JP6171821B2 - Power storage device having life determination function, and battery life determination method - Google Patents

Power storage device having life determination function, and battery life determination method Download PDF

Info

Publication number
JP6171821B2
JP6171821B2 JP2013211766A JP2013211766A JP6171821B2 JP 6171821 B2 JP6171821 B2 JP 6171821B2 JP 2013211766 A JP2013211766 A JP 2013211766A JP 2013211766 A JP2013211766 A JP 2013211766A JP 6171821 B2 JP6171821 B2 JP 6171821B2
Authority
JP
Japan
Prior art keywords
unit cell
voltage
cell
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013211766A
Other languages
Japanese (ja)
Other versions
JP2015076983A (en
Inventor
悠 西村
悠 西村
真一朗 筧
真一朗 筧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013211766A priority Critical patent/JP6171821B2/en
Publication of JP2015076983A publication Critical patent/JP2015076983A/en
Application granted granted Critical
Publication of JP6171821B2 publication Critical patent/JP6171821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、寿命判定機能を有する蓄電装置、及び組電池の寿命判定方法に関する。   The present invention relates to a power storage device having a life determination function and a life determination method for an assembled battery.

昨今、電気自動車や自然エネルギーを活かしたスマートグリッドなどによる省エネルギー社会を目指した発展が望ましい。その中で、二次電池は蓄電装置として大きな役割を持つ。特に、リチウムイオン二次電池は、容量・出力ともにすぐれ、システムの小型化に貢献しうる。その際、一つのリチウムイオン二次電池では電力量が小さいため、直列・並列に組み合わされたリチウムイオン二次電池の組電池として利用される場合が多い。この場合、様々な使用条件により変化する組電池全体の劣化の状態を逐次把握することは必須な技術である。例えば、リチウムイオン二次電池が劣化し貯蔵できる電池容量が減ってくると、十分な電力を供給できなくなり、電力供給をうけるデバイスがうまく動作しなくなるなどの不具合が発生する。   In recent years, it is desirable to develop an energy-saving society by using electric vehicles and smart grids that make use of natural energy. Among them, the secondary battery has a large role as a power storage device. In particular, lithium ion secondary batteries have excellent capacity and output, and can contribute to downsizing of the system. At that time, since one lithium ion secondary battery has a small amount of electric power, it is often used as an assembled battery of lithium ion secondary batteries combined in series and in parallel. In this case, it is an indispensable technique to sequentially grasp the deterioration state of the entire assembled battery that changes depending on various use conditions. For example, when a lithium ion secondary battery deteriorates and the battery capacity that can be stored decreases, sufficient power cannot be supplied, and problems such as failure of a device that receives power supply to operate properly occur.

従来、単電池・組電池の劣化状態を評価するのには、リチウムイオン二次電池のインピーダンスを測定し、所定の基準と比べることで評価する技術が知られている。特許文献1では、組電池全体のインピーダンスを評価し規定インピーダンス以上を示した場合には組電池を寿命と判定している。   Conventionally, in order to evaluate the deterioration state of a single battery or an assembled battery, a technique is known in which the impedance of a lithium ion secondary battery is measured and compared with a predetermined standard. In patent document 1, when the impedance of the whole assembled battery is evaluated and it shows more than a specified impedance, the assembled battery is determined to have a lifetime.

しかしながら、特許文献1のようにインピーダンスを用いる手法では、外部の環境によって判定精度が落ちる場合がある。リチウムイオン二次電池は外部の温度に敏感であり、例えば、温度が高い場合であると、インピーダンスは低い値となり、温度が低い場合であると、インピーダンスは高い値となる。温度が高い条件においては、本来寿命と判断すべきインピーダンスの大きさになっていても、低く見積もられ使用可と判断され、逆に温度が低い条件下においては、本来、正常とされるはずのインピーダンスであるのに、大きく見積もられ寿命と判断されてしまう場合がある。また、論理回路での温度補正を行うこともできるが、初期だけでなく劣化後の各温度のインピーダンスの特性をあらかじめ正確に把握する必要があり、現実的ではない。   However, in the technique using impedance as in Patent Document 1, the determination accuracy may be reduced depending on the external environment. The lithium ion secondary battery is sensitive to an external temperature. For example, when the temperature is high, the impedance is a low value, and when the temperature is low, the impedance is a high value. Under conditions where the temperature is high, even if the impedance is supposed to be considered as a lifetime, it is estimated to be low and can be used. Conversely, under conditions where the temperature is low, it should be normal. In some cases, it is estimated that the life is long estimated even though the impedance is. In addition, although it is possible to perform temperature correction by a logic circuit, it is necessary to accurately grasp the impedance characteristics of each temperature after deterioration as well as the initial stage, which is not realistic.

特開平9−114588号公報JP-A-9-114588

本発明は、外部の温度環境によらず、精度よく組電池の寿命判定が可能な蓄電装置と、組電池の寿命判定方法を提供することを目的とする。   An object of the present invention is to provide a power storage device capable of accurately determining the life of an assembled battery regardless of the external temperature environment, and a method for determining the life of the assembled battery.

本発明にかかる蓄電装置は、直列接続された複数の単電池を有し、その複数の単電池のうち少なくとも2つは、第1単電池と第2単電池とで構成される組電池と、前記第1単電池の電圧を測定する第1の電圧測定装置と、前記第2単電池の電圧を測定する第2の電圧測定装置と、第1単電池と第2単電池の電圧を比較する比較部と、を有し、前記第1単電池及び前記第2単電池の充放電特性は、充放電カーブに変曲領域を有し、前記第1単電池は、前記第2単電池よりも先に前記変曲領域内の所定電圧に達する通常状態を持ち、前記比較部は、充放電後に第2単電池が前記第1単電池より先に前記変曲領域内の所定の電圧に達するとき、寿命と判断することを特徴とする寿命判定機能を有する蓄電装置である。   The power storage device according to the present invention includes a plurality of unit cells connected in series, and at least two of the plurality of unit cells include an assembled battery including a first unit cell and a second unit cell, The first voltage measuring device that measures the voltage of the first cell, the second voltage measuring device that measures the voltage of the second cell, and the voltages of the first cell and the second cell are compared. And a charge / discharge characteristic of the first unit cell and the second unit cell has an inflection region in a charge / discharge curve, and the first unit cell is more than the second unit cell. The normal state of reaching the predetermined voltage in the inflection region first has a normal state, and the comparison unit, when charging and discharging, the second unit cell reaches the predetermined voltage in the inflection region before the first unit cell This is a power storage device having a life determination function characterized by determining a life.

この構成によれば、充放電過程において、第1単電池と第2単電池の各電圧を測定し、第2単電池よりも早く第1単電池が変曲領域電圧に達する通常状態から、第1単電池よりも先に第2単電池が変曲領域電圧に達する状態を寿命と判断するものである。つまり放電の際に先に変曲領域電圧となる電池が、第1単電池から第2単電池に入れ代わる際に蓄電池の寿命と判断されうる。変曲領域は、放電電気容量に対する電圧の変化量が大きい領域であり、電圧を測定することで、精度よく変曲領域の状態であることを判断できる。このように蓄電装置内に設置された前記二種の単電池を相対評価することで、環境温度によらず組電池の寿命を精度良く判断することができる。   According to this configuration, in the charging / discharging process, each voltage of the first unit cell and the second unit cell is measured, and from the normal state where the first unit cell reaches the inflection region voltage earlier than the second unit cell, The state in which the second cell reaches the inflection region voltage before the single cell is determined as the life. In other words, when the battery that first becomes the inflection region voltage at the time of discharging is replaced from the first unit cell to the second unit cell, it can be determined that the life of the storage battery is reached. The inflection region is a region where the amount of change in voltage with respect to the discharge capacitance is large, and by measuring the voltage, it can be determined that the state of the inflection region is accurate. In this way, by relatively evaluating the two types of single cells installed in the power storage device, it is possible to accurately determine the life of the assembled battery regardless of the environmental temperature.

また、第1単電池と前記第2単電池は組電池内で隣接して構成されている寿命判定機能を有する蓄電装置であることが望ましい。   Moreover, it is desirable that the first unit cell and the second unit cell are power storage devices having a life determination function that are configured adjacent to each other in the assembled battery.

この構成によれば、第1単電池と第2単電池の温度差をより小さくすることができるため、精度よく蓄電装置の寿命を判断することができる。   According to this configuration, since the temperature difference between the first unit cell and the second unit cell can be further reduced, the lifetime of the power storage device can be determined with high accuracy.

また、本発明にかかる寿命判定方法は、複数の単電池が直列に接続されてなる組電池の寿命判定方法であって、複数の単電池のうち少なくとも2つは、充放電特性を示す充放電カーブに変曲領域を有する第1単電池と第2単電池とを有し、前記第1単電池の前記変曲領域内の所定電圧と前記第2単電池の前記変曲領域内の所定電圧とを測定し、放電時に、第1単電池が先に変曲領域電圧となった際は、通常状態と判定し、充放電の繰り返しにより、第2単電池が先に前記変曲領域内の所定電圧となった際に、蓄電装置の寿命と判断する組電池の寿命判定方法である。   Moreover, the life determination method according to the present invention is a method of determining the life of a battery pack in which a plurality of single cells are connected in series, and at least two of the plurality of single cells are charge / discharge exhibiting charge / discharge characteristics. A first cell and a second cell having an inflection region in a curve, and a predetermined voltage in the inflection region of the first cell and a predetermined voltage in the inflection region of the second cell. When the first cell reaches the inflection region voltage at the time of discharge, it is determined as a normal state, and the second cell is first in the inflection region by repeated charge and discharge. This is a method for determining the life of an assembled battery in which the life of the power storage device is determined when a predetermined voltage is reached.

この手法によれば、組電池に設置された前記二種の単電池の電圧を相対評価することで、環境温度によらず組電池の寿命を精度良く判断することができる。   According to this method, the life of the assembled battery can be accurately determined regardless of the environmental temperature by relatively evaluating the voltages of the two types of unit cells installed in the assembled battery.

本発明によれば、組電池の温度環境によらず、精度よく組電池の寿命判定を行える蓄電装置を提供でき、また組電池の寿命判定方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the electrical storage apparatus which can determine the lifetime of an assembled battery accurately irrespective of the temperature environment of an assembled battery, and also to provide the lifetime determination method of an assembled battery.

第1実施形態の蓄電装置Power storage device of first embodiment 単電池を模式的に示した図A diagram schematically showing a single cell 第1実施形態の第1単電池と第2単電池の充放電特性を示す充放電カーブA charge / discharge curve showing the charge / discharge characteristics of the first cell and the second cell of the first embodiment 第1実施形態の第1単電池と第2単電池の高電圧領域におけるサイクル特性Cycle characteristics in the high voltage region of the first cell and the second cell of the first embodiment 第2実施形態の蓄電装置Power storage device of second embodiment 第2実施形態の第1単電池と第2単電池と第3単電池の充放電特性を示す充放電カーブCharging / discharging curve showing the charging / discharging characteristics of the first cell, the second cell, and the third cell of the second embodiment 第2実施形態の第1単電池と第2単電池と第3単電池の高電圧領域におけるサイクル特性Cycle characteristics in the high voltage region of the first cell, the second cell, and the third cell of the second embodiment 実施例1の第1単電池と第2単電池の高電圧領域でのサイクル特性Cycle characteristics in the high voltage region of the first unit cell and the second unit cell of Example 1 実施例2のサイクル劣化を設計した際のサイクル特性Cycle characteristics when designing the cycle deterioration of Example 2 実施例3のサイクル劣化を設計した際のサイクル特性Cycle characteristics when designing the cycle deterioration of Example 3 比較例の各温度でのサイクル回数とインピーダンスの関係Relationship between cycle number and impedance at each temperature in the comparative example

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(たとえば、組電池の構築手段、単電池を構成する電極体ユニットや電解質の構成、電池構築のためのプロセス等)は、当該分野における技術常識に基づいて、変形可能である。   DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. It should be noted that matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, the construction means of the assembled battery, the construction of the electrode body unit or the electrolyte constituting the unit cell, the construction of the battery Can be modified based on common technical knowledge in the field.

(単電池)
図3に第1単電池14と第2単電池16の充放電特性を示す放電カーブの一例を示す。図3において、横軸は、単電池1の通常(第1実施形態)
(蓄電装置)
まず第1の実施形態について説明する。図1に本実施形態の蓄電装置40を模式的に示す。本実施形態の蓄電装置40は、第1単電池14と、第1単電池14の電圧を測定する電圧測定装置30と、第2単電池16と、第2単電池16の電圧を測定する電圧測定装置35と、比較部38を有する。また第1単電池14と第2単電池16は直列に接続され、更に複数の単電池12と合わせ直列接続し、組電池20を構成している。
(Single cell)
FIG. 3 shows an example of a discharge curve showing the charge / discharge characteristics of the first unit cell 14 and the second unit cell 16. In FIG. 3, the horizontal axis represents the normal cell 1 (first embodiment).
(Power storage device)
First, the first embodiment will be described. FIG. 1 schematically shows a power storage device 40 of the present embodiment. The power storage device 40 of the present embodiment includes a first cell 14, a voltage measurement device 30 that measures the voltage of the first cell 14, a second cell 16, and a voltage that measures the voltage of the second cell 16. A measurement device 35 and a comparison unit 38 are included. Further, the first unit cell 14 and the second unit cell 16 are connected in series, and are further connected in series with the plurality of unit cells 12 to constitute the assembled battery 20.

その組電池20は、その内部に設置された第1単電池14と第2単電池16とそれぞれに接続する配線が引き出され、その配線により電圧測定装置30と、電圧測定装置35は、第1単電池14と第2単電池16にそれぞれ並列に接続されている。また、比較部38は、電圧測定装置30と電圧測定装置35の電圧を比較し、後述する寿命判定方法により蓄電装置40の寿命を判定している。   The battery pack 20 is connected to the first unit cell 14 and the second unit cell 16 installed therein, and the voltage measurement device 30 and the voltage measurement device 35 are connected to the first cell 14 and the second cell 16, respectively. The unit cell 14 and the second unit cell 16 are respectively connected in parallel. The comparison unit 38 compares the voltages of the voltage measuring device 30 and the voltage measuring device 35, and determines the life of the power storage device 40 by a life determination method described later.

図3に第1単電池14と第2単電池16の充放電特性を示す放電カーブの一例を示す。図3において、横軸は、単電池1の通常状態での満充電状態を0、放電終了時を100とする放電深度(放電の電気容量)として示し、縦軸は、単電池のセル電圧を示し、充電状態を表す。図3中、実線で描いた放電カーブは、第1単電池の充放電特性を示し、点線で描いた放電カーブは、第2単電池の充放電特性を示している。その放電カーブにて明らかなように、第1単電池14と第2単電池16の充放電特性は、充放電カーブ内に変曲領域100を有し、それぞれの充放電カーブは、変曲領域100よりも大きい電圧の高電圧領域101と、変曲領域よりも小さい電圧の低電圧領域102を持っている。   FIG. 3 shows an example of a discharge curve showing the charge / discharge characteristics of the first unit cell 14 and the second unit cell 16. In FIG. 3, the horizontal axis indicates the depth of discharge (electric capacity of discharge) where the full charge state in the normal state of the single battery 1 is 0, and the discharge end time is 100, and the vertical axis indicates the cell voltage of the single battery. Indicates the state of charge. In FIG. 3, the discharge curve drawn with a solid line shows the charge / discharge characteristics of the first unit cell, and the discharge curve drawn with a dotted line shows the charge / discharge characteristic of the second unit cell. As is apparent from the discharge curve, the charge / discharge characteristics of the first cell 14 and the second cell 16 have an inflection region 100 in the charge / discharge curve, and each charge / discharge curve has an inflection region. It has a high voltage region 101 having a voltage larger than 100 and a low voltage region 102 having a voltage smaller than the inflection region.

(第1単電池と第2単電池の関係)
また、第1単電池14の高電圧領域101における電気容量は、第2単電池16の高電圧領域101における電気容量と比べて、所定量以上小さく設定され、そのため、通常状態では、満充電から放電すると第1単電池は、第2単電池よりも早く変曲領域100内の所定電圧に達する通常状態を持つ。
(Relationship between first cell and second cell)
Further, the electric capacity in the high voltage region 101 of the first unit cell 14 is set to be smaller than the electric capacity in the high voltage region 101 of the second unit cell 16 by a predetermined amount. When discharged, the first unit cell has a normal state that reaches the predetermined voltage in the inflection region 100 earlier than the second unit cell.

さらに、第1単電池14の電池容量のサイクル劣化速度は、第2単電池16の電池容量のサイクル劣化速度よりも遅い。特に高電圧領域101での電気容量のサイクル劣化速度が重要であり、第1単電池14と第2単電池16の高電圧領域101での容量差を設け、変曲領域100内の所定電圧を利用することで、より精度の高い蓄電装置40の寿命を判定することができる。   Further, the cycle deterioration rate of the battery capacity of the first unit cell 14 is slower than the cycle deterioration rate of the battery capacity of the second unit cell 16. In particular, the cycle deterioration rate of the electric capacity in the high voltage region 101 is important, a capacity difference in the high voltage region 101 between the first unit cell 14 and the second unit cell 16 is provided, and a predetermined voltage in the inflection region 100 is set. By using it, the lifetime of the power storage device 40 with higher accuracy can be determined.

なお、通常、単電池を組電池化する際には、特性によるグルーピングによって、同等程度の単電池を選び、組電池20を作製する。第1単電池14と第2単電池16との高電圧領域での電気容量差は、本発明の効果を発現する程度であれば特に限定されるものではないが、グルーピング時の電池容量ばらつきである1%程度以上あれば十分である。たとえば、第1単電池14と、第2単電池16との、高電圧領域101での電気容量差は、単電池の製造時での電気容量差以上(たとえば3%以上)であることが望ましい。この様な設計とすることで、高感度な電気回路を用いずとも判別が容易となる。   Normally, when forming a unit cell into an assembled battery, an equivalent unit cell is selected by grouping according to characteristics, and the assembled battery 20 is manufactured. The difference in electric capacity in the high voltage region between the first unit cell 14 and the second unit cell 16 is not particularly limited as long as the effect of the present invention is exhibited, but due to variation in the battery capacity at the time of grouping. About 1% or more is sufficient. For example, the difference in electric capacity between the first unit cell 14 and the second unit cell 16 in the high voltage region 101 is preferably equal to or greater than the difference in electric capacity when the unit cell is manufactured (for example, 3% or more). . Such a design facilitates discrimination without using a highly sensitive electric circuit.

また、第1単電池14と、第2単電池16は、同等の電池容量であっても、異なる電池容量であっても良いため低電圧領域での容量は特に限定されない。つまり、図3では、第1単電池14の電池容量が100に対し、第2単電池も100のものを使用した例を示しているが、低電圧領域での電気容量が非常に大きい第2単電池16を利用し100を超えるものであってもよい。   Moreover, since the 1st cell 14 and the 2nd cell 16 may be equivalent battery capacity or different battery capacity, the capacity | capacitance in a low voltage area | region is not specifically limited. That is, FIG. 3 shows an example in which the first unit cell 14 has a battery capacity of 100, and the second unit cell also uses 100, but the second one has a very large electric capacity in the low voltage region. It may be more than 100 using the single battery 16.

(組電池)
またこれらの単電池は必要に応じて、複数の単電池12をさらに直列に接続することで、高電圧を出力できる組電池20とすることができる。これにより蓄電装置40全体の電圧を調整することができる。また、図面では、割愛してあるが、直列に接続された各単電池は、それぞれ、個別に同等の単電池を並列に接続してもよく、組電池の大部分を占める単電池12もそれぞれ個別に、過放電や過充電防止のため電圧測定装置を設け、あわせて電気回路を設けてもよい。
(Battery)
Moreover, these unit cells can be used as the assembled battery 20 capable of outputting a high voltage by connecting a plurality of unit cells 12 in series as necessary. Thereby, the voltage of the whole electrical storage apparatus 40 can be adjusted. Moreover, although omitted in the drawings, each unit cell connected in series may be individually connected to the same unit cell in parallel, and each unit cell 12 that occupies most of the assembled battery is also each. Individually, a voltage measuring device may be provided to prevent overdischarge and overcharge, and an electric circuit may be provided.

(寿命判定方法)
上述した第1単電池14と第2単電池16を有する蓄電装置40は、以下の手順にて寿命を判定する。まず、初期状態から充放電を繰り返し行う寿命前の通常状態では、蓄電装置40の放電時に、電圧測定装置35で測定される第2単電池16よりも、電圧測定装置30で測定される第1単電池14の方が先に、あらかじめ設定された変曲領域の所定電圧に達する。これは、組電池内の単電池は全て均等に放電し、同じ放電深度となるように放電する。したがって、第1単電池14も、第2単電池16も、満充電状態から放電終了に至るまで、常に同じ放電深度にて放電される。通常状態では、第1単電池14が、図3に示す変曲領域100内の所定電圧に達しても、第2単電池は、まだ高電圧領域101の高い電圧を示すことになる。通常状態か否かの判断は、第1単電池14と第2単電池16の電圧を電圧測定装置(30、35)で測定し、比較部38がその2つの単電池の電圧を比較することによって判定する。一方、寿命に達した状態では、蓄電装置40の放電時に、第1単電池14よりも、第2単電池16の方が先に、変曲領域の所定電圧に達する。この寿命に達した状態も通常状態を判定するのと同様に第1単電池14と第2単電池16の電圧を比較部38が比較することによって判定する。
(Life judgment method)
The power storage device 40 having the first unit cell 14 and the second unit cell 16 described above determines the life by the following procedure. First, in the normal state before the lifetime in which charging and discharging are repeatedly performed from the initial state, the first voltage measured by the voltage measuring device 30 is more measured than the second unit cell 16 measured by the voltage measuring device 35 when the power storage device 40 is discharged. The unit cell 14 first reaches a predetermined voltage in a predetermined inflection region. In this case, all the cells in the assembled battery are discharged evenly and discharged so as to have the same depth of discharge. Accordingly, both the first unit cell 14 and the second unit cell 16 are always discharged at the same discharge depth from the fully charged state to the end of discharge. In the normal state, even if the first single cell 14 reaches a predetermined voltage in the inflection region 100 shown in FIG. 3, the second single cell still shows a high voltage in the high voltage region 101. The determination as to whether or not it is in the normal state is that the voltage of the first unit cell 14 and the second unit cell 16 is measured by the voltage measuring device (30, 35), and the comparison unit 38 compares the voltages of the two unit cells. Determine by. On the other hand, in the state where the lifetime has been reached, the second unit cell 16 reaches the predetermined voltage in the inflection region earlier than the first unit cell 14 when the power storage device 40 is discharged. The state that has reached the end of its life is also determined by comparing the voltages of the first unit cell 14 and the second unit cell 16 in the same manner as in determining the normal state.

なお、比較部は、電圧を検知し比較することができる一般的な回路であれば特に問わないが、電圧の差を検知し信号を出力することができる回路を用いることが好ましい。   The comparison unit is not particularly limited as long as it is a general circuit that can detect and compare voltages, but it is preferable to use a circuit that can detect a difference in voltage and output a signal.

また、図1の実施形態では、第1単電池14と第2単電池16は、組電池20内で同等の環境下にある。このため、環境温度の変化があっても、比較すべき第1単電池14と第2単電池16の特性は、同様に変化し、環境温度によらず充放電状態であることをより正確に判定することがきる。このとき、第1単電池14と第2単電池16の温度特性は、必ずしも同等である必要はないが、ほぼ同等である方がさらに精度の高い寿命判定の上で望ましい。   In the embodiment of FIG. 1, the first unit cell 14 and the second unit cell 16 are in an equivalent environment within the assembled battery 20. For this reason, even if there is a change in the environmental temperature, the characteristics of the first single cell 14 and the second single cell 16 to be compared change in the same way, and more accurately indicate that the charge / discharge state is established regardless of the environmental temperature. I can judge. At this time, the temperature characteristics of the first unit cell 14 and the second unit cell 16 do not necessarily have to be the same, but it is desirable that the temperature properties be approximately the same for determining the life with higher accuracy.

本明細書において、「変曲領域100」とは、特に限定しない限り、個々の単電池に蓄えられる電気容量と電圧で規定される充放電特性の充放電カーブにおいて、電気容量の単位変化量に対して電圧の変化量が(局所的に)大きい領域をいう。変曲領域100では、単電池に蓄えられる電気容量の変化量に対して電圧の変化量が大きいため、電圧で単電池に蓄えられた電気容量を判定する場合、精度よくリチウムイオン二次電池に蓄えられた電気容量を評価することができる。電圧測定装置での電圧値誤差が0.05Vの場合、電気容量が5%変化した際に変曲領域での電圧変化量が、0.05V以上であれば、5%程度の誤差で判定することができる。   In the present specification, the “inflection region 100” refers to the unit change amount of the electric capacity in the charge / discharge curve of the charge / discharge characteristics defined by the electric capacity and voltage stored in each unit cell unless otherwise specified. On the other hand, it refers to a region where the amount of change in voltage is large (locally). In the inflection region 100, since the amount of change in voltage is larger than the amount of change in electric capacity stored in the unit cell, when determining the electric capacity stored in the unit cell by voltage, the lithium ion secondary battery is accurately used. The stored electrical capacity can be evaluated. When the voltage value error in the voltage measuring device is 0.05V, if the voltage change amount in the inflection region is 0.05V or more when the electric capacity changes by 5%, the determination is made with an error of about 5%. be able to.

本明細書において、「変曲領域電圧」とは、特に限定しない限り、個々の単電池に設定される変曲領域での中央電圧であり、言い換えれば、変曲領域を示す電圧幅の中心となる電圧のことである。通常は、Vの単位を用いて示される。設定される電圧値は、使用される正極活物質、負極活物質の組み合わせによって適宜調整可能である。   In the present specification, the “inflection region voltage” is a central voltage in an inflection region set for each unit cell unless otherwise specified, in other words, the center of the voltage width indicating the inflection region. Is the voltage. Usually, it is shown using the unit of V. The set voltage value can be appropriately adjusted depending on the combination of the positive electrode active material and the negative electrode active material used.

本明細書において、通常状態とは、初期からリチウムイオン2次電池の寿命に達する手前の状態を指し、市場にて安全に使用できる状態である。   In this specification, the normal state refers to a state immediately before reaching the life of the lithium ion secondary battery from the beginning, and is a state that can be used safely in the market.

なお、サイクル劣化とは、純粋な充放電サイクル負荷による劣化だけでなく、高温状態での使用や、長期保存、温度ショック等による様々なユーザーによる使用環境によって影響しうる諸要因を加味し、充電、放電を繰り返し行うことによる通常使用による劣化を加味しうるものである。   Note that cycle deterioration is not only deterioration due to pure charge / discharge cycle load, but also charging by taking into account various factors that can be affected by various user environments such as use at high temperatures, long-term storage, temperature shock, etc. In addition, deterioration due to normal use due to repeated discharge can be taken into account.

本実施形態は、時々刻々と変化する様々な環境変化にかかわらず、寿命を測定可能な蓄電装置である。   The present embodiment is a power storage device capable of measuring a lifetime regardless of various environmental changes that change from moment to moment.

本実施形態の構成要素をさらに詳細に説明する。図2には、第1単電池14および第2単電池16として、リチウムイオン二次電池を例に挙げ、その内部構造を電池要素50として示す。第1単電池14および第2単電池16の電池要素50は、いずれも、正極集電体62の両面に正極合剤層61を形成した正極60と、負極集電体72の両面に負極合剤層71を形成した負極70と、リチウムイオン伝導性を有する電解質を含んだセパレータ80を有し、そのセパレータ80は正極60と負極70との間に挟まれた構成になっている。また正極合剤層61は正極活物質、導電助剤及びバインダーを含み、負極合剤層71は負極活物質、導電助剤及びバインダーを含んでいる。   The components of this embodiment will be described in further detail. In FIG. 2, as the first unit cell 14 and the second unit cell 16, a lithium ion secondary battery is taken as an example, and the internal structure thereof is shown as a battery element 50. The battery elements 50 of the first cell 14 and the second cell 16 both have a positive electrode 60 in which a positive electrode mixture layer 61 is formed on both surfaces of a positive electrode current collector 62 and a negative electrode composite on both surfaces of a negative electrode current collector 72. A negative electrode 70 on which the agent layer 71 is formed and a separator 80 containing an electrolyte having lithium ion conductivity are included, and the separator 80 is sandwiched between the positive electrode 60 and the negative electrode 70. The positive electrode mixture layer 61 includes a positive electrode active material, a conductive auxiliary agent, and a binder, and the negative electrode mixture layer 71 includes a negative electrode active material, a conductive auxiliary agent, and a binder.

この単電池の構成に上述したような充放電特性を示す充放電カーブに変曲領域を持たせるには、以下の3つの構成例が挙げられる。
(1)正極合剤層61中の正極活物質を複数種類混合して用いる構成。
(2)負極合剤層71中の負極活物質を複数種類混合して用いる構成。
(3)正極60と負極70とが共に上記(1)、(2)の構成。
In order to give an inflection region to the charge / discharge curve showing the charge / discharge characteristics as described above in the configuration of the unit cell, the following three configuration examples are given.
(1) A configuration in which a plurality of types of positive electrode active materials in the positive electrode mixture layer 61 are mixed and used.
(2) A configuration in which a plurality of types of negative electrode active materials in the negative electrode mixture layer 71 are mixed and used.
(3) The structure of said (1) and (2) in which the positive electrode 60 and the negative electrode 70 are both.

正極活物質と負極活物質とはそれぞれ固有の電位を持つ。単電池の電圧は、正極活物質と負極活物質との固有電位に起因する電位差である。各電極に複数の活物質材料を混ぜ合わせることにより、活物質間の電位の切れ目に起因する急峻な電位差を充放電カーブに発現させ変曲領域100を得ることができる。もちろん変曲領域を発現させる方法は上述したものに限らず、LiMn1−kFePO(0<k<1)のように一つの活物質で二つの固有電位を有する活物質を選択すれば、一種類の活物質により急峻な電位差を充放電カーブに発現させ、変曲領域100を得ることができる。 Each of the positive electrode active material and the negative electrode active material has a unique potential. The voltage of the unit cell is a potential difference caused by the intrinsic potential between the positive electrode active material and the negative electrode active material. By mixing a plurality of active material materials in each electrode, a steep potential difference caused by a potential break between the active materials is expressed in the charge / discharge curve, and the inflection region 100 can be obtained. Of course, the method of expressing the inflection region is not limited to that described above, and an active material having two intrinsic potentials can be selected with one active material, such as LiMn 1-k Fe k PO 4 (0 <k <1). For example, an inflection region 100 can be obtained by expressing a steep potential difference in the charge / discharge curve with one type of active material.

変曲領域100が正極60を起源とする上記(1)又は(3)の場合、正極合剤層61中の正極活物質同士の電位が充分に異なることが望ましい。すなわち、電位が離れている正極活物質同士を併用するのが望ましい。現在広く用いられているリチウムイオン二次電池用正極活物質の電圧範囲は、金属リチウムに対して約3.0〜約4.0Vである。本実施形態では、その金属リチウムを基準として、低電圧正極活物質、高電圧正極活物質と区分けすることができる。低電圧正極活物質とは、満充電近傍(充電深度95%)の電圧がリチウム金属に対して3.5V以下の活物質であり、具体的にはLiTiO、LiFePOなどが例示される。高電圧正極活物質とは、充電初期(充電深度5%)の電圧が3.5V以上の活物質であり、具体的にはLi(Ni1−x−yCoMn)O(以下、「NCM」という。0.1≦x≦0.5、0.1≦y≦0.5)、Lia(Ni1−b−cCoAl)O(0.9≦a≦1.3、0<b≦0.5、0<c≦0.7)、LiMnO、LiVPO、LiVOPO、LiCoO、LiMnPO、LiCoPO、LiNiPOなどが例示される。 In the case of (1) or (3) in which the inflection region 100 originates from the positive electrode 60, it is desirable that the potentials of the positive electrode active materials in the positive electrode mixture layer 61 are sufficiently different. That is, it is desirable to use together positive electrode active materials having different potentials. The voltage range of the positive electrode active material for lithium ion secondary batteries currently widely used is about 3.0 to about 4.0 V with respect to metallic lithium. In this embodiment, it can classify | categorize into a low voltage positive electrode active material and a high voltage positive electrode active material on the basis of the metallic lithium. The low voltage positive electrode active material is an active material whose voltage in the vicinity of full charge (charge depth 95%) is 3.5 V or less with respect to lithium metal, and specific examples include LiTiO 2 and LiFePO 4 . The high-voltage positive electrode active material is an active material having a voltage of 3.5 V or more at the initial stage of charging (charging depth 5%), specifically, Li (Ni 1-xy Co x Mn y ) O 2 (hereinafter, , “NCM”, 0.1 ≦ x ≦ 0.5, 0.1 ≦ y ≦ 0.5), Lia (Ni 1- bc Co b Al c ) O 2 (0.9 ≦ a ≦ 1) .3, 0 <b ≦ 0.5, 0 <c ≦ 0.7), LiMnO 2 , LiVPO 4 , LiVOPO 4 , LiCoO 2 , LiMnPO 4 , LiCoPO 4 , LiNiPO 4 and the like.

LiFePO(以下、「LFP」という)、LiVPO、LiVOPO、LiMnPO、LiCoPO、LiNiPO等の正極活物質群は、通常使用域で電圧変化が少なく、充電初期、充電末期に急峻に電圧が変化する正極活物質である。そのため、このような構造を持つ正極活物質同士を併用すれば、変曲領域における電圧変化量に対する充電深度変化量が小さくでき、さらに検出精度を向上させることができる。例えば、低電圧正極活物質としてLiFePOと、高電圧正極活物質としてLiVPO、LiVOPO、LiMnPO、LiCoPO、LiNiPOから選ばれるオリビン骨格正極活物質等と、を組み合わせることが好ましい。 LiFePO 4 (hereinafter, referred to as "LFP"), LiVPO 4, LiVOPO 4, LiMnPO 4, LiCoPO 4, LiNiPO positive electrode active substance groups, such as 4, less voltage change in normal use zone, the initial charging stage, rapidly charging end It is a positive electrode active material whose voltage changes. Therefore, when the positive electrode active materials having such a structure are used in combination, the change in charge depth with respect to the change in voltage in the inflection region can be reduced, and the detection accuracy can be further improved. For example, the LiFePO 4 as a low-voltage positive electrode active material, LiVPO 4, LiVOPO 4, LiMnPO 4, LiCoPO 4, and olivine skeletal positive electrode active material or the like selected from LiNiPO 4, it is preferable to combine as a high voltage positive electrode active material.

変曲領域100が負極70を起源とする(2)の場合も同様に、負極合剤層71中の負極活物質を複数種類選択することで、変曲領域を得ることができるが、この場合も負極活物質の電位差が大きい組み合わせが望ましい。負極の場合は、0.5V程度を境界として低電圧負極活物質、高電圧負極活物質として区別できる。例えば、低電圧負極活物質としてはグラファイトが例示され、高電圧負極活物質としてハードカーボン、LiTi12、SiO(wは、0.5以上、2.5以下。)、Alなどが例示される。 Similarly, in the case of (2) where the inflection region 100 originates from the negative electrode 70, the inflection region can be obtained by selecting a plurality of types of negative electrode active materials in the negative electrode mixture layer 71. Also, a combination with a large potential difference of the negative electrode active material is desirable. In the case of the negative electrode, it can be distinguished as a low-voltage negative electrode active material and a high-voltage negative electrode active material with a boundary of about 0.5 V. For example, graphite is exemplified as the low voltage negative electrode active material, and hard carbon, Li 4 Ti 5 O 12 , SiO w (w is 0.5 or more and 2.5 or less), Al 2 as the high voltage negative electrode active material. Examples include O 3 .

また、本実施形態では、第1単電池14の高電圧領域101での電気容量のサイクル劣化速度は、第2単電池16の高電圧領域101での電気容量のサイクル劣化速度よりも遅い構成としている。このサイクル劣化速度を制御する手法としては、例えば、活物質の選択、導電助剤の量、バインダーの分子量、サイクル寿命をコントロールしうる添加剤、対向する正極60と負極70の単位面積当たりの塗工量比率などによって設計することが可能であり、好ましい。   In the present embodiment, the cycle deterioration rate of the electric capacity in the high voltage region 101 of the first unit cell 14 is slower than the cycle deterioration rate of the electric capacity in the high voltage region 101 of the second unit cell 16. Yes. As a method for controlling the cycle deterioration rate, for example, the selection of the active material, the amount of the conductive assistant, the molecular weight of the binder, the additive capable of controlling the cycle life, the coating per unit area of the positive electrode 60 and the negative electrode 70 facing each other. It is possible to design according to the work ratio, etc., which is preferable.

具体的には、リチウムイオン二次電池は電池内で使用される各材料によって種々の特性を持つ。特に正極60に用いられている正極活物質、負極70に用いられている負極活物質、電解液はリチウムイオン二次電池の主たる特性を決めている。例えば、ここである正極活物質Aと正極活物質Bについて特性を比較した場合、正極活物質Aの劣化速度が速いとわかった場合では、第2単電池16に正極活物質Aを用い、第1単電池14に正極活物質Bを用いればよい。   Specifically, the lithium ion secondary battery has various characteristics depending on each material used in the battery. In particular, the positive electrode active material used for the positive electrode 60, the negative electrode active material used for the negative electrode 70, and the electrolyte determine the main characteristics of the lithium ion secondary battery. For example, when the characteristics of the positive electrode active material A and the positive electrode active material B are compared, and it is found that the deterioration rate of the positive electrode active material A is fast, the positive electrode active material A is used for the second unit cell 16, The positive electrode active material B may be used for the single cell 14.

また好ましくは、正極活物質AとBは同種異径の活物質であって、粒径が小さくなるとリチウムイオン二次電池としてのサイクル劣化速度は速くなることを利用すると、劣化特性以外の特性差を小さくすることができ望ましい。たとえば、第1単電池の正極活物質に10μmのNCMを、第2単電池の正極活物質として5μmのNCMを用いることができる。なお、同種の活物質とは材料の種類が同じ種類ということであって、同じ組成式で表される材料を示す。もちろん酸素欠損等と材料の諸特性が変わらない程度の組成式の変動は同種の範囲内である。また粒径の測定及び管理は、レーザー回折式粒度分布測定装置にて測定すればよい。   Preferably, the positive electrode active materials A and B are active materials of the same kind and different diameters, and if the fact that the cycle deterioration rate as a lithium ion secondary battery increases as the particle size decreases, a characteristic difference other than the deterioration characteristics is obtained. Can be reduced. For example, 10 μm NCM can be used as the positive electrode active material of the first unit cell, and 5 μm NCM can be used as the positive electrode active material of the second unit cell. Note that the same type of active material means that the types of materials are the same, and indicates materials represented by the same composition formula. Of course, variations in the composition formula to the extent that the various characteristics of the material do not change, such as oxygen vacancies, are within the same range. The particle size may be measured and managed with a laser diffraction particle size distribution measuring device.

また、正極合剤層61、負極合剤層71に用いるバインダー量やバインダーの分子量によっても単電池のサイクル劣化特性を設計することができる。バインダー量が多い場合や、バインダーの分子量が大きい場合に、合剤層の劣化を抑えることができる。たとえば、第1単電池の正極合剤層中のPVDF(ポリフッ化ビニリデン)の分子量を100万、第2単電池の正極合剤層中のPVDFの分子量を50万とすると、第1単電池の劣化速度を、第2単電池よりも遅くすることができ、本実施形態の蓄電装置へ適応しうる。また分子量の測定及び管理は、ゲル浸透クロマトグラフ(GPC)にて測定すればよい。   Further, the cycle deterioration characteristics of the unit cell can also be designed by the amount of binder used for the positive electrode mixture layer 61 and the negative electrode mixture layer 71 and the molecular weight of the binder. When the amount of the binder is large or when the molecular weight of the binder is large, the deterioration of the mixture layer can be suppressed. For example, assuming that the molecular weight of PVDF (polyvinylidene fluoride) in the positive electrode mixture layer of the first unit cell is 1,000,000 and the molecular weight of PVDF in the positive electrode mixture layer of the second unit cell is 500,000, The deterioration rate can be made slower than that of the second unit cell, and can be applied to the power storage device of the present embodiment. The molecular weight may be measured and managed by gel permeation chromatography (GPC).

また、正極合剤層、負極合剤層に、単電池のサイクル劣化速度を設計することができる添加剤を入れ込むことによって、単電池の劣化特性を設計することができる。単電池のサイクル劣化特性を設計することができる添加剤としては、NMPがあげられる。正極合剤層へのNMPの添加量が少ない方が単電池の劣化が抑えられる傾向がある。たとえば、第1単電池の正極合剤層に重量比で0.1%、第2単電池の正極合剤層に0.5%添加することで、第1単電池の劣化速度を、第2単電池よりも遅くすることができ、本実施形態の蓄電装置へ適応しうる。   Moreover, the deterioration characteristic of a single cell can be designed by putting the additive which can design the cycle deterioration rate of a single cell in a positive mix layer and a negative mix layer. An additive capable of designing the cycle deterioration characteristics of the unit cell is NMP. When the amount of NMP added to the positive electrode mixture layer is small, the deterioration of the unit cell tends to be suppressed. For example, by adding 0.1% by weight to the positive electrode mixture layer of the first unit cell and 0.5% to the positive electrode mixture layer of the second unit cell, the deterioration rate of the first unit cell can be reduced to the second level. It can be slower than the unit cell, and can be applied to the power storage device of this embodiment.

以上、本実施形態における単電池の特性を制御するための構成例について述べたが、単電池を構成するその他の構成についても説明する。   As described above, the configuration example for controlling the characteristics of the unit cell according to the present embodiment has been described, but other configurations configuring the unit cell will also be described.

(導電助剤)
正極合剤層61及び負極極合剤層71には導電助剤を含有させてもよく、導電助剤には、非水電気化学素子に広く一般に用いられるアセチレンブラックや、カーボンナノチューブを含む針状炭素などを用いることができる。
(Conductive aid)
The positive electrode mixture layer 61 and the negative electrode mixture layer 71 may contain a conductive auxiliary agent, and the conductive auxiliary agent includes acetylene black, which is widely used for non-aqueous electrochemical devices, and needles containing carbon nanotubes. Carbon or the like can be used.

(バインダー)
正極合剤層61及び負極極合剤層71に用いるバインダーには、上述したポリフッ化ビリニデン(PVDF)の他、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などを用いることができる。なお、正極合剤層61及び負極極合剤層71を塗布、形成する際には、これらバインダーを溶解させる溶媒、例えばN−メチルピロリドン(NMP)、純水などを用いればよい。
(binder)
As the binder used for the positive electrode mixture layer 61 and the negative electrode mixture layer 71, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), or the like can be used in addition to the above-described poly (vinylidene fluoride) (PVDF). In addition, when apply | coating and forming the positive mix layer 61 and the negative mix layer 71, the solvent which melt | dissolves these binders, for example, N-methylpyrrolidone (NMP), a pure water etc. should just be used.

(集電体)
正極集電体62及び負極集電体72に用いる集電体は、一般にリチウムイオン二次電池に使用されている各種公知の材料を用いることができ、具体的には、負極集電体72としてCu箔が、正極集電体62としてAl箔があげられる。
(Current collector)
As the current collector used for the positive electrode current collector 62 and the negative electrode current collector 72, various known materials generally used for lithium ion secondary batteries can be used. Specifically, as the negative electrode current collector 72, A Cu foil is an Al foil as the positive electrode current collector 62.

(セパレータ)
セパレータには特に制限はなく、広く公知の材料を用いることができる。例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂の微多孔膜を用いることができる。
(Separator)
There is no restriction | limiting in particular in a separator, A widely well-known material can be used. For example, a microporous film of a polyolefin resin such as polyethylene or polypropylene can be used.

(電解質)
電解質は、非水電解液、ゲル状の電解質、無機物あるいは有機物の固体電解質を広く用いることができる。例えば、非水電解液は溶媒と塩を含む物を用いることができ、これは適宜添加え物を含んでいてもよい。
(Electrolytes)
As the electrolyte, a nonaqueous electrolytic solution, a gel electrolyte, an inorganic or organic solid electrolyte can be widely used. For example, the non-aqueous electrolyte can use a substance containing a solvent and a salt, and this may contain additives as appropriate.

非水電解液の溶媒には、リチウムイオン伝導性のある溶媒が望ましい。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の感情炭酸エステルを単体または適宜組み合わせて使用することができる。電気伝導度を高くし、かつ適切な粘度を有する電解液を得るため、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、ジフルオロカーボネート(FEC)等を併用してもよい。非電解液中の塩には、LiPF、LiBF、LiClOなどを用いることができる。 As the solvent for the non-aqueous electrolyte, a solvent having lithium ion conductivity is desirable. For example, emotion carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) can be used alone or in appropriate combination. Dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), difluoro carbonate (FEC), etc. may be used in combination in order to increase the electrical conductivity and obtain an electrolyte having an appropriate viscosity. . LiPF 6 , LiBF 4 , LiClO 4 or the like can be used as the salt in the non-electrolytic solution.

(外装体)
図2には記載されていないが、正極、負極、セパレータを積層した電池要素を封入する外装体は特に制限はなく、鉄、アルミニウムやステンレス製の缶、アルミニウムラミネート製の外装袋を適宜選択することができる。
(Exterior body)
Although not shown in FIG. 2, there is no particular limitation on the outer package that encloses the battery element in which the positive electrode, the negative electrode, and the separator are laminated, and an iron, aluminum or stainless steel can, or an aluminum laminated outer bag is appropriately selected. be able to.

(単電池の製造方法)
以下に単電池の製造方法の一例を説明する。まず、正極60は、併用する正極活物質と、所定の導電助剤と、所定のバインダーとを、溶剤と共に混合して塗料を作製した後、正極集電体62であるアルミ箔上に塗布、乾燥し、正極60を得る。
(Single cell manufacturing method)
Below, an example of the manufacturing method of a cell is demonstrated. First, the positive electrode 60 is prepared by mixing a positive electrode active material to be used together, a predetermined conductive auxiliary agent, and a predetermined binder together with a solvent to prepare a paint, and then applying the mixture onto an aluminum foil as the positive electrode current collector 62. Drying to obtain the positive electrode 60.

次に、負極70は、正極60と同様、併用する負極活物質と、所定の導電助剤と、所定のバインダーとを、溶剤と共に混合して塗料を作製した後、負極集電体72である銅箔上に塗布、乾燥し、負極70を得る。   Next, the negative electrode 70 is the negative electrode current collector 72 after the negative electrode active material to be used in combination, a predetermined conductive auxiliary agent, and a predetermined binder are mixed together with a solvent to prepare a paint, similarly to the positive electrode 60. The negative electrode 70 is obtained by applying and drying on the copper foil.

作製した正極60と負極70は、セパレータを介して積層又は巻回され、電池要素として外装体の中に挿入される。   The produced positive electrode 60 and negative electrode 70 are laminated or wound via a separator and inserted into the outer package as a battery element.

この外装体の中に電池要素を挿入した後、電解質が加えられ、外装体を真空封止すれば単電池としてリチウムイオン二次電池が完成する。   After the battery element is inserted into the outer package, an electrolyte is added. If the outer package is vacuum-sealed, a lithium ion secondary battery is completed as a single cell.

(組電池の製造方法)
次に組電池の製造方法について述べる。あらかじめ、上述の構成及び、製造方法によって得られる単電池を用意し、第1単電池14と、第1単電池14に比べて、高電圧領域101の容量が大きくサイクル劣化速度が速い第2単電池16と、その他のリチウムオン二次電池12とを、必要数用意する。それぞれの単電池を直列に接続し、組電池20を得る。
(Method of manufacturing assembled battery)
Next, a method for manufacturing the assembled battery will be described. A unit cell obtained by the above-described configuration and manufacturing method is prepared in advance, and the first unit cell 14 and the second unit cell having a higher capacity of the high voltage region 101 and a faster cycle deterioration rate than the first unit cell 14. A necessary number of batteries 16 and other lithium-on secondary batteries 12 are prepared. Each unit cell is connected in series, and the assembled battery 20 is obtained.

単電池を直列に接続する際に、前もって、各単電池の充電状態をそろえて接続することが望ましい。ここで充電状態とは、電池容量に対する、実際にたまっている電気容量の割合をいう。より好ましくは、満充電近傍の充電状態で接続することが望ましい。満充電近傍の充電状態で接続すると、満充電近傍での電圧ばらつきが最小となり、過充電状態となってしまう可能性が減り、安全な組電池となりうる。   When connecting the cells in series, it is desirable to connect the cells in the same state of charge in advance. Here, the state of charge refers to the ratio of the electric capacity actually accumulated to the battery capacity. More preferably, it is desirable to connect in a state of charge near full charge. When connected in a charged state near full charge, voltage variation near full charge is minimized, and the possibility of being overcharged is reduced, and a safe assembled battery can be obtained.

(蓄電池の製造方法)
次に、蓄電装置40の製造方法について述べる。まず、上記製造方法によって得られた組電池20の第1単電池14と第2単電池16に、それぞれ、電圧測定装置30および、電圧測定装置35を並列に接続する。さらに電圧測定装置30と電圧測定装置35から、蓄電装置の寿命を判断する比較部38に信号線をつなげることで、蓄電装置40を得る。
(Method for manufacturing storage battery)
Next, a method for manufacturing the power storage device 40 will be described. First, the voltage measuring device 30 and the voltage measuring device 35 are connected in parallel to the first unit cell 14 and the second unit cell 16 of the assembled battery 20 obtained by the above manufacturing method, respectively. Further, the power storage device 40 is obtained by connecting a signal line from the voltage measurement device 30 and the voltage measurement device 35 to the comparison unit 38 that determines the life of the power storage device.

(第2実施形態)
次に図5として第2実施形態の蓄電装置240を模式的に示し、その構造と製造方法について、第1実施形態と異なる部分のみ説明する。
(Second Embodiment)
Next, the power storage device 240 of the second embodiment is schematically shown in FIG. 5, and only the parts different from the first embodiment will be described regarding the structure and the manufacturing method.

本実施形態の蓄電装置240は、第1単電池214と、第1単電池214の電圧を測定する電圧測定装置230と、第2単電池216と、第2単電池216の電圧を測定する電圧測定装置35と、第3単電池217と、第3単電池の電圧を測定する電圧測定装置237と、比較部238を有する。第1実施形態とは第3単電池217を有している点で異なっている。   The power storage device 240 of the present embodiment includes a first cell 214, a voltage measurement device 230 that measures the voltage of the first cell 214, a second cell 216, and a voltage that measures the voltage of the second cell 216. It has a measuring device 35, a third unit cell 217, a voltage measuring unit 237 that measures the voltage of the third unit cell, and a comparison unit 238. It differs from the first embodiment in that it has a third unit cell 217.

第1単電池214と第2単電池216と第3単電池217は直列に接続されており、それぞれの単電池の電圧を測定するため、電圧測定装置230と電圧測定装置235と電圧測定装置237は、第1単電池214と第2単電池216と第3単電池217にそれぞれ並列に接続されている。また、比較部237は、電圧測定装置230と電圧測定装置235と電圧測定装置237の電圧をもとに、蓄電装置240の劣化状態および寿命を判定している。   The first unit cell 214, the second unit cell 216, and the third unit cell 217 are connected in series, and in order to measure the voltage of each unit cell, the voltage measurement device 230, the voltage measurement device 235, and the voltage measurement device 237 are measured. Are connected in parallel to the first cell 214, the second cell 216, and the third cell 217, respectively. Further, the comparison unit 237 determines the deterioration state and the life of the power storage device 240 based on the voltages of the voltage measurement device 230, the voltage measurement device 235, and the voltage measurement device 237.

図6に第1単電池214と第2単電池216と第3単電池217の充放電特性を示す放電カーブの一例を示す。図6の横軸は、初期での第1単電池214の電池容量を100として示した。   FIG. 6 shows an example of a discharge curve showing the charge / discharge characteristics of the first cell 214, the second cell 216, and the third cell 217. The horizontal axis of FIG. 6 indicates the battery capacity of the first unit cell 214 at the initial stage as 100.

(第1単電池と第2単電池と第3単電池の関係)
高電圧領域201での電気容量は、第1単電池214、第3単電池217、第2単電池216の順に大きい。また、高電圧領域201での電気容量のサイクル劣化速度は、第2単電池214、第3単電池217、第1単電池216の順に速い。
(Relationship between the first cell, the second cell, and the third cell)
The electric capacity in the high voltage region 201 is larger in the order of the first unit cell 214, the third unit cell 217, and the second unit cell 216. In addition, the cycle deterioration rate of the electric capacity in the high voltage region 201 is higher in the order of the second unit cell 214, the third unit cell 217, and the first unit cell 216.

(蓄電装置の劣化状態および寿命判定方法)
図7に第1単電池214と第2単電池216と第3単電池217の高電圧領域201の電気容量のサイクル劣化特性を模式的に示す。上述した第1単電池214と第2単電池216と第3単電池217を有する蓄電装置240は、以下の手順にて劣化状態および寿命を判定する。まず、初期においては、蓄電装置240の放電時に電圧測定装置235で測定される第2単電池216よりも、電圧測定装置230で測定される第1単電池214の方が先に、あらかじめ設定された変曲領域内の所定電圧に達する。このとき、比較部238は通常状態であると判定する。その後、充放電を繰り返すと、蓄電装置240の放電時に電圧測定装置230で測定される第1単電池214よりも、電圧測定装置235で測定される第2単電池216の方が先に、あらかじめ設定された変曲領域電圧に達する。このとき、比較部238はあらかじめ設定された所定サイクル劣化状態を超えたと判定し、これを寿命と判断する。以上、説明した寿命判定方法は、第1実施形態と同様の原理にて判定することができる。
(Degradation state of battery and life judgment method)
FIG. 7 schematically shows the cycle deterioration characteristics of the electric capacity of the high voltage region 201 of the first unit cell 214, the second unit cell 216, and the third unit cell 217. The power storage device 240 including the first unit cell 214, the second unit cell 216, and the third unit cell 217 described above determines the deterioration state and the life by the following procedure. First, in the initial stage, the first unit cell 214 measured by the voltage measurement device 230 is set in advance before the second unit cell 216 measured by the voltage measurement device 235 when the power storage device 240 is discharged. Reaches a predetermined voltage in the inflection region. At this time, the comparison unit 238 determines that the normal state. After that, when charging and discharging are repeated, the second unit cell 216 measured by the voltage measurement device 235 is ahead of the first unit cell 214 measured by the voltage measurement device 230 when the power storage device 240 is discharged. Reach the set inflection region voltage. At this time, the comparison unit 238 determines that the predetermined cycle deterioration state set in advance has been exceeded, and determines that this is the lifetime. The life determination method described above can be determined based on the same principle as in the first embodiment.

また、第2実施形態において、例えば組電池220の寿命の50%の劣化状態として第3単電池217の変曲領域電圧を設計すれば、組電池220の寿命までの劣化状態の進行度が把握できる。   In the second embodiment, for example, if the inflection region voltage of the third cell 217 is designed as a deterioration state of 50% of the life of the assembled battery 220, the progress of the deterioration state until the life of the assembled battery 220 can be grasped. it can.

このように、変曲領域202を有し、高電圧領域の電気容量のサイクル劣化が第2単電池216よりも遅い、第4、第5の単電池を併用することで、蓄電装置240のサイクル劣化状態をさらに細分化して判定することができ望ましい。   As described above, the cycle of the power storage device 240 is provided by using the fourth and fifth unit cells that have the inflection region 202 and the cycle deterioration of the electric capacity in the high voltage region is slower than that of the second unit cell 216. It is desirable that the deterioration state can be further subdivided and determined.

