JP2011069775A - Method of inspecting secondary battery - Google Patents

Method of inspecting secondary battery Download PDF

Info

Publication number
JP2011069775A
JP2011069775A JP2009222659A JP2009222659A JP2011069775A JP 2011069775 A JP2011069775 A JP 2011069775A JP 2009222659 A JP2009222659 A JP 2009222659A JP 2009222659 A JP2009222659 A JP 2009222659A JP 2011069775 A JP2011069775 A JP 2011069775A
Authority
JP
Japan
Prior art keywords
secondary battery
voltage
soc
discharge
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009222659A
Other languages
Japanese (ja)
Inventor
Hironobu Shimozawa
博信 下澤
Yuji Tanjo
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009222659A priority Critical patent/JP2011069775A/en
Publication of JP2011069775A publication Critical patent/JP2011069775A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of inspecting a secondary battery, capable of improving accuracy of detecting minute short circuit. <P>SOLUTION: The method of inspecting a secondary battery includes a charge step of charging a secondary battery 1 to a first SOC, a leaving step of leaving the secondary battery for a long time period after the charge step, a discharge step of discharging the secondary battery to a second SOC lower than the first SOC after the leaving step, and a detection step of detecting minute short circuit of the secondary battery 1 by making a temperature of the secondary battery 1 to a battery temperature lower than a predetermined temperature after the discharge step. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二次電池検査方法に関する。     The present invention relates to a secondary battery inspection method.

二次電池の初回充電を−20℃から15℃までの範囲で行い、金属不純物を電極上に局在化させて析出し、充放電を繰り返し、25℃の環境下で二次電池をエイジングさせて、エイジング前後の電圧差から正極と負極とのマイクロショートを検出する二次電池の検査方法が知られている(特許文献1)。 The initial charge of the secondary battery is performed in the range from −20 ° C. to 15 ° C., and metal impurities are localized and deposited on the electrode. The charge / discharge is repeated, and the secondary battery is aged in an environment of 25 ° C. In addition, a secondary battery inspection method for detecting a micro short circuit between a positive electrode and a negative electrode from a voltage difference before and after aging is known (Patent Document 1).

特開2005−209528号公報JP 2005-209528 A

しかしながら、従来の二次電池の検査方法では、二次電池の自己放電による電圧降下量と微小短絡を起因とする電圧降下量とを区別して判断することが難しく、微小短絡した二次電池の検出が困難な場合があった。 However, in the conventional secondary battery inspection method, it is difficult to distinguish between the voltage drop amount due to the self-discharge of the secondary battery and the voltage drop amount due to the micro short circuit. There were cases where it was difficult.

本発明は、エイジング工程後に、第1のSOCより低い第2のSOCまで放電し、所定の温度より低い環境温度の下で、二次電池の微小短絡を検出することによって上記課題を解決する。 The present invention solves the above-mentioned problem by discharging to a second SOC lower than the first SOC after the aging process and detecting a micro short circuit of the secondary battery under an environmental temperature lower than a predetermined temperature.

本発明によればエイジング工程後に、第1のSOCより低い第2のSOCまで放電し、所定の温度より低い環境温度の下で、二次電池の微小短絡を検出するため、自己放電による電圧変化を抑えることができ、その結果、微小短絡の検知精度を向上させることができる。   According to the present invention, after the aging process, the battery is discharged to a second SOC lower than the first SOC, and a voltage change due to self-discharge is detected in order to detect a minute short circuit of the secondary battery under an environmental temperature lower than a predetermined temperature. As a result, it is possible to improve the accuracy of detecting a short circuit.

発明の実施形態に係る二次電池検査装置のブロック図である。1 is a block diagram of a secondary battery inspection device according to an embodiment of the invention. 本例の検査方法において、検査日数に対する電池電圧の特性を示す図である。In the inspection method of this example, it is a figure which shows the characteristic of the battery voltage with respect to the test days. 本例の検査方法において、SOCに対する二次電池の開放電圧の特性を示す図である。In the inspection method of this example, it is a figure which shows the characteristic of the open circuit voltage of the secondary battery with respect to SOC. 本例の放電工程において、放電時間に対する二次電池の電圧特性を示す。In the discharge process of this example, the voltage characteristic of the secondary battery with respect to the discharge time is shown. 本例の検査方法の検査手順を示すフローチャートである。It is a flowchart which shows the test | inspection procedure of the test | inspection method of this example. 他の発明の実施形態に係る検査方法において、電池電圧の収束時間に対する電解液の粘度の特性を示す図である。It is a figure which shows the characteristic of the viscosity of electrolyte solution with respect to the convergence time of a battery voltage in the test | inspection method which concerns on embodiment of other invention. 本例の検査方法において、電解液の粘度に対する放電電流の特性を示す図である。In the inspection method of this example, it is a figure which shows the characteristic of the discharge current with respect to the viscosity of electrolyte solution. 本例の検査方法の検査手順を示すフローチャートである。It is a flowchart which shows the test | inspection procedure of the test | inspection method of this example.

以下、発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the invention will be described with reference to the drawings.

《第1実施形態》
図1は、本発明に係る二次電池検査装置のブロック図を示す。
<< First Embodiment >>
FIG. 1 is a block diagram of a secondary battery inspection apparatus according to the present invention.

図1に示す二次電池検査装置は、検査対象となる二次電池1と、二次電池1の温度を管理する恒温室2と、二次電池1を充電及び放電する充放電手段3と、二次電池4の端子間電圧を検出する電圧センサ4と、二次電池の微小短絡(マイクロショート)を検出する検出手段5と、充放電手段3、検出手段5及び恒温室2を制御する制御手段6を有する。 The secondary battery inspection apparatus shown in FIG. 1 includes a secondary battery 1 to be inspected, a temperature-controlled room 2 that manages the temperature of the secondary battery 1, charge / discharge means 3 that charges and discharges the secondary battery 1, Control for controlling the voltage sensor 4 for detecting the voltage across the terminals of the secondary battery 4, the detection means 5 for detecting a micro short circuit of the secondary battery, the charge / discharge means 3, the detection means 5 and the temperature-controlled room 2 Means 6 are provided.

