JP2014006205A - Secondary battery inspection method - Google Patents

Secondary battery inspection method Download PDF

Info

Publication number
JP2014006205A
JP2014006205A JP2012143566A JP2012143566A JP2014006205A JP 2014006205 A JP2014006205 A JP 2014006205A JP 2012143566 A JP2012143566 A JP 2012143566A JP 2012143566 A JP2012143566 A JP 2012143566A JP 2014006205 A JP2014006205 A JP 2014006205A
Authority
JP
Japan
Prior art keywords
voltage drop
secondary battery
soc
drop amount
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012143566A
Other languages
Japanese (ja)
Other versions
JP5768769B2 (en
Inventor
Yusuke Onoda
祐介 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012143566A priority Critical patent/JP5768769B2/en
Publication of JP2014006205A publication Critical patent/JP2014006205A/en
Application granted granted Critical
Publication of JP5768769B2 publication Critical patent/JP5768769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery inspection method configured to detect micro-short circuit in a battery in a short time easily with high accuracy.SOLUTION: A secondary battery inspection method includes: a first voltage drop measurement process that adjusts a secondary battery 1 to an arbitrary SCO and measures voltage decreased during aging processing; a second voltage drop measurement process which is repeated a plurality of times, charges the secondary battery 1 only with an arbitrary amount of current to adjust the SOC to be different from the SOC which has been set for past voltage drop measurement to measure the voltage drop during the aging processing; a first estimation process that calculates a first estimated SOC from the voltage drop in the first voltage drop measurement process and a reference line; a second estimation process that adjusts the first estimated SOC with the amount of current in the second voltage drop measurement process to calculate a second estimated SOC; and a determination process that compares an actual measurement line showing a relation between the voltage drops in the voltage drop measurement processes and the first and second estimated SOCs with the reference line to determine a micro-short circuit.

Description

本発明は、二次電池における正極と負極との間の微小短絡を検出するための、二次電池の検査方法に関する。   The present invention relates to a secondary battery inspection method for detecting a minute short circuit between a positive electrode and a negative electrode in a secondary battery.

従来、リチウムイオン二次電池などの二次電池においては、正極、負極、およびセパレータを、正極と負極との間にセパレータが介在するように積層して電極体を構成したものが知られている。
前記電極体の正極側に金属不純物等が混入した場合には、電解液に接触した前記金属不純物等が溶解されて負極に達し、負極表面に析出して正負極間に微小短絡(マイクロショート)が生じることがある。
Conventionally, in a secondary battery such as a lithium ion secondary battery, a positive electrode, a negative electrode, and a separator are stacked so that a separator is interposed between the positive electrode and the negative electrode to form an electrode body. .
When metal impurities or the like are mixed on the positive electrode side of the electrode body, the metal impurities or the like that are in contact with the electrolytic solution are dissolved and reach the negative electrode, and are deposited on the negative electrode surface to form a micro short circuit between the positive and negative electrodes (micro short). May occur.

そして、二次電池に生じた正負極間の微小短絡を検査する方法としては、例えば特許文献1に記載される検出方法がある。
具体的には、特許文献1に記載の検出方法は、第1のSOC(state of charge)まで二次電池を充電する充電工程と、前記充電工程の後に、前記二次電池を所定時間放置する放置工程と、前記放置工程の後に前記第1のSOCよりも低い第2のSOCまで放電する放電工程と、前記放電工程の後に、前記二次電池を所定の温度よりも低い電池温度にして、前記二次電池の微小短絡を検出する検出工程を備えるものである。
前記検出工程では、前記低い電池温度の下、二次電池を所定時間放置してエイジング処理を行い、前記エイジング処理中の所定時間に対する電圧の変化量である電圧降下度を測定する。さらに、測定した電圧降下度と基準電圧降下度とを比較して、前記電圧降下度が前記基準電圧降下度よりも高い場合に、微小短絡が発生したと判断する。
And as a method of inspecting the micro short circuit between the positive and negative electrodes generated in the secondary battery, for example, there is a detection method described in Patent Document 1.
Specifically, the detection method described in Patent Literature 1 includes a charging step of charging a secondary battery up to a first SOC (state of charge), and the secondary battery is left for a predetermined time after the charging step. A leaving step, a discharging step for discharging to a second SOC lower than the first SOC after the leaving step, and after the discharging step, setting the secondary battery to a battery temperature lower than a predetermined temperature, A detection step of detecting a minute short circuit of the secondary battery is provided.
In the detection step, the secondary battery is allowed to stand for a predetermined time at the low battery temperature to perform an aging process, and a voltage drop that is a voltage change amount with respect to the predetermined time during the aging process is measured. Further, the measured voltage drop degree and the reference voltage drop degree are compared, and if the voltage drop degree is higher than the reference voltage drop degree, it is determined that a micro short-circuit has occurred.

特開2011−69775号公報JP 2011-69775 A

前述の検出方法における電圧降下度と基準電圧降下度との比較により微小短絡の検出を行った場合、前記二次電池、特に高容量タイプの二次電池セルにおいては、固体間やロット間で内部抵抗にばらつきがあるため、極微小な短絡による電圧降下度の変化と、内部抵抗のばらつきによる電圧降下度の変化とを区別することが困難であり、極微小な短絡を検出することができない場合がある。   When a small short circuit is detected by comparing the voltage drop degree and the reference voltage drop degree in the detection method described above, the secondary battery, particularly the high-capacity type secondary battery cell, is internally connected between solids or lots. When there is a variation in resistance, it is difficult to distinguish between a change in the voltage drop due to a very small short circuit and a change in the voltage drop due to a variation in internal resistance, and a very small short circuit cannot be detected There is.

また、前記二次電池の微小短絡を検出する場合、前述のように低い電池温度(例えば−30℃)にて電圧降下度を測定すると、二次電池そのものの自己放電量が少なくなるため、微小短絡の有無による電圧降下度の差を検出しやすくなるといった利点がある。
しかし、二次電池を低温にすることで、セル表面が凍結して電池内部に水分が入りやすい状態となり容量低下や内部抵抗増加の原因となったり、低温で電圧降下度の測定を行うために特別の設備や工程管理が必要となって微小短絡の検出工程が煩雑になったりといった問題がある。
Further, when detecting a short-circuit of the secondary battery, if the voltage drop degree is measured at a low battery temperature (for example, −30 ° C.) as described above, the amount of self-discharge of the secondary battery itself is reduced. There is an advantage that it becomes easy to detect a difference in voltage drop due to the presence or absence of a short circuit.
However, by lowering the temperature of the secondary battery, the cell surface freezes and moisture tends to enter the battery, causing a decrease in capacity and an increase in internal resistance, or measuring the voltage drop at a low temperature. There is a problem that special equipment and process management are required, and the process of detecting a micro short circuit becomes complicated.

さらに、前記二次電池の微小短絡を検出する場合、二次電池のSOCが低い領域ではSOCの変動に対する電圧降下度の変化が大きい(SOCによるOCV(open circuit voltage)の変化を示すOCV曲線の傾きが大きい)ため、微小短絡が生じている二次電池の電圧降下度と、微小短絡が生じていない二次電池の電圧降下度との差が発生しやすく、微小短絡の有無を検出しやすいといった利点がある。
しかし、このようにOCV曲線の傾きが大きい部分で二次電池の電圧降下度の測定を行おうとすると、SOCのわずかな変動により二次電池の電圧が大きく変化するため、電圧降下度を測定する際の初期電圧がばらつくこととなり、前記初期電圧の調整に時間や手間がかかるといった問題がある。
Furthermore, when detecting a short-circuit of the secondary battery, in the region where the SOC of the secondary battery is low, the change in the voltage drop with respect to the SOC variation is large (the OCV curve indicating the change in OCV (open circuit voltage) due to the SOC). Therefore, the difference between the voltage drop of a secondary battery with a micro short circuit and the voltage drop of a secondary battery without a micro short circuit is likely to occur, and it is easy to detect the presence of a micro short circuit. There are advantages such as.
However, when the voltage drop degree of the secondary battery is measured in such a portion where the slope of the OCV curve is large, the voltage of the secondary battery changes greatly due to a slight change in the SOC, so the voltage drop degree is measured. The initial voltage at the time varies, and there is a problem that it takes time and labor to adjust the initial voltage.

そこで、本発明においては、内部抵抗のばらつきが大きな二次電池であっても、容易かつ短時間で、電池内部の微小短絡の有無を高精度に検出することができる二次電池の検査方法を提供するものである。   Therefore, in the present invention, there is provided an inspection method for a secondary battery that can detect the presence or absence of a micro short circuit inside the battery with high accuracy even in a secondary battery having a large variation in internal resistance. It is to provide.

上記課題を解決する二次電池の検査方法は、以下の特徴を有する。
即ち、請求項1記載の如く、正極、負極、およびセパレータを、正極と負極との間にセパレータが介在するように積層して構成した電極体を備える二次電池の検査方法であって、前記二次電池を任意のSOCに調整した後、エージング処理を行い、前記エージング処理時における前記二次電池の電圧降下量を測定する第1の電圧降下量測定工程と、前記第1の電圧降下量測定工程の後に複数回繰り返し行われる工程であって、前記二次電池に対して任意の電流量分だけ充電または放電を行って、前記二次電池を、前回までに電圧降下量を測定した際の全てのSOCとは異なるSOCに調整した後、エージング処理を行い、前記エージング処理時における前記二次電池の電圧降下量を測定する、第2の電圧降下量測定工程と、前記第1の電圧降下量測定工程にて測定した電圧降下量、および予め算出しておいた微小短絡が存在しないことが既知であるモデル二次電池におけるSOCと電圧降下量との関係を示す基準ラインから、前記二次電池における、第1の電圧降下量測定工程にて電圧降下量を測定した際のSOCを第1次推定SOCとして算出する第1の推定工程と、前記第1次推定SOCに対して、前記複数回の第2の電圧降下量測定工程にて充電または放電を行った電流量分の調整を行って、当該複数回の第2の電圧降下量測定工程に対応する複数の第2次推定SOCを算出する第2の推定工程と、前記第1の電圧降下量測定工程および複数回の第2の電圧降下量測定工程にて測定した電圧降下量と当該各電圧降下量に対応する第1次推定SOCおよび複数の第2次推定SOCとの関係を示す実測ラインと、前記基準ラインとを比較して、前記実測ラインと基準ラインとの合致度に応じて、前記二次電池における微小短絡の有無を判定する判定工程とを備える、ことを特徴とする二次電池の検査方法。
A secondary battery inspection method that solves the above-described problems has the following characteristics.
That is, a method for inspecting a secondary battery comprising an electrode body configured by stacking a positive electrode, a negative electrode, and a separator so that the separator is interposed between the positive electrode and the negative electrode, After adjusting the secondary battery to an arbitrary SOC, an aging process is performed, and a first voltage drop amount measuring step for measuring a voltage drop amount of the secondary battery during the aging process, and the first voltage drop amount When the secondary battery is measured by measuring the amount of voltage drop up to the previous time by charging or discharging the secondary battery by an arbitrary amount of current after the measurement process. A second voltage drop amount measuring step of performing an aging process and measuring a voltage drop amount of the secondary battery at the time of the aging process, after adjusting to an SOC different from all the SOCs of the first voltage, Fall From the reference line indicating the relationship between the voltage drop amount measured in the quantity measurement step and the SOC and voltage drop amount in the model secondary battery in which it is known that there is no pre-calculated minute short circuit. A first estimation step of calculating an SOC when the voltage drop amount is measured in the first voltage drop amount measurement step in the battery as a first estimated SOC, and the plurality of the first estimated SOC Adjustment of the amount of current that has been charged or discharged in the second voltage drop measurement step, and a plurality of second estimated SOCs corresponding to the plurality of second voltage drop measurement steps. Second estimation step to be calculated, voltage drop amount measured in the first voltage drop amount measurement step and the plurality of second voltage drop amount measurement steps, and primary estimation corresponding to each voltage drop amount SOC and multiple second order estimated SOs Comparing the actual measurement line indicating the relationship with the reference line, and determining whether there is a micro short-circuit in the secondary battery according to the degree of coincidence between the actual measurement line and the reference line, A method for inspecting a secondary battery.