上記のような構成を用いることで、蓄電装置240は、劣化状態および寿命について、環境温度によらず精度よく判定することができる。   By using the configuration as described above, the power storage device 240 can accurately determine the deterioration state and the lifetime regardless of the environmental temperature.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
(正極の作製)
正極活物質として、NCM(LiNi1/3Mn1/3Co1/3)と、LiFePO(以下LFP)と、導電助剤としてカーボンブラック及び黒鉛、バインダーとしてPVDF(ポリフッ化ビニリデン)を用い正極を作製した。NCMについては、平均粒径(D50)で10μmのものを使用した。NCMを25g、LFPを60g、カーボンブラックを5g、黒鉛を5gの混合比率とした。これにPVDF(呉羽化学工業(株)製、KF7305)のN−メチル−2−ピロリジノン(NMP)溶液(50g、10wt%)を加えて混合し、塗料145gを作製した。この塗料を集電体であるアルミニウム箔(厚み20μm)にドクターブレード法で塗布後、90℃で乾燥し、圧延することで、正極合剤層を形成した。
Example 1
(Preparation of positive electrode)
As a positive electrode active material, NCM (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), LiFePO 4 (hereinafter LFP), carbon black and graphite as a conductive aid, and PVDF (polyvinylidene fluoride) as a binder. A positive electrode was produced. For NCM, an average particle diameter (D50) of 10 μm was used. The mixing ratio was 25 g of NCM, 60 g of LFP, 5 g of carbon black, and 5 g of graphite. An N-methyl-2-pyrrolidinone (NMP) solution (50 g, 10 wt%) of PVDF (manufactured by Kureha Chemical Industry Co., Ltd., KF7305) was added thereto and mixed to prepare 145 g of paint. This paint was applied to an aluminum foil (thickness 20 μm) as a current collector by a doctor blade method, dried at 90 ° C., and rolled to form a positive electrode mixture layer.

(負極の作製)
負極活物質として天然黒鉛を45g、導電助剤としてカーボンブラックを2.5g、をドライミックスした後に、バインダーとしてPVDF溶液22.5gを加え負極用の塗料を作製した。この塗料を集電体である銅箔(厚み16μm)にドクターブレード法で塗布後、乾燥(90℃)、圧延することで、負極合剤層を形成した。
(Preparation of negative electrode)
After dry-mixing 45 g of natural graphite as a negative electrode active material and 2.5 g of carbon black as a conductive additive, 22.5 g of PVDF solution was added as a binder to prepare a negative electrode paint. This paint was applied to a copper foil (thickness: 16 μm) as a current collector by a doctor blade method, dried (90 ° C.), and rolled to form a negative electrode mixture layer.

(第1単電池の作製)
得られた正極、負極を、セパレータ(ポリオレフィン製の微多孔質膜)と共に所定の寸法に切断した。正極、負極には、外部引き出し端子を溶接するために塗料(合剤層)を塗布、形成しない部分を設けた。正極、セパレータ、負極をこの順序で積層した。このとき、リチウムイオン二次電池の容量が200mAhになるように積層した。正極、負極には、それぞれ、外部引き出し端子としてアルミニウム箔(幅4mm、長さ40mm、厚み100μm)、ニッケル箔(幅4mm、長さ40mm、厚み100μm)を超音波溶接した。この外部引き出し端子に、ポリプロピレン(PP)を巻き付け熱接着させた。
(Production of first cell)
The obtained positive electrode and negative electrode were cut into predetermined dimensions together with a separator (microporous membrane made of polyolefin). The positive electrode and the negative electrode were provided with portions where no paint (mixture layer) was applied or formed in order to weld the external lead terminals. A positive electrode, a separator, and a negative electrode were laminated in this order. At this time, the lithium ion secondary battery was laminated so that the capacity was 200 mAh. An aluminum foil (width 4 mm, length 40 mm, thickness 100 μm) and nickel foil (width 4 mm, length 40 mm, thickness 100 μm) were ultrasonically welded to the positive electrode and the negative electrode, respectively, as external lead terminals. Polypropylene (PP) was wrapped around this external lead terminal and thermally bonded.

正極、負極、セパレータを積層した電池要素を、アルミニウムラミネート材料からなる外装体に収容した。外装体の中に電池要素を入れた後、電解液としてエチレンカーボンネート(EC)とジエチルカーボネート(DEC)の混合溶媒(EC:DEC=30:70vol%)にLiPFを1Mに溶解させたものを添加し、外装体を真空密封し、リチウムイオン二次電池を作製した。リチウムイオン二次電池は、封止後、10mA(0.05C)にて初回充電した。得られたリチウムイオン二次電池の、初期の平均放電容量は、約200mAhであった。満充電時からみて、60mAh程度放電した際に変曲領域が発現した。 A battery element in which a positive electrode, a negative electrode, and a separator were laminated was housed in an exterior body made of an aluminum laminate material. After putting a battery element in the outer package, LiPF 6 is dissolved in 1M in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 30: 70 vol%) as an electrolytic solution. Was added, and the outer package was vacuum-sealed to produce a lithium ion secondary battery. The lithium ion secondary battery was initially charged at 10 mA (0.05 C) after sealing. The initial average discharge capacity of the obtained lithium ion secondary battery was about 200 mAh. An inflection region appeared when discharging about 60 mAh from the time of full charge.

(第2単電池の作製)
正極作製時に、NCMの平均粒径(D50)を5μmとし、NCMを42.5g、LFPを42.5g使用した。その他は、第1単電池14と同様に作製した。初期の平均放電容量は約200mAhのリチウムイオン二次電池を得た。満充電時からみて、100mAh程度放電した際に変曲領域が発現した。
(Production of second cell)
At the time of producing the positive electrode, the average particle diameter (D50) of NCM was 5 μm, 42.5 g of NCM and 42.5 g of LFP were used. Others were produced in the same manner as the first unit cell 14. A lithium ion secondary battery having an initial average discharge capacity of about 200 mAh was obtained. From the time of full charge, an inflection region appeared when discharging about 100 mAh.

第1単電池と第2単電池のそれぞれの電池に対し、完全放電状態から満充電状態までのサイクル劣化負荷を所定の回数繰り返した。200サイクルごとに第1単電池14と第2単電池16の高電圧領域での電気容量を評価し、初期での第1単電池の電池容量を100%として、サイクル劣化特性を評価すると図8のようになった。約1000サイクル後に高電圧領域での電気容量が同等になり、それ以降のサイクルにて、第2単電池の容量が少なくなることを確かめた。   The cycle deterioration load from the fully discharged state to the fully charged state was repeated a predetermined number of times for each of the first unit cell and the second unit cell. When the electric capacity in the high voltage region of the first unit cell 14 and the second unit cell 16 is evaluated every 200 cycles, and the battery capacity of the first unit cell in the initial stage is set to 100%, the cycle deterioration characteristics are evaluated. It became like this. After about 1000 cycles, it was confirmed that the electric capacity in the high voltage region became equivalent, and the capacity of the second unit cell decreased in the subsequent cycles.

(組電池の作製)
あらかじめ作製しておいた、第1単電池を1個と、第2単電池を1個とをそれぞれ満充電状態になるまで充電し、直列に接続することで組電池を得た。なお、実施例1での組電池の寿命は1000サイクルと設定した。
(Production of assembled battery)
One assembled first battery and one second single battery were charged until they were fully charged and connected in series to obtain an assembled battery. In addition, the lifetime of the assembled battery in Example 1 was set to 1000 cycles.

その後、第1単電池と第2単電池に電圧測定用の配線を用い、電圧測定装置をそれぞれ並列に取り付けた後、前記電圧測定装置の電圧値を比較部へ伝えるための配線を施し、蓄電装置とした。   After that, voltage measurement wiring is used for the first unit cell and the second unit cell, the voltage measurement devices are attached in parallel, and then wiring for transmitting the voltage value of the voltage measurement device to the comparison unit is performed. The device.

(寿命判定試験)
作製した蓄電装置に、完全放電状態から満充電状態までのサイクル劣化負荷を所定の回数繰り返した後に、各温度環境下にて、寿命判定を行った際の結果を表1に示す。1000サイクル後に比較部は、寿命と判定し、実施例1での蓄電装置を用いれば、環境温度、放電速度によらず寿命判定をすることができた。
(Life test)
Table 1 shows the results of performing lifespan judgment in each temperature environment after repeating the cycle deterioration load from the fully discharged state to the fully charged state for the manufactured power storage device a predetermined number of times. After 1000 cycles, the comparison unit determined that the life was long, and if the power storage device in Example 1 was used, the life could be determined regardless of the environmental temperature and the discharge rate.

(実施例2)
実施例2では、高電圧正極合剤層に用いるバインダーの分子量をパラメータとすることで、リチウムイオン二次電池のサイクル劣化特性を設計した。
(Example 2)
In Example 2, the cycle deterioration characteristics of the lithium ion secondary battery were designed by using the molecular weight of the binder used for the high-voltage positive electrode mixture layer as a parameter.

(電池電極の作製)
(正極の作製)
正極を作製する際に、NCMを主体とする塗料と、LFPを主体とする塗料をそれぞれ別に作製した。NCMの塗料作成時は、NCMを85g、カーボンブラックを5g、黒鉛を5g、PVDFを5gの混合比率となるよう塗料を作成した。この時、PVDFの分子量を約25万と、約50万と、約100万と、の3種類をそれぞれ用い3種類の塗料を作成した。LFPを主体とする塗料作成時は、LFPを85g、カーボンブラックを5g、黒鉛を5g、PVDFを5gの混合比率となるよう塗料を作成した。その後、アルミニウム箔上にドクターブレード法を用い、LFPの塗料、NCMの塗料の順で塗布した。この時、アルミニウム箔上で単位面積当たりのLFP量とNCM量が同等程度になるようにした。その他は、実施例1の要領で3種類の正極を作製した。
(Production of battery electrode)
(Preparation of positive electrode)
When producing the positive electrode, a paint mainly composed of NCM and a paint mainly composed of LFP were prepared separately. When preparing the NCM paint, the paint was prepared so that the mixing ratio was 85 g of NCM, 5 g of carbon black, 5 g of graphite, and 5 g of PVDF. At this time, three types of paints were prepared using three types of PVDF molecular weights of about 250,000, about 500,000, and about 1 million, respectively. At the time of preparing the paint mainly composed of LFP, the paint was prepared so as to have a mixing ratio of 85 g of LFP, 5 g of carbon black, 5 g of graphite, and 5 g of PVDF. Then, using a doctor blade method on an aluminum foil, LFP paint and NCM paint were applied in this order. At this time, the amount of LFP and the amount of NCM per unit area on the aluminum foil were made comparable. Otherwise, three types of positive electrodes were produced in the same manner as in Example 1.

(負極の作製)
実施例1の負極と同等の負極を使用した。
(Preparation of negative electrode)
A negative electrode equivalent to the negative electrode of Example 1 was used.

(第1単電池の作製)
実施例1と同様の要領で、電池化を行い、正極合剤層のバインダーの分子量が異なる3種類のリチウムイオン二次電池を得た。得られたそれぞれのリチウムイオン二次電池の、初期の平均放電容量は、約200mAhであり、満充電状態から放電した際に、約100mAhしたときに、変曲領域が発現した。
(Production of first cell)
The battery was made in the same manner as in Example 1, and three types of lithium ion secondary batteries with different molecular weights of the binder in the positive electrode mixture layer were obtained. Each of the obtained lithium ion secondary batteries had an initial average discharge capacity of about 200 mAh, and when the battery was discharged from a fully charged state, an inflection region was developed when the discharge capacity was about 100 mAh.