二次電池1は、例えば非水系電解質二次電池(リチウムイオン電池)である。当該二次電池1の正極(図示しない)には、導電材(例えばカーボンブラック)と接着剤(例えばポリ四フッ化エンチレンの水性ディスパージョン)と正極活物質(例えばニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、コバルト酸リチウム(LiCoO2)などのリチウム複合酸化物や、カルコゲン(S、Se、Te)化物)を混合させたものが、アルミニウム箔などの金属箔に塗布され、形成される。また当該二次電池1の負極(図示しない)は、例えば非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、または黒鉛などのように、正極活物質のリチウムイオンを吸蔵および放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥させたのち粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これに、アクリル樹脂エマルジョンなどの結着剤を混合し、負極活性材を形成し、当該負極活性材を、集電体としてのニッケル箔或いは銅箔などの金属箔の両面に塗着、乾燥させ、圧延したのち所定の大きさに切断したものである。そして、当該正極と負極との間に、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン等から構成される微多孔性膜のセパレータを介在させて、有機液体溶媒に過塩素酸リチウム(LiClO)、ホウフッ化リチウム(LiBF)、六フッ化リン酸リチウム(LiPF)、六フッ化砒素リチウム(LiAsF)などのリチウム塩を溶質として溶解させた液体である電解液を含浸させ、外装体で封止することにより、二次電池1が形成される。 The secondary battery 1 is, for example, a non-aqueous electrolyte secondary battery (lithium ion battery). The positive electrode (not shown) of the secondary battery 1 includes a conductive material (for example, carbon black), an adhesive (for example, an aqueous dispersion of polytetrafluoroethylene), a positive electrode active material (for example, lithium nickelate (LiNiO2), manganese). A lithium composite oxide such as lithium oxide (LiMnO2) or lithium cobaltate (LiCoO2) or a mixture of chalcogen (S, Se, Te)) is applied to a metal foil such as an aluminum foil and formed. . Further, the negative electrode (not shown) of the secondary battery 1 has a negative electrode active material that occludes and releases lithium ions of the positive electrode active material, such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. Mainly, the material is mixed with an aqueous dispersion of styrene butadiene rubber resin powder as a precursor material of an organic fired body, dried and pulverized to carry carbonized styrene butadiene rubber on the surface of carbon particles. The material is mixed with a binder such as an acrylic resin emulsion to form a negative electrode active material, and the negative electrode active material is applied to both surfaces of a metal foil such as a nickel foil or a copper foil as a current collector. It is dried, rolled, and then cut into a predetermined size. A microporous membrane separator made of polyolefin such as polyethylene (PE) or polypropylene (PP) is interposed between the positive electrode and the negative electrode, and lithium perchlorate (LiClO 4 ) is added to the organic liquid solvent. ), Lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenide (LiAsF 6 ) and the like, impregnated with an electrolytic solution that is a liquid in which a lithium salt is dissolved as a solute, The secondary battery 1 is formed by sealing with a body.

なお、二次電池1の構成部品の上記各材料は、一例であって他の材料を用いてもよい。   In addition, each said material of the component of the secondary battery 1 is an example, and you may use another material.

充放電手段3は、充放電電圧を設定し、二次電池1を充電する際の充電電流及び二次電池1を放電する際の放電電流の大きさを設定することにより、二次電池1の充放電を制御する。   The charging / discharging means 3 sets the charging / discharging voltage, and sets the charging current when charging the secondary battery 1 and the magnitude of the discharging current when discharging the secondary battery 1. Control charge and discharge.

検出手段5は、電圧センサ4の検出電圧から二次電池1の電圧降下度を検出し、二次電池1の微小短絡を検出する。なお微小短絡の検出方法については後述する。   The detection means 5 detects the voltage drop degree of the secondary battery 1 from the detection voltage of the voltage sensor 4 and detects a minute short circuit of the secondary battery 1. A method for detecting a micro short circuit will be described later.

制御手段6は、充放電手段3による二次電池1の充電及び放電のタイミングを含めて充放電手段3を制御し、電圧センサ4の検出電圧から二次電池の充電状態(SOC:State of Charge)を把握し、二次電池1を放置する時間を管理する。また制御手段6は、恒温室2の温度の切替タイミング及び保温時間の設定を含めて恒温室2を制御する。   The control means 6 controls the charging / discharging means 3 including the timing of charging and discharging of the secondary battery 1 by the charging / discharging means 3, and determines the state of charge (SOC: State of Charge) of the secondary battery from the voltage detected by the voltage sensor 4. ) And the time for which the secondary battery 1 is left is managed. Moreover, the control means 6 controls the temperature-controlled room 2 including the temperature switching timing of the temperature-controlled room 2 and the setting of the heat retention time.

次に、図1及び図2を参照して、本例の二次電池検査方法を説明する。図2は、本例の検査方法において、検査経過日に対する電池電圧の特性を示すグラフである。   Next, with reference to FIG.1 and FIG.2, the secondary battery test | inspection method of this example is demonstrated. FIG. 2 is a graph showing the characteristics of the battery voltage with respect to the inspection elapsed date in the inspection method of this example.

本例の二次電池検査方法は、大きく4つの工程に分けられ、二次電池1を充電する充電工程(工程1)、二次電池1をエイジングする(放置する)工程(工程2)、二次電池1を通電させて放電する工程(工程3)及び二次電池1の微小短絡を検出する工程(工程4)に分けられる。なお、図2に示す工程1〜4は、当該工程1〜4に相当する。   The secondary battery inspection method of this example is roughly divided into four steps, a charging step for charging the secondary battery 1 (step 1), an aging step for the secondary battery 1 (step 2), and a second step. The secondary battery 1 is divided into a process of discharging by energizing (process 3) and a process of detecting a micro short circuit of the secondary battery 1 (process 4). Steps 1 to 4 shown in FIG. 2 correspond to the steps 1 to 4.

工程1について、充放電手段3は、二次電池1に対して充電電流を流し、定電圧充電を実施し、二次電池1の充電状態が100%に近い状態になるまで、約2日間かけて、充電する。充電電流は、後述する工程3の放電工程における放電電流より高い電流が設定される。制御手段6は、電圧センサ4の検出電圧から、二次電池1の電池電圧を検出し、電池電圧が満充電状態(SOC=100%)に相当する電圧に達した時点で充放電手段3を制御し、二次電池1の充電を終了する。これにより、初期充電を終了する。   About the process 1, the charging / discharging means 3 sends a charging current to the secondary battery 1, performs constant voltage charging, and takes about 2 days until the charged state of the secondary battery 1 becomes nearly 100%. And charge. The charge current is set higher than the discharge current in the discharge step of step 3 described later. The control means 6 detects the battery voltage of the secondary battery 1 from the detection voltage of the voltage sensor 4, and when the battery voltage reaches a voltage corresponding to the fully charged state (SOC = 100%), the charging / discharging means 3 is turned on. And the charging of the secondary battery 1 is terminated. Thereby, the initial charging is finished.

