測定していたのに対し、電池1の製造方法では、電圧調整後の電池電圧Veの上昇中に測定した電圧上昇量ΔVに基づいて内部短絡の有無を検知する。このため、短絡検知工程S5に掛かる時間を短くできる。
As described above, in the manufacturing method of the battery 1, in the short circuit detection step S5 performed after the voltage adjustment step S4 for reducing the battery voltage, (TP / 40 to TP / 15) after the end of the voltage adjustment step S4. Whether or not the battery 1 has an internal short circuit is detected based on the amount of voltage increase ΔV with respect to the third battery voltage V3. As described above, in the battery 1 in which the internal short circuit occurs, the voltage increase amount ΔV is large as described above, and in the battery 1 without the internal short circuit, the voltage increase amount ΔV is small. Therefore, whether or not the battery 1 has an internal short circuit can be detected based on the amount of voltage increase ΔV.
Moreover, in the past, the voltage drop amount ΔVp was measured after waiting for the increase in the battery voltage Ve after voltage adjustment to stop, whereas in the manufacturing method of the battery 1, the increase in the battery voltage Ve after voltage adjustment was measured. The presence / absence of an internal short circuit is detected based on the voltage increase amount ΔV measured in the inside. For this reason, the time required for the short circuit detection step S5 can be shortened.

更に、電池1の製造方法では、電圧上昇量ΔVを、電圧調整工程S4の終了時から(TP/5〜TP)経過した時点での電圧上昇量としている。電圧上昇量ΔVは、電圧調整工程S4の終了時から、ある程度期間をとって測定するのが好ましい。一方、電圧調整工程S4の終了時からの期間が長すぎると、内部短絡を有する電池1では、電池電圧Veが上昇してピークに達した後、電池電圧Veが大きく低下していく。このため、内部短絡を有する電池1の電圧上昇量ΔVと、内部短絡の無い電池1の電圧上昇量ΔVとの電圧差が小さくなりがちで、電圧上昇量ΔVに基づいて内部短絡の有無を検知し難くなる。これに対し、電池1の製造方法では、電圧上昇量ΔVを、電圧調整工程S4の終了時から(TP/5〜TP)経過した時点での電圧上昇量としているので、電圧上昇量ΔVに基づいて、より確実に内部短絡が生じている電池1を検知できる。   Furthermore, in the manufacturing method of the battery 1, the voltage increase amount ΔV is the voltage increase amount when (TP / 5 to TP) has elapsed from the end of the voltage adjustment step S4. The voltage increase amount ΔV is preferably measured after taking a certain period of time from the end of the voltage adjustment step S4. On the other hand, if the period from the end of the voltage adjustment step S4 is too long, in the battery 1 having the internal short circuit, after the battery voltage Ve rises and reaches a peak, the battery voltage Ve greatly decreases. For this reason, the voltage difference between the voltage increase amount ΔV of the battery 1 having an internal short circuit and the voltage increase amount ΔV of the battery 1 having no internal short circuit tends to be small, and the presence or absence of the internal short circuit is detected based on the voltage increase amount ΔV. It becomes difficult to do. On the other hand, in the manufacturing method of the battery 1, since the voltage increase amount ΔV is the voltage increase amount when (TP / 5 to TP) has elapsed from the end of the voltage adjustment step S4, it is based on the voltage increase amount ΔV. Thus, the battery 1 in which an internal short circuit has occurred can be detected more reliably.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、検査した電池1の電圧上昇量ΔVが、予め定めた基準上昇量ΔVrよりも大きい場合に(ΔV>ΔVr)、その電池1に内部短絡が生じていると判定したが、これに限られない。例えば、同じ製造ロットの電池群から電圧上昇量ΔVの平均値Δmを求め、更に、検査した電池1の電圧上昇量ΔVと平均値Δmとの電圧差であるΔV−Δmを求める。そして、この電圧差(ΔV−Δm)が、予め定めた基準電圧差ΔVsよりも大きい場合に(ΔV−Δm>ΔVs)、その電池1に内部短絡が生じていると判定することもできる。
また、実施形態では、充電工程S2から短絡検知工程S5までを、電池1を拘束した状態で行ったが、これらの工程S2〜S5を電池1を拘束することなく行うこともできる。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, when the voltage increase amount ΔV of the inspected battery 1 is larger than a predetermined reference increase amount ΔVr (ΔV> ΔVr), it is determined that an internal short circuit has occurred in the battery 1, It is not limited to this. For example, an average value Δm of the voltage increase amount ΔV is obtained from the battery group of the same production lot, and further, ΔV−Δm, which is a voltage difference between the voltage increase amount ΔV of the inspected battery 1 and the average value Δm, is obtained. When this voltage difference (ΔV−Δm) is larger than a predetermined reference voltage difference ΔVs (ΔV−Δm> ΔVs), it can be determined that an internal short circuit has occurred in the battery 1.
Moreover, in embodiment, although charging process S2 to short circuit detection process S5 was performed in the state which restrained the battery 1, these processes S2-S5 can also be performed without restraining the battery 1. FIG.