(サイクル劣化特性の評価)
得られた、3種のリチウムイオン二次電池について、完全放電状態から満充電状態の範囲で充放電を繰り返す試験を行い、200サイクルごとの高電圧領域の電気容量を評価した。結果を図9に示す。図9は、正極合剤層のバインダーの分子量を調整し、本発明に利用可能なリチウムイオン二次電池のサイクル劣化特性を設計しうることを確認した。
(Evaluation of cycle deterioration characteristics)
About the obtained three types of lithium ion secondary batteries, the test which repeats charging / discharging in the range of a complete discharge state to a full charge state was done, and the electric capacity of the high voltage area | region for every 200 cycles was evaluated. The results are shown in FIG. FIG. 9 confirmed that the cycle deterioration characteristics of the lithium ion secondary battery usable in the present invention can be designed by adjusting the molecular weight of the binder of the positive electrode mixture layer.

(実施例3)
実施例3では、高電圧正極活物質を含む正極合剤層にサイクル劣化を調整しうる添加剤として、NMPを用いることにより、リチウムイオン二次電池のサイクル劣化特性を設計した。
(Example 3)
In Example 3, the cycle deterioration characteristics of the lithium ion secondary battery were designed by using NMP as an additive capable of adjusting the cycle deterioration in the positive electrode mixture layer containing the high-voltage positive electrode active material.

(電池電極の作製)
(正極の作製)
まず、NCMとLFPを主体とする塗料をそれぞれ別々に作製した。NCMの塗料作成時は、NCMを85g、カーボンブラックを5g、黒鉛を5g、PVDFを5gの混合比率となるよう塗料を作成した。LFPを主体とする塗料作成時は、LFPを85g、カーボンブラックを5g、黒鉛を5g、カルボキシメチルセルロース(CMC)を2g、スチレン−ブタジエンゴム(SBR)を3gの混合比率となるよう塗料を作成した。この時、LFP塗料の溶媒には純水を用いた。その後、アルミニウム箔上にドクターブレード法を用い、NCMの塗料を塗布し、乾燥した。その後、NMPの飽和雰囲気内に1分と1時間放置しNMPを添加した。NMPを添加したNCM(高電圧正極活物質)合剤層ををガスクロマトグラフィーを用いて、NMPの濃度を測定したところ、NCMに質層の重量に対して、0.3%以下と、約0.8%程度の2種類のNCM(高電圧正極活物質)合剤層を得た。その後、NCM合剤層上にLFPの塗料を塗布し、乾燥し、圧延することで、2種の正極を得た。この時、アルミニウム箔上で単位面積当たりのLFP量とNCM量が同等程度になるようにした。
(Production of battery electrode)
(Preparation of positive electrode)
First, paints mainly composed of NCM and LFP were prepared separately. When preparing the NCM paint, the paint was prepared so that the mixing ratio was 85 g of NCM, 5 g of carbon black, 5 g of graphite, and 5 g of PVDF. At the time of making the paint mainly composed of LFP, the paint was made so as to have a mixing ratio of 85 g of LFP, 5 g of carbon black, 5 g of graphite, 2 g of carboxymethylcellulose (CMC), and 3 g of styrene-butadiene rubber (SBR). . At this time, pure water was used as a solvent for the LFP paint. Thereafter, an NCM paint was applied onto the aluminum foil using a doctor blade method and dried. After that, NMP was added in a saturated atmosphere of NMP for 1 minute and 1 hour. The NCM (high voltage positive electrode active material) mixture layer to which NMP was added was measured for the concentration of NMP by using gas chromatography. Two types of NCM (high voltage positive electrode active material) mixture layers of about 0.8% were obtained. Thereafter, an LFP coating was applied on the NCM mixture layer, dried, and rolled to obtain two types of positive electrodes. At this time, the amount of LFP and the amount of NCM per unit area on the aluminum foil were made comparable.

(負極の作製)
実施例1の負極と同等の負極を使用した。
(Preparation of negative electrode)
A negative electrode equivalent to the negative electrode of Example 1 was used.

(電池の作製)
実施例1と同様の要領で、電池化を行い、高電圧正極活物質を含む正極合剤層中へのNMPの添加量が異なる2種類のリチウムイオン二次電池を得た。得られたそれぞれのリチウムイオン二次電池の、初期の平均放電容量は、約200mAhであった。満充電状態から放電した際に、約100mAhしたときに、変曲領域が発現した。
(Production of battery)
The battery was made in the same manner as in Example 1, and two types of lithium ion secondary batteries with different amounts of NMP added to the positive electrode mixture layer containing the high-voltage positive electrode active material were obtained. Each of the obtained lithium ion secondary batteries had an initial average discharge capacity of about 200 mAh. When discharged from the fully charged state, an inflection region appeared when about 100 mAh was applied.

(サイクル劣化特性の評価)
得られた、2種のリチウムイオン二次電池について、完全放電状態から満充電状態の範囲で充放電を繰り返す試験を行い、200サイクルごとの高電圧領域の電気容量を評価した。結果を図10に示す。図10は、高電圧正極活物質を含む正極合剤層へのNMP添加量によって、利用可能なリチウムイオン二次電池のサイクル劣化特性を設計しうることを確認した。
(Evaluation of cycle deterioration characteristics)
The obtained two types of lithium ion secondary batteries were subjected to a charge / discharge test in a range from a fully discharged state to a fully charged state, and the electric capacity in the high voltage region every 200 cycles was evaluated. The results are shown in FIG. FIG. 10 confirms that the cycle deterioration characteristics of the available lithium ion secondary battery can be designed by the amount of NMP added to the positive electrode mixture layer containing the high-voltage positive electrode active material.

以上、実施例2、3で作製した、サイクル劣化特性を設計しうるリチウムイオン二次電池を、実施例1の要領で組電池化し蓄電装置とすることで、環境温度によらず組電池の寿命を評価可能である   As described above, the lithium ion secondary battery that can be designed for cycle deterioration characteristics manufactured in Examples 2 and 3 is assembled into a battery as described in Example 1 to form a power storage device. Can be evaluated

(比較例1)
(リチウムイオン二次電池の作製)
(正極の作製)
正極活物質として、NCM(LiNi1/3Mn1/3Co1/3)を、導電助剤としてカーボンブラック及び黒鉛、バインダーとしてPVDF(ポリフッ化ビニリデン)、を用い正極を作製した。これらはNCMを85g、カーボンブラックを5g、黒鉛を5gの混合比率とした、これにPVDFのN−メチル−2−ピロリジノン(NMP)溶液(50g、10wt%)を加えて混合し、塗料145gを作製した。この塗料を集電体であるアルミニウム箔(厚み20μm)にドクターブレード法で塗布後、90℃で乾燥し、圧延した。
(Comparative Example 1)
(Production of lithium ion secondary battery)
(Preparation of positive electrode)
A positive electrode was produced using NCM (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) as the positive electrode active material, carbon black and graphite as the conductive assistant, and PVDF (polyvinylidene fluoride) as the binder. These were mixed at a mixing ratio of 85 g of NCM, 5 g of carbon black, and 5 g of graphite. To this, an N-methyl-2-pyrrolidinone (NMP) solution of PVDF (50 g, 10 wt%) was added and mixed. Produced. This paint was applied to an aluminum foil (thickness 20 μm) as a current collector by a doctor blade method, dried at 90 ° C., and rolled.

(負極の作製)
負極活物質として天然黒鉛を45g、導電助剤としてカーボンブラックを2.5g、をドライミックスした後に、バインダーとしてPVDF溶液22.5gを加え負極用の塗料を作製した。この塗料を集電体である銅箔(厚み16μm)にドクターブレード法で塗布後、乾燥(90℃)、圧延した。
(Preparation of negative electrode)
After dry-mixing 45 g of natural graphite as a negative electrode active material and 2.5 g of carbon black as a conductive additive, 22.5 g of PVDF solution was added as a binder to prepare a negative electrode paint. This paint was applied to a copper foil (thickness 16 μm) as a current collector by a doctor blade method, dried (90 ° C.) and rolled.

(電池の作製)
得られた正極、負極を、セパレータ(ポリオレフィン製の微多孔質膜)と共に所定の寸法に切断した。正極、負極には、外部引き出し端子を溶接するために塗料(合剤層)を塗布、形成しない部分を設けた。正極、セパレータ、負極をこの順序で積層した。このとき、リチウムイオン二次電池の容量が200mAhになるように積層した。正極、負極には、それぞれ、外部引き出し端子としてアルミニウム箔(幅4mm、長さ40mm、厚み100μm)、ニッケル箔(幅4mm、長さ40mm、厚み100μm)を超音波溶接した。この外部引き出し端子に、ポリプロピレン(PP)を巻き付け熱接着させた。
(Production of battery)
The obtained positive electrode and negative electrode were cut into predetermined dimensions together with a separator (microporous membrane made of polyolefin). The positive electrode and the negative electrode were provided with portions where no paint (mixture layer) was applied or formed in order to weld the external lead terminals. A positive electrode, a separator, and a negative electrode were laminated in this order. At this time, the lithium ion secondary battery was laminated so that the capacity was 200 mAh. An aluminum foil (width 4 mm, length 40 mm, thickness 100 μm) and nickel foil (width 4 mm, length 40 mm, thickness 100 μm) were ultrasonically welded to the positive electrode and the negative electrode, respectively, as external lead terminals. Polypropylene (PP) was wrapped around this external lead terminal and thermally bonded.

正極、負極、セパレータを積層した電池要素を、アルミニウムラミネート材料からなる外装体に収容した。外装体の中に電池要素を入れた後、電解液としてエチレンカーボンネート(EC)とジエチルカーボネート(DEC)の混合溶媒(EC:DEC=30:70vol%)にLiPFを1Mに溶解させたものを添加し、外装体を真空密封し、リチウムイオン二次電池を作製した。リチウムイオン二次電池は、封止後、10mA(0.05C)にて初回充電しリチウムイオン二次電池を得た。その後、充電し初期の平均放電容量を確認したところは約200mAhであった。 A battery element in which a positive electrode, a negative electrode, and a separator were laminated was housed in an exterior body made of an aluminum laminate material. After putting a battery element in the outer package, LiPF 6 is dissolved in 1M in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 30: 70 vol%) as an electrolytic solution. Was added, and the outer package was vacuum-sealed to produce a lithium ion secondary battery. The lithium ion secondary battery was initially charged at 10 mA (0.05 C) after sealing to obtain a lithium ion secondary battery. Then, when it charged and the initial average discharge capacity was confirmed, it was about 200 mAh.

(リチウムイオン二次電池のインピーダンス評価)
組電池寿命をインピーダンス値から判断するために、得られたリチウムイオン二次電池のインピーダンスを100サイクルごとに測定した。結果を図11に示す。このとき、1kHzでの交流インピーダンスが160mΩ程度になった場合に組電池の寿命と設定(図11の点線300)した。同様にして、100サイクルごとに各環境温度にした後にインピーダンスを評価した結果も示した。
(Impedance evaluation of lithium ion secondary battery)
In order to judge the assembled battery life from the impedance value, the impedance of the obtained lithium ion secondary battery was measured every 100 cycles. The results are shown in FIG. At this time, when the AC impedance at 1 kHz was about 160 mΩ, the life of the assembled battery was set (dotted line 300 in FIG. 11). Similarly, the results of evaluating the impedance after each environmental temperature is set every 100 cycles are also shown.