次に工程2において、制御手段6は、所定の温度条件の下、二次電池1を非通電の状態で、約12日間、恒温室2内で、放置する。この際、二次電池1のSOCは、工程1の終了時のSOCである、約100%前後で保持される。   Next, in step 2, the control means 6 leaves the secondary battery 1 in the temperature-controlled room 2 for about 12 days in a non-energized state under a predetermined temperature condition. At this time, the SOC of the secondary battery 1 is maintained at about 100%, which is the SOC at the end of step 1.

ところで、異物金属が二次電池1内に混入されていると、電解液に接触している異物金属は溶解しイオン化し負極に誘導され、負極表面に析出される。そして析出跡はセパレータを介して正極まで到達することにより、微小短絡が発生する。かかる微小短絡が二次電池1の出荷後に発生しないよう、本例は、工程1及び工程2の工程により、電池電圧及び温度を調整することで、当該異種金属が短絡し易い環境を作り、異物金属が混入している二次電池1を短絡させて、以下の工程3及び4により、当該微小短絡を検出する。   By the way, when the foreign metal is mixed in the secondary battery 1, the foreign metal in contact with the electrolytic solution is dissolved, ionized, guided to the negative electrode, and deposited on the negative electrode surface. Then, the trace of precipitation reaches the positive electrode via the separator, thereby causing a minute short circuit. In order to prevent such a short circuit from occurring after the secondary battery 1 is shipped, the present example creates an environment in which the dissimilar metal is easily short-circuited by adjusting the battery voltage and temperature in the steps 1 and 2, and the foreign matter. The secondary battery 1 in which the metal is mixed is short-circuited, and the minute short circuit is detected by the following steps 3 and 4.

工程3において、充放電手段3は、二次電池1を通電させて、二次電池1を約6日間かけて放電し、二次電池1のSOCが約0パーセントの状態になる充電末期まで放電する。この際、放電電流は、工程1の充電工程における充電電流より低い電流である。また、放電工程は、二次電池1を通電させて、SOCを減少させる工程と、通電を終了し、電池電圧を安定化させる工程とを含む。   In step 3, the charging / discharging means 3 energizes the secondary battery 1, discharges the secondary battery 1 over about 6 days, and discharges until the end of charge when the SOC of the secondary battery 1 becomes about 0 percent. To do. At this time, the discharging current is lower than the charging current in the charging step of step 1. Further, the discharging step includes a step of energizing the secondary battery 1 to reduce the SOC, and a step of terminating the energization and stabilizing the battery voltage.

ここで、充電末期状態における、二次電池1の開放電圧特性を、図3を用いて説明する。図3は、SOCに対する二次電池の開放電圧の特性を示すグラフである。図3に示すように、二次電池1が放電され、SOCが約10パーセントになるまでは、比較的なだらかな降下度で開放電圧が減少するが、約10パーセントより低くなると、電圧が急に下降し、SOC10パーセントより高いSOCにおける電圧降下度より大きい降下度で減少する。なお、降下度は電圧の減少する割合を示しており、図3に示すグラフの傾きに相当する。すなわち、SOCが10%以下の領域では、電圧変化が大きくなる。また当該領域において、二次電池1内に微小短絡が生じている場合、当該微小短絡による電圧変化も大きくなるため、電圧の変化量を検出し易くなる。そのため、本例は、電圧変化を検出しやすい領域である、SOCが10%以下の領域まで、二次電池1の放電を行い、微小短絡を検知する。   Here, the open-circuit voltage characteristics of the secondary battery 1 in the end-of-charge state will be described with reference to FIG. FIG. 3 is a graph showing the characteristics of the open-circuit voltage of the secondary battery with respect to the SOC. As shown in FIG. 3, until the secondary battery 1 is discharged and the SOC becomes about 10%, the open circuit voltage decreases with a relatively gentle drop, but when the SOC becomes lower than about 10%, the voltage suddenly increases. Decrease and decrease at a drop rate greater than the voltage drop rate at SOC higher than 10 percent SOC. The degree of drop indicates the rate of voltage decrease, and corresponds to the slope of the graph shown in FIG. That is, the voltage change is large in the region where the SOC is 10% or less. In addition, in the region, when a micro short circuit occurs in the secondary battery 1, a voltage change due to the micro short circuit also increases, so that it is easy to detect the voltage change amount. For this reason, in this example, the secondary battery 1 is discharged to a region where the SOC is 10% or less, which is a region where voltage change is easy to detect, and a minute short circuit is detected.

次に、工程3における、放電電流の大きさと放電時間について、図4を用いて説明する。図4は、工程3において、放電時間に対する二次電池の電圧特性を示すグラフである。(a)は、放電電流が小さい場合のグラフを示し、(b)は、(a)の放電電流より大きい放電電流の場合のグラフを示す。二次電池の電圧は、二次電池からの放電電流の通電が終わる時に最も低くなり、通電終了後、時間と共に安定化する。二次電池1からの通電が終了すると、電池内の活物質が拡散し始め、やがて安定する。この間、二次電池1は不安定な状態であり電圧が定まらず、時間の経過によって電圧は安定し、二次電池1は安定状態となる。(a)及び(b)を比較して、充電電流が大きい場合、二次電池1の電圧が最下点に達するまでの時間は短くなり、充電電流が小さい場合、二次電池1の電圧が最下点に達する時間は長くなる。すなわち、放電電流の大きくすれば、SOCが放電末期状態に達するまでの時間を短くすることができ、放電電流を通電する通電時間を短くすることができる。その一方で、二次電池1の内部抵抗の影響によって、充電電流が大きい場合、最下点の電圧は低くなり、さらに電圧降下後の電圧上昇が大きくなるため、不安定な状態の電圧が安定状態に収束するまでの収束時間が長くなる。また充電電流が小さい場合、最下点の電圧は高くなり、電圧降下後の電圧上昇が小さくなるため、不安定な状態の電圧が安定状態に収束するまでの収束時間は短くなる。   Next, the magnitude of the discharge current and the discharge time in step 3 will be described with reference to FIG. FIG. 4 is a graph showing the voltage characteristics of the secondary battery with respect to the discharge time in step 3. (A) shows a graph when the discharge current is small, and (b) shows a graph when the discharge current is larger than the discharge current of (a). The voltage of the secondary battery becomes the lowest when energization of the discharge current from the secondary battery ends, and stabilizes with time after the energization is completed. When energization from the secondary battery 1 is completed, the active material in the battery starts to diffuse and eventually stabilizes. During this time, the secondary battery 1 is in an unstable state, the voltage is not determined, the voltage is stabilized over time, and the secondary battery 1 is in a stable state. When comparing (a) and (b), when the charging current is large, the time until the voltage of the secondary battery 1 reaches the lowest point is shortened. When the charging current is small, the voltage of the secondary battery 1 is The time to reach the lowest point is longer. That is, if the discharge current is increased, the time until the SOC reaches the end-of-discharge state can be shortened, and the energization time for supplying the discharge current can be shortened. On the other hand, when the charging current is large due to the influence of the internal resistance of the secondary battery 1, the voltage at the lowest point is lowered, and the voltage rise after the voltage drop is increased, so that the unstable voltage is stable. The convergence time until the state converges becomes longer. When the charging current is small, the voltage at the lowest point is high and the voltage increase after the voltage drop is small, so that the convergence time until the unstable voltage converges to the stable state is shortened.

本例は、検査対象となる二次電池1の性質に応じて、工程3における、当該通電時間と当該収束時間との和が最小になるよう調整して、放電電流の大きさを設定する。これにより、放電開始時から二次電池1の電池電圧が安定するまでの時間を短くする。   In this example, the magnitude of the discharge current is set by adjusting the sum of the energization time and the convergence time in step 3 according to the property of the secondary battery 1 to be inspected. Thereby, the time from the start of discharge until the battery voltage of the secondary battery 1 is stabilized is shortened.

図1及び図2に戻り、工程4において、制御手段6は、恒温室2の温度を設定して、二次電池1の温度を、工程1〜3における電池温度より低くする。そして、二次電池1の電池温度が、設定温度まで低くなったら、制御手段6は、所定期間(本例では約8日間)の電圧降下度と、微小短絡を判定するための基準となる基準電圧降下度とを比較し、当該電圧降下度が当該基準降下度より大きい場合、微小短絡が発生したと判断する。基準降下度は、検出のための設定温度の下、微小短絡が生じている場合の電圧の降下度であって、二次電池1の性質によって予め設定されている値である。   Returning to FIG. 1 and FIG. 2, in step 4, the control means 6 sets the temperature of the temperature-controlled room 2 and makes the temperature of the secondary battery 1 lower than the battery temperature in steps 1 to 3. Then, when the battery temperature of the secondary battery 1 is lowered to the set temperature, the control means 6 determines the voltage drop degree for a predetermined period (about 8 days in this example) and a reference that is a reference for determining a minute short circuit. When the voltage drop degree is compared with the reference drop degree, it is determined that a micro short circuit has occurred. The reference drop degree is a voltage drop degree when a micro short-circuit occurs at a preset temperature for detection, and is a value set in advance depending on the nature of the secondary battery 1.

次に、二次電池の1の自己放電に伴う電圧降下と、微小短絡により生じる電圧降下との関係について、説明する。   Next, the relationship between the voltage drop caused by the self-discharge of the secondary battery 1 and the voltage drop caused by the minute short circuit will be described.

二次電池1は、自己放電することにより、電池電圧が下がる性質を有している。自己放電は、二次電池1内の活性物質が自発的に拡散することにより発生するが、活性物質の拡散は、二次電池1の電池温度を低くすることにより抑制することができる。一方、微小短絡に生じる電圧降下は、自己放電による電圧降下の温度依存性と比べて温度に影響されにくく、電池温度を低くしても、二次電池1内で微小短絡が発生していれば、電圧は降下する。   The secondary battery 1 has a property that the battery voltage is lowered by self-discharge. The self-discharge occurs when the active substance in the secondary battery 1 spontaneously diffuses, but the diffusion of the active substance can be suppressed by lowering the battery temperature of the secondary battery 1. On the other hand, the voltage drop caused by the micro short circuit is less affected by the temperature than the temperature dependence of the voltage drop due to self-discharge. Even if the battery temperature is lowered, if the micro short circuit occurs in the secondary battery 1 The voltage drops.

本例により工程4で設定される温度は、自己放電による電圧変化が微小短絡による電圧変化より小さくなる温度よりも低く設定される。これにより、微小短絡に起因する電圧の変化量を検出し易くすることができる。 In this example, the temperature set in step 4 is set lower than the temperature at which the voltage change due to self-discharge is smaller than the voltage change due to the micro short circuit. Thereby, it is possible to easily detect the amount of change in voltage due to the minute short circuit.

次に、図5を用いて本例の二次電池検査方法の検査手順を説明する。図5は、本例の二次電池検査方法の検査手順を示すフローチャートである。   Next, the inspection procedure of the secondary battery inspection method of this example will be described with reference to FIG. FIG. 5 is a flowchart showing the inspection procedure of the secondary battery inspection method of this example.

本例の検査方法が開始されると、ステップS1にて、二次電池1のSOCが約100%(第1のSOC)に達するまで充電を行う。ステップS2にて、第1のSOCを保持しながら、エイジング処理(第1のエイジング)を行う。次に、二次電池1を放電させて、二次電池1のSOCを約0%に近いSOC(第2のSOC)まで下げる(ステップS3)。ステップS4にて、二次電池1の電池温度を低下させて、ステップ5にて、低下した温度の下、エイジング処理(第2のエイジング)を行う。   When the inspection method of this example is started, charging is performed until the SOC of the secondary battery 1 reaches about 100% (first SOC) in step S1. In step S2, an aging process (first aging) is performed while holding the first SOC. Next, the secondary battery 1 is discharged, and the SOC of the secondary battery 1 is lowered to an SOC (second SOC) close to about 0% (step S3). In step S4, the battery temperature of the secondary battery 1 is decreased, and in step 5, an aging process (second aging) is performed under the decreased temperature.

次に、ステップ6にて、エイジング処理中の所定時間に対する電圧の変化量である電圧降下度を検出する。ステップ7にて、検出した電圧降下度と基準電圧降下度とを比較する。電圧降下度が基準電圧降下度より高い場合、微小短絡が発生したと判断され(ステップS81)、本例の検査を終了する。一方、電圧降下度が基準電圧降下度より低い場合、微小短絡が発生していないと判断され(ステップS82)、本例の検査を終了する。   Next, in step 6, a voltage drop degree that is a change amount of the voltage with respect to a predetermined time during the aging process is detected. In step 7, the detected voltage drop degree is compared with the reference voltage drop degree. If the voltage drop degree is higher than the reference voltage drop degree, it is determined that a micro short-circuit has occurred (step S81), and the inspection of this example ends. On the other hand, when the voltage drop degree is lower than the reference voltage drop degree, it is determined that a micro short-circuit has not occurred (step S82), and the inspection of this example ends.