1 電池
S1 組立工程
S2 充電工程
S3 エージング工程
S4 電圧調整工程
S5 短絡検知工程
Ta 経過時間
TP ピーク到達時間
Ve 電池電圧
V1 第1電池電圧
V2 第2電池電圧
V3 第3電池電圧
V4 第4電池電圧
ΔV 電圧上昇量
ΔVr 基準上昇量
DESCRIPTION OF SYMBOLS 1 Battery S1 Assembly process S2 Charging process S3 Aging process S4 Voltage adjustment process S5 Short circuit detection process Ta Elapsed time TP Peak arrival time Ve Battery voltage V1 1st battery voltage V2 2nd battery voltage V3 3rd battery voltage V4 4th battery voltage (DELTA) V Voltage increase ΔVr Reference increase

Claims (1)

電池を初充電する充電工程と、
上記充電工程の後、40〜85℃の温度下で上記電池を放置するエージング工程と、
上記電池の電池電圧を、上記エージング工程直後の第1電池電圧V1よりも低い第2電池電圧V2に調整する電圧調整工程と、
上記電圧調整工程の後、上記電池の内部短絡の有無を検知する短絡検知工程と、を備える
電池の製造方法であって、
上記電池は、
上記電圧調整工程の後に端子開放した状態で放置したとき、電池電圧が、上記電圧調整工程の終了時から徐々に上昇して、上記終了時からピーク到達時間TP経過後にピークに達し、その後、徐々に低下する特性を有し、
上記短絡検知工程は、
上記電圧調整工程の後、端子開放した状態で上記電池を放置して、上記電圧調整工程の上記終了時から(TP/40〜TP/15)経過後の第3電池電圧V3を基準とした電圧上昇量ΔVの多寡に基づいて、上記電池の内部短絡の有無を検知する工程である
電池の製造方法。
A charging process for charging the battery for the first time;
After the charging step, an aging step of leaving the battery at a temperature of 40 to 85 ° C;
A voltage adjustment step of adjusting the battery voltage of the battery to a second battery voltage V2 lower than the first battery voltage V1 immediately after the aging step;
After the voltage adjustment step, a short circuit detection step for detecting the presence or absence of an internal short circuit of the battery, and a battery manufacturing method comprising:
The battery
When the battery is left open after the voltage adjustment step, the battery voltage gradually increases from the end of the voltage adjustment step, reaches a peak after the peak arrival time TP from the end, and then gradually. Has the property of deteriorating,
The short circuit detection step
After the voltage adjustment step, the battery is left with the terminals open, and a voltage based on the third battery voltage V3 after (TP / 40 to TP / 15) has elapsed since the end of the voltage adjustment step. A battery manufacturing method, which is a step of detecting the presence or absence of an internal short circuit of the battery based on the amount of increase ΔV.
JP2016188163A 2016-09-27 2016-09-27 Manufacturing method of battery Pending JP2018055878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016188163A JP2018055878A (en) 2016-09-27 2016-09-27 Manufacturing method of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016188163A JP2018055878A (en) 2016-09-27 2016-09-27 Manufacturing method of battery

Publications (1)

Publication Number Publication Date
JP2018055878A true JP2018055878A (en) 2018-04-05

Family

ID=61836944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016188163A Pending JP2018055878A (en) 2016-09-27 2016-09-27 Manufacturing method of battery

Country Status (1)

Country Link
JP (1) JP2018055878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918948A (en) * 2018-06-25 2018-11-30 清华大学 The extracting method of raw electric current in power battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918948A (en) * 2018-06-25 2018-11-30 清华大学 The extracting method of raw electric current in power battery
CN108918948B (en) * 2018-06-25 2020-02-07 清华大学 Method for extracting generated current in power battery

Similar Documents

Publication Publication Date Title
US10656212B2 (en) Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
JP5464119B2 (en) Method for producing lithium ion secondary battery
JP5464116B2 (en) Method for producing lithium ion secondary battery
JP5172579B2 (en) Cylindrical battery inspection method
US9091733B2 (en) Method of inspecting secondary battery
JP5464118B2 (en) Method for producing lithium ion secondary battery
JP2009145137A (en) Inspection method of secondary battery
JP5464117B2 (en) Method for producing lithium ion secondary battery
JP4529364B2 (en) Cylindrical battery inspection method
JP2014006205A (en) Secondary battery inspection method
JP2017106867A (en) Manufacturing method for secondary batteries
JP2015122169A (en) Method of inspecting all-solid battery
JP4233073B2 (en) Non-aqueous electrolyte battery defect sorting method
KR101471775B1 (en) Method of inspecting for lithium ion secondary battery
JP2012252839A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2018067498A (en) Method of manufacturing battery
JP2014192015A (en) Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2018055878A (en) Manufacturing method of battery
EP3951412B1 (en) Method for inspecting insulation of a secondary battery
JP6176487B2 (en) Manufacturing method of secondary battery
JP2013254653A (en) Method for inspecting secondary battery
JP2018092790A (en) Method for manufacturing lithium ion secondary battery
JP7011782B2 (en) Secondary battery inspection method
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery