JP6056125B2 - Battery pack and power storage device - Google Patents

Battery pack and power storage device Download PDF

Info

Publication number
JP6056125B2
JP6056125B2 JP2011230377A JP2011230377A JP6056125B2 JP 6056125 B2 JP6056125 B2 JP 6056125B2 JP 2011230377 A JP2011230377 A JP 2011230377A JP 2011230377 A JP2011230377 A JP 2011230377A JP 6056125 B2 JP6056125 B2 JP 6056125B2
Authority
JP
Japan
Prior art keywords
electrode active
voltage
positive electrode
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011230377A
Other languages
Japanese (ja)
Other versions
JP2013089522A (en
Inventor
悠 西村
悠 西村
克夫 直井
克夫 直井
研太 小谷
研太 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2011230377A priority Critical patent/JP6056125B2/en
Publication of JP2013089522A publication Critical patent/JP2013089522A/en
Application granted granted Critical
Publication of JP6056125B2 publication Critical patent/JP6056125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池である単位セルを複数個直列してなる組電池と、組電池の充放電状態を判定する機能を有する蓄電装置に関する。   The present invention relates to an assembled battery in which a plurality of unit cells, which are secondary batteries, are connected in series, and a power storage device having a function of determining a charge / discharge state of the assembled battery.

EV自動車、自然エネルギー発電によるスマートグリッド、等の技術の中で、二次電池は蓄電装置として大きな役割を持つ。特に、リチウムイオン二次電池は、容量・出力ともにすぐれ、システムの小型化に大きく貢献している。その反面、リチウムイオン二次電池は過充電状態/過放電状態において劣化しやすく、定められた電圧範囲内で使用する必要がある。そのため、リチウムイオン二次電池の充電状態を詳しく把握することが重要である。   Among technologies such as EV cars and smart grids using natural energy power generation, secondary batteries have a major role as power storage devices. In particular, lithium ion secondary batteries are excellent in both capacity and output, and contribute greatly to miniaturization of the system. On the other hand, the lithium ion secondary battery is likely to deteriorate in an overcharged state / overdischarged state and needs to be used within a predetermined voltage range. Therefore, it is important to grasp in detail the state of charge of the lithium ion secondary battery.

一般的に単電池・組電池の充電状態評価は、開回路の電圧を測定し、あらかじめ測定された値と比較しておこなわれている。たとえば、特許文献1は、単電池のうち少なくとも1つの単電池の開回路電圧−残留容量特性を二次電池の放電状態に応じてその開回路電圧を比例的に変化させる電圧とすることで、その単電池の開回路電圧を測定し、組電池の充電深度を評価する技術を開示している。   In general, the evaluation of the state of charge of single cells and assembled batteries is performed by measuring the voltage of an open circuit and comparing it with a value measured in advance. For example, Patent Document 1 discloses that the open circuit voltage-residual capacity characteristic of at least one single cell among the single cells is a voltage that proportionally changes the open circuit voltage according to the discharge state of the secondary battery. A technique for measuring the open circuit voltage of the unit cell and evaluating the charging depth of the assembled battery is disclosed.

特開2004−311308号公報JP 2004-311308 A

しかしながら、大電流により充放電をおこなう場合には、従来の評価方法では十分な精度が得られない傾向がある。たとえば、特許文献1の評価方法では、大電流を流した際、単電池の内部抵抗に起因する電圧上昇あるいは電圧降下が加味され、充放電電流の大きさによって判定される充電深度が大きく異なってしまう。このため、組電池を安全に運用するために、想定されうる最大電流による電圧変動分だけ充放電範囲を狭める必要があり、結果として組電池の容量低下を招く。   However, when charging / discharging with a large current, there is a tendency that sufficient accuracy cannot be obtained by the conventional evaluation method. For example, in the evaluation method of Patent Document 1, when a large current is passed, a voltage rise or a voltage drop due to the internal resistance of the unit cell is taken into account, and the charge depth determined by the magnitude of the charge / discharge current is greatly different. End up. For this reason, in order to operate the assembled battery safely, it is necessary to narrow the charge / discharge range by a voltage fluctuation caused by the maximum current that can be assumed, resulting in a decrease in the capacity of the assembled battery.

本発明は、かかる従来技術の問題点を解決すべく創出されたものであり、組電池容量に対して大きい電流が入出力された際でも、精度良く組電池の充電深度を検知し得ると共に、蓄電装置を提供することである。   The present invention was created to solve such problems of the prior art, and even when a large current is input / output with respect to the assembled battery capacity, the charging depth of the assembled battery can be detected with high accuracy, It is to provide a power storage device.

本発明の組電池は、一以上のリチウムイオン二次電池と、二以上の充電深度検知用リチウムイオン二次電池と、が直列接続されてなり、二以上の前記充電深度検知用リチウムイオン二次電池は、それぞれ異なる充電深度領域に、急峻に電圧が変化する変曲領域を有することを特徴とする。ここで、「充電深度検知用リチウムイオン二次電池」とは、所定の充電深度で急峻に電圧が変化する変曲領域を有するリチウムイオン二次電池である。ここで、「充電深度」とは充電された電気量の割合をいい、満充電状態を100%とする。ただし、充電時の値に限定されるものではなく、充電時と放電時とのいずれの電気量も含む。「2以上の充電深度検知用リチウムイオン二次電池」とは、異なった充電深度で変曲領域が発現する2以上の充電深度検知用リチウムイオン二次電池を意味する。「変曲領域」とは、単電池電圧が充電深度の変化に対して急峻な変化を示す領域をいう。図4に、本発明に用いることができる充電深度検知用リチウムイオン二次電池の、充電深度(X軸)と単電池電圧(Y軸)との関係を表す充放電カーブを示す。図4において、単電池電圧が充電深度の変化に対して急峻に変化する変化領域90が、本発明でいう「変曲領域」の一例である。   The assembled battery of the present invention comprises one or more lithium ion secondary batteries and two or more charge depth detection lithium ion secondary batteries connected in series, and the two or more charge depth detection lithium ion secondary batteries. The battery is characterized by having an inflection region where the voltage changes sharply in different charging depth regions. Here, the “charge depth detection lithium ion secondary battery” is a lithium ion secondary battery having an inflection region in which the voltage changes sharply at a predetermined charge depth. Here, “charging depth” refers to the proportion of the amount of electricity charged, and the fully charged state is assumed to be 100%. However, it is not limited to the value at the time of charge, and includes both the amount of electricity at the time of charge and at the time of discharge. “Two or more charging depth detection lithium ion secondary batteries” mean two or more charging depth detection lithium ion secondary batteries that exhibit inflection regions at different charging depths. The “inflection region” refers to a region where the cell voltage shows a steep change with respect to the change in the charging depth. FIG. 4 shows a charge / discharge curve representing the relationship between the charge depth (X axis) and the single cell voltage (Y axis) of the lithium ion secondary battery for detecting the charge depth that can be used in the present invention. In FIG. 4, a change region 90 in which the cell voltage changes sharply with respect to the change in the charging depth is an example of the “inflection region” in the present invention.

本発明の充電深度検知用リチウムイオン二次電池によれば、所定の充電深度で電圧の急変が検知される「変曲領域」が発現する。「変曲領域」は、所定の電圧Aにおいて充電が完了する活物質材料と、電圧Aにおいて放電が完了する活物質材料と、を混合して、一の正極又は一の負極の少なくともいずれかを作製し、これを充電深度検知用リチウムイオン二次電池に用いることで発現させることができる。   According to the lithium ion secondary battery for detecting the charging depth of the present invention, an “inflection region” in which a sudden change in voltage is detected at a predetermined charging depth appears. In the “inflection region”, an active material that completes charging at a predetermined voltage A and an active material that completes discharging at a voltage A are mixed, and at least one of one positive electrode and one negative electrode is mixed. It can be made to express by producing and using this for the lithium ion secondary battery for charge depth detection.

このとき、変曲領域が異なった充電深度で発現する2以上の充電深度検知用リチウムイオン二次電池を、組電池内に直列接続することで、組電池全体の充電深度を段階的に精度よく検知することが可能となる。2以上の充電深度検知用リチウムイオン二次電池が、電極中の活物質材料の割合について相違していれば、2以上の充電震度検知用リチウムイオン二次電池は、異なった充電深度に変曲領域を発現する。直列接続からなる組電池において、2以上の充電深度検知用リチウムイオン二次電池の電圧を各々モニターし、一の充電深度検知用リチウムイオン二次電池において急激な電圧変動が観測されれば、組電池の充電深度は一の充電深度検出用リチウムイオン二次電池の変曲領域に対応する充電深度である。   At this time, by connecting in series the two or more charging depth detection lithium ion secondary batteries whose inflection areas are expressed at different charging depths, the charging depth of the entire assembled battery is accurately stepwise. It becomes possible to detect. If two or more charge depth detection lithium ion secondary batteries differ in the proportion of the active material in the electrode, two or more charge seismic intensity detection lithium ion secondary batteries are inflected to different charge depths. Express the region. In a battery pack composed of series connections, the voltage of two or more charge depth detection lithium ion secondary batteries is monitored, and if a sudden voltage fluctuation is observed in one charge depth detection lithium ion secondary battery, the battery pack The charging depth of the battery is a charging depth corresponding to the inflection region of one lithium ion secondary battery for detecting the charging depth.

さらに、本発明において、充電深度検知用リチウムイオン二次電池は、正極又は負極の活物質材料として、上記の充電深度に対し、
(1)この充電深度を100%とし、前記充電深度において充電状態が95%〜100%となる、一の活物質、
(2)この充電深度で定められる放電深度を100%の放電容量とし、前記放電深度において放電状態が95%〜100%となる、他の活物質と、
の少なくとも二種類の活物質を正極又は負極の少なくともいずれかについて混合した、混合活物質による正極又は負極を有するリチウムイオン二次電池であることが望ましい。
Furthermore, in the present invention, the lithium ion secondary battery for charge depth detection is used as the positive electrode or negative electrode active material, with respect to the above charge depth,
(1) One active material in which the charge depth is 100%, and the state of charge is 95% to 100% at the charge depth,
(2) The discharge depth determined by this charge depth is set to 100% discharge capacity, and the discharge state is 95% to 100% at the discharge depth, and other active materials,
It is desirable that the lithium ion secondary battery has a positive electrode or a negative electrode made of a mixed active material, in which at least two kinds of active materials are mixed for at least one of the positive electrode and the negative electrode.

この構成によれば、前記変曲領域での充電深度変化量が、充電深度検知用リチウムイオン二次電池の電池容量の10%以内に発現させることができるため、充電深度の検知誤差が電池容量の10%以下となる。ここで、一般に組電池は、組電池全体の容量の90%程度は実使用に供されるべきものと考えられる。過放電防止のためには充電深度の検知を充電深度検知用リチウムイオン二次電池の容量の10%以下に抑えることが望ましい。上記の構成によれば組電池の充電深度測定精度を向上させられる傾向がある。加えて、組電池の容量をあらかじめ低く設定する必要がなくなるため、実質的に組電池容量の向上に寄与しうる。   According to this configuration, the amount of change in charge depth in the inflection region can be expressed within 10% of the battery capacity of the lithium ion secondary battery for charge depth detection. Of 10% or less. Here, it is generally considered that about 90% of the capacity of the assembled battery should be used for actual use. In order to prevent overdischarge, it is desirable to suppress the detection of the charging depth to 10% or less of the capacity of the lithium ion secondary battery for detecting the charging depth. According to said structure, there exists a tendency for the charge depth measurement precision of an assembled battery to be improved. In addition, since it is not necessary to set the capacity of the assembled battery low in advance, it can substantially contribute to the improvement of the assembled battery capacity.

例えば、上記の所定の電圧Aにおける充電深度が±5%以内の関係にある二種類以上の活物質材料を混合して、正極又は負極のいずれかを作製する。これにより、充電深度検知用リチウムイオン二次電池の変曲領域における充電深度変化量を、電池容量の10%以内に収束させることができる。例えば、電圧Aにおける充電深度を100%とした場合に95%以上で充電が終了する活物質材料と、電圧Aにおける充電深度を0%とした場合に5%以下で放電が完了する活物質材料と、を正極活物質として又は負極活物質として混合することにより、充電深度検知用リチウムイオン二次電池の変曲領域を電池容量に対して10%以下に収束することができる。   For example, two or more kinds of active material materials in which the charge depth at the predetermined voltage A is within ± 5% are mixed to produce either a positive electrode or a negative electrode. Thereby, the amount of change in charge depth in the inflection region of the lithium ion secondary battery for charge depth detection can be converged within 10% of the battery capacity. For example, when the charging depth at voltage A is 100%, the active material that completes charging at 95% or more and the active material that completes discharging at 5% or less when the charging depth at voltage A is 0% Are mixed as a positive electrode active material or a negative electrode active material, the inflection region of the lithium ion secondary battery for charge depth detection can be converged to 10% or less with respect to the battery capacity.

このとき、所定の電圧Aにおける充電深度が実使用域にある活物質材料は、電極における全活物質の電気容量割合として10%以下であることが望ましい。例えば、電圧Aにおける充電深度が20%から80%である活物質材料を、10%以下とすれば、充電深度検知用リチウムイオン二次電池の変曲領域を電池容量に対して10%以下に収束することができる。   At this time, the active material in which the charging depth at the predetermined voltage A is in the actual use range is desirably 10% or less as the electric capacity ratio of all active materials in the electrode. For example, if the active material having a charging depth of 20% to 80% at voltage A is set to 10% or less, the inflection region of the lithium ion secondary battery for detecting the charging depth is set to 10% or less with respect to the battery capacity. Can converge.

また、本発明において、充電深度検知用リチウムイオン二次電池の変曲領域での電圧変化量が100mV以上であることが望ましい。   In the present invention, it is desirable that the amount of voltage change in the inflection region of the lithium ion secondary battery for detecting the charge depth is 100 mV or more.

正極活物質又は負極活物質として混合する二種類以上の活物質材料の選択を、各固有電位に起因して生ずる電位差が100mV以上となる活物質材料の組み合わせとすることによって、上記の変曲領域における電圧変化量を100mV以上とすることができる。   By selecting two or more kinds of active material materials to be mixed as the positive electrode active material or the negative electrode active material as a combination of active material materials in which the potential difference caused by each intrinsic potential is 100 mV or more, the above inflection region The amount of voltage change at can be 100 mV or more.

例えば、1C程度の比較的大きな電流(1Cは、満充電状態のリチウムイオン二次電池から一定電流で放電させた場合、1時間で放電終了する電流量)での充放電時の単電池電圧は、微電流時での充電時、放電時の単電池電圧に比べ、電池の内部抵抗を起因とする電圧上昇、電圧降下が、100mV程度大きく加味され観測されてしまう。そこでこの構成のように変曲領域での電圧変化量が100mV以上である充電深度検知用の単電池を用いることで、1C程度の充放電においても、電池の内部抵抗を起因とする電圧上昇、電圧降下は、変曲領域での電圧変化量に比べ小さくなり、変曲領域内での誤差で精度良く組み電池の充電深度を検知することができる。   For example, the cell voltage during charging / discharging at a relatively large current of about 1 C (1 C is the amount of current that completes discharging in one hour when discharging from a fully charged lithium ion secondary battery at a constant current) is: When charging at a minute current, the voltage rise and voltage drop due to the internal resistance of the battery are taken into account and observed to be about 100 mV greater than the cell voltage at the time of discharging. Therefore, by using a single cell for depth of charge detection in which the amount of voltage change in the inflection region is 100 mV or more as in this configuration, even when charging / discharging about 1 C, the voltage rise caused by the internal resistance of the battery, The voltage drop is smaller than the voltage change amount in the inflection region, and the charging depth of the assembled battery can be detected with high accuracy by an error in the inflection region.

また、本発明において、充電深度検知用リチウムイオン二次電池の変曲領域での電圧変化量が300mV以上であることが望ましい。   Moreover, in this invention, it is desirable that the voltage change amount in the inflection area | region of the lithium ion secondary battery for charge depth detection is 300 mV or more.

正極活物質又は負極活物質として混合する二種類以上の活物質材料の選択を、各固有電位に起因して生ずる電位差が300mV以上となる活物質材料の組み合わせとすることによって、上記の変曲領域における電圧変化量を300mV以上とすることができる。   By selecting two or more active material materials to be mixed as the positive electrode active material or the negative electrode active material as a combination of active material materials in which the potential difference caused by each intrinsic potential is 300 mV or more, the above inflection region The amount of voltage change at can be set to 300 mV or more.

例えば、5C(5Cは、満充電状態のリチウムイオン二次電池から一定電流で放電させた場合、12分で放電終了する電流量)より大きな大電流での充放電時の単電池電圧は、微電流時での充電時、放電時の単電池電圧に比べ、電池の内部抵抗を起因とする電圧上昇、電圧降下が、300mV程度大きく加味され観測されてしまう。そこでこの構成のように変曲領域での電圧変化量が300mV以上である充電深度検知用の単電池を用いることで、5C程度の大電流での充放電においても、電池の内部抵抗を起因とする電圧上昇、電圧降下は、変曲領域での電圧変化量に比べ小さくなり変曲領域内での誤差で精度良く組電池の充電深度を検知することができる   For example, the cell voltage during charging / discharging with a large current larger than 5C (5C is the amount of current that completes discharging in 12 minutes when discharged from a fully charged lithium ion secondary battery at a constant current) is very small. When charging at the time of electric current, compared to the cell voltage at the time of discharging, a voltage increase and a voltage drop due to the internal resistance of the battery are taken into account and are observed to be increased by about 300 mV. Therefore, by using a single cell for charge depth detection whose voltage change amount in the inflection region is 300 mV or more as in this configuration, the internal resistance of the battery is caused even in charge / discharge at a large current of about 5C. The voltage rise and drop that occur is smaller than the amount of voltage change in the inflection region, and the charge depth of the assembled battery can be detected accurately with an error in the inflection region.

充電深度検知用リチウムイオン二次電池は、複数種の正極活物質を混合した正極および/または複数種の負極活物質を混合した負極を有するものであることが望ましい。   The lithium ion secondary battery for charge depth detection desirably has a positive electrode in which a plurality of types of positive electrode active materials are mixed and / or a negative electrode in which a plurality of types of negative electrode active materials are mixed.

リチウムイオン二次電池の正極および負極の活物質は、それぞれ固有の電位を持つ。リチウムイオン二次電池の全体の電圧は、正極活物質と負極活物質とが本来有する電位の電位差である。一つの正極または負極において複数種の活物質を混ぜ合わせて電極とることにより、活物質間の電位の切れ目に急峻な電位差を持つ変曲領域をもたせることができる。このとき、複数種の正極活物質、または、複数種の負極活物質を適宜選択して組み合わせ、また活物質の比率を調整することで、任意の充電深度に変曲領域を設計することができる。   Each of the positive electrode and negative electrode active materials of the lithium ion secondary battery has a specific potential. The overall voltage of the lithium ion secondary battery is a potential difference between the potentials inherent in the positive electrode active material and the negative electrode active material. By combining a plurality of types of active materials in one positive electrode or negative electrode to form an electrode, an inflection region having a steep potential difference can be provided at the potential break between the active materials. At this time, an inflection region can be designed at an arbitrary charging depth by appropriately selecting and combining a plurality of types of positive electrode active materials or a plurality of types of negative electrode active materials and adjusting the ratio of the active materials. .

また、二種以上の充電深度検知用リチウムイオン二次電池は、全て同じ種類の正極活物質の組み合わせからなることが望ましい。すなわち、二以上の充電深度検知用リチウムイオン二次電池は、全て同じ複数種の正極活物質を混合した正極および/または同じ複数種の負極活物質を混合した負極を有しており、複数種の正極活物質の混合比および/または複数種の負極活物質の混合比が異なるものである。   Moreover, it is desirable that the two or more types of lithium ion secondary batteries for detecting the depth of charge are composed of a combination of positive electrode active materials of the same type. That is, two or more charge depth detection lithium ion secondary batteries have a positive electrode in which the same plural types of positive electrode active materials are mixed and / or a negative electrode in which the same plural types of negative electrode active materials are mixed. The mixing ratios of the positive electrode active materials and / or the mixing ratios of the plurality of types of negative electrode active materials are different.

二種類以上の充電深度検知用リチウムイオン二次電池を、全て同じ正極/負極活物質の組み合わせとすることで、変曲領域が発現する充電深度のみが異なり、各単電池の電池特性をほぼ均等とすることができる。これにより、高精度で充電深度を測定できる組電池が実現できる傾向がある。このとき、充電深度検知用リチウムイオン二次電池の正極/負極活物質の種類は四種以下とすることが好ましい。四種類以下に限定した場合、必要以上に変曲領域が発現することはなく電池特性はほぼ均等とすることができ、さらに高性能な組電池が提供できる傾向がある。   By using two or more types of lithium-ion secondary batteries for detecting the depth of charge as the same positive electrode / negative electrode active material combination, only the charging depth at which the inflection region appears is different, and the battery characteristics of each single cell are almost equal. It can be. Thereby, there exists a tendency which can implement | achieve the assembled battery which can measure a charging depth with high precision. At this time, it is preferable that the kind of positive electrode / negative electrode active material of the lithium ion secondary battery for charge depth detection is four or less. When it is limited to four types or less, the inflection region does not appear more than necessary, the battery characteristics can be made almost uniform, and there is a tendency that a higher performance assembled battery can be provided.

また、充電深度検知用リチウムイオン二次電池における複数種の正極活物質および/または複数種の負極活物質は、二種類の正極活物質および/または二種類の負極活物質を使用するものであることが望ましい。   In addition, the plurality of types of positive electrode active materials and / or the plurality of types of negative electrode active materials in the lithium ion secondary battery for charge depth detection use two types of positive electrode active materials and / or two types of negative electrode active materials. It is desirable.

正極/負極活物質を二種類のみに限定することで、変曲領域の発現が明確な充電深度検知用リチウムイオン二次電池を設計することができ、さらに高性能な組電池が提供できる傾向がある。   By limiting the number of positive electrode / negative electrode active materials to only two types, it is possible to design a lithium ion secondary battery for charge depth detection with a clear expression of the inflection region and to provide a higher performance assembled battery. is there.

充電深度検知用リチウムイオン二次電池の正極活物質は、金属リチウムを基準として実使用域に3.5Vを含む正極活物質の存在量が、正極活物質全体の電気容量の割合として10%以下であることが望ましい。   The positive electrode active material of the lithium ion secondary battery for detecting the charge depth is 10% or less in terms of the electric capacity ratio of the positive electrode active material as a whole, the amount of the positive electrode active material containing 3.5 V in the actual usage range based on metallic lithium. It is desirable that

実使用域(例えば充電深度20%−80%)に金属リチウムを基準として3.5Vの電位が含まれる正極活物質を電気容量の割合として10%以下とすることで、充電深度検知用リチウムイオン二次電池の変曲領域で電圧の変動に要する充電深度変化量が10%以下となるため、より精度良く充電深度を検知することができる。   Lithium ions for detecting the depth of charge by setting the positive electrode active material containing a potential of 3.5 V on the basis of metallic lithium in the actual usage range (for example, charging depth 20% to 80%) to 10% or less as the ratio of electric capacity Since the amount of change in charge depth required for voltage fluctuation in the inflection region of the secondary battery is 10% or less, the charge depth can be detected with higher accuracy.

充電深度検知用リチウムイオン二次電池の正極活物質は、低電圧正極活物質がLiTiO、LiFePOのうちの少なくとも一つであり、高電圧正極材料は、Li(Ni1-x-yCoMn)O(ただし、0.1≦x≦0.5、0.1≦y≦0.5)、Li(Ni1-b-cCoAl)O(ただし、0.9≦a≦1.3、0<b≦0.5、0<c≦0.7)、LiMn、LiVPO、LiVOPO、LiCoO、LiMnPO、LiCoPO、LiNiPOのうちの少なくとも一つであることが望ましい。 The positive electrode active material of the lithium ion secondary battery for charge depth detection is a low-voltage positive electrode active material of at least one of LiTiO 2 and LiFePO 4 , and the high-voltage positive electrode material is Li (Ni 1-xy Co). x Mn y ) O 2 (where 0.1 ≦ x ≦ 0.5, 0.1 ≦ y ≦ 0.5), Li a (Ni 1- bc Co b Al c ) O 2 (where 0 .9 ≦ a ≦ 1.3, 0 <b ≦ 0.5, 0 <c ≦ 0.7), LiMn 2 O 4 , LiVPO 4 , LiVOPO 4 , LiCoO 2 , LiMnPO 4 , LiCoPO 4 , LiNiPO 4 It is desirable to be at least one of the following.

この構成によれば、LiTiO、LiFePOは、充電終了付近の電圧は3.5V以下の近傍であって低電圧正極活物質として選ぶことができ、Li(Ni1-x-yCoMn)O2(ただし、0.1≦x≦0.5、0.1≦y≦0.5)、Li(Ni1-b-cCoAl)O(ただし、0.9≦a≦1.3、0<b≦0.5、0<c≦0.7)、LiMn、LiVPO、LiVOPO、LiCoO、LiMnPO、LiCoPO、LiNiPOは、放電開始付近の電圧は3.5V以上の近傍であり高電圧正極活物質として選ぶことができる。これらの選択により変曲領域における充電震度の変化量を提言することができるため、組電池の充電深度を精度良く検知できる。 According to this configuration, LiTiO 2 and LiFePO 4 can be selected as a low-voltage positive electrode active material whose voltage near the end of charging is in the vicinity of 3.5 V or less, and Li (Ni 1-xy Co x Mn y ) O2 (where 0.1 ≦ x ≦ 0.5, 0.1 ≦ y ≦ 0.5), Li a (Ni 1- bc Co b Al c ) O 2 (where 0.9 ≦ a ≦ 1.3, 0 <b ≦ 0.5, 0 <c ≦ 0.7), LiMn 2 O 4 , LiVPO 4 , LiVOPO 4 , LiCoO 2 , LiMnPO 4 , LiCoPO 4 , LiNiPO 4 are near the start of discharge Can be selected as a high voltage positive electrode active material. Since the amount of change in the charge seismic intensity in the inflection region can be proposed by these selections, the charge depth of the assembled battery can be detected with high accuracy.

充電深度検知用リチウムイオン二次電池の低電圧正極活物質はLiFePOであり、高電圧正極活物質はLiVPO、LiVOPO、LiCoO、LiMnPO、LiCoPO、LiNiPOのうちの少なくとも一つであることが望ましい。 At least one of the state of charge low voltage positive electrode active material of the detection for a lithium ion secondary battery is LiFePO 4, the high voltage positive electrode active material is LiVPO 4, LiVOPO 4, LiCoO 2 , LiMnPO 4, LiCoPO 4, LiNiPO 4 It is desirable that

この構成によれば、オリビン骨格を有する正極活物質は比較的平坦な充放電カーブであり、放電末期、充電末期の充放電カーブは急峻に変化する。低電圧正極活物質、高電圧正極活物質共にオリビン骨格を有する正極活物質を用いることで、変曲領域での充電深度変化量が10%以下とすることが容易であり、精度良く充電深度の検知をすることができる。   According to this configuration, the positive electrode active material having an olivine skeleton has a relatively flat charge / discharge curve, and the charge / discharge curves at the end of discharge and the end of charge change sharply. By using a positive electrode active material having an olivine skeleton for both the low-voltage positive electrode active material and the high-voltage positive electrode active material, the amount of change in charge depth in the inflection region can be easily reduced to 10% or less, and the charge depth can be accurately adjusted. Can be detected.

充電深度検知用リチウムイオン二次電池は、負極活物質を含み、負極活物質は、複数種の負極活物質として、一以上の低電圧負極活物質と一以上の高電圧負極活物質とを混合したものであって、低電圧負極活物質は、金属リチウムを基準として上限近傍の電位が0.5V未満の負極活物質のうちの少なくとも一種以上であり、高電圧負極活物質は、金属リチウムを基準として下限近傍の電位が0.5V以上の負極活物質のうちの少なくとも一種以上であることが望ましい。   The lithium ion secondary battery for charge depth detection includes a negative electrode active material, and the negative electrode active material is a mixture of one or more low-voltage negative electrode active materials and one or more high-voltage negative electrode active materials as a plurality of types of negative electrode active materials. The low-voltage negative electrode active material is at least one or more of negative electrode active materials having a potential near the upper limit of less than 0.5 V with respect to metallic lithium, and the high-voltage negative electrode active material contains metallic lithium. As a reference, it is desirable that the potential near the lower limit is at least one of negative electrode active materials having a potential of 0.5 V or more.

この構成によれば、金属リチウムを基準として約0.5V未満でほぼ放電が終了する(たとえば充電深度が5%以下)低電圧負極活物質と、約0.5Vでほぼ充電が終了する(たとえば充電深度95%以上)高電圧負極活物質とを、負極において組み合わせられる。これにより、充電深度検知用リチウムイオン二次電池の変曲領域における充電深度の変化量を10%以下とすることができ、さらに精度良く充電深度を検知できる。   According to this configuration, the discharge is almost finished at less than about 0.5 V with respect to metallic lithium (for example, the charge depth is 5% or less) and the charge is almost finished at about 0.5 V (for example, A charging depth of 95% or more) and a high voltage negative electrode active material are combined in the negative electrode. Thereby, the variation | change_quantity of the charge depth in the inflection area | region of the lithium ion secondary battery for charge depth detection can be made into 10% or less, and a charge depth can be detected further accurately.

負極活物質は、低電圧負極活物質としてグラファイト、高電圧負極活物質としてハードカーボン、LiTiO、SiO(wは1〜4)、Alのうちから選ばれる少なくとも1つを有することが望ましい。 The negative electrode active material has at least one selected from graphite as a low voltage negative electrode active material, hard carbon, LiTiO 2 , SiO w (w is 1 to 4), and Al 2 O 3 as a high voltage negative electrode active material. Is desirable.

この構成によれば、グラファイトは放電終了付近の電圧は0.5V以下であって低電圧負極活物質として選ぶことができ、ハードカーボン、LiTiO、SiO(wは1〜4)、Alは充電開始付近の電圧は0.5V以上であり高電圧負極活物質として選ぶことができ、充電深度検知用リチウムイオン二次電池に組み合わせて使用することで、精度良く充電深度を検知できる。 According to this configuration, graphite has a voltage near the end of discharge of 0.5 V or less, and can be selected as a low-voltage negative electrode active material. Hard carbon, LiTiO 2 , SiO w (w is 1 to 4), Al 2 O 3 has a voltage near the start of charging of 0.5 V or more and can be selected as a high-voltage negative electrode active material. By using it in combination with a lithium ion secondary battery for detecting the charging depth, the charging depth can be detected with high accuracy. .

本発明の組電池は蓄電装置として用いられることが望ましい。ここで、蓄電装置は上記の組電池と、少なくとも充電深度検知用リチウムイオン二次電池ごとに並列に設けられた電圧検知装置と、論理回路によって構成される充電深度検知装置と、を含み、充電深度検出装置は、充電深度検知用リチウムイオン二次電池において検知された電圧の値によって、組電池の充電深度を判断するものである。   The assembled battery of the present invention is preferably used as a power storage device. Here, the power storage device includes the assembled battery, a voltage detection device provided in parallel for at least each of the lithium ion secondary batteries for charge depth detection, and a charge depth detection device configured by a logic circuit. The depth detection device determines the charging depth of the assembled battery based on the voltage value detected in the lithium ion secondary battery for detecting the charging depth.

組電池に充電深度検知装置を接続した蓄電装置とすることで、蓄電装置自体が充電深度を検知することができ、電気自動車用蓄電装置や定置型蓄電装置として安全に使用できる。   By using the power storage device in which the charge depth detection device is connected to the assembled battery, the power storage device itself can detect the charge depth, and can be used safely as a power storage device for electric vehicles or a stationary power storage device.

論理回路は、充電時には変曲領域内の電圧であって変曲領域中間電圧より大きい電圧を検知したときに充電終了と判断し、放電時には変曲領域内の電圧であって変曲領域中間電圧よりも小さい電圧を検知したときに放電終了と判断することが望ましい。   The logic circuit determines the end of charging when it detects a voltage in the inflection region that is greater than the inflection region intermediate voltage during charging, and determines that the charging is complete when the voltage is in the inflection region during discharging. It is desirable to determine the end of discharge when a smaller voltage is detected.

リチウムイオン二次電池に印加される電圧は、充電時と放電時とで向きが異なる。印加される電圧の方向にしたがって、充電時の充電深度検知電圧を変曲領域内の電圧であって変曲領域中間電圧より大きい電圧とし、放電時の充電深度検知電圧を変曲領域内の電圧であって変曲領域中間電圧より小さい電圧とすることにより、変曲領域の電圧変化量を有効に使用し大電流時においても精度よく組み電池の充電深度を検知することができる傾向がある。   The direction of the voltage applied to the lithium ion secondary battery differs between charging and discharging. According to the direction of the applied voltage, the charge depth detection voltage during charging is a voltage within the inflection region and greater than the inflection region intermediate voltage, and the charge depth detection voltage during discharge is the voltage within the inflection region. However, by making the voltage smaller than the inflection region intermediate voltage, there is a tendency that the amount of change in voltage in the inflection region can be used effectively and the charging depth of the assembled battery can be detected accurately even at a large current.

本発明によれば、蓄電装置の組電池容量に対して大きい電流が入出力された際でも、精度良く組電池の充電深度を検知することが可能となり、組電池の性能低下を防止しすることが可能となる。   According to the present invention, even when a large current is input / output with respect to the assembled battery capacity of the power storage device, it becomes possible to detect the charging depth of the assembled battery with high accuracy, and to prevent a deterioration in the performance of the assembled battery. Is possible.

図1は本発明を適用可能な実施形態の組電池を模式的に示す図である。FIG. 1 is a diagram schematically showing an assembled battery according to an embodiment to which the present invention is applicable. 図2は本発明を適用可能な実施形態の蓄電装置を模式的に示す図である。FIG. 2 is a diagram schematically showing a power storage device according to an embodiment to which the present invention is applicable. 図3は本発明を適用可能な実施形態のリチウムイオン電池の構成例を示す概略断面図である。FIG. 3 is a schematic sectional view showing a configuration example of a lithium ion battery according to an embodiment to which the present invention is applicable. 図4は本発明を適用可能な実施形態の充電深度検知用リチウムイオン二次電池の充電深度に対する電圧の変化を示すグラフである。FIG. 4 is a graph showing a change in voltage with respect to the charging depth of the lithium ion secondary battery for detecting the charging depth according to the embodiment to which the present invention is applicable.

以下に添付図面を参照して、本発明にかかる組電池および蓄電装置の好適な実施の一例を詳細に説明する。ただし、本発明の組電池および蓄電装置は、以下の実施形態に限定されるものではない。なお、図面の寸法比率は図示の比率に限られるものではない。   Exemplary embodiments of a battery pack and a power storage device according to the present invention will be described below in detail with reference to the accompanying drawings. However, the assembled battery and the power storage device of the present invention are not limited to the following embodiments. In addition, the dimensional ratio of drawing is not restricted to the ratio of illustration.

本発明の組電池を構成するため、相互に直列接続され得る個々の電池は「リチウムイオン二次電池」である。特に限定しない限り、種々の組成の電極材料や電解質を有する電池を包含する。   The individual batteries that can be connected in series with each other to constitute the assembled battery of the present invention are “lithium ion secondary batteries”. Unless specifically limited, batteries having electrode materials and electrolytes of various compositions are included.

上述のとおり、本実施形態のリチウムイオン二次電池の電圧−充電深度の関係を表す充放電カーブは、図4にその一例が示される。充放電カーブ中の変曲領域は、製造時にあらかじめ定められるものであり、例えば、電極材料の調整により任意の充電深度領域に設定することができる。また、この場合、変曲領域の発現する電圧は電極材料の選択によって決まる。   As described above, an example of the charge / discharge curve representing the relationship between the voltage and the charge depth of the lithium ion secondary battery of the present embodiment is shown in FIG. The inflection region in the charge / discharge curve is predetermined at the time of manufacture, and can be set to an arbitrary charge depth region by adjusting the electrode material, for example. In this case, the voltage developed in the inflection region is determined by the selection of the electrode material.

本実施形態の組電池の充電深度は、充電深度検知用リチウムイオン二次電池に並列に接続された電圧センサーによって電圧を測定し、その値から求められる。組電池を充電・放電し充電深度検知用リチウムイオン二次電池の電圧がある所定の電圧になると、組電池が、あらかじめ定められた充電深度状態にあると判定できる。この際、変曲領域では、電圧は急峻に変化するため、電圧の変化量に対し、充電深度の変化量が少なく、精度欲充電深度を判定することが可能となる。また、電池材料を選択することで、電圧変化の絶対量を大きくすることができ、接触抵抗、電池内部抵抗に起因する充放電中に生じる電圧差による判定誤差を小さくすることができる。すなわち、組電池を充電中、組電池から機器へ放電中であっても高精度に充電深度を知ることができ、過充電・過放電が効果的に防止できる。   The charging depth of the assembled battery according to the present embodiment is obtained from a value obtained by measuring a voltage using a voltage sensor connected in parallel to the lithium ion secondary battery for detecting the charging depth. When the assembled battery is charged / discharged and the voltage of the lithium ion secondary battery for detecting the charging depth reaches a predetermined voltage, it can be determined that the assembled battery is in a predetermined charging depth state. At this time, since the voltage changes sharply in the inflection region, the amount of change in the charge depth is less than the amount of change in the voltage, and it is possible to determine the accurate greedy charge depth. Further, by selecting the battery material, the absolute amount of voltage change can be increased, and the determination error due to the voltage difference generated during charging / discharging due to the contact resistance and the battery internal resistance can be reduced. That is, even when the assembled battery is being charged or discharged from the assembled battery to the device, the depth of charge can be known with high accuracy, and overcharge / overdischarge can be effectively prevented.

図1は、本実施形態の組電池の一例を模式的に示す。組電池10は、第一の充電深度検知用リチウムイオン二次電池14と、この充電深度検知用リチウムイオン二次電池とは異なる充電深度に変曲領域を持つ第二の充電深度検知用リチウムイオン二次電池16と、1以上の非充電深度検知用リチウムイオン二次電池12と、が直列接続された構造を有する。「非充電深度検知用リチウムイオン二次電池」とは、充電深度検知には寄与せず組電池の充放電のみに寄与するリチウムイオン二次電池をいう。「充電深度検知用リチウムイオン二次電池」は「第一の」および「第二の」と表された2個に限定されるものではなく、充電深度を検出したい段階の数に応じて組み込むことができる。本実施形態の第一の充電深度検知用リチウムイオン二次電池14と、第二の充電深度検知用リチウムイオン二次電池16とは、それぞれ異なる領域の充電深度に電圧変動が急峻な変曲領域を示す。充電深度検知用リチウムイオ二次電池は、充電深度を検知したい数より多い種類接続されていることが望ましい。   FIG. 1 schematically shows an example of the assembled battery of the present embodiment. The assembled battery 10 includes a first charge depth detection lithium ion secondary battery 14 and a second charge depth detection lithium ion having an inflection region at a charge depth different from that of the charge depth detection lithium ion secondary battery. The secondary battery 16 and one or more non-charging depth detection lithium ion secondary batteries 12 have a structure in which they are connected in series. The “non-charge depth detection lithium ion secondary battery” refers to a lithium ion secondary battery that does not contribute to charge depth detection but contributes only to charge / discharge of the assembled battery. “Lithium-ion secondary battery for charge depth detection” is not limited to the two indicated as “first” and “second”, but should be incorporated according to the number of stages where the charge depth is to be detected. Can do. The first charging depth detection lithium ion secondary battery 14 and the second charging depth detection lithium ion secondary battery 16 of the present embodiment are inflection regions in which voltage fluctuations are steep in different charging depths. Indicates. It is desirable that the lithium-ion secondary battery for detecting the charging depth is connected in more types than the number of charging depths to be detected.

本実施形態の組電池10は、複数の非充電深度検知用リチウムイオン電池12と、充電深度検知用リチウムイオン二次電池とが直列に接続されていれば、各電池単独の配列は特に限定されない。例えば、非充電深度検知用リチウムイオン二次電池12に対してさらに直列・並列に非充電深度検知用リチウムイオン二次電池を接続してもよい。また、第一の充電深度検知用リチウムイオン二次電池14と、第二の充電深度検知用リチウムイオン二次電池16とに各々と同等の特性を有する充電深度検知用リチウムイオン二次電池を並列接続してもよい。また、充電深度の検知精度向上のため、充電深度検知用のリチウムイオン二次電池と同等の特性を有する他の充電深度検知リチウムイオン二次電池をいくつか直列接続してもよい。さらに、図1の組電池10をさらに直列・並列に接続してもよい。   In the assembled battery 10 of the present embodiment, the arrangement of each battery alone is not particularly limited as long as a plurality of non-charging depth detection lithium ion batteries 12 and a charging depth detection lithium ion secondary battery are connected in series. . For example, a non-charging depth detection lithium ion secondary battery may be further connected in series and in parallel to the non-charging depth detection lithium ion secondary battery 12. Moreover, the lithium ion secondary battery for charge depth detection which has the characteristic equivalent to each in the lithium ion secondary battery for charge depth detection 14 and the lithium ion secondary battery 16 for charge depth detection of 2nd in parallel is parallel. You may connect. Further, in order to improve the detection accuracy of the charge depth, some other charge depth detection lithium ion secondary batteries having the same characteristics as the lithium ion secondary battery for detecting the charge depth may be connected in series. Furthermore, the assembled battery 10 of FIG. 1 may be further connected in series and in parallel.

本実施形態の組電池10を大型電源システム用として使用する場合、高出力を得る観点から非充電深度検知用リチウムイオン二次電池12を多数用いて構成するのが望ましい。この場合、組電池10全体の出力やエネルギー密度は主に非容充電深度検知用リチウムイオン二次電池12の出力とエネルギー密度とによって決定される。本実施形態の組電池10は複数の充電深度検知用リチウムイオン二次電池によって組電池全体の充電深度が検知されるため、使用される充電深度の範囲で非容充電深度検知用リチウムイオン二次電池自体の電圧変化または内部抵抗を大きくする必要がない。したがって組電池を構成する非容充電深度検知用リチウムイオン二次電池12には、電圧変化が少なく内部抵抗の低い電池を使用できる。その結果、本実施形態の組電池は安定した高出力を広い充電深度範囲で機器に提供できる。この効果を高めるため、非充電深度検知用リチウムイオン二次電池12は、それらの初期電池容量が製造ばらつき程度(5%)の範囲内でそろっていることが望ましい。また、充電深度検知用リチウムイオン二次電池の初期電池容量は、非充電深度検知用リチウムイオン二次電池より大きいことが望ましい。   When the assembled battery 10 of the present embodiment is used for a large power supply system, it is desirable to use a large number of non-charging depth detection lithium ion secondary batteries 12 from the viewpoint of obtaining high output. In this case, the output and energy density of the assembled battery 10 as a whole are mainly determined by the output and the energy density of the lithium ion secondary battery 12 for detecting a non-contained charge depth. In the battery pack 10 of the present embodiment, since the charge depth of the entire battery pack is detected by a plurality of charge depth detection lithium ion secondary batteries, the inactive charge depth detection lithium ion secondary battery is used within the range of charge depths used. There is no need to increase the voltage change or internal resistance of the battery itself. Therefore, a battery having a small voltage change and a low internal resistance can be used as the lithium ion secondary battery 12 for detecting a non-capacity charge depth constituting the assembled battery. As a result, the assembled battery of this embodiment can provide a stable high output to a device in a wide charging depth range. In order to enhance this effect, it is desirable that the lithium ion secondary batteries 12 for non-charging depth detection have their initial battery capacities within a range of manufacturing variation (5%). Moreover, it is desirable that the initial battery capacity of the lithium ion secondary battery for detecting the charging depth is larger than the lithium ion secondary battery for detecting the non-charging depth.

図2に、本実施形態の組電池を組み込んだ蓄電装置の好ましい一実施形態を模式的に示す。本実施形態の蓄電装置40は、図1の組電池10と、充電深度検知用リチウムイオン二次電池に並列接続された電圧検知装置および充電深度検知装置30、35からなる。充電深度は、充電深度検知用リチウムイオン電池の電圧を、電池に並列に接続された電圧検知装置によって測定し、その電圧の値を用い充電深度検知装置により算出される。   In FIG. 2, one preferable embodiment of the electrical storage apparatus incorporating the assembled battery of this embodiment is typically shown. The power storage device 40 of the present embodiment includes the assembled battery 10 of FIG. 1 and a voltage detection device and charge depth detection devices 30 and 35 connected in parallel to the lithium ion secondary battery for detection of charge depth. The charge depth is calculated by the charge depth detection device using the voltage value measured by a voltage detection device connected in parallel to the battery, by measuring the voltage of the lithium ion battery for charge depth detection.

図3に、本実施形態にかかる充電深度検知用リチウムイオン二次電池の一例を示す。リチウムイオン二次電池50は、リチウムイオンの吸蔵放出が可能な材料からなる正極60および負極70と、リチウムイオン導電性のある電解質と、正極および負極の間にあるセパレータ80とを含む。   FIG. 3 shows an example of a charge depth detection lithium ion secondary battery according to this embodiment. The lithium ion secondary battery 50 includes a positive electrode 60 and a negative electrode 70 made of a material capable of occluding and releasing lithium ions, a lithium ion conductive electrolyte, and a separator 80 between the positive electrode and the negative electrode.

充電深度検知用リチウムイオン二次電池は、ある充電深度領域で電圧が急峻に変化する変曲領域90が存在するが、変曲領域90の発現は以下の場合に得られる。
(1)正極合剤層61を、正極活物質を複数種混合して形成する場合、
(2)負極合剤層71を、負極活物質を複数種混合して形成する場合、
(3)その両方の場合
正極活物質と負極活物質とは、それぞれが固有の電位を持つ。リチウムイオン二次電池の電圧は、正極活物質と負極活物質の固有の電位に起因する電位差である。一の電極の中で複数種の活物質材料を混合して使用することにより、活物質間の電位の切れ目に急峻な電位差を持つ変曲領域90が生ずる。ただし、LiMnFePOのように、一種類の活物質が変曲領域を発現させる場合もある。
The lithium ion secondary battery for detecting the charge depth has an inflection region 90 in which the voltage changes sharply in a certain charge depth region. The expression of the inflection region 90 is obtained in the following cases.
(1) When the positive electrode mixture layer 61 is formed by mixing a plurality of positive electrode active materials,
(2) When the negative electrode mixture layer 71 is formed by mixing a plurality of negative electrode active materials,
(3) In both cases The positive electrode active material and the negative electrode active material each have a unique potential. The voltage of the lithium ion secondary battery is a potential difference caused by the intrinsic potential of the positive electrode active material and the negative electrode active material. By using a mixture of a plurality of types of active material in one electrode, an inflection region 90 having a steep potential difference is generated at the potential break between the active materials. However, like LiMnFePO 4 , one type of active material may develop an inflection region.

上述のとおり、変曲領域は、所定の電圧において充電が完了する活物質材料と、同じ電圧において放電が完了する活物質材料と、を混合して一の電極を作製することで充電深度検知用リチウムイオン二次電池に発現させることができる。また、
(A)その電圧における充電深度を100%とした場合に95%以上で充電が終了する活物質材料(以下、「低電圧活物質」という。必要に応じて「低電圧正極活物質」「低電圧負極活物質」という場合がある。)と、同じ電圧における充電深度を0%とした場合に5%以下で放電が完了する活物質材料(以下、「高電圧活物質」という。必要に応じて「高電圧正極活物質」「高電圧負極活物質」という場合がある。)を混合して電極とすること、
(B)その電圧における充電深度が実使用域にある活物質材料を、電極における全活物質の電気容量割合として10%以下とすること、
により、変曲領域での充電深度変化量は10%以下に収束させることができる。
As described above, the inflection region is for detecting the depth of charge by mixing an active material that completes charging at a predetermined voltage and an active material that completes discharging at the same voltage to produce one electrode. It can be expressed in a lithium ion secondary battery. Also,
(A) An active material that is charged at 95% or more when the charging depth at that voltage is 100% (hereinafter referred to as “low-voltage active material”. Voltage active material ”(hereinafter sometimes referred to as“ high voltage active material ”). "High voltage positive electrode active material" and "high voltage negative electrode active material"))
(B) The active material whose charging depth at the voltage is in the actual use range is 10% or less as the electric capacity ratio of all active materials in the electrode,
Thus, the change in the charging depth in the inflection region can be converged to 10% or less.

上記(1)及び(3)の場合、一般に、リチウムイオン電池用正極活物質の電圧範囲は金属リチウムに対して約3.0〜約4.0Vである電圧範囲を考慮することが望ましい。例えば、この中央値である3.5Vを基準とする場合、3.5Vより小さくかつ3.5V近傍の電圧が満充電である低電圧正極活物質と、3.5Vより大きくかつ3.5V近傍の電圧が放電終了電圧である高電圧正極活物質とを組み合わせることができる。組み合わせにかかる複数種の正極活物質同士の電位は重ならないことが望ましい。変曲領域をなだらかにして測定制度を低下させる場合があるためである。   In the case of the above (1) and (3), it is generally desirable that the voltage range of the positive electrode active material for a lithium ion battery is a voltage range of about 3.0 to about 4.0 V with respect to metallic lithium. For example, when the median value of 3.5 V is used as a reference, a low-voltage positive electrode active material whose voltage is smaller than 3.5 V and near 3.5 V is fully charged, and greater than 3.5 V and near 3.5 V Can be combined with a high-voltage positive electrode active material whose voltage is the discharge end voltage. It is desirable that the potentials of the plural types of positive electrode active materials related to the combination do not overlap. This is because the inflection area may be made gentle and the measurement system may be lowered.

具体的には、低電圧正極活物質としてはLiTiO、LiFePOなどが挙げられる。また、高電圧正極活物質としてはLi(Ni1-x-yCoMn)O(ただし、0.1≦x≦0.5、0.1≦y≦0.5)、Li(N1-b-cCoAl)O(ただし、0.9≦a≦1.3、0<b≦0.5、0<c≦0.7)、LiMn、LiVPO、LiVOPO、LiCoO、LiMnPO、LiCoPO、LiNiPOなどが挙げられる。ここに示す低電圧正極活物質と、高電圧正極活物質とのうちいずれか一種ずつを組み合わせて正極合剤層61とすることにより、正極60を起源として変曲領域を発現させることができる。 Specifically, examples of the low voltage positive electrode active material include LiTiO 2 and LiFePO 4 . Moreover, as a high-voltage positive electrode active material, Li (Ni 1-xy Co x Mn y ) O 2 (where 0.1 ≦ x ≦ 0.5, 0.1 ≦ y ≦ 0.5), Li a (N 1-b-c Co b Al c) O 2 ( however, 0.9 ≦ a ≦ 1.3,0 <b ≦ 0.5,0 <c ≦ 0.7), LiMn 2 O 4, LiVPO 4 , LiVOPO 4 , LiCoO 2 , LiMnPO 4 , LiCoPO 4 , LiNiPO 4 and the like. By combining any one of the low-voltage positive electrode active material and the high-voltage positive electrode active material shown here to form the positive electrode mixture layer 61, the inflection region can be expressed starting from the positive electrode 60.

低電圧正極活物質のうちのLiFePO、高電圧正極活物質のうちの、LiVPO、LiVOPO、LiMnPO、LiCoPO、LiNiPO等は、オリビン構造を持ち、通常使用域で電圧変化が少なく、充電初期、充電末期に急峻に電圧が変化することが知られている。このようなオリビン構造を持つ正極活物質を用いることで、変曲領域90における電圧変化量に対する充電深度変化量を小さくでき、検知精度を向上させることができる。 Low voltage positive electrode active LiFePO 4 of material, of the high voltage positive electrode active material, LiVPO 4, LiVOPO 4, LiMnPO 4, LiCoPO 4, LiNiPO 4 , etc., has an olivine structure, small voltage change in normal use range It is known that the voltage changes abruptly at the beginning and end of charging. By using a positive electrode active material having such an olivine structure, the amount of change in charge depth with respect to the amount of change in voltage in the inflection region 90 can be reduced, and the detection accuracy can be improved.

変曲領域が負極70を起源とする(2)又は(3)の場合、負極合剤層71中の負極活物質を複数種類選択することで、変曲領域を得ることができる。活物質の選択は、負極活物質の電位差が大きい組み合わせであることが望ましい。負極の場合は、0.5V程度を境界として低電圧活物質、高電圧活物質に区別できる。低電圧負極活物質としてはグラファイトを用いることができる。高電圧負極活物質としてはハードカーボン、LiTiO、SiO(wは1〜4)、Alなどを適宜用いることができる。 In the case of (2) or (3) where the inflection region originates from the negative electrode 70, the inflection region can be obtained by selecting a plurality of types of negative electrode active materials in the negative electrode mixture layer 71. The selection of the active material is preferably a combination in which the potential difference of the negative electrode active material is large. In the case of the negative electrode, a low voltage active material and a high voltage active material can be distinguished with about 0.5 V as a boundary. Graphite can be used as the low voltage negative electrode active material. As the high voltage negative electrode active material, hard carbon, LiTiO 2 , SiO w (w is 1 to 4), Al 2 O 3 or the like can be used as appropriate.

変曲領域が発現する充電深度は、低電圧活物質と高電圧活物質との混合比率を変化させることにより調整することができる。したがって、2以上の充電深度検知用リチウムイオン二次電池は、低電圧活物質と高電圧活物質との混合比率を相違させることにより相互に異なる充電深度に調整できる。これにより、複数種類の充電深度検知用リチウムイオン二次電池14、16が得られる。   The charging depth at which the inflection region appears can be adjusted by changing the mixing ratio of the low voltage active material and the high voltage active material. Therefore, two or more lithium ion secondary batteries for detecting the charge depth can be adjusted to different charge depths by making the mixing ratio of the low voltage active material and the high voltage active material different. Thereby, multiple types of lithium ion secondary batteries 14 and 16 for charge depth detection are obtained.

他方、2以上の充電深度検知用リチウムイオン二次電池の充電深度は、低電圧活物質の種類、あるいは高電圧活物質の種類を変更して調整することも可能である。しかし、同一の低電圧活物質、同一の高電圧活物質について混合比率のみを変化させることにより充電深度を調整することが有効である。活物質の種類を変更した場合、電位差以外の特性も考慮した充電深度の検出が必要となる場合があるからである。例えば、正極の調整により変曲領域の充電深度を相違させる場合であって、低電圧正極活物質としてLiFePOを、高電圧正極活物質としてLiMnPOを選択する場合、2以上の充電深度検出用リチウムイオン二次電池はLiFePOとLiMnPOとの混合比率の相違のみによって調整されるのが望ましい。負極の調整による場合も同様である。 On the other hand, the charging depth of two or more lithium ion secondary batteries for detecting the charging depth can be adjusted by changing the type of the low voltage active material or the type of the high voltage active material. However, it is effective to adjust the charging depth by changing only the mixing ratio for the same low-voltage active material and the same high-voltage active material. This is because, when the type of the active material is changed, it may be necessary to detect the charge depth in consideration of characteristics other than the potential difference. For example, a case of different depth of charge of the inflection area by the adjustment of the positive electrode, if the LiFePO 4 as a low-voltage positive electrode active material, selects the LiMnPO 4 as a high voltage positive electrode active material, two or more charging depth detector The lithium ion secondary battery is preferably adjusted only by the difference in the mixing ratio between LiFePO 4 and LiMnPO 4 . The same applies when adjusting the negative electrode.

また、充電深度検知用リチウムイオン二次電池は、必ずしも2種類の活物質(一の低電圧活物質と一の高電圧活物質)の混合に制限されるものではない。例えば、正極においてはLiFePOとLiMnO、及びLiNi1/3Mn1/3Co1/3を組み合わせることができる。ただし、多種の活物質を組み合わせた場合、変曲領域が多数発現して相互に影響しあうことにより変曲領域がなだらかになる傾向がある。また、電位差以外の特性の影響が顕著に出現する傾向もある。そのため、正極活物質の種類を四種以下とすることが望ましい。負極についても同様である。 Moreover, the lithium ion secondary battery for charge depth detection is not necessarily limited to mixing two types of active materials (one low voltage active material and one high voltage active material). For example, LiFePO 4 and LiMnO, and LiNi 1/3 Mn 1/3 Co 1/3 O 2 can be combined in the positive electrode. However, when various kinds of active materials are combined, a large number of inflection regions appear and affect each other, so that the inflection regions tend to be gentle. Also, there is a tendency that the influence of characteristics other than the potential difference appears remarkably. Therefore, it is desirable that the number of types of positive electrode active materials be four or less. The same applies to the negative electrode.

正極活物質を起源とする変曲領域と負極活物質を起源とする変曲領域とが略同一の充電深度にそろうように、低電圧正極活物質、高電圧正極活物質、低電圧負極活物質及び高電圧負極活物質を選択すれば、変曲領域に発現する電位差を大きくすることができる。このような組み合わせの一例として、低電圧正極活物質としてLiFePOを、高電圧正極活物質としてLiNi1/3Mn1/3Co1/3を選択し、低電圧負極活物質としてグラファイトを、高電圧負極活物質としてハードカーボンを選択する構成がある。この場合、活物質の容量を基準として、正極活物質の比率と、負極活物質の比率とをそろえることが望ましい。 The low-voltage positive electrode active material, the high-voltage positive electrode active material, and the low-voltage negative electrode active material so that the inflection region originating from the positive electrode active material and the inflection region originating from the negative electrode active material are aligned at substantially the same charging depth. If a high-voltage negative electrode active material is selected, the potential difference developed in the inflection region can be increased. As an example of such a combination, LiFePO 4 is selected as the low voltage positive electrode active material, LiNi 1/3 Mn 1/3 Co 1/3 O 2 is selected as the high voltage positive electrode active material, and graphite is selected as the low voltage negative electrode active material. There is a configuration in which hard carbon is selected as the high-voltage negative electrode active material. In this case, it is desirable to align the ratio of the positive electrode active material and the ratio of the negative electrode active material with reference to the capacity of the active material.

充電深度検知用リチウムイオン二次電池の正極は、高電圧正極活物質、低電圧正極活物質、導電助剤及びバインダーを溶媒に混合した正極塗料を用いて作製できる。この塗料を、集電体62上に塗布し乾燥させ正極合剤層61とし、正極60を形成する。負極については、高電圧負極活物質と、低電圧負極活物質とを、導電助剤及びバインダーと共に溶媒に混合して負極塗料を作成する。この塗料を集電体72上に塗布し乾燥させ負極合剤層71とし、負極70を形成する。電極の形成は、このような塗布技術を用いたものに限定されない。例えば、正極塗料や負極塗料をシート状に固化させて集電体上に貼り付けてもよい。また、メッシュ状の集電体を介して貼り合わせてもよい。   The positive electrode of the lithium ion secondary battery for detecting the charge depth can be produced using a positive electrode paint in which a high voltage positive electrode active material, a low voltage positive electrode active material, a conductive additive and a binder are mixed in a solvent. This paint is applied on the current collector 62 and dried to form the positive electrode mixture layer 61, thereby forming the positive electrode 60. About a negative electrode, a high voltage negative electrode active material and a low voltage negative electrode active material are mixed with a solvent with a conductive support agent and a binder, and a negative electrode coating material is created. This paint is applied on the current collector 72 and dried to form the negative electrode mixture layer 71, thereby forming the negative electrode 70. The formation of the electrode is not limited to that using such a coating technique. For example, the positive electrode paint or the negative electrode paint may be solidified into a sheet shape and attached onto the current collector. Further, they may be bonded via a mesh-like current collector.

バインダーとしては、ポリフッ化ビリニデン(PVDF)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などを適宜選択して用いることができる。溶媒としては、バインダーを溶解させる各種の溶媒が使用できる。具体的には、N−メチルピロリドン(NMP)、純水などを用いることができる。   As the binder, polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), or the like can be appropriately selected and used. As the solvent, various solvents for dissolving the binder can be used. Specifically, N-methylpyrrolidone (NMP), pure water, or the like can be used.

集電体は、リチウムイオン二次電池に使用されている各種公知の材料を用いることができる。具体的には、負極集電体72として銅箔を、正極集電体62としてアルミニウム箔を用いることができる。   As the current collector, various known materials used in lithium ion secondary batteries can be used. Specifically, a copper foil can be used as the negative electrode current collector 72, and an aluminum foil can be used as the positive electrode current collector 62.

電解質は、リチウムイオン伝導性を有する無機材料、有機高分子系材料、水系の電解液材料、非水電解液材料等を適宜用いることができる。例えば、非水電解液を用いる場合、リチウムイオン伝導性のある各種溶媒が望ましく、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状炭酸エステルを単体または適宜組み合わせて使用することができる。また、電気伝導度を高くし、かつ適切な粘度を有する電解液を得るため、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、ジフルオロカーボネート(FEC)等を併用してもよい。非水電解液中の電解質としては、LiPF、LiBF、LiClOなどがあげられる。 As the electrolyte, an inorganic material having lithium ion conductivity, an organic polymer material, an aqueous electrolyte material, a nonaqueous electrolyte material, or the like can be used as appropriate. For example, when using a non-aqueous electrolyte, various lithium ion conductive solvents are desirable, and cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) are used alone or in appropriate combination. can do. In addition, in order to obtain an electrolytic solution with high electrical conductivity and appropriate viscosity, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), difluoro carbonate (FEC), etc. are used in combination. Also good. Examples of the electrolyte in the non-aqueous electrolyte include LiPF 6 , LiBF 4 , and LiClO 4 .

セパレータとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂の微多孔膜などを用いることができる。電解質が非水電解液である場合、セパレータ80の中に含浸されることが望ましい。   As the separator, a microporous film of a polyolefin resin such as polyethylene or polypropylene can be used. When the electrolyte is a non-aqueous electrolyte, it is desirable that the separator 80 be impregnated.

得られた正極60と、負極70とは、セパレータ80を介して積層され、電池要素とされる。電池要素は、積層体として形成されていてもよく、巻回体として形成されていてもよい。さらに巻回体は、円筒形状に形成されていてもよく、平型(楕円)形状に形成されていてもよい。   The obtained positive electrode 60 and negative electrode 70 are laminated via a separator 80 to form a battery element. The battery element may be formed as a laminate or may be formed as a wound body. Furthermore, the wound body may be formed in a cylindrical shape, or may be formed in a flat (elliptical) shape.

電池要素は外装体の中に挿入され、封止される。外装体は、金属製の円筒缶、平型缶、ラミネート外装袋などを適宜選択することができる。   The battery element is inserted into the exterior body and sealed. As the exterior body, a metal cylindrical can, a flat can, a laminated exterior bag, and the like can be appropriately selected.

なお、非充電深度検知用リチウムイオン二次電池については、一種類の正極活物質、一種類の負極活物質を用いて正極60、負極70を形成すればよい。この場合の正極活物質と負極活物質とは、その選択について特に制限はない。   In addition, about the lithium ion secondary battery for non-charging depth detection, the positive electrode 60 and the negative electrode 70 should just be formed using one type of positive electrode active material and one type of negative electrode active material. In this case, the selection of the positive electrode active material and the negative electrode active material is not particularly limited.

(組電池の作成)
上記のように作成した、変曲領域が発現する充電深度が異なる複数の充電深度検知用リチウムイオン二次電池と非充電深度検知用リチウムイオン二次電池とを直列に接続し、組電池を得ることができる。組電池は動力源として各種機器に組み込まれる。組電池は、そのまま各種機器に搭載しても、複数の組電池と制御回路を組み合わせて組電池モジュールを各機器に搭載してよい。組電池モジュールを作成する際には組電池を直列及び/又は、並列に接続してよく、これにより大出力かつ、サイクル特性に優れる組電池モジュールを得ることができる。
(Creation of assembled battery)
A plurality of depth-of-charge-detection lithium-ion secondary batteries and non-charge-depth-detection lithium-ion secondary batteries that are created as described above and have different charging depths in the inflection region are connected in series to obtain an assembled battery. be able to. The assembled battery is incorporated in various devices as a power source. The assembled battery may be mounted on various devices as it is, or an assembled battery module may be mounted on each device by combining a plurality of assembled batteries and a control circuit. When producing an assembled battery module, the assembled batteries may be connected in series and / or in parallel, whereby an assembled battery module having high output and excellent cycle characteristics can be obtained.

充電深度検知用リチウムイオン二次電池は変曲領域の電圧変化のみが問題となるため、原則として組電池内の位置については測定機能上の問題とならない。一方、外気温が低温になる場合などは、充電深度検知用リチウムイオン二次電池を組電池内の中央部分に配置すれば、自己発熱により中央部分の充電深度検知用リチウムイオン二次電池が温まり、外環境に起因する影響を排除できるため、組電池の充電深度検知をさらに精度良く行うことができる。   Since only the voltage change in the inflection region becomes a problem in the lithium ion secondary battery for detecting the charging depth, the position in the assembled battery is not a problem in the measurement function in principle. On the other hand, when the outside air temperature is low, if the lithium ion secondary battery for detecting the depth of charge is placed in the center of the assembled battery, the lithium ion secondary battery for detecting the depth of charge in the center is warmed by self-heating. Since the influence caused by the external environment can be eliminated, the charging depth of the assembled battery can be detected with higher accuracy.

また、一方で外部環境が制御されていて一定である場合は、充電深度検知用リチウムイオン二次電池を組電池の外側に配置すれば、充電深度検知用リチウムイオン二次電池の温度は、外部環境によりほぼ一定となるため、組電池の充電深度検知をさらに精度良く行うことができる。   On the other hand, if the external environment is controlled and constant, if the lithium ion secondary battery for detecting the charge depth is placed outside the assembled battery, the temperature of the lithium ion secondary battery for detecting the charge depth is external. Since it becomes almost constant depending on the environment, it is possible to detect the charging depth of the assembled battery with higher accuracy.

上記充電深度検知用リチウムイオン二次電池を用いた組電池を蓄電装置とする場合、蓄電装置の充電深度を充電深度検知用リチウムイオン二次電池の電圧から検知するための電圧センサーを、充電深度検知用リチウムイオン電池に対し並列に接続する。電圧センサーは、充電深度検知機能を有する論理回路に接続されるのが好ましい。この論理回路は、蓄電装置において2種以上の充電深度検知用リチウムイオン二次電池の電圧の値から、組電池全体の充電深度を評価する論理回路であることが望ましい。   When an assembled battery using the lithium ion secondary battery for charge depth detection is used as a power storage device, a voltage sensor for detecting the charge depth of the power storage device from the voltage of the lithium ion secondary battery for charge depth detection, Connect in parallel to the lithium-ion battery for detection. The voltage sensor is preferably connected to a logic circuit having a charge depth detection function. This logic circuit is preferably a logic circuit that evaluates the charging depth of the entire assembled battery from the voltage values of two or more types of lithium ion secondary batteries for detecting the charging depth in the power storage device.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
〔充電深度検知用Aのリチウムイオン二次電池の作成〕
正極活物質にLFPとNCMの二種類の正極活物質を用いた。LFPは水熱合成法を用いて作成した。負極活物質に天然黒鉛を用いた。
Example 1
[Preparation of A lithium ion secondary battery for charge depth detection]
Two types of positive electrode active materials, LFP and NCM, were used as the positive electrode active material. LFP was prepared using a hydrothermal synthesis method. Natural graphite was used as the negative electrode active material.

○電池電極作成
・正極の作成
正極活物質としてLiNi1/3Mn1/3Co1/3(以下、「NCM」という。戸田工業株式会社製)、(LiFePO(以下、「LFP」という。)の二種類を、導電助剤としてカーボンブラック(以下、「CB」という。電気化学工業株式会社製、型番DAB50)及び黒鉛(以下、「Gr」という。ティムカル株式会社製、型番KS−6)、バインダーとしてポリフッ化ビニリデン(以下、「PVDF」という。(株式会社クレハ製、KF7305))、を用い正極を作成した。NCMを42.5g、LFPを42.5g、CBを5g、黒鉛を5g、PVDFのNMP(N−メチル−2−ピロリドン)溶液(50g、10wt%)を加えて混合し塗料約145gを作成した。この塗料を集電体であるアルミニウム箔(厚み20μm)にドクターブレード法で塗布後、90℃で乾燥し、圧延した。
-Battery electrode preparation and positive electrode preparation As a positive electrode active material, LiNi 1/3 Mn 1/3 Co 1/3 O 2 (hereinafter referred to as “NCM” manufactured by Toda Kogyo Co., Ltd.), (LiFePO 4 (hereinafter referred to as “LFP”) And carbon black (hereinafter referred to as “CB”, manufactured by Denki Kagaku Kogyo Co., Ltd., model number DAB50) and graphite (hereinafter referred to as “Gr”, manufactured by Timkal Co., Ltd., model number KS-). 6) A positive electrode was prepared using polyvinylidene fluoride (hereinafter referred to as “PVDF” (Kureha Co., Ltd., KF7305)) as a binder, 42.5 g of NCM, 42.5 g of LFP, 5 g of CB, graphite. 5 g of PVDF in NMP (N-methyl-2-pyrrolidone) (50 g, 10 wt%) was added and mixed to make about 145 g of paint. After coating with the doctor blade method to the aluminum foil (thickness 20 [mu] m) is a collector, and dried at 90 ° C., and rolled.

・負極の作成
負極活物質として天然黒鉛を45g、導電助剤としてCB2.5g、をドライミックスした後に、バインダーとして前記PVDF溶液22.5gを加え負極用の塗料を作成した。この塗料を集電体である銅箔(厚み16μm)にドクターブレード法で塗布後、乾燥(90℃)、圧延した。
-Preparation of negative electrode After dry-mixing 45 g of natural graphite as a negative electrode active material and 2.5 g of CB as a conductive additive, 22.5 g of the PVDF solution was added as a binder to prepare a negative electrode paint. This paint was applied to a copper foil (thickness 16 μm) as a current collector by a doctor blade method, dried (90 ° C.) and rolled.

・電池の作成
作成した正極と負極とを所定の寸法に切断した。また、セパレータ(ポリオレフィン製の微多孔質膜)を所定の寸法に切断した。正極、負極には、外部引き出し端子を溶接するために電極塗料(活物質+導電助剤+バインダー)を塗布しない部分を設けておいた。正極、負極、セパレータをこの順序で積層した。積層数は、リチウムイオン二次電池の容量が200mAhになるように積層した。積層するときには、正極、負極、セパレータがずれないようにホットメルト接着剤(エチレン−メタアクリル酸共重合体、EMAA)を少量塗布し固定した。正極、負極には、それぞれ、外部引き出し端子としてアルミニウム箔(幅4mm、長さ40mm、厚み100μm)、ニッケル箔(幅4mm、長さ40mm、厚み100μm)を超音波溶接した。この外部引き出し端子に、無水マレイン酸をグラフト化したポリプロピレン(PP)を巻き付け熱接着させた。これは外部端子と外装体とのシール性を向上させるためである。正極、負極、セパレータを積層した電池要素を封入する電池外装体はアルミニウムラミネート材料からなり、その構成は、PET(12)/Al(40)/PP(50)のものを用意した。PETはポリエチレンテレフタレート、PPはポリプロピレンである。かっこ内は各層の厚み(単位はμm)を表す。なおこの時PPが内側となるように製袋した。この外装体の中に電池要素を入れ電解液(エチレンカーボンネート(EC)とジエチルカーボネート(DEC)の混合溶媒(EC:DEC=30:70vol%)にLiPF6を1Mに溶解させた)を適当量添加し、外装体を真空密封しリチウムイオン二次電池を作成した。10mA(0.05C)にて10時間エージングした。
-Preparation of battery The prepared positive electrode and negative electrode were cut into predetermined dimensions. In addition, a separator (polyolefin microporous membrane) was cut to a predetermined size. The positive electrode and the negative electrode were provided with portions to which no electrode paint (active material + conductive aid + binder) was applied in order to weld the external lead terminals. A positive electrode, a negative electrode, and a separator were laminated in this order. The number of laminations was such that the capacity of the lithium ion secondary battery was 200 mAh. When laminating, a small amount of hot melt adhesive (ethylene-methacrylic acid copolymer, EMAA) was applied and fixed so that the positive electrode, the negative electrode, and the separator did not shift. An aluminum foil (width 4 mm, length 40 mm, thickness 100 μm) and nickel foil (width 4 mm, length 40 mm, thickness 100 μm) were ultrasonically welded to the positive electrode and the negative electrode, respectively, as external lead terminals. Polypropylene (PP) grafted with maleic anhydride was wrapped around this external lead terminal and thermally bonded. This is to improve the sealing performance between the external terminal and the exterior body. A battery outer package enclosing a battery element in which a positive electrode, a negative electrode, and a separator are stacked is made of an aluminum laminate material, and a configuration of PET (12) / Al (40) / PP (50) is prepared. PET is polyethylene terephthalate and PP is polypropylene. The value in parentheses represents the thickness of each layer (unit: μm). At this time, bags were made so that PP was inside. A battery element is put in this outer package, and an appropriate amount of electrolyte (LiPF6 is dissolved in 1M in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 30: 70 vol%)). The outer package was vacuum-sealed to prepare a lithium ion secondary battery. Aging was performed at 10 mA (0.05 C) for 10 hours.

初期の平均放電容量は約200mAhであった。また開回路時の充放電カーブ評価として、接触抵抗などが無視でき十分に電流値の小さい10mA(0.05C)にて測定を行った。充放電カーブには、充電深度が40%程度の領域に電圧が大きく変化する変曲領域を持っていた。   The initial average discharge capacity was about 200 mAh. In addition, as an evaluation of the charge / discharge curve at the time of open circuit, measurement was performed at 10 mA (0.05 C) where the contact resistance and the like can be ignored and the current value is sufficiently small. The charge / discharge curve has an inflection region where the voltage changes greatly in a region where the charging depth is about 40%.

〔充電深度検知用Bのリチウムイオン二次電池の作成〕
○電池電極作成
・正極の作成
NCMを63.8g、LFPを21.3g使用した以外は、充電深度検知用リチウムイオン二次電池Aの作成と同様に作成した。
[Preparation of lithium ion secondary battery for charge depth detection B]
Preparation of battery electrode / preparation of positive electrode A battery electrode was prepared in the same manner as the preparation of the lithium ion secondary battery A for detecting the charge depth, except that 63.8 g of NCM and 21.3 g of LFP were used.

・負極の作成
充電深度検知用リチウムイオン二次電池Aと同等の電極を使用した。
-Creation of negative electrode The electrode equivalent to the lithium ion secondary battery A for charge depth detection was used.

○電池の作成
・充電深度検知用リチウムイオン二次電池Aと同等に作成した。
初期の平均放電容量は約200mAhであった。また開回路時の充放電カーブ評価として、接触抵抗などが無視でき十分に電流値の小さい10mA(0.05C)にて測定を行った。充放電カーブには、充電深度が12%程度の領域に電圧が大きく変化する変曲領域を持っていた。
○ Preparation of battery / prepared in the same manner as lithium-ion secondary battery A for charge depth detection.
The initial average discharge capacity was about 200 mAh. In addition, as an evaluation of the charge / discharge curve at the time of open circuit, measurement was performed at 10 mA (0.05 C) where the contact resistance and the like were negligible and the current value was sufficiently small. The charge / discharge curve has an inflection region where the voltage changes greatly in a region where the charging depth is about 12%.

〔充電深度検知用リチウムイオン二次電池Cの作成〕
正極活物質にLFPとNCMの二種類の正極活物質を用いた。LFPは水熱合成法を用いて作成した。負極活物質に天然黒鉛を用いた。
[Creation of lithium ion secondary battery C for depth of charge detection]
Two types of positive electrode active materials, LFP and NCM, were used as the positive electrode active material. LFP was prepared using a hydrothermal synthesis method. Natural graphite was used as the negative electrode active material.

○電池電極作成
・正極の作成
NCMを17.0g、LFPを68.0g使用した以外は、充電深度検知用リチウムイオン二次電池Aの作成と同様に作成した。
Preparation of battery electrode / preparation of positive electrode A battery electrode was prepared in the same manner as the preparation of the lithium ion secondary battery A for detecting the charge depth, except that 17.0 g of NCM and 68.0 g of LFP were used.

・負極の作成
充電深度検知用リチウムイオン二次電池Aと同等の電極を使用した。
-Creation of negative electrode The electrode equivalent to the lithium ion secondary battery A for charge depth detection was used.