上記のように、本例の二次電池検査方法は、二次電池1を充電し、エイジング処理をした後に、電圧の変化量が大きい、SOCの領域まで二次電池1を放電し、さらに電池温度を、充放電時又はエイジング処理時の電池温度より低い温度にして、微小短絡を検出する。これにより、微小短絡による電圧変化を検出し易くし、また自己放電による影響を受けにくい状態で微小短絡に起因する電圧変化を精度よく検出することができる。その結果として、微小短絡の発生を精度よく検出することができる。   As described above, in the secondary battery inspection method of this example, after the secondary battery 1 is charged and subjected to the aging process, the secondary battery 1 is discharged to the SOC region where the amount of change in voltage is large. The temperature is set to a temperature lower than the battery temperature during charging / discharging or aging treatment, and a micro short circuit is detected. As a result, it is possible to easily detect a voltage change due to a micro short circuit, and to accurately detect a voltage change due to the micro short circuit in a state where it is not easily affected by self-discharge. As a result, it is possible to accurately detect the occurrence of a minute short circuit.

また本例は、工程3において、放電後の二次電池1のSOCが充電末期のSOCとなるよう、放電処理を行う。これにより、二次電池1のSOCを電圧降下度が顕著に変わる領域に、設定することができるため、検出精度を向上させることができる。   Further, in the present example, in step 3, the discharging process is performed so that the SOC of the secondary battery 1 after discharging becomes the SOC at the end of charging. Thereby, since the SOC of the secondary battery 1 can be set in a region where the voltage drop degree changes significantly, the detection accuracy can be improved.

また本例は、工程3において、工程1の充電電流より低い放電電流で、二次電池1を放電させる。これにより、放電電流の通電終了時の電圧降下を低く抑えることができ、降下後の電圧のはね上がりによる不安定な電圧挙動の期間を短くすることができる。その結果として、不安定な電圧挙動の期間を早く収束させて、研修制度を向上させつつ、検査時間の短縮化を図ることができる。   In this example, in step 3, the secondary battery 1 is discharged with a discharge current lower than the charging current in step 1. As a result, the voltage drop at the end of energization of the discharge current can be kept low, and the period of unstable voltage behavior due to the rise of the voltage after the drop can be shortened. As a result, it is possible to shorten the inspection time while converging the unstable voltage behavior period early and improving the training system.

また本例は、工程3において、放電電流を通電する通電時間と、通電後に電圧が不安定な状態から安定な状態へ収束するまでの収束時間との和が最小時間になるよう、放電電流を設定する。上記のように充電電流の大きさ、又は、通電時間と、収束時間とは、トレードオフの関係になるため、充電電流の大きさを最適化することで、工程3の全体の工程時間を短くすることができる。その結果として、本例は、検査時間を短くすることができる。   Further, in this example, in step 3, the discharge current is set so that the sum of the energization time for energizing the discharge current and the convergence time until the voltage converges from the unstable state to the stable state after energization is minimized. Set. As described above, since the magnitude of the charging current or the energization time and the convergence time are in a trade-off relationship, the entire process time of the process 3 can be shortened by optimizing the magnitude of the charging current. can do. As a result, this example can shorten the inspection time.

なお、本例は工程4において、電圧降下度を用いて微小短絡を検出するが、電圧値により検出してもよい。すなわち、制御手段は、微小短絡により降下した電圧値を基準電圧値として予め保持しており、工程4において、電池電圧と基準電圧値とを比較し、電池電圧が基準電圧より低い場合、微小短絡が発生したと判断する。   In this example, in step 4, the voltage short-circuit is detected using the degree of voltage drop, but it may be detected by the voltage value. That is, the control means holds in advance the voltage value dropped due to the micro short circuit as the reference voltage value, and compares the battery voltage with the reference voltage value in step 4, and if the battery voltage is lower than the reference voltage, the micro short circuit Is determined to have occurred.

なお、本例の「工程1」が本発明の「充電工程」に相当し、「工程2」が「放置工程」、「工程3」が「放電工程」、「工程4」が「検出工程」に相当する。   In this example, “Step 1” corresponds to “Charging step” of the present invention, “Step 2” is “Left step”, “Step 3” is “Discharge step”, and “Step 4” is “Detection step”. It corresponds to.

《第2実施形態》
発明の他の実施形態に係る二次電池検査方法を図6〜図8を用いて説明する。
<< Second Embodiment >>
A secondary battery inspection method according to another embodiment of the invention will be described with reference to FIGS.

本例は上述した第1実施形態に対して、ステップ3の放電工程における、放電電流を設定する方法が異なる。これ以外の構成で上述した第1実施形態と同じ構成は、その記載を適宜、援用する。図6は、電池電圧の収束時間に対する電解液の粘度の特性を示すグラフであり、図7は、電解液の粘度に対する放電電流の特性を示すグラフである。また図8は、本例の検査方法の検査手順を示すフローチャートである。 This example is different from the first embodiment described above in the method of setting the discharge current in the discharge process of step 3. The description of the same configuration as that of the first embodiment described above in other configurations is incorporated as appropriate. FIG. 6 is a graph showing the characteristics of the electrolyte viscosity with respect to the battery voltage convergence time, and FIG. 7 is a graph showing the characteristics of the discharge current with respect to the electrolyte viscosity. FIG. 8 is a flowchart showing the inspection procedure of the inspection method of this example.

本例の検査方法のうち、放電工程で設定される放電電流は、図6及び図7に示す特性から、制御手段6により設定される。放電終了時の不安定な電圧が安定な状態に収束するまでの収束時間は、上記の通り、二次電池1内を拡散する活物質が安定化する時間と関係する。そして、活物質が安定化するために要する時間は、電解質の粘度に対して、図6に示す特性を有している。粘度が低い電解液中において、活物質は拡散しにくく、粘度が高い電解液中において、活物質は拡散し易い。そのため、電解液の粘度が高い方が、活物質は拡散し易く、その分、電池電圧の安定化に時間を要する。また、当該特性は、二次電池1の性質によって、予め決まる特性である。   In the inspection method of this example, the discharge current set in the discharge process is set by the control means 6 from the characteristics shown in FIGS. As described above, the convergence time until the unstable voltage at the end of discharge converges to a stable state is related to the time during which the active material diffusing in the secondary battery 1 is stabilized. The time required for stabilizing the active material has the characteristics shown in FIG. 6 with respect to the viscosity of the electrolyte. In the electrolytic solution having a low viscosity, the active material hardly diffuses, and in the electrolytic solution having a high viscosity, the active material easily diffuses. Therefore, the higher the viscosity of the electrolytic solution, the easier the active material diffuses, and accordingly, it takes time to stabilize the battery voltage. Further, the characteristics are predetermined characteristics depending on the properties of the secondary battery 1.