(組電池の作製と寿命判定試験)
作製したリチウムイオン二次電池5個を満充電状態にし、5直列に接続し、組電池を得た。その後、組電池のサイクル劣化試験を行った。その際、寿命判定は、特許文献1と同様に実施すると共に、各環境温度にても同様に実施した。結果を表1に示す。
(Production of battery pack and life test)
Five lithium ion secondary batteries produced were fully charged and connected in series to obtain an assembled battery. Thereafter, a cycle deterioration test of the assembled battery was performed. At that time, the life determination was performed in the same manner as in Patent Document 1 and also at each environmental temperature. The results are shown in Table 1.

その結果を表1に示す。25℃以外の環境では、誤った判定がなされた。また一度寿命と判定された項目は、それ以降評価はしていない。   The results are shown in Table 1. In an environment other than 25 ° C, an incorrect determination was made. In addition, items that have been determined to have a lifetime have not been evaluated since then.

なお、表1中、500サイクル後の−10℃環境下の測定では比較例1は500サイクル早く寿命と判断し誤判定となり、800サイクル後の0℃環境下の測定では比較例1は200サイクル早く寿命と判断し誤判定となり、1100サイクル後の45℃環境下の測定では比較例1は100サイクル遅く寿命と判断し誤判定となった。

Figure 0006171821
In Table 1, in the measurement in the −10 ° C. environment after 500 cycles, Comparative Example 1 was judged as a life cycle earlier by 500 cycles, resulting in an erroneous determination. In the measurement in the 0 ° C. environment after 800 cycles, Comparative Example 1 was 200 cycles. It was judged that the life was early and erroneously judged, and in the measurement in a 45 ° C. environment after 1100 cycles, Comparative Example 1 judged that the life was late by 100 cycles and misjudged.
Figure 0006171821

本発明は、環境温度が大きく変動するような環境においても、複雑な判定回路を必要とせず、精度良く充電深度を評価できるリチウムイオン二次電池の組電池および蓄電装置を提供するため、リチウムイオン二次電池の組電池および蓄電装置の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention provides a battery pack and a power storage device for a lithium ion secondary battery that can accurately evaluate the depth of charge without requiring a complicated determination circuit even in an environment where the environmental temperature fluctuates greatly. Since it contributes to the manufacture and sale of secondary battery assemblies and power storage devices, it has industrial applicability.

12、212 単電池 14、214 第1単電池
16、216 第2単電池 217 第3単電池 20、220 組電池
30、230 第1単電池の電圧測定装置
35、235 第2単電池の電圧測定装置
237 第3単電池の電圧測定装置
38、238 蓄電装置の寿命を判断する比較部 40、240 蓄電装置
50 リチウムイオン二次電池 60 正極
61 正極合剤層 62 正極集電体 70 負極 71 負極合剤層
72 負極集電体 80 セパレータ 100、202 変曲領域
101、201 高電圧領域 102、203 低電圧領域
300 比較例1の組電池の寿命となるインピーダンス
12, 212 cell 14, 214 first cell 16, 216 second cell 217 third cell 20, 220 battery pack 30, 230 voltage measurement device for the first cell
35, 235 Voltage measurement device for second cell 237 Voltage measurement device for third cell
38, 238 Comparison unit for judging the life of the power storage device 40, 240 Power storage device 50 Lithium ion secondary battery 60 Positive electrode 61 Positive electrode mixture layer 62 Positive electrode current collector 70 Negative electrode 71 Negative electrode mixture layer 72 Negative electrode current collector 80 Separator 100 , 202 Inflection region 101, 201 High voltage region 102, 203 Low voltage region 300 Impedance that becomes the life of the assembled battery of Comparative Example 1

Claims (3)

直列接続された複数の単電池を有し、その複数の単電池のうち少なくとも2つは、第1単電池と第2単電池とで構成される組電池と、前記第1単電池の電圧を測定する第1の電圧測定装置と、前記第2単電池の電圧を測定する第2の電圧測定装置と、第1単電池と第2単電池の電圧を比較する比較部と、を有し、前記第1単電池及び前記第2単電池の充放電特性は、充放電カーブに変曲領域を有し、前記第1単電池は、前記第2単電池よりも先に前記変曲領域内の所定電圧に達する通常状態を持ち、前記比較部は、放電時に第2単電池が前記第1単電池より先に前記変曲領域内の所定の電圧に達するとき、寿命と判断することを特徴とする寿命判定機能を有する蓄電装置。 It has a plurality of unit cells connected in series, and at least two of the unit cells are a battery pack composed of a first unit cell and a second unit cell, and a voltage of the first unit cell. A first voltage measuring device for measuring, a second voltage measuring device for measuring the voltage of the second unit cell, and a comparison unit for comparing the voltages of the first unit cell and the second unit cell, The charge / discharge characteristics of the first unit cell and the second unit cell have an inflection region in a charge / discharge curve, and the first unit cell is in the inflection region prior to the second unit cell. The comparator has a normal state of reaching a predetermined voltage, and the comparison unit determines that the battery life is reached when the second unit cell reaches a predetermined voltage in the inflection region prior to the first unit cell during discharge. A power storage device having a life determination function. 前記第1単電池と前記第2単電池は組電池内で隣接して構成されていることを特徴とする請求項1に記載の寿命判定機能を有する蓄電装置。   The power storage device having a life determination function according to claim 1, wherein the first unit cell and the second unit cell are adjacent to each other in the assembled battery. 複数の単電池が直列に接続されてなる組電池の寿命判定方法であって、
複数の単電池のうち少なくとも2つは、充放電特性を示す充放電カーブに変曲領域を有する第1単電池と第2単電池とを有し、
前記第1単電池の前記変曲領域内の所定電圧と前記第2単電池の前記変曲領域内の所定電圧とをそれぞれ測定し、放電時に、第1単電池が先に変曲領域電圧となった際は、寿命前と判定し、充放電の繰り返しにより、第2単電池が先に前記変曲領域内の所定電圧となった際に、蓄電装置の寿命と判断する組電池の寿命判定方法。
A method for determining the life of an assembled battery comprising a plurality of cells connected in series,
At least two of the plurality of unit cells include a first unit cell and a second unit cell having an inflection region in a charge / discharge curve indicating charge / discharge characteristics,
The predetermined voltage in the inflection region of the first unit cell and the predetermined voltage in the inflection region of the second unit cell are measured, respectively, and the first unit cell is the first inflection region voltage during discharge. The battery life is determined to be the life of the power storage device when it is determined that the battery has reached the predetermined voltage in the inflection region due to repeated charge and discharge. Method.
JP2013211766A 2013-10-09 2013-10-09 Power storage device having life determination function, and battery life determination method Active JP6171821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211766A JP6171821B2 (en) 2013-10-09 2013-10-09 Power storage device having life determination function, and battery life determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211766A JP6171821B2 (en) 2013-10-09 2013-10-09 Power storage device having life determination function, and battery life determination method

Publications (2)

Publication Number Publication Date
JP2015076983A JP2015076983A (en) 2015-04-20
JP6171821B2 true JP6171821B2 (en) 2017-08-02

Family

ID=53001449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211766A Active JP6171821B2 (en) 2013-10-09 2013-10-09 Power storage device having life determination function, and battery life determination method

Country Status (1)

Country Link
JP (1) JP6171821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107757405A (en) * 2017-10-23 2018-03-06 中车南京浦镇车辆有限公司 A kind of method for choosing railcar single battery quantity
US11614495B2 (en) 2019-03-18 2023-03-28 Lg Energy Solution, Ltd. Battery state estimating apparatus
US11824395B2 (en) 2019-03-18 2023-11-21 Lg Energy Solution, Ltd. Battery management apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116337B (en) * 2015-06-30 2017-10-27 中国人民解放军国防科学技术大学 A kind of full electric charge storage life evaluation method of lithium ion battery
CN105182243A (en) * 2015-08-28 2015-12-23 陈宇星 Intelligent storage battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285720B2 (en) * 1994-11-08 2002-05-27 松下電器産業株式会社 Method and apparatus for detecting deterioration of assembled battery
JP4902066B2 (en) * 2001-08-02 2012-03-21 パナソニック株式会社 Battery pack system and battery pack deterioration determination method
JP3763268B2 (en) * 2001-08-15 2006-04-05 日産自動車株式会社 Battery pack capacity adjustment device
JP2011086530A (en) * 2009-10-16 2011-04-28 Toyota Motor Corp Battery pack, and power supply device
JP6056125B2 (en) * 2011-10-20 2017-01-11 Tdk株式会社 Battery pack and power storage device
JP5699915B2 (en) * 2011-11-22 2015-04-15 トヨタ自動車株式会社 In-vehicle battery diagnostic device
JP2013211157A (en) * 2012-03-30 2013-10-10 Tdk Corp Battery pack, and power storage device and lifetime determination method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107757405A (en) * 2017-10-23 2018-03-06 中车南京浦镇车辆有限公司 A kind of method for choosing railcar single battery quantity
US11614495B2 (en) 2019-03-18 2023-03-28 Lg Energy Solution, Ltd. Battery state estimating apparatus
US11824395B2 (en) 2019-03-18 2023-11-21 Lg Energy Solution, Ltd. Battery management apparatus

Also Published As

Publication number Publication date
JP2015076983A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP6047871B2 (en) Battery pack and power storage device using the same
JP5315369B2 (en) Abnormally charged state detection device and inspection method for lithium secondary battery
KR101772754B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
JP6281638B2 (en) Lithium ion battery
KR101894131B1 (en) Method for testing cycle life of positive electrode active material for secondary battery
JP6056125B2 (en) Battery pack and power storage device
CN104078708B (en) Pre-doping agent, electrical storage device and its manufacture method using the pre-doping agent
JP6087489B2 (en) Assembled battery system
JP2009145137A (en) Inspection method of secondary battery
JP2014222603A (en) Inspection method for battery
CN103891040A (en) Secondary battery control device and SOC detection method
JP6171821B2 (en) Power storage device having life determination function, and battery life determination method
WO2015049778A1 (en) Lithium ion secondary battery, lithium ion secondary battery system, method for detecting potential in lithium ion secondary battery, and method for controlling lithium ion secondary battery
JP5553798B2 (en) Positive electrode material for lithium ion secondary battery
JP2015032551A (en) Battery pack
JP2008097857A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2020535593A (en) A method for designing an electrode for a lithium secondary battery and a method for manufacturing an electrode for a lithium secondary battery including the same.
JP2010027409A (en) Lithium ion secondary battery
JP2019186164A (en) Nonaqueous electrolyte secondary battery
JP2013211157A (en) Battery pack, and power storage device and lifetime determination method using the same
JP2015065119A (en) Power storage device
JP5748972B2 (en) Non-aqueous electrolyte secondary battery pack
KR102255524B1 (en) Establishing method for charging protocol for secondary battery and battery management system for secondary battery comprising the charging protocol established by the same
JP2016081691A (en) Lithium ion secondary battery, negative electrode and battery system using these
JP7230798B2 (en) NONAQUEOUS ELECTROLYTE ELECTRIC STORAGE ELEMENT AND MANUFACTURING METHOD THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6171821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150