○電池の作成
・充電深度検知用リチウムイオン二次電池Aと同等に作成した。
初期の平均放電容量は約200mAhであった。また開回路時の充放電カーブ評価として、接触抵抗などが無視でき十分に電流値の小さい10mA(0.05C)にて測定を行った。充放電カーブには、充電深度が70%程度の領域に電圧が大きく変化する変曲領域を持っていた。
○ Preparation of battery / prepared in the same manner as lithium-ion secondary battery A for charge depth detection.
The initial average discharge capacity was about 200 mAh. In addition, as an evaluation of the charge / discharge curve at the time of open circuit, measurement was performed at 10 mA (0.05 C) where the contact resistance and the like were negligible and the current value was sufficiently small. The charge / discharge curve has an inflection region where the voltage changes greatly in a region where the charging depth is about 70%.

〔充電深度検知用リチウムイオン二次電池Dの作成〕
正極活物質にLiMn(以下、「LMO」という。戸田工業製)の二種類の正極活物質を用いた。負極活物質に非結晶質炭素としてハードカーボンを用いた。
[Creation of lithium ion secondary battery D for depth of charge detection]
Two types of positive electrode active materials of LiMn 2 O 4 (hereinafter referred to as “LMO”; manufactured by Toda Kogyo Co., Ltd.) were used as the positive electrode active material. Hard carbon was used as the amorphous carbon for the negative electrode active material.

○電池電極作成
・正極の作成
LMOを85g使用した以外は、充電深度検知用リチウムイオン二次電池Aの作成と同様に作成した。
○ Battery electrode preparation / preparation of positive electrode The battery electrode was prepared in the same manner as the lithium ion secondary battery A for charge depth detection except that 85 g of LMO was used.

・負極の作成
天然黒鉛の代わりに、非結晶質炭素としてハードカーボンを用いた以外は、充電深度検知用リチウムイオン二次電池Aと同等に電極を作成した。
-Preparation of negative electrode An electrode was prepared in the same manner as the lithium ion secondary battery A for charge depth detection, except that hard carbon was used as amorphous carbon instead of natural graphite.

○電池の作成
・充電深度検知用リチウムイオン二次電池Aと同等に作成した。
初期の平均放電容量は約200mAhであった。また開回路時の充放電カーブ評価として、接触抵抗などが無視でき十分に電流値の小さい10mA(0.05C)にて測定を行った。充放電カーブは、変曲領域はなく、特許文献1にあるように、全域に傾きをもつ形となった。
○ Preparation of battery / prepared in the same manner as lithium-ion secondary battery A for charge depth detection.
The initial average discharge capacity was about 200 mAh. In addition, as an evaluation of the charge / discharge curve at the time of open circuit, measurement was performed at 10 mA (0.05 C) where the contact resistance and the like were negligible and the current value was sufficiently small. The charge / discharge curve has no inflection region, and has a shape with an inclination over the entire area as disclosed in Patent Document 1.

〔非充電深度検知用のリチウムイオン二次電池の作成〕
正極活物質にLFPを用いた。LFPは水熱合成法を用いて作成した。負極活物質に天然黒鉛を用いた。
[Production of lithium-ion secondary battery for non-charging depth detection]
LFP was used as the positive electrode active material. LFP was prepared using a hydrothermal synthesis method. Natural graphite was used as the negative electrode active material.

○電池電極作成
・正極の作成
LFPを85g使用した以外は、充電深度検知用リチウムイオン二次電池Aと同等に作成した。
○ Battery electrode preparation / preparation of positive electrode Except that 85 g of LFP was used, it was prepared in the same manner as lithium ion secondary battery A for charge depth detection.

・負極の作成
充電深度検知用の電池と同等のものを作成した。
-Creation of negative electrode A battery equivalent to a battery for detecting the depth of charge was created.

○電池の作成
・充電深度検知用リチウムイオン二次電池Aと同等に作成した。
初期の平均放電容量は約200mAhであった。また開回路時の充放電カーブ評価として、接触抵抗などが無視でき十分に電流値の小さい10mA(0.05C)にて測定を行った。充放電カーブには、変曲領域は発現しなかった。作成した電池の変曲領域が発現する充電深度と変曲領域の中間電位を表1に示す。表1に示すとおり、非充電深度検知用リチウムイオン二次電池とDとは変曲領域が発現しなかったのに対し、電池A〜Cでは任意の充電深度に変曲領域を発現させられることがわかった。

Figure 0006056125
○ Preparation of battery / prepared in the same manner as lithium-ion secondary battery A for charge depth detection.
The initial average discharge capacity was about 200 mAh. In addition, as an evaluation of the charge / discharge curve at the time of open circuit, measurement was performed at 10 mA (0.05 C) where the contact resistance and the like were negligible and the current value was sufficiently small. The inflection region did not appear in the charge / discharge curve. Table 1 shows the charging depth at which the inflection region of the created battery appears and the intermediate potential of the inflection region. As shown in Table 1, the inflection region does not appear in the lithium ion secondary battery for non-charging depth detection and D, whereas the inflection region can be developed at any charging depth in batteries A to C. I understood.
Figure 0006056125

以下、作成した各電池を直列に接続し組電池を作成し、実際に充放電を行った実施例について述べる。   Hereinafter, examples will be described in which each of the created batteries is connected in series to form a battery pack and actually charged and discharged.

(実施例2)
実施例2では、充電状態をそろえた非充電深度検知用リチウムイオン二次電池4個と充電深度検知用リチウムイオン二次電池Aと充電深度検知用リチウムイオン二次電池Bを1個ずつ直列に接続し20V級のリチウムイオン電池の組電池を作成した。
(Example 2)
In Example 2, four non-charging depth detection lithium ion secondary batteries, a charging depth detection lithium ion secondary battery A, and a charging depth detection lithium ion secondary battery B, which are in the same state of charge, are connected in series. An assembled battery of 20V class lithium ion batteries was prepared.

充電状態5%程度から、200mA(1C)で充電し充電深度検知用単リチウムイオン二次電池Aの電池が3.6Vとなったとき充電を終了させ、組電池を再度ひとつずつの電池にし、非充電深度検知用の電池4個を充放電機にて真の充電状態を評価した。充電深度は、38%弱で、充電深度の検知誤差は1%であった。   From about 5% charge state, charge at 200 mA (1C), and when the battery of the single lithium ion secondary battery A for charge depth detection reaches 3.6 V, the charge is terminated, and the assembled battery is made one by one again. Four batteries for non-charging depth detection were evaluated for their true state of charge with a charger / discharger. The charging depth was a little less than 38%, and the detection error of the charging depth was 1%.

同様にして、上記組電池の充電深度検知用リチウムイオン二次電池Bが3.6Vとなったときの非充電深度検知用電池4個の真の充電状態を評価すると12%弱で、充電深度の検知誤差は1%であった。   Similarly, when the true charge state of the four non-charging depth detection batteries when the lithium ion secondary battery B for detecting the charging depth of the assembled battery reaches 3.6 V, the charging depth is less than 12%. The detection error was 1%.

さらに、600mA(3C)充電、1000mA(5C)充電、200mA(1C)放電、600mA(3C)放電、1000mA(5C)放電と同様のことを行うと、表2のようになった。充電時、放電時の結果は検知誤差の符合が異なるだけで、絶対量はほぼ同等であったのでまとめて示した。   Furthermore, when the same thing as 600mA (3C) charge, 1000mA (5C) charge, 200mA (1C) discharge, 600mA (3C) discharge, and 1000mA (5C) discharge was performed, it was as shown in Table 2. The results at the time of charging and discharging are shown only together because the absolute amounts are almost the same except for the sign of the detection error.

(実施例3)
実施例3では、非充電深度検知用リチウムイオン二次電池を9個と充電深度検知用リチウムイオン二次電池Aと充電深度検知用リチウムイオン二次電池Bと充電深度検知用リチウムイオン二次電池Cを1個ずつ使用し40V級の組電池を作成した。実施例2と同様に、1C充放電、3C充放電、5C充放電をし、各充電深度検知用リチウムイオン二次電池が所定電圧になった際の、非充電深度検知用リチウムイオン二次電池の真の充放電状態を評価し、検知誤差を算定すると表2のようになった。
(Example 3)
In Example 3, nine lithium ion secondary batteries for non-charge depth detection, lithium ion secondary battery A for charge depth detection, lithium ion secondary battery B for charge depth detection, and lithium ion secondary battery for charge depth detection A 40V class assembled battery was prepared using C one by one. Similarly to Example 2, 1C charge / discharge, 3C charge / discharge, 5C charge / discharge, and when each charge depth detection lithium ion secondary battery reaches a predetermined voltage, a non-charge depth detection lithium ion secondary battery When the true charge / discharge state was evaluated and the detection error was calculated, it was as shown in Table 2.

比較例Comparative example

(比較例1)
比較例1では、非充電深度検知用リチウムイオン二次電池を5つ、充電深度検知用リチウムイオン二次電池Dを1つ使用し20V級のリチウムイオン電池の組電池を作成した。充電深度検知用リチウムイオン二次電池の充放電カーブから求めた充電状態が12%、38%,70%となる開放電圧をあらかじめ求め、所定電圧とした。実施例2と同様にして、1C、3C、5Cの充放電中にそれぞれ所定の電圧になった際の非充電深度検知用の真の充放電状態との検知誤差を算定すると表2のようになった。表2に示すように、実施例2と3との組電池は1C、3C、5Cの全てにおいて検知誤差が10%以内であったのに対し、比較例1の組電池はいずれの条件でも10%を超える検知誤差であった。

Figure 0006056125
(Comparative Example 1)
In Comparative Example 1, an assembled battery of a 20V class lithium ion battery was prepared using five lithium ion secondary batteries for non-charge depth detection and one lithium ion secondary battery D for charge depth detection. The open circuit voltage at which the state of charge obtained from the charge / discharge curve of the lithium ion secondary battery for detecting the charge depth was 12%, 38%, and 70% was obtained in advance and set as a predetermined voltage. In the same manner as in Example 2, the detection error from the true charge / discharge state for detecting the non-charge depth when the predetermined voltage is reached during charge / discharge of 1C, 3C, and 5C is as shown in Table 2. became. As shown in Table 2, the assembled batteries of Examples 2 and 3 had a detection error within 10% in all of 1C, 3C, and 5C, whereas the assembled battery of Comparative Example 1 was 10 under any conditions. It was a detection error exceeding%.
Figure 0006056125

本発明は、大電流による充放電中でも複雑な判定回路を必要とせず、精度良く充電深度を評価できるリチウムイオン二次電池の組電池および蓄電装置を提供するため、リチウムイオン二次電池の組電池および蓄電装置の製造、使用に寄与するので、産業上の利用可能性を有する。   The present invention provides an assembled battery and a power storage device of a lithium ion secondary battery that do not require a complicated determination circuit even during charging and discharging with a large current and can accurately evaluate the depth of charge, and an assembled battery of a lithium ion secondary battery Since it contributes to the manufacture and use of power storage devices, it has industrial applicability.

10 リチウムイオン二次電池の組電池
12 非充電深度検知用のリチウムイオン二次電池
14 第一の充電深度検知用のリチウムイオン二次電池
16 第二の充電深度検知用のリチウムイオン二次電池
30 電圧検出装置と充電深度検知装置
35 電圧検出装置と充電深度検知装置
40 リチウムイオン二次電池の蓄電装置
50 リチウムイオン二次電池
60 正極
61 正極合剤層
62 正極集電箔
70 負極
71 負極合剤層
72 負極集電箔
90 変曲領域
DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery 12 Lithium ion secondary battery for non-charging depth detection 14 Lithium ion secondary battery for first charging depth detection 16 Lithium ion secondary battery for second charging depth detection 30 Voltage detection device and charge depth detection device 35 Voltage detection device and charge depth detection device 40 Storage device of lithium ion secondary battery 50 Lithium ion secondary battery 60 Positive electrode 61 Positive electrode mixture layer 62 Positive electrode current collector foil 70 Negative electrode 71 Negative electrode mixture Layer 72 Negative electrode current collector foil 90 Inflection region

Claims (14)