粘度が高い場合、収束時間が長くなる特性を有するため、本例は、図7を参照して粘度が高い場合、大きい放電電流が設定される。これにより、粘度が高い分、長い収束時間が設定されているため、放電電流を大きくして、放電時間を短縮化する。一方、粘度が低い場合、収束時間が短くなる特性を有するため、本例は、図7を参照し粘度が低い場合、小さい放電電流が設定される。これにより、粘度が低い分、短い収束時間が設定されているため、放電電流を小さくして、放電時間に時間をかけるようにする。   Since the convergence time becomes longer when the viscosity is high, a large discharge current is set in this example when the viscosity is high with reference to FIG. Thereby, since the long convergence time is set for the higher viscosity, the discharge current is increased and the discharge time is shortened. On the other hand, since the convergence time is shortened when the viscosity is low, in this example, a small discharge current is set when the viscosity is low with reference to FIG. Thereby, since the short convergence time is set because the viscosity is low, the discharge current is reduced and the discharge time is increased.

次に、図8を用いて本例の二次電池検査方法の検査手順を説明する。なお、ステップS3の前後のステップは、第1実施形態と同様のため、省略する。   Next, the inspection procedure of the secondary battery inspection method of this example will be described with reference to FIG. Note that the steps before and after step S3 are the same as those in the first embodiment, and are therefore omitted.

ステップS2の後、ステップS31にて、収束時間が設定される。そして、図6に示す特性により、当該収束時間に対応する電解液の粘度にするために、電池の温度を設定する(ステップS32)。電解液の粘度は、電池温度の依存性を有しているため、恒温室2の温度を設定することにより、所望の電解質粘度を得ることができる。そして、ステップS33にて、図7に示す特性により、放電電流が設定される。ステップS34にて、当該放電電流により二次電池1を通電し、第2のSOCになるまで放電処理が行われる。   After step S2, a convergence time is set in step S31. Then, the temperature of the battery is set in order to obtain the viscosity of the electrolytic solution corresponding to the convergence time according to the characteristics shown in FIG. 6 (step S32). Since the viscosity of the electrolytic solution is dependent on the battery temperature, a desired electrolyte viscosity can be obtained by setting the temperature of the temperature-controlled room 2. In step S33, the discharge current is set according to the characteristics shown in FIG. In step S34, the secondary battery 1 is energized with the discharge current, and a discharge process is performed until the second SOC is reached.

上記のように本例は、工程3の全体の工程時間を短くするために、設定された収束時間から、最適となる電解液の粘度と放電電流を設定する。これにより、本例は、検査時間を短くすることができる。   As described above, in this example, in order to shorten the entire process time of the process 3, the optimum viscosity and discharge current of the electrolytic solution are set from the set convergence time. Thereby, this example can shorten inspection time.

1…二次電池
2…恒温室
3…充放電手段
4…電圧センサ
5…検出手段
6…制御手段
DESCRIPTION OF SYMBOLS 1 ... Secondary battery 2 ... Constant temperature chamber 3 ... Charging / discharging means 4 ... Voltage sensor 5 ... Detection means 6 ... Control means

Claims (8)

第1のSOCまで二次電池を充電する充電工程と、
前記充電工程の後に、前記二次電池を所定時間放置する放置工程と、
前記放置工程の後に、前記第1のSOCより低い第2のSOCまで放電する放電工程と、
前記放電工程の後に、前記二次電池を所定の温度より低い電池温度にして、前記二次電池の微小短絡を検出する検出工程とを含むことを特徴とする
二次電池検査方法。
A charging step of charging the secondary battery up to the first SOC;
A leaving step of leaving the secondary battery for a predetermined time after the charging step;
A discharge step of discharging to a second SOC lower than the first SOC after the leaving step;
And a detection step of detecting a micro short circuit of the secondary battery by setting the secondary battery to a battery temperature lower than a predetermined temperature after the discharging step.
前記第2のSOCは、放電末期のSOCであることを特徴とする
請求項1記載の二次電池検査方法。
The secondary battery inspection method according to claim 1, wherein the second SOC is an end-of-discharge SOC.
前記放電工程において、前記二次電池の電圧特性は、SOCの減少と共に、第1の電圧降下度で下降し、所定のSOCを境に当該第1の電圧降下度より大きい第2の電圧降下度で下降し、
前記第2のSOCは、前記第2の電圧降下度で下降する領域内のSOCであることを特徴とする
請求項1又は2記載の二次電池検査方法。
In the discharging step, the voltage characteristic of the secondary battery decreases with a decrease in SOC at a first voltage drop degree, and a second voltage drop degree larger than the first voltage drop degree at a predetermined SOC. Descends at
3. The secondary battery inspection method according to claim 1, wherein the second SOC is an SOC in a region that decreases at the second voltage drop degree. 4.
前記検出工程において、前記電池温度の二次電池の自己放電による電圧変化は、前記二次電池の微小短絡による電圧変化より小さいことを特徴とする
請求項1〜3のいずれか一項に記載の二次電池検査方法。
The voltage change due to self-discharge of the secondary battery at the battery temperature is smaller than the voltage change due to a minute short circuit of the secondary battery in the detection step. Secondary battery inspection method.
前記検出工程において、前記二次電池の自己放電による電圧変化が前記二次電池の微小短絡による電圧変化より小さくなる温度よりも低い温度が前記電池温度として設定されることを特徴とする
請求項1〜3のいずれか一項に記載の二次電池検査方法。
2. The battery temperature is set as a temperature lower than a temperature at which a voltage change due to self-discharge of the secondary battery is smaller than a voltage change due to a minute short circuit of the secondary battery in the detection step. The secondary battery inspection method as described in any one of -3.
前記放電工程の放電電流は、前記充電工程の充電電流より小さいことを特徴とする
請求項1〜5のいずれか一項に記載の二次電池検査方法。
The secondary battery inspection method according to claim 1, wherein a discharging current in the discharging step is smaller than a charging current in the charging step.
前記放電工程において、放電電流を通電する通電時間と、前記通電時間の終了時の不安定状態の電圧が安定状態に収束するまでの収束時間との和が最小になる、前記放電電流が設定されることを特徴とする
請求項1〜6のいずれか一項に記載の二次電池検査方法。
In the discharging step, the discharge current is set such that the sum of the energizing time for energizing the discharging current and the convergence time until the unstable voltage at the end of the energizing time converges to a stable state is set. The secondary battery inspection method according to any one of claims 1 to 6, wherein:
放電終了時の不安定状態の電圧が安定状態に収束する収束時間を設定する工程と、
前記収束時間に基づいて前記二次電池に含まれる電解液の粘度を設定する工程と、前記粘度に基づいて放電電流を設定する放電電流設定工程とをさらに含み、
前記放電工程は、前記放電電流設定工程により設定される放電電流により放電することを特徴とする
請求項1〜7のいずれか一項に記載の二次電池検査方法。
Setting a convergence time for the unstable voltage at the end of discharge to converge to a stable state;
Further comprising: setting a viscosity of the electrolyte contained in the secondary battery based on the convergence time; and a discharge current setting step for setting a discharge current based on the viscosity;
The secondary battery inspection method according to any one of claims 1 to 7, wherein the discharging step is performed by a discharge current set by the discharge current setting step.
JP2009222659A 2009-09-28 2009-09-28 Method of inspecting secondary battery Pending JP2011069775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222659A JP2011069775A (en) 2009-09-28 2009-09-28 Method of inspecting secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222659A JP2011069775A (en) 2009-09-28 2009-09-28 Method of inspecting secondary battery