また、請求項2記載の如く、前記判定工程における、前記実測ラインと基準ラインとの合致度に応じた前記二次電池における微小短絡の有無の判定は、前記基準ラインにおける、前記各第2次推定SOCに対応する電圧降下量を算出し、前記実測ラインにおける各第2次推定SOCに対応する電圧降下量と前記基準ラインにおける各第2次推定SOCに対応する電圧降下量との差の平均値と、予め設定した閾値とを比較することにより行う。   Further, according to claim 2, in the determination step, whether or not there is a micro short circuit in the secondary battery according to the degree of coincidence between the actual measurement line and the reference line is determined by each of the secondary lines in the reference line. A voltage drop amount corresponding to the estimated SOC is calculated, and an average of a difference between a voltage drop amount corresponding to each secondary estimated SOC in the actual measurement line and a voltage drop amount corresponding to each secondary estimated SOC in the reference line This is done by comparing the value with a preset threshold value.

また、請求項3記載の如く、前記第1の電圧降下量測定工程および複数の第2の電圧降下量測定工程にて電圧降下量を測定する際の各SOCは、互いに前記二次電池のOCV曲線の傾きが異なる値に設定され、かつ、前記第1の電圧降下量測定工程および複数回の第2の電圧降下量測定工程にて電圧降下量を測定する際の各SOCのうちの少なくとも一つは、0〜10%の範囲内の値に設定される。   According to a third aspect of the present invention, the SOCs when the voltage drop amount is measured in the first voltage drop amount measurement step and the plurality of second voltage drop amount measurement steps are the OCV of the secondary battery. The slope of the curve is set to a different value, and at least one of the SOCs when the voltage drop amount is measured in the first voltage drop measurement step and the plurality of second voltage drop measurement steps. Is set to a value in the range of 0-10%.

本発明によれば、内部抵抗のばらつきが大きな二次電池であっても、容易かつ短時間で、電池内部の微小短絡の有無を高精度に検出することができる。   According to the present invention, even if a secondary battery has a large variation in internal resistance, the presence or absence of a micro short circuit inside the battery can be detected with high accuracy in a short time.

本発明係る二次電池の検査方法の対象となる二次電池を示す斜視図である。It is a perspective view which shows the secondary battery used as the object of the inspection method of the secondary battery which concerns on this invention. 二次電池におけるSOCとOCVとの関係、および二次電池をエージング処理した場合の、SOCと電圧降下量との関係を示した図である。It is the figure which showed the relationship between SOC and OCV in a secondary battery, and the SOC and voltage drop amount at the time of carrying out an aging process of a secondary battery. モデル二次電池におけるSOCと電圧降下量との関係を示す基準ライン、検査対象となる二次電池が良品の二次電池である場合のSOCと電圧降下量との関係を示す実測ライン、および検査対象となる二次電池が微小短絡二次電池である場合のSOCと電圧降下量との関係を示す実測ラインを示す図である。Reference line showing the relationship between SOC and voltage drop in model secondary battery, actual measurement line showing relationship between SOC and voltage drop when the secondary battery to be inspected is a non-defective secondary battery, and inspection It is a figure which shows the measurement line which shows the relationship between SOC and voltage drop amount when the secondary battery used as object is a micro short circuit secondary battery. 二次電池の検査方法のフローを示す図である。It is a figure which shows the flow of the inspection method of a secondary battery. 検査対象となる二次電池の実測ラインを作成する手順を示す図である。It is a figure which shows the procedure which produces the measurement line of the secondary battery used as a test object. 基準ラインと実測ラインとの合致度を示す図である。It is a figure which shows the coincidence degree of a reference line and an actual measurement line. 各良品サンプルおよび微小短絡サンプルについての、基準ラインと実測ラインとの電圧降下量差平均値を示す図である。It is a figure which shows the voltage drop amount difference average value of a reference | standard line and an actual measurement line about each good quality sample and a micro short circuit sample. 従来の検査方法におけるエージング処理日数、および本願発明の検査方法におけるエージング処理日数を示す図である。It is a figure which shows the aging process days in the conventional inspection method, and the aging process days in the inspection method of this invention.

次に、本発明を実施するための形態を、添付の図面を用いて説明する。   Next, modes for carrying out the present invention will be described with reference to the accompanying drawings.

図1に示す、本実施形態に係る二次電池の検査方法の対象となる二次電池1は、一面(上面)が開口した有底角筒形状のケース本体21と、平板状に形成されケース本体21の開口部を閉塞する蓋体22とで構成される電池ケース2に、電解液とともに電極体3を収容して構成されている。   A secondary battery 1 that is a target of the secondary battery inspection method according to the present embodiment shown in FIG. 1 includes a bottomed rectangular tube-shaped case body 21 having an open surface (upper surface), and a flat plate-shaped case. A battery case 2 constituted by a lid body 22 that closes an opening of the main body 21 is configured by accommodating the electrode body 3 together with the electrolytic solution.

電池ケース2は、一面(上面)が開口した直方体状の有底角筒形状に形成されるケース本体21の開口部を、平板状の蓋体22にて閉塞した角型ケースに構成されている。
蓋体22の長手方向一端部(図1における左端部)には正極端子4aが設けられ、蓋体22の長手方向他端部(図1における右端部)には負極端子4bが設けられている。
The battery case 2 is configured as a rectangular case in which an opening of a case body 21 formed in a rectangular parallelepiped bottomed rectangular tube shape with one surface (upper surface) opened is closed with a flat lid body 22. .
A positive electrode terminal 4a is provided at one end in the longitudinal direction of the lid 22 (left end in FIG. 1), and a negative electrode terminal 4b is provided at the other longitudinal end of the lid 22 (right end in FIG. 1). .

電極体3は、正極31、負極32、およびセパレータ33を、正極31と負極32との間にセパレータ33が介在するように積層し、積層した正極31、負極32、およびセパレータ33を巻回して扁平させることにより構成されている。   The electrode body 3 is formed by laminating the positive electrode 31, the negative electrode 32, and the separator 33 so that the separator 33 is interposed between the positive electrode 31 and the negative electrode 32, and winding the laminated positive electrode 31, negative electrode 32, and separator 33. It is configured by flattening.

電池ケース2に電極体3および電解液を収容して二次電池1を構成する際には、まず電極体3の正極31および負極32に、それぞれ蓋体22の正極端子4aおよび負極端子4bを接続して、電極体3を蓋体22に組み付けて、蓋体サブアッシーを形成する。
その後、電極体3および電解液をケース本体21内に収容するとともに、ケース本体21の開口部に蓋体22を嵌合して、蓋体22とケース本体21とを溶接により密封することにより、二次電池1を構成する。
When the secondary battery 1 is configured by accommodating the electrode body 3 and the electrolyte in the battery case 2, first, the positive electrode terminal 4 a and the negative electrode terminal 4 b of the lid body 22 are respectively connected to the positive electrode 31 and the negative electrode 32 of the electrode body 3. After connecting, the electrode body 3 is assembled to the lid body 22 to form a lid body sub-assembly.
Thereafter, the electrode body 3 and the electrolytic solution are accommodated in the case main body 21, the lid body 22 is fitted into the opening of the case main body 21, and the lid body 22 and the case main body 21 are sealed by welding, A secondary battery 1 is configured.

正極31は、正極活物質、導電材、および結着材等の電極材料を溶媒とともに混練して得られた正極合材ペーストを、箔状に形成される集電体の表面(片面又は両面)に塗布するとともに乾燥・加圧して構成されている。
同様に、負極32は、負極活物質や増粘剤や結着材等の電極材料を混練して得られた負極合材ペーストを、箔状に形成される集電体の表面(片面又は両面)に塗布するとともに乾燥・加圧して構成されている。
セパレータ33は、例えば多孔質ポリオレフィン系樹脂で構成されるシート状部材であり、正極31と負極32との間に配置される。
The positive electrode 31 is made of a positive electrode mixture paste obtained by kneading an electrode material such as a positive electrode active material, a conductive material, and a binder together with a solvent. It is configured to be applied and dried and pressurized.
Similarly, the negative electrode 32 is obtained by mixing a negative electrode mixture paste obtained by kneading an electrode material such as a negative electrode active material, a thickener, and a binder with the surface (one side or both sides) of a current collector formed in a foil shape. ) And dried / pressurized.
The separator 33 is a sheet-like member made of, for example, a porous polyolefin-based resin, and is disposed between the positive electrode 31 and the negative electrode 32.