一以上のリチウムイオン二次電池と、二以上の充電深度検知用リチウムイオン二次電池と、が直列接続されてなり、
二以上の前記充電深度検知用リチウムイオン二次電池は、それぞれ異なる充電深度領域に、急峻に電圧が変化する変曲領域を有することを特徴とする組電池。
One or more lithium ion secondary batteries and two or more lithium ion secondary batteries for charge depth detection are connected in series,
Two or more lithium ion secondary batteries for detecting the charge depth have inflection regions where the voltage changes sharply in different charge depth regions.
前記充電深度検知用リチウムイオン二次電池は、正極又は負極の活物質材料として、前記充電深度に対し、
(1)この充電深度を100%とし、前記充電深度において充電状態が95%〜100%となる、一の活物質、
(2)この充電深度で定められる放電深度を100%の放電容量とし、前記放電深度において放電状態が95%〜100%となる、他の活物質と、
を、正極又は負極の少なくともいずれかにおいて混合して用いることを特徴とする請求項1に記載の組電池。
The lithium ion secondary battery for charge depth detection is used as a positive electrode or negative electrode active material, with respect to the charge depth,
(1) One active material in which the charge depth is 100%, and the state of charge is 95% to 100% at the charge depth,
(2) The discharge depth determined by this charge depth is set to 100% discharge capacity, and the discharge state is 95% to 100% at the discharge depth, and other active materials,
The assembled battery according to claim 1, wherein the batteries are mixed and used in at least one of a positive electrode and a negative electrode.
前記変曲領域の電圧の変化量が100mV以上である請求項1〜2のいずれかに記載の組電池。   The assembled battery according to claim 1, wherein the amount of change in voltage in the inflection region is 100 mV or more. 前記変曲領域の電圧の変化量が300mV以上である請求項1〜3のいずれかに記載の組電池。   The assembled battery according to claim 1, wherein the amount of change in voltage in the inflection region is 300 mV or more. 前記充電深度検知用リチウムイオン二次電池は、複数種の正極活物質を混合した正極および/または複数種の負極活物質を混合した負極を有するものである請求項1〜4のいずれかに記載の組電池。   The lithium ion secondary battery for charge depth detection has a positive electrode in which a plurality of types of positive electrode active materials are mixed and / or a negative electrode in which a plurality of types of negative electrode active materials are mixed. Battery pack. 二以上の前記充電深度検知用リチウムイオン二次電池は、全て同じ複数種の正極活物質を混合した正極および/または同じ複数種の負極活物質を混合した負極を有し、
前記複数種の正極活物質の混合比および/または前記複数種の負極活物質の混合比が異なるものである請求項1〜5のいずれかに記載の組電池。
Two or more lithium ion secondary batteries for charge depth detection have a positive electrode in which the same plural types of positive electrode active materials are mixed and / or a negative electrode in which the same plural types of negative electrode active materials are mixed,
The assembled battery according to claim 1, wherein a mixing ratio of the plurality of types of positive electrode active materials and / or a mixing ratio of the plurality of types of negative electrode active materials is different.
前記複数種の正極活物質および/または前記複数種の負極活物質は、二種類の正極活物質および/または二種類の負極活物質を使用するものである請求項5または6のいずれかに記載の組電池。   The plurality of types of positive electrode active materials and / or the plurality of types of negative electrode active materials use two types of positive electrode active materials and / or two types of negative electrode active materials. Battery pack. 前記充電深度検知用リチウムイオン二次電池は、正極活物質を含み、
前記正極活物質は、前記複数種の正極活物質として、一以上の低電圧正極活物質と一以上の高電圧正極活物質とを混合したものであって、
前記低電圧正極活物質は、金属リチウムを基準として上限近傍の電位が3.5V未満の正極活物質のうちの少なくとも一種以上であり、
前記高電圧正極活物質は、金属リチウムを基準として下限近傍の電位が3.5V以上の正極活物質のうちの少なくとも一種以上であることを特徴とする請求項5または6のいずれかに記載の組電池。
The lithium ion secondary battery for charge depth detection includes a positive electrode active material,
The positive electrode active material is a mixture of one or more low-voltage positive electrode active materials and one or more high-voltage positive electrode active materials as the plurality of types of positive electrode active materials,
The low-voltage positive electrode active material is at least one or more of positive electrode active materials having a potential near the upper limit of less than 3.5 V based on metallic lithium,
The high-voltage positive electrode active material is at least one or more of positive electrode active materials having a potential near a lower limit of 3.5 V or more with respect to metallic lithium as a reference. Assembled battery.
前記低電圧正極活物質は、LiTiO、LiFePOのうちの少なくとも一つであり、前記高電圧正極活物質は、Li(Ni1-x-yCoMn)O(ただし、0.1≦x≦0.5、0.1≦y≦0.5)、Li(Ni1-b-cCoAl)O2(ただし、0.9≦a≦1.3、0<b≦0.5、0<c≦0.7)、LiMn、LiVPO、LiVOPO、LiCoO、LiMnPO、LiCoPO、LiNiPOのうちの少なくとも一つである請求項8に記載の組電池。 The low-voltage positive electrode active material is at least one of LiTiO 2 and LiFePO 4 , and the high-voltage positive electrode active material is Li (Ni 1-xy Co x Mn y ) O 2 (provided that 0. 1 ≦ x ≦ 0.5, 0.1 ≦ y ≦ 0.5), Li a (Ni 1- bc Co b Al c ) O 2 (where 0.9 ≦ a ≦ 1.3, 0 <b ≦ 0.5,0 <c ≦ 0.7), according to LiMn 2 O 4, LiVPO 4, LiVOPO 4, LiCoO 2, LiMnPO 4, LiCoPO 4, claim 8 is at least one of LiNiPO 4 Assembled battery. 前記低電圧正極活物質はLiFePOであり、前記高電圧正極活物質はLiVPO、LiVOPO、LiCoO、LiMnPO、LiCoPO、LiNiPOのうちの少なくとも一つである請求項9に記載の組電池。 The low-voltage positive electrode active material is LiFePO 4, the high-voltage positive electrode active material according to claim 9, wherein at least one of LiVPO 4, LiVOPO 4, LiCoO 2 , LiMnPO 4, LiCoPO 4, LiNiPO 4 Assembled battery. 前記充電深度検知用リチウムイオン二次電池は、負極活物質を含み、
前記負極活物質は、前記複数種の負極活物質として、一以上の低電圧負極活物質と一以上の高電圧負極活物質とを混合したものであって、
前記低電圧負極活物質は、金属リチウムを基準として上限近傍の電位が0.5V未満の負極活物質のうちの少なくとも一種以上であり、
前記高電圧負極活物質は、金属リチウムを基準として下限近傍の電位が0.5V以上の負極活物質のうちの少なくとも一種以上である請求項5または6のいずれかに記載の組電池。
The lithium ion secondary battery for charge depth detection includes a negative electrode active material,
The negative electrode active material is a mixture of one or more low-voltage negative electrode active materials and one or more high-voltage negative electrode active materials as the plurality of types of negative electrode active materials,
The low-voltage negative electrode active material is at least one or more of negative electrode active materials having a potential near the upper limit of less than 0.5 V based on metallic lithium,
The assembled battery according to claim 5, wherein the high-voltage negative electrode active material is at least one of negative electrode active materials having a potential near a lower limit of 0.5 V or more with respect to metallic lithium.
前記低電圧負極活物質はグラファイトであり、
前記高電圧負極活物質は、ハードカーボン、LiTiO うちの少なくとも一種以上である請求項11に記載の組電池。
The low voltage negative electrode active material is graphite,
The assembled battery according to claim 11, wherein the high-voltage negative electrode active material is at least one of hard carbon and LiTiO 2 .
請求項1〜12のいずれかに記載の組電池と、
少なくとも前記充電深度検知用リチウムイオン二次電池ごとに並列に設けられた電圧検知装置と、
論理回路によって構成される充電深度検知装置と、を含み、
前記充電深度検知用リチウムイオン二次電池において検知された電圧の値によって、組電池の充電深度を判断する充電深度検出装置を有する蓄電装置。
An assembled battery according to any one of claims 1 to 12,
A voltage detection device provided in parallel for each lithium ion secondary battery for at least charge depth detection;
A charge depth detection device configured by a logic circuit,
A power storage device including a charge depth detection device that determines a charge depth of an assembled battery based on a voltage value detected in the lithium ion secondary battery for charge depth detection.
前記充電深度検知装置の充電深度検知電圧は充電時と放電時と異なり、
充電時の充電深度検知電圧は、変曲領域内の電圧であって変曲領域中間電圧より大きい電圧であり、
放電時の充電深度検知電圧は、変曲領域内の電圧であって変曲領域中間電圧よりも小さい電圧である請求項13に記載の蓄電装置。
The charge depth detection voltage of the charge depth detection device is different between charging and discharging,
The charge depth detection voltage at the time of charging is a voltage within the inflection region and a voltage greater than the inflection region intermediate voltage,
The power storage device according to claim 13, wherein the charge depth detection voltage at the time of discharging is a voltage within the inflection region and is smaller than the inflection region intermediate voltage.
JP2011230377A 2011-10-20 2011-10-20 Battery pack and power storage device Active JP6056125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011230377A JP6056125B2 (en) 2011-10-20 2011-10-20 Battery pack and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011230377A JP6056125B2 (en) 2011-10-20 2011-10-20 Battery pack and power storage device

Publications (2)

Publication Number Publication Date
JP2013089522A JP2013089522A (en) 2013-05-13
JP6056125B2 true JP6056125B2 (en) 2017-01-11

Family

ID=48533211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011230377A Active JP6056125B2 (en) 2011-10-20 2011-10-20 Battery pack and power storage device

Country Status (1)

Country Link
JP (1) JP6056125B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967638B2 (en) * 2013-03-04 2016-08-10 エルジー・ケム・リミテッド Apparatus and method for estimating output of secondary battery including mixed positive electrode material
CN105190981B (en) * 2013-04-26 2019-03-08 日产自动车株式会社 Non-aqueous electrolyte secondary battery
CN110010859B (en) * 2013-06-05 2022-05-24 株式会社Lg化学 Secondary battery, battery module, battery pack, and device
JP6171821B2 (en) * 2013-10-09 2017-08-02 Tdk株式会社 Power storage device having life determination function, and battery life determination method
US10181622B2 (en) * 2013-10-21 2019-01-15 Toyota Jidosha Kabushiki Kaisha Cell system
CN109313235B (en) 2016-06-22 2021-07-06 株式会社村田制作所 Battery pack circuit and capacity coefficient detection method
WO2018012364A1 (en) 2016-07-13 2018-01-18 株式会社 村田製作所 Battery pack circuit, capacity coefficient detection method, and capacity coefficient detection program
JP7131124B2 (en) * 2018-06-25 2022-09-06 トヨタ自動車株式会社 BATTERY, VEHICLE, AND METHOD OF MANUFACTURING BATTERY
EP3893296A4 (en) * 2018-12-05 2022-08-10 Toray Industries, Inc. Positive electrode for lithium ion secondary batteries, electrode paste for lithium ion secondary batteries, and lithium ion secondary battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707801B2 (en) * 1992-03-13 2005-10-19 Fdk株式会社 Non-aqueous electrolyte secondary battery
JP3068712B2 (en) * 1992-07-21 2000-07-24 富士電気化学株式会社 Non-aqueous electrolyte secondary battery
US7985495B2 (en) * 2006-01-18 2011-07-26 Panasonic Corporation Assembled battery, power-supply system and production method of assembled battery
JP2007220658A (en) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd Packed battery, power supply system, and method of manufacturing packed battery
JP2007250299A (en) * 2006-03-15 2007-09-27 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte solution secondary battery
JP2008041465A (en) * 2006-08-08 2008-02-21 Sony Corp Negative electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous secondary battery
KR101430616B1 (en) * 2007-12-18 2014-08-14 삼성에스디아이 주식회사 Cathode and lithium battery using the same
JP2009259607A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Battery pack
JP5332983B2 (en) * 2009-07-08 2013-11-06 トヨタ自動車株式会社 Battery system
JP2011086530A (en) * 2009-10-16 2011-04-28 Toyota Motor Corp Battery pack, and power supply device
JP2011150876A (en) * 2010-01-21 2011-08-04 Sony Corp Assembled battery and method for controlling the same

Also Published As

Publication number Publication date
JP2013089522A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP6056125B2 (en) Battery pack and power storage device
JP6047871B2 (en) Battery pack and power storage device using the same
EP2905831B1 (en) Cathode additive for high-capacity lithium secondary battery
JP6087489B2 (en) Assembled battery system
US20120226455A1 (en) Anomalously Charged State Detection Device and Test Method for Lithium Secondary Cell
US10026955B2 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
US20110281143A1 (en) Lithium-ion storage battery
US20120052378A1 (en) Collector and electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP3705728B2 (en) Non-aqueous electrolyte secondary battery
JP6287187B2 (en) Nonaqueous electrolyte secondary battery
WO2015049778A1 (en) Lithium ion secondary battery, lithium ion secondary battery system, method for detecting potential in lithium ion secondary battery, and method for controlling lithium ion secondary battery
US20180131202A1 (en) Power storage device
KR20160134808A (en) Nonaqueous electrolyte secondary battery
US10840508B2 (en) Lithium ion secondary battery
US20160181606A1 (en) Lithium ion secondary battery
JP2005108477A (en) Battery pack and electric automobile
US10637048B2 (en) Silicon anode materials
US20220399607A1 (en) Battery module, battery pack, power consumption apparatus, and manufacturing method and manufacturing device of battery module
JP2003308817A (en) Battery pack
JP6171821B2 (en) Power storage device having life determination function, and battery life determination method
WO2012132525A1 (en) Pack battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2009266706A (en) Lithium-ion secondary battery
JP2013211157A (en) Battery pack, and power storage device and lifetime determination method using the same
JP2013197052A (en) Lithium ion power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150