Publications (1)

Publication Number Publication Date
JP2011069775A true JP2011069775A (en) 2011-04-07

Family

ID=44015173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222659A Pending JP2011069775A (en) 2009-09-28 2009-09-28 Method of inspecting secondary battery

Country Status (1)

Country Link
JP (1) JP2011069775A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254653A (en) * 2012-06-07 2013-12-19 Toyota Motor Corp Method for inspecting secondary battery
JP2014002009A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Method of inspecting secondary battery
JP2014006205A (en) * 2012-06-26 2014-01-16 Toyota Motor Corp Secondary battery inspection method
WO2014016956A1 (en) * 2012-07-27 2014-01-30 トヨタ自動車株式会社 Short-circuit inspection method for secondary cell
JP2014032918A (en) * 2012-08-06 2014-02-20 Toyota Motor Corp Inspection method of secondary battery
JP2014110215A (en) * 2012-12-04 2014-06-12 Toyota Motor Corp Method of manufacturing nonaqueous electrolyte secondary battery
JP2014134395A (en) * 2013-01-08 2014-07-24 Toyota Motor Corp Short-circuit inspection method of secondary battery
JP2014160039A (en) * 2013-02-20 2014-09-04 Toyota Motor Corp Secondary battery short-circuit inspection method
CN104316877A (en) * 2014-01-09 2015-01-28 中航锂电(洛阳)有限公司 Self-discharge detection method of lithium iron phosphate battery
JP2015095334A (en) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
JP2015095333A (en) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
WO2015155584A1 (en) 2014-04-11 2015-10-15 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of secondary battery
JP2016091872A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Abnormality detection method and abnormality detection apparatus for secondary battery
CN105598044A (en) * 2015-12-02 2016-05-25 杭州伯坦科技工程有限公司 Method for effectively screening self-discharging batteries
CN106249162A (en) * 2016-08-16 2016-12-21 深圳天珑无线科技有限公司 A kind of method and apparatus testing self-discharge of battery
US9577294B2 (en) 2013-10-02 2017-02-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method for secondary battery
KR20180081009A (en) * 2017-01-05 2018-07-13 주식회사 엘지화학 Method for detecting a low voltage defective secondary battery
CN108380515A (en) * 2018-02-02 2018-08-10 合肥国轩高科动力能源有限公司 A kind of power battery low pressure screening technique
KR20190006436A (en) * 2017-07-10 2019-01-18 도요타지도샤가부시키가이샤 Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
KR20190105251A (en) * 2018-03-05 2019-09-17 주식회사 엘지화학 Method and System for Predicting the Time Required for Low Voltage Expression of a Secondary Battery, and Aging Method of the Secondary Battery Using the Same
KR20190115630A (en) * 2018-04-03 2019-10-14 주식회사 엘지화학 Method and System for Calculating Low Voltage Expression Level of a Secondary Battery
CN110729516A (en) * 2019-11-12 2020-01-24 昆山聚创新能源科技有限公司 Micro-short circuit test method of lithium ion battery
CN112904213A (en) * 2019-12-04 2021-06-04 丰田自动车株式会社 Method for inspecting power storage device and method for manufacturing power storage device
CN113608139A (en) * 2021-08-03 2021-11-05 傲普(上海)新能源有限公司 Temperature monitoring method and manufacturing method of lithium ion battery
CN114062952A (en) * 2020-08-07 2022-02-18 泰星能源解决方案有限公司 Insulation inspection method for secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133319A (en) * 1998-10-23 2000-05-12 Toshiba Battery Co Ltd Inspection method for alkaline secondary battery
JP2004031120A (en) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd Fault diagnosis device and method for battery pack
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2005209528A (en) * 2004-01-23 2005-08-04 Toyota Motor Corp Secondary battery inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133319A (en) * 1998-10-23 2000-05-12 Toshiba Battery Co Ltd Inspection method for alkaline secondary battery
JP2004031120A (en) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd Fault diagnosis device and method for battery pack
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2005209528A (en) * 2004-01-23 2005-08-04 Toyota Motor Corp Secondary battery inspection method