図2には、二次電池1におけるSOC(state of charge;充電状態)とOCV(open circuit voltage;開路電圧)との関係(OCV曲線)、および二次電池1を所定の環境下で所定時間(例えば12時間)放置(エージング処理)した場合の、SOCと電圧降下量との関係を示している。
二次電池1のOCVはSOCの増加に伴って上昇しており、SOCが低い領域においては、他の領域に比べてOCV曲線の傾きが大きくなっている。また、二次電池1の電圧降下量は、SOCの大きさにより変化しており、SOCが低い領域(例えばSOCが10%程度までの領域)においては、SOCが増加するに従って減少している。
FIG. 2 shows the relationship (OCV curve) between the SOC (state of charge) and the OCV (open circuit voltage) in the secondary battery 1 and the secondary battery 1 in a predetermined environment for a predetermined time. The relationship between the SOC and the voltage drop when left standing (for example, 12 hours) (aging process) is shown.
The OCV of the secondary battery 1 increases as the SOC increases, and the slope of the OCV curve is larger in the low SOC region than in the other regions. Further, the amount of voltage drop of the secondary battery 1 varies depending on the SOC, and in a region where the SOC is low (for example, a region where the SOC is up to about 10%), it decreases as the SOC increases.

また、二次電池1においては、電極体3の正極31側に金属不純物等が混入した場合には、電解液に接触した前記金属不純物等が溶解されて負極32に達し、負極32の表面に析出して正負極間に微小短絡(マイクロショート)が生じることがある。
前記微小短絡が発生した二次電池1においては、当該微小短絡箇所における正極31と負極32との間のセパレータ33に、正極31と負極32とを導通する微小な導通ブリッジが存在しており、導通ブリッジを通じて正極31と負極32との間に短絡電流が流れることとなる。
Further, in the secondary battery 1, when metal impurities or the like are mixed on the positive electrode 31 side of the electrode body 3, the metal impurities or the like that are in contact with the electrolytic solution are dissolved and reach the negative electrode 32, and are formed on the surface of the negative electrode 32. Precipitation may cause a micro short circuit between the positive and negative electrodes.
In the secondary battery 1 in which the micro short circuit has occurred, the separator 33 between the positive electrode 31 and the negative electrode 32 at the micro short circuit location has a micro conductive bridge that conducts the positive electrode 31 and the negative electrode 32, A short-circuit current flows between the positive electrode 31 and the negative electrode 32 through the conduction bridge.

そして、微小短絡が発生している二次電池1における電圧降下量は、微小短絡が発生していない二次電池1に比べて、微小短絡による短絡電流の分だけ加わることとなる。
従って、SOCと電圧降下量との関係、すなわち、SOCの違いによる二次電池1の電圧降下量の変化度合は、二次電池1における微小短絡の有無によって異なる。
Then, the amount of voltage drop in the secondary battery 1 in which the micro short-circuit has occurred is added by the amount of the short-circuit current due to the micro short-circuit compared to the secondary battery 1 in which the micro short-circuit has not occurred.
Therefore, the relationship between the SOC and the voltage drop amount, that is, the degree of change in the voltage drop amount of the secondary battery 1 due to the difference in the SOC differs depending on the presence or absence of a micro short circuit in the secondary battery 1.

そこで、本実施形態における二次電池1の検査方法においては、複数点(3点以上)のSOCにおいて二次電池1の電圧降下量を測定し、その測定値と、微小短絡が無いことが既知である二次電池1について予め測定したSOCと電圧降下量との関係とを比較することによって、二次電池1の検査時における初期電圧の調整に時間や手間をかけることなく、二次電池1における微小短絡の有無を検出するものである。   Therefore, in the inspection method of the secondary battery 1 in the present embodiment, the voltage drop amount of the secondary battery 1 is measured at a plurality of (three or more) SOCs, and the measured value and the fact that there is no micro short circuit are known. By comparing the relationship between the SOC measured in advance for the secondary battery 1 and the amount of voltage drop, the secondary battery 1 can be adjusted without taking time and effort to adjust the initial voltage during the inspection of the secondary battery 1. Is used to detect the presence or absence of a micro short circuit.

次に、電池内部の微小短絡の有無を検出するための二次電池1の検査方法について、具体的に説明する。
本実施形態における二次電池1の検査方法においては、二次電池1についての微小短絡の有無の検査を実際に行う前に、微小短絡が無いことが既知であるモデル二次電池における複数点のSOCについて電圧降下量を測定し、図3に示すような、モデル二次電池におけるSOCと電圧降下量との関係を示すグラフである基準ラインを予め作成しておく。
Next, the inspection method of the secondary battery 1 for detecting the presence or absence of a micro short circuit inside the battery will be specifically described.
In the inspection method of the secondary battery 1 in the present embodiment, before actually inspecting the secondary battery 1 for the presence or absence of the micro short circuit, a plurality of points in the model secondary battery that are known to have no micro short circuit are provided. A voltage drop amount is measured for the SOC, and a reference line that is a graph showing the relationship between the SOC and the voltage drop amount in the model secondary battery as shown in FIG. 3 is created in advance.

前記基準ラインを作成した後、二次電池1についての微小短絡の有無の検査は、図4に示すフローにより行う。
まず、初期充電済みの二次電池1に対して充電または放電を行い、二次電池1を任意のSOCである第1のSOCに調整する、調整工程を行う(S11)。前記二次電池を第1のSOCに調整した後、エージング処理を行い、前記エージング処理時における前記二次電池1の第1の電圧降下量を測定する、測定工程を行う(S12)。
After creating the reference line, the secondary battery 1 is inspected for the presence or absence of a micro short-circuit according to the flow shown in FIG.
First, an adjustment process is performed in which the secondary battery 1 that has been initially charged is charged or discharged to adjust the secondary battery 1 to a first SOC, which is an arbitrary SOC (S11). After adjusting the secondary battery to the first SOC, an aging process is performed, and a measurement process is performed to measure the first voltage drop amount of the secondary battery 1 during the aging process (S12).

なお、調整工程S11において二次電池1が調整される第1のSOCは、例えば10%以下の低SOCの範囲の値に設定される。
また、前記調整工程S11において、二次電池1を第1のSOCに調整する際には、必ずしも目標とするSOC値に厳密に調整する必要はなく、目標とするSOC値近辺の値(例えば目標とするSOC値を中心とした数%の範囲内の値)に調整すれば足りる。
In addition, 1st SOC by which the secondary battery 1 is adjusted in adjustment process S11 is set to the value of the range of low SOC of 10% or less, for example.
In the adjustment step S11, when the secondary battery 1 is adjusted to the first SOC, it is not always necessary to strictly adjust the target SOC value, and a value in the vicinity of the target SOC value (for example, the target SOC value). It is sufficient to adjust to a value within a range of several percent centered on the SOC value.

測定工程S12では、エージング処理前の二次電池1の電圧V1、およびエージング処理後の二次電池1の電圧V2を測定し、電圧V1から電圧V2を減じて第1の電圧降下量ΔVAを算出することにより、第1の電圧降下量ΔVAの測定を行う。
また、前記エージング処理は、所定温度の環境下にて、所定時間だけ二次電池1を放置することにより行う。
なお、調整工程S11と測定工程S12とで、第1の電圧降下量測定工程S1が構成される。
In the measurement step S12, the voltage V1 of the secondary battery 1 before the aging process and the voltage V2 of the secondary battery 1 after the aging process are measured, and the first voltage drop ΔVA is calculated by subtracting the voltage V2 from the voltage V1. As a result, the first voltage drop amount ΔVA is measured.
The aging process is performed by leaving the secondary battery 1 for a predetermined time in an environment of a predetermined temperature.
The adjustment step S11 and the measurement step S12 constitute a first voltage drop amount measurement step S1.

次に、第1の電圧降下量測定工程S1を終えた二次電池1に対して、所定の電流量(SOC)分だけ充電または放電を行い、二次電池1を第2のSOCに調整する調整工程を行う(S21)。この場合、第2のSOCは、前回の第1の電圧降下量測定工程S1にて電圧降下量を測定した際の第1のSOCとは異なる値となるように調整を行う。
前記二次電池を第2のSOCに調整した後、エージング処理を行い、前記エージング処理時における前記二次電池1の第2の電圧降下量を測定する、測定工程を行う(S22)。
Next, the secondary battery 1 that has finished the first voltage drop measurement step S1 is charged or discharged by a predetermined current amount (SOC), and the secondary battery 1 is adjusted to the second SOC. An adjustment process is performed (S21). In this case, the second SOC is adjusted so as to be different from the first SOC when the voltage drop amount is measured in the previous first voltage drop amount measurement step S1.
After the secondary battery is adjusted to the second SOC, an aging process is performed, and a measurement step of measuring a second voltage drop amount of the secondary battery 1 during the aging process is performed (S22).

測定工程S22では、エージング処理前の二次電池1の電圧V3、およびエージング処理後の二次電池1の電圧V4を測定し、電圧V3から電圧V4を減じて第2の電圧降下量ΔVBを算出することにより、第2の電圧降下量ΔVBの測定を行う。
また、測定工程S22におけるエージング処理は、測定工程S12と同じ条件で二次電池1を放置することにより行う。
なお、調整工程S21と測定工程S22とで、1回目の第2の電圧降下量測定工程S2が構成される。
In the measuring step S22, the voltage V3 of the secondary battery 1 before the aging process and the voltage V4 of the secondary battery 1 after the aging process are measured, and the second voltage drop amount ΔVB is calculated by subtracting the voltage V4 from the voltage V3. Thus, the second voltage drop amount ΔVB is measured.
In addition, the aging process in the measurement step S22 is performed by leaving the secondary battery 1 under the same conditions as in the measurement step S12.
The adjustment step S21 and the measurement step S22 constitute a first second voltage drop measurement step S2.

次に、1回目の第2の電圧降下量測定工程S2を終えた二次電池1に対して、所定の電流量(SOC)分だけ充電または放電を行い、二次電池1を第3のSOCに調整する、調整工程を行う(S31)。この場合、第3のSOCは、前回までの第1の電圧降下量測定工程S1および1回目の第2の電圧降下量測定工程S2にて電圧降下量を測定した際の全てのSOC(つまり、第1のSOCおよび第2のSOC)とは異なる値となるように調整を行う。
前記二次電池を第3のSOCに調整した後、エージング処理を行い、前記エージング処理時における前記二次電池1の第3の電圧降下量を測定する、測定工程を行う(S32)。
Next, the secondary battery 1 that has completed the first second voltage drop measurement step S2 is charged or discharged by a predetermined amount of current (SOC), and the secondary battery 1 is charged with the third SOC. An adjustment process is performed (S31). In this case, the third SOC is the total SOC when the voltage drop amount was measured in the first voltage drop measurement step S1 and the first second voltage drop measurement step S2 until the previous time (that is, Adjustment is performed so that the first SOC and the second SOC) are different from each other.
After the secondary battery is adjusted to the third SOC, an aging process is performed to measure a third voltage drop amount of the secondary battery 1 during the aging process (S32).