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254653A (en) * 2012-06-07 2013-12-19 Toyota Motor Corp Method for inspecting secondary battery
JP2014002009A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Method of inspecting secondary battery
JP2014006205A (en) * 2012-06-26 2014-01-16 Toyota Motor Corp Secondary battery inspection method
CN104487857A (en) * 2012-07-27 2015-04-01 丰田自动车株式会社 Short-circuit inspection method for secondary cell
CN104487857B (en) * 2012-07-27 2017-03-08 丰田自动车株式会社 The test for short-circuit method of secondary cell
JP5930342B2 (en) * 2012-07-27 2016-06-08 トヨタ自動車株式会社 Secondary battery short circuit inspection method
WO2014016956A1 (en) * 2012-07-27 2014-01-30 トヨタ自動車株式会社 Short-circuit inspection method for secondary cell
US9588183B2 (en) 2012-07-27 2017-03-07 Toyota Jidosha Kabushiki Kaisha Short-circuit inspection method for secondary cell
JP2014032918A (en) * 2012-08-06 2014-02-20 Toyota Motor Corp Inspection method of secondary battery
JP2014110215A (en) * 2012-12-04 2014-06-12 Toyota Motor Corp Method of manufacturing nonaqueous electrolyte secondary battery
JP2014134395A (en) * 2013-01-08 2014-07-24 Toyota Motor Corp Short-circuit inspection method of secondary battery
JP2014160039A (en) * 2013-02-20 2014-09-04 Toyota Motor Corp Secondary battery short-circuit inspection method
US9577294B2 (en) 2013-10-02 2017-02-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method for secondary battery
JP2015095334A (en) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
CN105706288A (en) * 2013-11-11 2016-06-22 丰田自动车株式会社 Method of producing nonaqueous secondary battery
JP2015095333A (en) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
CN104316877A (en) * 2014-01-09 2015-01-28 中航锂电(洛阳)有限公司 Self-discharge detection method of lithium iron phosphate battery
US10317477B2 (en) 2014-04-11 2019-06-11 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of secondary battery
CN106164690A (en) * 2014-04-11 2016-11-23 丰田自动车株式会社 The inspection method of secondary cell and manufacture method
WO2015155584A1 (en) 2014-04-11 2015-10-15 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of secondary battery
JP2015204151A (en) * 2014-04-11 2015-11-16 トヨタ自動車株式会社 Inspection method and manufacturing method of secondary battery
JP2016091872A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Abnormality detection method and abnormality detection apparatus for secondary battery
CN105598044A (en) * 2015-12-02 2016-05-25 杭州伯坦科技工程有限公司 Method for effectively screening self-discharging batteries
CN106249162A (en) * 2016-08-16 2016-12-21 深圳天珑无线科技有限公司 A kind of method and apparatus testing self-discharge of battery
KR20180081009A (en) * 2017-01-05 2018-07-13 주식회사 엘지화학 Method for detecting a low voltage defective secondary battery
KR102574500B1 (en) * 2017-01-05 2023-09-05 주식회사 엘지에너지솔루션 Method for detecting a low voltage defective secondary battery
KR20190006436A (en) * 2017-07-10 2019-01-18 도요타지도샤가부시키가이샤 Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
US10656212B2 (en) 2017-07-10 2020-05-19 Toyota Jidosha Kabushiki Kaisha Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
KR102106949B1 (en) * 2017-07-10 2020-05-06 도요타지도샤가부시키가이샤 Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
CN108380515A (en) * 2018-02-02 2018-08-10 合肥国轩高科动力能源有限公司 A kind of power battery low pressure screening technique
KR102070589B1 (en) * 2018-03-05 2020-01-29 주식회사 엘지화학 Method and System for Predicting the Time Required for Low Voltage Expression of a Secondary Battery, and Aging Method of the Secondary Battery Using the Same
US10502794B2 (en) * 2018-03-05 2019-12-10 Lg Chem, Ltd. Method and system for predicting the time required for low voltage expression of a secondary battery, and aging method of the secondary battery using the same
KR20190105251A (en) * 2018-03-05 2019-09-17 주식회사 엘지화학 Method and System for Predicting the Time Required for Low Voltage Expression of a Secondary Battery, and Aging Method of the Secondary Battery Using the Same
KR102043645B1 (en) * 2018-04-03 2019-12-02 주식회사 엘지화학 Method and System for Calculating Low Voltage Expression Level of a Secondary Battery
US10473725B2 (en) * 2018-04-03 2019-11-12 Lg Chem, Ltd. Method and system for calculating low voltage expression level of a secondary battery
KR20190115630A (en) * 2018-04-03 2019-10-14 주식회사 엘지화학 Method and System for Calculating Low Voltage Expression Level of a Secondary Battery
CN110729516A (en) * 2019-11-12 2020-01-24 昆山聚创新能源科技有限公司 Micro-short circuit test method of lithium ion battery
CN112904213A (en) * 2019-12-04 2021-06-04 丰田自动车株式会社 Method for inspecting power storage device and method for manufacturing power storage device
CN114062952A (en) * 2020-08-07 2022-02-18 泰星能源解决方案有限公司 Insulation inspection method for secondary battery
CN114062952B (en) * 2020-08-07 2023-08-04 泰星能源解决方案有限公司 Insulation inspection method for secondary battery
CN113608139A (en) * 2021-08-03 2021-11-05 傲普(上海)新能源有限公司 Temperature monitoring method and manufacturing method of lithium ion battery

Similar Documents

Publication Publication Date Title
JP2011069775A (en) Method of inspecting secondary battery
US10135279B2 (en) Method and apparatus of battery charging
US10794960B2 (en) Method and apparatus for detecting low voltage defect of secondary battery
KR101985812B1 (en) Charging limit evaluation method of battery, method and apparatus for fast charging using the same
US8523958B2 (en) Fabrication of lithium secondary battery
US10320038B2 (en) Charging method for lithium ion secondary battery and charging control system therefor, and electronic apparatus and battery pack having charging control system
WO2011065009A1 (en) Method for charging lithium-ion secondary battery and battery pack
KR102194845B1 (en) Apparatus and method for inspecting low voltage defect of secondary battery
JP2012503277A (en) Quick charging method
JP5699970B2 (en) Lithium ion secondary battery system and deposition determination method
RU2649893C2 (en) Method of charging the lithium-sulphur cell
JP2012003863A (en) Method and device for detecting lithium dendrite precipitation
CN110568363A (en) Method for prejudging lithium dendrite generation of retired battery based on SEI film impedance change
JP2012028024A (en) Capacity recovery method for lithium ion secondary battery
KR101674289B1 (en) Method for manufacturing non-aqueous electrolyte secondary battery
US11024898B2 (en) Lithium-ion battery high temperature aging process
JP2012016109A (en) Method and device of charging lithium ion battery
JP2015008106A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2014082121A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2012252839A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6478112B2 (en) Method for producing non-aqueous electrolyte secondary battery
WO2017144117A1 (en) Lithium-ion battery formation process
JP2014022317A (en) Method for charging nonaqueous secondary battery
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930