測定工程S32では、エージング処理前の二次電池1の電圧V5、およびエージング処理後の二次電池1の電圧V6を測定し、電圧V5から電圧V6を減じて第3の電圧降下量ΔVCを算出することにより、第3の電圧降下量ΔVCの測定を行う。
また、測定工程S32におけるエージング処理は、測定工程S12と同じ条件で二次電池1を放置することにより行う。
なお、調整工程S31と測定工程S32とで、2回目の第2の電圧降下量測定工程S3が構成される。
In the measurement step S32, the voltage V5 of the secondary battery 1 before the aging process and the voltage V6 of the secondary battery 1 after the aging process are measured, and the third voltage drop ΔVC is calculated by subtracting the voltage V6 from the voltage V5. Thus, the third voltage drop amount ΔVC is measured.
Further, the aging process in the measurement step S32 is performed by leaving the secondary battery 1 under the same conditions as in the measurement step S12.
The adjustment step S31 and the measurement step S32 constitute a second second voltage drop measurement step S3.

このように、本実施形態における二次電池1の検査方法では、第2の電圧降下量測定工程S2・S3が、複数回繰り返して行われる。
また、複数回繰り返して行われる第2の電圧降下量測定工程S2・S3における、二次電池1に対して充電または放電を行う際の所定の電流量(SOC)は、各回の第2の電圧降下量測定工程S2・S3において、同じ電流量(SOC)とすることができる。例えば、1回目の第2の電圧降下量測定工程S2において、SOC2%分に相当する電流量を充電した場合、2回目の第2の電圧降下量測定工程S2においてもSOC2%分に相当する電流量を充電するといったように、第2の電圧降下量測定工程S2を行う毎に、同じ電流量分だけ充電または放電して、SOCを一定%分だけ同じ側(+側または−側)へ変動させることもできる。
As described above, in the inspection method for the secondary battery 1 in the present embodiment, the second voltage drop measurement steps S2 and S3 are repeatedly performed a plurality of times.
In addition, the predetermined current amount (SOC) when the secondary battery 1 is charged or discharged in the second voltage drop measurement process S2 and S3 that is repeatedly performed a plurality of times is the second voltage of each time. In the descent amount measurement steps S2 and S3, the same amount of current (SOC) can be obtained. For example, when a current amount corresponding to 2% SOC is charged in the second voltage drop measuring step S2 for the first time, a current corresponding to 2% SOC in the second second voltage drop measuring step S2 is also charged. Each time the second voltage drop amount measurement step S2 is performed, such as charging the amount, the same current amount is charged or discharged, and the SOC is changed to the same side (+ side or-side) by a certain percentage. It can also be made.

また、各第2の電圧降下量測定工程S2・S3において、二次電池1のSOCを第2のSOCおよび第3のSOCに調整する際には、所定の電流量分だけ充電または放電を行うといったように、電流量を規定することにより調整を行うので、変動が大きな電圧を規定してSOC調整を行う場合に比べて、調整を容易かつ高精度に行うことが可能となっている。   In each of the second voltage drop measurement steps S2 and S3, when the SOC of the secondary battery 1 is adjusted to the second SOC and the third SOC, charging or discharging is performed by a predetermined amount of current. As described above, the adjustment is performed by defining the amount of current. Therefore, the adjustment can be performed easily and with high accuracy compared to the case where the SOC adjustment is performed by defining a voltage having a large variation.

次に、第1の電圧降下量ΔVAと前記基準ラインとから、検査対象となる二次電池1における、第1の電圧降下量ΔVAを測定した際の第1次推定SOCを算出する、第1の推定工程S4を行う。
具体的には、図5(a)に示すように、第1の電圧降下量測定工程にて測定した第1の電圧降下量ΔVAを、予め作成しておいた前記基準ラインに当て嵌めて、前記基準ライン上において第1の電圧降下量ΔVAに対応するSOC値を、第1の電圧降下量ΔVAを測定した際のSOCとして算出し、第1次推定SOCとして設定する。
Next, from the first voltage drop amount ΔVA and the reference line, a first estimated SOC when the first voltage drop amount ΔVA in the secondary battery 1 to be inspected is measured is calculated. The estimation step S4 is performed.
Specifically, as shown in FIG. 5A, the first voltage drop amount ΔVA measured in the first voltage drop amount measurement step is applied to the reference line prepared in advance, The SOC value corresponding to the first voltage drop amount ΔVA on the reference line is calculated as the SOC when the first voltage drop amount ΔVA is measured, and is set as the first estimated SOC.

第1次推定SOCを設定した後、図5(b)に示すように、第1次推定SOCに対して、1回目の第2の電圧降下量測定工程S2における調整工程S21にて充電または放電を行った電流量分だけSOCを調整して、第2の電圧降下量ΔVBを測定した際のSOCである、第1の第2次推定SOCを算出する(S5)。
さらに、第1の第2次推定SOCを算出した後、図5(c)に示すように、第1の第2次推定SOCに対して、2回目の第2の電圧降下量測定工程S3における調整工程S31にて充電または放電を行った電流量分だけSOCを調整して、第3の電圧降下量ΔVCを測定した際のSOCである、第2の第2次推定SOCを算出する(S5)。この第2の第2次推定SOCは、第1次推定SOCに対して、1回目の第2の電圧降下量測定工程S2における調整工程S21にて充電または放電を行った電流量分と、2回目の第2の電圧降下量測定工程S3における調整工程S31にて充電または放電を行った電流量分との調整を行うことにより算出することもできる。
After the first estimated SOC is set, as shown in FIG. 5B, the first estimated SOC is charged or discharged in the adjustment step S21 in the first second voltage drop measurement step S2. The first secondary estimated SOC, which is the SOC when the second voltage drop amount ΔVB is measured, is calculated by adjusting the SOC by the amount of current that has been performed (S5).
Further, after calculating the first second-order estimated SOC, as shown in FIG. 5C, in the second second voltage drop measurement step S3 with respect to the first second-order estimated SOC. The second secondary estimated SOC, which is the SOC when the third voltage drop ΔVC is measured, is adjusted by adjusting the SOC by the amount of current that has been charged or discharged in the adjustment step S31 (S5). ). The second second estimated SOC is equal to the amount of current charged or discharged in the adjustment step S21 in the first second voltage drop measurement step S2 with respect to the first estimated SOC, and 2 It can also be calculated by adjusting the amount of current charged or discharged in the adjustment step S31 in the second voltage drop measurement step S3.

このように、第1次推定SOCを設定した後は、第1次推定SOCに対して、複数回の第2の電圧降下量測定工程S2・S3における調整工程S21・S31にて充電または放電を行った電流量分の調整を行って、当該複数回の第2の電圧降下量測定工程S2・S3に対応する複数の第2次推定SOC(第1の第2次推定SOCおよび第2の第2次推定SOC)を算出する第2の推定工程S5が行われる。
各第2の推定工程S5においては、SOC調整を、充電または放電を行った電流分を加算または減算することで行うので、第1次推定SOCに対する各第2次推定SOCの値を高精度に算出することが可能となっている。
Thus, after setting the first estimated SOC, charging or discharging is performed in the adjustment steps S21 and S31 in the second voltage drop measurement steps S2 and S3 for the first estimated SOC. A plurality of second estimated SOCs (first second estimated SOC and second second estimated SOC corresponding to the plurality of second voltage drop measurement steps S2 and S3 are performed by adjusting the amount of current that has been performed. A second estimation step S5 for calculating the secondary estimation SOC) is performed.
In each second estimation step S5, since the SOC adjustment is performed by adding or subtracting the amount of current that has been charged or discharged, the value of each second estimated SOC with respect to the first estimated SOC is accurately determined. It is possible to calculate.

次に、前述のように算出した第1次推定SOC、第1の第2次推定SOC、および第2の第2次推定SOC、ならびに測定した第1の電圧降下量ΔVA、第2の電圧降下量ΔVB、および第3の電圧降下量ΔVCを用いて、推定SOCと電圧降下量との関係を示すグラフである実測ラインを作成する。
具体的には、図5(d)に示すように、点P1(第1次推定SOC、電圧降下量ΔVA)、点P2(第1の第2次推定SOC、電圧降下量ΔVB)、および点P3(第2の第2次推定SOC、電圧降下量ΔVC)を通るグラフを実測ラインとして作成する、実測ライン作成工程が行われる(S61)。
Next, the first estimated SOC, the first second estimated SOC, and the second second estimated SOC calculated as described above, and the measured first voltage drop amount ΔVA, second voltage drop Using the amount ΔVB and the third voltage drop amount ΔVC, an actual measurement line that is a graph showing the relationship between the estimated SOC and the voltage drop amount is created.
Specifically, as shown in FIG. 5D, point P1 (first estimated SOC, voltage drop ΔVA), point P2 (first second estimated SOC, voltage drop ΔVB), and point An actual measurement line creation step is performed in which a graph passing through P3 (second second-order estimated SOC, voltage drop amount ΔVC) is created as an actual measurement line (S61).

そして、前記実測ラインと基準ラインとを比較し、実測ラインと基準ラインとの合致度に応じて、二次電池1における微小短絡の有無を判定する。
例えば、実測ラインと基準ラインとを比較して、実測ラインと基準ラインとの合致度が予め設定された閾値よりも大きいか否かの判定を行い(S62)、実測ラインと基準ラインとの合致度が前記閾値以下であれば二次電池1に微小短絡が有ると判定し(S63)、実測ラインと基準ラインとの合致度が前記閾値よりも大きければ微小短絡が無いと判定する(S64)。
Then, the actual measurement line and the reference line are compared, and the presence or absence of a micro short circuit in the secondary battery 1 is determined according to the degree of coincidence between the actual measurement line and the reference line.
For example, the actual measurement line and the reference line are compared to determine whether or not the degree of coincidence between the actual measurement line and the reference line is greater than a preset threshold (S62). If the degree is less than or equal to the threshold value, it is determined that the secondary battery 1 has a micro short circuit (S63), and if the degree of coincidence between the measured line and the reference line is greater than the threshold value, it is determined that there is no micro short circuit (S64). .

前記基準ラインは微小短絡が無いことが既知であるモデル二次電池におけるSOCと電圧降下量との関係を示すものであることから、図3に示すように、検査対象となる二次電池1の実測ラインが微小短絡が無い良品の二次電池のものである場合には、実測ラインと基準ラインとの合致度が高くなり(実測ラインの基準ラインに対するずれが小さい)、検査対象となる二次電池1の実測ラインが微小短絡を有する微小短絡二次電池のものである場合には、実測ラインと基準ラインとの合致度が低くなる(実測ラインの基準ラインに対するずれが大きい)。
従って、上述のように、実測ラインと基準ラインとの合致度に応じて、二次電池1における微小短絡の有無を判定することが可能となっている。
Since the reference line indicates the relationship between the SOC and the voltage drop in a model secondary battery that is known not to have a micro short circuit, as shown in FIG. If the measured line is a non-defective secondary battery that does not have a micro short circuit, the degree of match between the measured line and the reference line is high (the deviation of the measured line from the reference line is small), and the secondary to be inspected. When the actual measurement line of the battery 1 is that of a micro short circuit secondary battery having a micro short circuit, the degree of coincidence between the actual measurement line and the reference line is low (the deviation of the actual measurement line from the reference line is large).
Therefore, as described above, it is possible to determine the presence or absence of a minute short circuit in the secondary battery 1 according to the degree of coincidence between the actual measurement line and the reference line.

なお、実測ライン作成工程(S61)、実測ラインと基準ラインとの合致度が閾値よりも大きいか否かの判定を行う工程(S62)、二次電池1に微小短絡が有ると判定する工程(S63)、および二次電池1に微小短絡が無いと判定する工程(S64)により、判定工程S6が構成される。   In addition, the measurement line creation process (S61), the process of determining whether or not the degree of coincidence between the measurement line and the reference line is greater than the threshold value (S62), and the process of determining that the secondary battery 1 has a micro short circuit ( The determination step S6 is configured by S63) and the step of determining that the secondary battery 1 does not have a micro short circuit (S64).

本実施形態においては、第2の電圧降下量測定工程S2・S3を2回繰り返し行って、第2の電圧降下量ΔVBおよび第3の電圧降下量ΔVCを測定している。
これは、第1の電圧降下量測定工程S1における第1のSOCでの第1の電圧降下量ΔVAの測定に加えて、1回目の第2の電圧降下量測定工程S2における第2のSOCでの第2の電圧降下量ΔVBの測定、および2回目の第2の電圧降下量測定工程S2における第3のSOCでの第3の電圧降下量ΔVCの測定といったように、少なくとも異なる3点のSOCにてそれぞれ電圧降下量の測定を行うことが前記実測ラインを適切に作成するうえで好ましく、二次電池1における微小短絡の有無の判定を高精度に行うことが可能となるからである。
但し、第2の電圧降下量測定工程は3回以上繰り返して行うことも可能であり、第2の電圧降下量測定工程を3回以上繰り返して行うことで、二次電池1における微小短絡の有無の判定を、さらに高精度に行うことが可能となる。
In the present embodiment, the second voltage drop amount measurement steps S2 and S3 are repeated twice to measure the second voltage drop amount ΔVB and the third voltage drop amount ΔVC.
This is the second SOC in the first second voltage drop measurement step S2 in addition to the measurement of the first voltage drop ΔVA in the first SOC in the first voltage drop measurement step S1. At least three different SOCs, such as measurement of the second voltage drop amount ΔVB and measurement of the third voltage drop amount ΔVC at the third SOC in the second second voltage drop amount measurement step S2. In this case, it is preferable to measure the voltage drop amount in order to appropriately create the actual measurement line, and the determination of the presence or absence of a micro short circuit in the secondary battery 1 can be performed with high accuracy.
However, the second voltage drop amount measurement step can be repeated three times or more, and the second battery drop amount measurement step is repeated three times or more, so that there is a minute short circuit in the secondary battery 1. This determination can be performed with higher accuracy.

本実施形態のように、電圧降下量を一つの二次電池1における複数のSOCについて測定して、測定した電圧降下量とSOCとの関係を実測ライン(線)にて表し、その実測ラインと、微小短絡が無いことが既知であるモデル二次電池におけるSOCと電圧降下量との関係を示すグラフである基準ライン(線)とを比較して、二次電池1の微小短絡の有無を検査することで、つまり測定した電圧降下量を従来のように点で比較するのではなく線で比較することにより、検査開始時において二次電池1を第1のSOCに調整する際に(S11)、調整した第1のSOCが目標値に対してばらついていたとしても、微小短絡の有無を高精度で検出することができる。
そのため、検査開始時における第1のSOCへの調整は、必ずしも目標とするSOC値に厳密に合わせる必要はなく、ラフに行うことが可能となるので、SOCの調整工程を容易かつ短時間で行うことが可能となっている。
As in this embodiment, the voltage drop amount is measured for a plurality of SOCs in one secondary battery 1, and the relationship between the measured voltage drop amount and the SOC is represented by an actual measurement line (line). Inspecting the presence or absence of a micro short circuit in the secondary battery 1 by comparing a reference line (line) that is a graph showing the relationship between the SOC and the voltage drop in a model secondary battery known to have no micro short circuit In other words, when the secondary battery 1 is adjusted to the first SOC at the start of inspection by comparing the measured voltage drop amount with a line instead of comparing with a point as in the prior art (S11). Even if the adjusted first SOC varies with respect to the target value, the presence or absence of a micro short circuit can be detected with high accuracy.
For this reason, the adjustment to the first SOC at the start of the inspection does not necessarily need to be strictly adjusted to the target SOC value, and can be performed roughly. Therefore, the SOC adjustment process is performed easily and in a short time. It is possible.

また、電圧降下量を一つの二次電池1における複数のSOCについて測定して、二次電池の微小短絡の有無を検出しているので、固体間やロット間での内部抵抗のばらつきが大きな二次電池であっても、当該ばらつきの影響を受けることなく、二次電池の微小短絡の有無を高精度に検出することが可能となっている。   In addition, since the voltage drop amount is measured for a plurality of SOCs in one secondary battery 1 to detect the presence or absence of a short-circuit in the secondary battery, internal resistance varies greatly between solids or lots. Even in the case of a secondary battery, it is possible to detect the presence or absence of a short circuit in the secondary battery with high accuracy without being affected by the variation.

また、本実施形態における電圧降下量ΔVA・ΔVB・ΔVCの測定は、OCV曲線における傾きが大きい範囲(例えばSOCが0%〜10%の範囲)にて行うと、一度の電圧降下量ΔVA・ΔVB・ΔVCの測定時間を短縮することができ(短いエージング時間で大きな電圧降下量ΔVA・ΔVB・ΔVCを得ることができ)、二次電池1の検査工程の実施時間を短縮することが可能となる。
この場合、第1の電圧降下量測定工程S1および第2の電圧降下量測定工程S2における電圧降下量ΔVA・ΔVB・ΔVCの測定を行うSOCのうち、少なくとも一つのSOCを0%〜10%の範囲内の値に設定することで、二次電池1の検査工程の実施時間を短縮することが可能となる。
Further, when the voltage drop amounts ΔVA, ΔVB, ΔVC in the present embodiment are measured in a range where the slope in the OCV curve is large (for example, the SOC is in the range of 0% to 10%), the voltage drop amount ΔVA · ΔVB once. The measurement time of ΔVC can be shortened (a large voltage drop amount ΔVA / ΔVB / ΔVC can be obtained with a short aging time), and the execution time of the inspection process of the secondary battery 1 can be shortened. .
In this case, at least one of the SOCs for measuring the voltage drop amounts ΔVA, ΔVB, ΔVC in the first voltage drop amount measurement step S1 and the second voltage drop amount measurement step S2 is 0% to 10%. By setting the value within the range, the execution time of the inspection process of the secondary battery 1 can be shortened.

さらに、各電圧降下量ΔVA・ΔVB・ΔVCの測定は、互いにOCV曲線における傾きが異なるSOCにて行うことで、良品の二次電池と微小短絡二次電池とでの実測ラインと基準ラインとの合致度の差異が大きく現れることとなるため、微小短絡の有無の検出を高精度に行うことが可能となる。   Furthermore, the voltage drop amounts ΔVA, ΔVB, and ΔVC are measured with SOCs having different slopes in the OCV curve, so that the measured line and the reference line of the non-defective secondary battery and the micro short-circuited secondary battery are measured. Since a difference in the degree of coincidence appears greatly, the presence / absence of a micro short circuit can be detected with high accuracy.

[実施例]
次に、二次電池1の検査方法の実施例について説明する。
本実施例においては、微小短絡を有しない二次電池1の良品サンプルを21個作成するとともに、微小短絡を有する二次電池1の微小短絡サンプルを4個作成し、これらの各サンプルについて、本願発明にかかる二次電池1の検査方法により微小短絡の有無の検出を行った。
[Example]
Next, the Example of the inspection method of the secondary battery 1 is demonstrated.
In this embodiment, 21 non-defective samples of the secondary battery 1 having no micro short circuit are created, and 4 micro short samples of the secondary battery 1 having a micro short circuit are created. The presence or absence of a micro short circuit was detected by the inspection method for the secondary battery 1 according to the invention.

二次電池1の良品サンプルとしては、正極板として、正極活物質としてのLiNiCoMnO2を90wt%、導電材としてのアセチレンブラック(AB)を5wt%、結着材としてのポリフッ化ビニリデン(PVdF)を5wt%含んだ正極合材ペーストを、集電体としての15μm厚のアルミニウム箔に塗布して構成したものを用いた。
また、負極板として、負極活物質としての天然黒鉛系活物質を98wt%、増粘剤としてのカルボキシメチルセルロース(CMC)を1wt%、結着材としてのスチレン−ブタジエン共重合体(SBR)を1wt%含んだ負極合材ペーストを、集電体としての10μm厚の銅箔に塗布して構成されたものを用いた。
As a non-defective sample of the secondary battery 1, 90 wt% of LiNiCoMnO 2 as a positive electrode active material, 5 wt% of acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder as a positive electrode plate. A positive electrode mixture paste containing 5 wt% was applied to a 15 μm thick aluminum foil as a current collector.
Moreover, as a negative electrode plate, 98 wt% of a natural graphite-based active material as a negative electrode active material, 1 wt% of carboxymethylcellulose (CMC) as a thickener, and 1 wt% of a styrene-butadiene copolymer (SBR) as a binder. % Negative electrode mixture paste was applied to a 10 μm thick copper foil as a current collector.

また、セパレータとして、ポリプロピレン(PP)の単層構造、ポリエチレン(PE)の単層構造、またはポリプロピレン(PP)とポリエチレン(PE)との2層構造の微多孔膜からなる20μm厚のものを用いた。
また、電解液として、EC(エチレンカーボネート)、DMC(ジメチルカーボネート)、およびEMC(エチルメチルカーボネート)を、3:3:4(重量比)の割合にて混合した溶媒に、LiPF6を1.0Mの濃度で溶解させたものを用いた。
また、容量が22.5Ahの二次電池に構成した。
In addition, a separator having a thickness of 20 μm made of a single layer structure of polypropylene (PP), a single layer structure of polyethylene (PE), or a two-layer structure of polypropylene (PP) and polyethylene (PE) is used. It was.
Further, as an electrolytic solution, LiPF 6 was added to a solvent in which EC (ethylene carbonate), DMC (dimethyl carbonate), and EMC (ethyl methyl carbonate) were mixed at a ratio of 3: 3: 4 (weight ratio). Those dissolved at a concentration of 0 M were used.
Moreover, it comprised in the secondary battery with a capacity | capacitance of 22.5 Ah.

二次電池1の微小短絡サンプルは、前述の良品サンプルと同じ仕様の二次電池における正極側に、70μmの大きさの鉄製の異物を投入したもの、および180μmの大きさの鉄の異物を投入したものを用いた。
70μmの異物を投入した微小短絡サンプル、および180μmの異物を投入した微小短絡サンプルは、それぞれ2個ずつ作成した。
As for the micro short-circuit sample of the secondary battery 1, an iron foreign material having a size of 70 μm and an iron foreign material having a size of 180 μm are charged on the positive electrode side of the secondary battery having the same specifications as the above-mentioned non-defective sample. What was done was used.
Two fine short-circuit samples into which 70 μm foreign matter was introduced and two short-circuit samples into which 180 μm foreign matter was introduced were prepared.

21個の良品サンプルに対してNo.1〜21のサンプルNo.を付し、70μmの異物を投入した微小短絡サンプルに対してNo.22、23のサンプルNo.を付し、180μmの異物を投入した微小短絡サンプルに対してNo.24、25のサンプルNo.を付した。   No. 21 for 21 non-defective samples. Sample Nos. 1-21 No. is applied to a micro short-circuit sample to which a foreign substance of 70 μm is added. Sample Nos. 22 and 23 No. is applied to a micro short-circuited sample with 180 μm of foreign matter added. Sample Nos. 24 and 25 Was attached.

上記の各良品サンプルおよび微小短絡サンプル(サンプルNo.1〜25のサンプル)に対して、25℃にて0Vから4.1Vまで、1Cにて初期充電を行い、4.1V、60℃にて1日放置(エージング)することで、各良品サンプルおよび微小短絡サンプルを初期活性化させたうえで、二次電池1の検査方法による微小短絡の有無の検出を行った。   For each of the above-mentioned non-defective samples and micro short-circuit samples (samples Nos. 1 to 25), initial charging was performed at 1C from 0 V to 4.1 V at 25 ° C., and at 4.1 V and 60 ° C. Each non-defective sample and minute short-circuit sample were initially activated by being left for 1 day (aging), and then the presence or absence of a minute short-circuit was detected by the inspection method for the secondary battery 1.

二次電池1の検査方法による微小短絡の有無の検出は、以下のフローにて行った。
まず、サンプルNo.1〜25のサンプルを第1のSOCに調整し、温度および電圧を安定させるために20℃の環境下にて5時間放置した。
各サンプルを第1のSOCに調整する際の目標値は4%としたが、厳密にSOC4%に調整したのではなく、第1のSOCが4%を中心とした数%の範囲内の値に調整できた時点で第1のSOCの調整を完了した。
Detection of the presence or absence of a short-circuit by the inspection method of the secondary battery 1 was performed according to the following flow.
First, sample no. Samples 1 to 25 were adjusted to the first SOC and allowed to stand in an environment of 20 ° C. for 5 hours in order to stabilize the temperature and voltage.
Although the target value for adjusting each sample to the first SOC is 4%, it is not strictly adjusted to 4% SOC, but the first SOC is a value within a range of several percent centered on 4%. The first SOC adjustment was completed when it was able to be adjusted.

次に、各サンプルを20℃の環境下で20時間放置することによりエージング処理を行い、エージング処理前の電圧V1、およびエージング処理後の電圧V2をそれぞれ測定し、電圧V1から電圧V2を減じることで、第1の電圧降下量ΔVAを算出した(第1の電圧降下量測定工程)。   Next, each sample is left to stand for 20 hours in an environment of 20 ° C. to perform an aging treatment, measure the voltage V1 before the aging treatment and the voltage V2 after the aging treatment, and subtract the voltage V2 from the voltage V1. Thus, the first voltage drop amount ΔVA was calculated (first voltage drop amount measurement step).

その後、各サンプルに対して、定電流量分だけ充電を行い(1C充電にてSOC2%分の充電を行い)、各サンプルを第2のSOCに調整する。この場合、第2のSOCは、第1のSOCとは異なる値となる。
第2のSOCに調整した各サンプルを20℃の環境下で20時間放置することによりエージング処理を行い、エージング処理前の電圧V3、およびエージング処理後の電圧V4をそれぞれ測定し、電圧V3から電圧V4を減じることで、第2の電圧降下量ΔVBを算出した(1回目の第2の電圧降下量測定工程)。
Thereafter, each sample is charged by a constant current amount (1% charge is charged for 2% SOC), and each sample is adjusted to the second SOC. In this case, the second SOC is a value different from the first SOC.
Each sample adjusted to the second SOC is left to stand in an environment of 20 ° C. for 20 hours to perform an aging treatment, and a voltage V3 before the aging treatment and a voltage V4 after the aging treatment are measured, respectively. By subtracting V4, the second voltage drop amount ΔVB was calculated (first second voltage drop amount measurement step).

さらに、各サンプルに対して、前記定電流量分だけ充電を行い(1C充電にてSOC2%分の充電を行い)、各サンプルを第3のSOCに調整する。この場合、第3のSOCは、第1のSOCおよび第2のSOCとは異なる値となる。
第3のSOCに調整した各サンプルを20℃の環境下で20時間放置することによりエージング処理を行い、エージング処理前の電圧V5、およびエージング処理後の電圧V6をそれぞれ測定し、電圧V5から電圧V6を減じることで、第3の電圧降下量ΔVCを算出した(2回目の第2の電圧降下量測定工程)。
Further, each sample is charged by the amount of the constant current (1C charge is charged for 2% SOC), and each sample is adjusted to the third SOC. In this case, the third SOC has a different value from the first SOC and the second SOC.
Each sample adjusted to the third SOC is left to stand for 20 hours in an environment of 20 ° C. to perform an aging treatment, and measure a voltage V5 before the aging treatment and a voltage V6 after the aging treatment, respectively. By subtracting V6, the third voltage drop amount ΔVC was calculated (second second voltage drop amount measurement step).

さらに、各サンプルに対して、前記定電流量分だけ充電を行い(1C充電にてSOC2%分の充電を行い)、各サンプルを第4のSOCに調整する。この場合、第4のSOCは、第1のSOC、第2のSOC、および第3のSOCとは異なる値となる。
第4のSOCに調整した各サンプルを20℃の環境下で20時間放置することによりエージング処理を行い、エージング処理前の電圧V7、およびエージング処理後の電圧V8をそれぞれ測定し、電圧V7から電圧V8を減じることで、第4の電圧降下量ΔVDを算出した(3回目の第2の電圧降下量測定工程)。
このように、本実施例においては、第2の電圧降下量測定工程を3回繰り返して行った。
Further, each sample is charged by the amount of the constant current (charging for 2% SOC by 1C charging), and each sample is adjusted to the fourth SOC. In this case, the fourth SOC is different from the first SOC, the second SOC, and the third SOC.
Each sample adjusted to the fourth SOC is left to stand in an environment of 20 ° C. for 20 hours to perform an aging treatment, and measure the voltage V7 before the aging treatment and the voltage V8 after the aging treatment, respectively. By subtracting V8, the fourth voltage drop amount ΔVD was calculated (second second voltage drop amount measurement step).
Thus, in the present example, the second voltage drop amount measurement step was repeated three times.

次に、図6に示すように、第1の電圧降下量ΔVAを、予め作成しておいた基準ラインに当て嵌めて、前記基準ライン上において第1の電圧降下量ΔVAに対応するSOC値を、第1次推定SOCとして設定した。
さらに、第1次推定SOCに、SOC2%分の充電量を加算して第1の第2次推定SOCを算出し、第1の第2次推定SOCに、SOC2%分の充電量を加算して第2の第2次推定SOCを算出し、第2の第2次推定SOCに、SOC2%分の充電量を加算して第3の第2次推定SOCを算出した。
Next, as shown in FIG. 6, the first voltage drop amount ΔVA is applied to a reference line prepared in advance, and the SOC value corresponding to the first voltage drop amount ΔVA is set on the reference line. The first estimated SOC was set.
Further, the first secondary estimated SOC is calculated by adding the charge amount for 2% SOC to the first estimated SOC, and the charge amount for 2% SOC is added to the first second estimated SOC. Then, the second second estimated SOC was calculated, and the third second estimated SOC was calculated by adding the charge amount for 2% SOC to the second second estimated SOC.

次に、前述のように算出した第1次推定SOC、第1の第2次推定SOC、第2の第2次推定SOC、第3の第2次推定SOC、ならびに測定した第1の電圧降下量ΔVA、第2の電圧降下量ΔVB、第3の電圧降下量ΔVC、および第4の電圧降下量ΔVDを用いて、推定SOCと電圧降下量との関係を示すグラフである実測ラインを作成した。
つまり、点P1(第1次推定SOC、電圧降下量ΔVA)、点P2(第1の第2次推定SOC、電圧降下量ΔVB)、点P3(第2の第2次推定SOC、電圧降下量ΔVC)、および点P4(第3の第2次推定SOC、電圧降下量ΔVC)を通るグラフを実測ラインとして作成した。
Next, the first estimated SOC, the first second estimated SOC, the second second estimated SOC, the third second estimated SOC calculated as described above, and the measured first voltage drop. Using the amount ΔVA, the second voltage drop amount ΔVB, the third voltage drop amount ΔVC, and the fourth voltage drop amount ΔVD, an actual measurement line that is a graph showing the relationship between the estimated SOC and the voltage drop amount was created. .
That is, point P1 (first estimated SOC, voltage drop ΔVA), point P2 (first second estimated SOC, voltage drop ΔVB), point P3 (second second estimated SOC, voltage drop) ΔVC) and a graph passing through point P4 (third second-order estimated SOC, voltage drop amount ΔVC) were created as actual measurement lines.

そして、前記実測ラインと基準ラインとを比較し、実測ラインと基準ラインとの合致度に応じて、二次電池1における微小短絡の有無を判定した。
実測ラインと基準ラインとの比較は、以下のようにして行った。
And the said measurement line and the reference line were compared, and the presence or absence of the micro short circuit in the secondary battery 1 was determined according to the coincidence degree of the measurement line and the reference line.
Comparison between the actual measurement line and the reference line was performed as follows.

まず、前記基準ラインにおける、各第2次推定SOC(第1の第2次推定SOC、第2の第2次推定SOC、第3の第2次推定SOC)に対応する電圧降下量(第1の基準電圧降下量ΔVB’、第2の基準電圧降下量ΔVC’、第3の基準電圧降下量ΔVD’)を算出した。
次に、電圧降下量ΔVBと第1の基準電圧降下量ΔVB’との差の絶対値(=ΔVB−ΔVB’の絶対値)d1、電圧降下量ΔVC第2の基準電圧降下量ΔVC’との差の絶対値(=ΔVC−ΔVC’の絶対値)d2、電圧降下量ΔVD第3の基準電圧降下量ΔVD’との差の絶対値(ΔVD−ΔVD’の絶対値)d3を求め、前記絶対値d1、d2、d3の平均値daveを算出した。
First, in the reference line, a voltage drop amount (first value) corresponding to each second-order estimated SOC (first second-order estimated SOC, second second-order estimated SOC, third second-order estimated SOC). The reference voltage drop amount ΔVB ′, the second reference voltage drop amount ΔVC ′, and the third reference voltage drop amount ΔVD ′) were calculated.
Next, the absolute value of the difference between the voltage drop amount ΔVB and the first reference voltage drop amount ΔVB ′ (= the absolute value of ΔVB−ΔVB ′) d1, the voltage drop amount ΔVC, and the second reference voltage drop amount ΔVC ′. The absolute value of the difference (= the absolute value of ΔVC−ΔVC ′) d2 and the absolute value of the difference (the absolute value of ΔVD−ΔVD ′) d3 from the voltage drop amount ΔVD and the third reference voltage drop amount ΔVD ′ are obtained. The average value dave of the values d1, d2, and d3 was calculated.

このようにして算出した平均値daveが小さければ前記実測ラインと基準ラインとの乖離度合いが小さく、実測ラインと基準ラインとの合致度が高いといえ、平均値daveが大きければ前記実測ラインと基準ラインとの乖離度合いが大きく、実測ラインと基準ラインとの合致度が低いといえる。
従って、算出した平均値daveを前記実測ラインと基準ラインとの合致度を示す値として用い、平均値daveと予め設定しておいた閾値とを比較して、平均値daveが前記閾値以下であれば各サンプルに微小短絡が無い(各サンプルが良品サンプルである)と判定し、平均値daveが前記閾値よりも大きければ各サンプルに微小短絡が有る(各サンプルが微小短絡サンプルである)と判定した。
If the average value calculated in this way is small, the degree of divergence between the actual measurement line and the reference line is small, and the degree of coincidence between the actual measurement line and the reference line is high. If the average value dave is large, the actual measurement line and the reference line are high. It can be said that the degree of deviation from the line is large and the degree of coincidence between the measured line and the reference line is low.
Therefore, the calculated average value dave is used as a value indicating the degree of coincidence between the measured line and the reference line, and the average value dave is compared with a preset threshold value. For example, it is determined that each sample does not have a micro short circuit (each sample is a non-defective sample), and if the average value “dave” is larger than the threshold value, each sample has a micro short circuit (each sample is a micro short sample). did.

平均値daveと比較する前記閾値については、良品サンプルであるNo.1〜21の各サンプルにおける平均値daveの中央値M、および平均値daveの標準偏差σを求め、「M+3σ」を前記閾値として用いた。
つまり、各サンプル(No.1〜25のサンプル)の平均値daveが、「M+3σ」以下であれば、各サンプルに微小短絡が無い(各サンプルが良品サンプルである)と判定し、「M+3σ」よりも大きければ各サンプルに微小短絡が有る(各サンプルが微小短絡サンプルである)と判定することとなる。
Regarding the threshold value to be compared with the average value “dave”, No. The median value M of the average value dave and the standard deviation σ of the average value dave in each of the samples 1 to 21 were determined, and “M + 3σ” was used as the threshold value.
That is, if the average value “dave” of each sample (samples No. 1 to 25) is equal to or less than “M + 3σ”, it is determined that there is no micro short circuit in each sample (each sample is a non-defective sample), and “M + 3σ” If it is larger than that, it is determined that each sample has a micro short circuit (each sample is a micro short circuit sample).

次に、二次電池1の検査方法による微小短絡の有無の検出結果について説明する。
図7には、各良品サンプルおよび微小短絡サンプルについての、基準ラインと実測ラインとの電圧降下量差平均値(dave)を示している。
図7におけるグラフの横軸はサンプルNo.を示しており、各サンプルNo.のうち、No.1〜21が良品サンプルを示しており、No.22〜25が微小短絡サンプルを示している。また、図7におけるグラフの縦軸は、基準ラインと実測ラインとの電圧降下量差平均値(dave)を示している。
Next, the detection result of the presence or absence of the micro short circuit by the inspection method of the secondary battery 1 will be described.
FIG. 7 shows the voltage drop amount difference average value (dave) between the reference line and the actual measurement line for each good product sample and minute short circuit sample.
The horizontal axis of the graph in FIG. No. of each sample No. Nos. 1 to 21 show non-defective samples. Reference numerals 22 to 25 denote micro short-circuit samples. In addition, the vertical axis of the graph in FIG. 7 indicates the voltage drop amount difference average value (dave) between the reference line and the actual measurement line.

図7によれば、良品サンプル(No.1〜21)については、全てのサンプルにおける平均値daveの値が、閾値(M+3σ)以下となっており、全ての良品サンプル(No.1〜21)を、微小短絡が無い良品の二次電池1であると判定可能なことがわかる。
また、微小短絡サンプル(No.22〜25)については、全てのサンプルにおける平均値daveの値が、閾値(M+3σ)よりも大きくなっており、全ての微小短絡サンプル(No.22〜25)を、微小短絡が有る二次電池1であると判定可能なことがわかる。
このように、本検査方法によれば、二次電池1における微小短絡の有無を高精度に検出することが可能となっている。
According to FIG. 7, about the good sample (No. 1-21), the value of the average value dave in all the samples is below a threshold value (M + 3σ), and all the good sample (No. 1-21) Can be determined to be a non-defective secondary battery 1 without a micro short circuit.
Moreover, about the micro short circuit sample (No. 22-25), the value of the average value dave in all the samples is larger than a threshold value (M + 3σ), and all the micro short circuit samples (No. 22-25) are used. It can be determined that the secondary battery 1 has a minute short circuit.
Thus, according to the present inspection method, it is possible to detect the presence or absence of a micro short circuit in the secondary battery 1 with high accuracy.

また、図8に示すように、従来のごとく、1回のエージング処理中における電圧降下量を測定して、その測定値を基準電圧降下量と比較して、微小短絡の有無を検出する場合は、エージング処理(自己放電)による電圧降下量を測定するために30日程度の時間を要していた(エージング処理を30日程度以上行わなければ、微小短絡の有無を判断できるだけの電圧降下量が得られなかった)が、本二次電池の検査方法では、各回のエージング処理(自己放電)を約3日とすることができる(各回のエージング処理において、約3日のエージング処理での電圧降下量により、微小短絡の有無を判断することができる)ので、検査時間を大幅に短縮することが可能となっている。   In addition, as shown in FIG. 8, when the voltage drop amount during one aging process is measured and the measured value is compared with the reference voltage drop amount to detect the presence or absence of a micro short circuit as in the conventional case. It took about 30 days to measure the amount of voltage drop due to the aging process (self-discharge) (if the aging process is not performed for about 30 days or more, there is a voltage drop enough to determine the presence or absence of a micro short circuit. However, in this secondary battery inspection method, each aging treatment (self-discharge) can be about 3 days (in each aging treatment, the voltage drop in the aging treatment for about 3 days). Therefore, the inspection time can be greatly shortened.

1 二次電池
2 電池ケース
3 電極体
31 正極
32 負極
33 セパレータ
ΔVA 第1の電圧降下量
ΔVB 第2の電圧降下量
ΔVC 第3の電圧降下量
DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Battery case 3 Electrode body 31 Positive electrode 32 Negative electrode 33 Separator ΔVA First voltage drop amount ΔVB Second voltage drop amount ΔVC Third voltage drop amount

Claims (3)

正極、負極、およびセパレータを、正極と負極との間にセパレータが介在するように積層して構成した電極体を備える二次電池の検査方法であって、
前記二次電池を任意のSOCに調整した後、エージング処理を行い、前記エージング処理時における前記二次電池の電圧降下量を測定する第1の電圧降下量測定工程と、
前記第1の電圧降下量測定工程の後に複数回繰り返し行われる工程であって、前記二次電池に対して任意の電流量分だけ充電または放電を行って、前記二次電池を、前回までに電圧降下量を測定した際の全てのSOCとは異なるSOCに調整した後、エージング処理を行い、前記エージング処理時における前記二次電池の電圧降下量を測定する、第2の電圧降下量測定工程と、
前記第1の電圧降下量測定工程にて測定した電圧降下量、および予め算出しておいた微小短絡が存在しないことが既知であるモデル二次電池におけるSOCと電圧降下量との関係を示す基準ラインから、前記二次電池における、第1の電圧降下量測定工程にて電圧降下量を測定した際のSOCを第1次推定SOCとして算出する第1の推定工程と、
前記第1次推定SOCに対して、前記複数回の第2の電圧降下量測定工程にて充電または放電を行った電流量分の調整を行って、当該複数回の第2の電圧降下量測定工程に対応する複数の第2次推定SOCを算出する第2の推定工程と、
前記第1の電圧降下量測定工程および複数回の第2の電圧降下量測定工程にて測定した電圧降下量と当該各電圧降下量に対応する第1次推定SOCおよび複数の第2次推定SOCとの関係を示す実測ラインと、前記基準ラインとを比較して、前記実測ラインと基準ラインとの合致度に応じて、前記二次電池における微小短絡の有無を判定する判定工程とを備える、
ことを特徴とする二次電池の検査方法。
A method for inspecting a secondary battery comprising an electrode body formed by laminating a positive electrode, a negative electrode, and a separator so that the separator is interposed between the positive electrode and the negative electrode,
A first voltage drop measuring step of adjusting the secondary battery to an arbitrary SOC, performing an aging process, and measuring a voltage drop of the secondary battery during the aging process;
It is a step repeatedly performed a plurality of times after the first voltage drop amount measuring step, wherein the secondary battery is charged or discharged by an arbitrary amount of current, and the secondary battery is A second voltage drop measurement step for adjusting the SOC to be different from all the SOCs when measuring the voltage drop and then performing an aging process to measure the voltage drop of the secondary battery during the aging process. When,
A reference indicating the relationship between the voltage drop amount measured in the first voltage drop amount measurement step and the SOC and the voltage drop amount in the model secondary battery in which it is known that there is no micro short circuit calculated in advance. A first estimation step of calculating, from the line, an SOC when the voltage drop amount is measured in the first voltage drop amount measurement step in the secondary battery as a first estimated SOC;
The first estimated SOC is adjusted for the amount of current charged or discharged in the plurality of second voltage drop measurement steps, and the second voltage drop measurement is performed a plurality of times. A second estimating step for calculating a plurality of second-order estimated SOCs corresponding to the steps;
The voltage drop amount measured in the first voltage drop amount measurement step and the plurality of second voltage drop amount measurement steps, a first estimated SOC and a plurality of second estimated SOCs corresponding to the voltage drop amounts. Comparing the actual measurement line indicating the relationship with the reference line, and determining whether there is a micro short-circuit in the secondary battery according to the degree of coincidence between the actual measurement line and the reference line,
A method for inspecting a secondary battery.
前記判定工程における、前記実測ラインと基準ラインとの合致度に応じた前記二次電池における微小短絡の有無の判定は、
前記基準ラインにおける、前記各第2次推定SOCに対応する電圧降下量を算出し、
前記実測ラインにおける各第2次推定SOCに対応する電圧降下量と前記基準ラインにおける各第2次推定SOCに対応する電圧降下量との差の平均値と、予め設定した閾値とを比較することにより行う、
ことを特徴とする請求項1に記載の二次電池の検査方法。
In the determination step, the determination of the presence or absence of a micro short circuit in the secondary battery according to the degree of match between the actual measurement line and the reference line is
Calculating a voltage drop amount corresponding to each of the second-order estimated SOCs in the reference line;
Comparing an average value of a difference between a voltage drop amount corresponding to each second estimated SOC in the actual measurement line and a voltage drop amount corresponding to each second estimated SOC in the reference line with a preset threshold value. By
The method for inspecting a secondary battery according to claim 1.
前記第1の電圧降下量測定工程および複数の第2の電圧降下量測定工程にて電圧降下量を測定する際の各SOCは、互いに前記二次電池のOCV曲線の傾きが異なる値に設定され、
かつ、前記第1の電圧降下量測定工程および複数回の第2の電圧降下量測定工程にて電圧降下量を測定する際の各SOCのうちの少なくとも一つは、0〜10%の範囲内の値に設定される、
ことを特徴とする請求項1または請求項2に記載の二次電池の検査方法。
Each SOC at the time of measuring the voltage drop amount in the first voltage drop amount measurement step and the plurality of second voltage drop amount measurement steps is set to a value in which the slope of the OCV curve of the secondary battery is different from each other. ,
In addition, at least one of the SOCs when the voltage drop amount is measured in the first voltage drop measurement step and the plurality of second voltage drop measurement steps is within a range of 0 to 10%. Set to the value of
The method for inspecting a secondary battery according to claim 1 or 2, characterized in that:
JP2012143566A 2012-06-26 2012-06-26 Secondary battery inspection method Active JP5768769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143566A JP5768769B2 (en) 2012-06-26 2012-06-26 Secondary battery inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143566A JP5768769B2 (en) 2012-06-26 2012-06-26 Secondary battery inspection method

Publications (2)

Publication Number Publication Date
JP2014006205A true JP2014006205A (en) 2014-01-16
JP5768769B2 JP5768769B2 (en) 2015-08-26

Family

ID=50104044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143566A Active JP5768769B2 (en) 2012-06-26 2012-06-26 Secondary battery inspection method

Country Status (1)

Country Link
JP (1) JP5768769B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028022A (en) * 2016-09-07 2018-03-15 도요타 지도샤(주) Method of restoring secondary bettery and method of reusing secondary battery
CN108061861A (en) * 2017-11-29 2018-05-22 东莞市创明电池技术有限公司 The screening technique of lithium ion battery self discharge
EP3492939A1 (en) * 2017-12-04 2019-06-05 Industrial Technology Research Institute Method and system for detecting resistance of internal short circuit of battery
CN111208439A (en) * 2020-01-19 2020-05-29 中国科学技术大学 Quantitative detection method for micro short circuit fault of series lithium ion battery pack
JP2020201081A (en) * 2019-06-07 2020-12-17 本田技研工業株式会社 Method for determining minute short-circuiting of lithium ion secondary battery
US10974613B2 (en) 2017-12-04 2021-04-13 Industrial Technology Research Institute Method and system for determining discharging process of battery
CN112888954A (en) * 2018-10-05 2021-06-01 株式会社Lg化学 Method and apparatus for diagnosing low voltage of secondary battery cell
CN113093056A (en) * 2021-06-08 2021-07-09 蜂巢能源科技有限公司 Method for determining position of short-circuit point in electric core
US11442110B2 (en) 2020-02-04 2022-09-13 Samsung Electronics Co., Ltd. Method and system for detecting operating status of battery
US11885829B2 (en) 2017-08-14 2024-01-30 Dukosi Limited Maturation processes for electric batteries cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126373B2 (en) 2015-02-27 2018-11-13 Toyota Jidosha Kabushiki Kaisha Inspection method of secondary battery
CN107870301B (en) * 2016-09-27 2020-09-04 华为技术有限公司 Method and device for detecting micro short circuit of battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246073A (en) * 2001-02-20 2002-08-30 Nissan Motor Co Ltd Abnormality detection device for set battery
JP2003123850A (en) * 2001-10-10 2003-04-25 Makita Corp Internally short-circuited cell detection method, and detection device using the same
JP2007113953A (en) * 2005-10-18 2007-05-10 Panasonic Ev Energy Co Ltd Controller for secondary cell and method for determining degradation of secondary cell
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
JP2010223768A (en) * 2009-03-24 2010-10-07 Panasonic Corp Battery defect detection circuit, and power supply device
JP2010257984A (en) * 2008-04-01 2010-11-11 Toyota Motor Corp Secondary battery system
JP2011047918A (en) * 2009-03-31 2011-03-10 Primearth Ev Energy Co Ltd Control device of secondary battery, and correction method of map
JP2011069775A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Method of inspecting secondary battery
JP2012084332A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Method for producing lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246073A (en) * 2001-02-20 2002-08-30 Nissan Motor Co Ltd Abnormality detection device for set battery
JP2003123850A (en) * 2001-10-10 2003-04-25 Makita Corp Internally short-circuited cell detection method, and detection device using the same
JP2007113953A (en) * 2005-10-18 2007-05-10 Panasonic Ev Energy Co Ltd Controller for secondary cell and method for determining degradation of secondary cell
JP2010257984A (en) * 2008-04-01 2010-11-11 Toyota Motor Corp Secondary battery system
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
JP2010223768A (en) * 2009-03-24 2010-10-07 Panasonic Corp Battery defect detection circuit, and power supply device
JP2011047918A (en) * 2009-03-31 2011-03-10 Primearth Ev Energy Co Ltd Control device of secondary battery, and correction method of map
JP2011069775A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Method of inspecting secondary battery
JP2012084332A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Method for producing lithium ion secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101963034B1 (en) 2016-09-07 2019-03-27 도요타 지도샤(주) Method of restoring secondary bettery and method of reusing secondary battery
KR20180028022A (en) * 2016-09-07 2018-03-15 도요타 지도샤(주) Method of restoring secondary bettery and method of reusing secondary battery
US11885829B2 (en) 2017-08-14 2024-01-30 Dukosi Limited Maturation processes for electric batteries cells
CN108061861A (en) * 2017-11-29 2018-05-22 东莞市创明电池技术有限公司 The screening technique of lithium ion battery self discharge
CN108061861B (en) * 2017-11-29 2020-07-17 东莞市创明电池技术有限公司 Screening method for self-discharge of lithium ion battery
US10974613B2 (en) 2017-12-04 2021-04-13 Industrial Technology Research Institute Method and system for determining discharging process of battery
EP3492939A1 (en) * 2017-12-04 2019-06-05 Industrial Technology Research Institute Method and system for detecting resistance of internal short circuit of battery
US10908227B2 (en) 2017-12-04 2021-02-02 Industrial Technology Research Institute Method and system for detecting resistance of internal short circuit of battery
CN112888954A (en) * 2018-10-05 2021-06-01 株式会社Lg化学 Method and apparatus for diagnosing low voltage of secondary battery cell
CN112888954B (en) * 2018-10-05 2024-05-10 株式会社Lg新能源 Method and apparatus for diagnosing low voltage of secondary battery cell
JP2020201081A (en) * 2019-06-07 2020-12-17 本田技研工業株式会社 Method for determining minute short-circuiting of lithium ion secondary battery
CN111208439A (en) * 2020-01-19 2020-05-29 中国科学技术大学 Quantitative detection method for micro short circuit fault of series lithium ion battery pack
US11442110B2 (en) 2020-02-04 2022-09-13 Samsung Electronics Co., Ltd. Method and system for detecting operating status of battery
CN113093056A (en) * 2021-06-08 2021-07-09 蜂巢能源科技有限公司 Method for determining position of short-circuit point in electric core

Also Published As

Publication number Publication date
JP5768769B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5768769B2 (en) Secondary battery inspection method
US10794960B2 (en) Method and apparatus for detecting low voltage defect of secondary battery
KR101951067B1 (en) Secondary battery control device and soc detection method
JP5172579B2 (en) Cylindrical battery inspection method
JP2014222603A (en) Inspection method for battery
JP2014002009A (en) Method of inspecting secondary battery
US9157964B2 (en) Method for producing secondary battery
EP3890093A1 (en) Method for manufacturing secondary battery
US20160161564A1 (en) Test method for secondary battery
JP2009145137A (en) Inspection method of secondary battery
JP6202032B2 (en) Secondary battery inspection method
WO2014016956A1 (en) Short-circuit inspection method for secondary cell
JP4529364B2 (en) Cylindrical battery inspection method
JP5861189B2 (en) Secondary battery inspection method
JP4048905B2 (en) Battery inspection method
JP6171821B2 (en) Power storage device having life determination function, and battery life determination method
JP6128366B2 (en) Secondary battery inspection method
JP2013254653A (en) Method for inspecting secondary battery
JP2014082121A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2008292272A (en) Method of predicting voltage of electric storage device
JP2014192015A (en) Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP6176487B2 (en) Manufacturing method of secondary battery
JP2005251538A (en) Inspection method and device of secondary cell
KR20200054013A (en) Method for Detecting Battery Having Disconnection of Terminal
JP2018067498A (en) Method of manufacturing battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R151 Written notification of patent or utility model registration

Ref document number: 5768769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151