JP2016091872A - Abnormality detection method and abnormality detection apparatus for secondary battery - Google Patents

Abnormality detection method and abnormality detection apparatus for secondary battery Download PDF

Info

Publication number
JP2016091872A
JP2016091872A JP2014226626A JP2014226626A JP2016091872A JP 2016091872 A JP2016091872 A JP 2016091872A JP 2014226626 A JP2014226626 A JP 2014226626A JP 2014226626 A JP2014226626 A JP 2014226626A JP 2016091872 A JP2016091872 A JP 2016091872A
Authority
JP
Japan
Prior art keywords
secondary battery
voltage
temperature
charging
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014226626A
Other languages
Japanese (ja)
Other versions
JP6252439B2 (en
Inventor
展弘 山田
Nobuhiro Yamada
展弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014226626A priority Critical patent/JP6252439B2/en
Publication of JP2016091872A publication Critical patent/JP2016091872A/en
Application granted granted Critical
Publication of JP6252439B2 publication Critical patent/JP6252439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that in a conventional secondary battery abnormality detection method, long time is required for inspection.SOLUTION: A secondary battery abnormality detection method according to the present invention is an abnormality detection method for detecting existence of internal short circuit of a secondary battery 10. The abnormality detection method includes: a voltage adjustment step for adjusting voltage for the secondary battery 10 set to a first temperature to a predetermined voltage; a temperature adjustment step for adjusting a temperature of the secondary battery 10 to a second temperature lower than the first temperature in a stopped state of charging; a voltage measurement step for measuring the voltage of the secondary battery 10 adjusted to the second temperature; a charging step for charging the secondary battery 10 adjusted to the second temperature by applying the voltage measured in the voltage measurement step as a constant voltage; a current measurement step for measuring a current outputted from the secondary battery during the charging step; and a quality determination step for determining existence of internal short circuit in the secondary battery 10 on the basis of a convergence value of the current value measured in the current measurement step.SELECTED DRAWING: Figure 2

Description

本発明は、二次電池の異常検出方法及び異常検出装置に関し、例えば、二次電池の微小短絡を検出する二次電池の異常検出方法及び異常検出装置に関する。   The present invention relates to an abnormality detection method and an abnormality detection device for a secondary battery, for example, an abnormality detection method and an abnormality detection device for a secondary battery that detect a minute short circuit of the secondary battery.

二次電池は、内部で微小な短絡が発生することがあり、このような内部短絡を検出することが求められる。微小短絡の検出方法として、電圧低下を直接観測する微小短絡検出方法がある。しかしながら、電圧低下を直接観測する微小短絡検出方法では、電池の容量が大きくなると電圧降下量自体が極めて微小となり、観測が困難になる問題がある。この問題の解決手段の1つとして、長時間二次電池を放置することで電圧降下量を大きくする方法がある。しかしながら、この方法を用いた場合、二次電池の保管スペース、温度管理等生産上多大なコストを要する。そこで、微小な内部短絡の検出方法として特許文献1に検出方法の一例が提案されている。   A secondary battery may cause a short circuit inside, and is required to detect such an internal short circuit. As a method for detecting a micro short circuit, there is a micro short circuit detection method for directly observing a voltage drop. However, in the micro short-circuit detection method that directly observes the voltage drop, there is a problem that the voltage drop amount itself becomes extremely small when the battery capacity increases, making observation difficult. One solution to this problem is to increase the voltage drop by leaving the secondary battery for a long time. However, when this method is used, a large production cost such as storage space for the secondary battery and temperature management is required. Therefore, an example of a detection method is proposed in Patent Document 1 as a detection method of a minute internal short circuit.

特許文献1では、検出対象の二次電池の周囲環境温度を調節する恒温槽と、二次電池に定電圧充電を施す充電手段と、二次電池の充放電電流を検出する電流検出手段と、二次電池の内部抵抗が低くなる高温環境下にて、定電圧充電を実施して二次電池の充電状態を所定状態に調整し、該定電圧充電状態を保持したまま、当該検査時間内における二次電池の自己放電量がほぼゼロとみなせる温度まで周囲温度を低下させ、該低温環境下での電流収束値から二次電池の内部短絡の有無を判定する判定手段と、を備える異常検出装置が開示されている。特許文献1に記載の異常検出装置では、上記構成を有することで、二次電池の温度を下げて自己放電の影響を小さくして電流ばらつきの影響を小さくすることで内部短絡の検出を行う。   In Patent Document 1, a thermostatic chamber that adjusts the ambient environment temperature of the secondary battery to be detected, a charging unit that performs constant voltage charging on the secondary battery, a current detection unit that detects charge / discharge current of the secondary battery, In a high temperature environment where the internal resistance of the secondary battery is lowered, constant voltage charging is performed to adjust the charging state of the secondary battery to a predetermined state, and the constant voltage charging state is maintained within the inspection time. An abnormality detection device comprising: a determination unit that reduces the ambient temperature to a temperature at which a self-discharge amount of the secondary battery can be regarded as substantially zero, and determines whether or not there is an internal short circuit of the secondary battery from the current convergence value in the low temperature environment Is disclosed. With the above-described configuration, the abnormality detection device described in Patent Document 1 detects an internal short circuit by lowering the temperature of the secondary battery to reduce the influence of self-discharge and the influence of current variation.

特開2008−243440号公報JP 2008-243440 A

しかしながら、特許文献1に記載の技術では、二次電池の温度が高い初期状態から二次電池の温度を下げる工程中、常に二次電池に印加する定電圧を維持する。そのため、特許文献1では、充放電設備を長時間使用しなければならない問題がある。また、二次電池の温度を下げていくと二次電池の電圧は自然と上昇する。これにより、特許文献1に記載の技術では、二次電池の温度低下に伴い上昇する電圧に対抗して流す放電電流が本来検出すべき微小短絡に起因して発生する電流に重畳してしまう現象が発生する。そのため、特許文献1では、放電電流の影響を最小限にするために設備が更に延びる問題がある。   However, in the technique described in Patent Document 1, the constant voltage applied to the secondary battery is always maintained during the process of lowering the temperature of the secondary battery from the initial state where the temperature of the secondary battery is high. Therefore, in patent document 1, there exists a problem which has to use charging / discharging equipment for a long time. Further, as the temperature of the secondary battery is lowered, the voltage of the secondary battery naturally increases. As a result, in the technique described in Patent Document 1, the discharge current that flows against the voltage that rises as the temperature of the secondary battery decreases overlaps with the current that is generated due to the micro short circuit that should be detected. Will occur. Therefore, in patent document 1, there exists a problem which an installation further extends in order to minimize the influence of a discharge current.

本発明は、上記事情に鑑みてなされたものであり、微小な内部短絡の検出に必要な時間を短縮することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object thereof is to shorten the time required for detecting a minute internal short circuit.

本発明にかかる二次電池の異常検出方法は、二次電池の内部短絡の有無を検査する異常検出方法であって、第1の温度とした二次電池に対して電圧を所定の電圧に調整する電圧調整工程と、前記充電を停止した状態で前記二次電池を前記第1の温度よりも低い第2の温度とする温度調整工程と、前記第2の温度となった前記二次電池の電圧を測定する電圧測定工程と、前記第2の温度となった前記二次電池に対して前記電圧測定工程で測定した電圧を定電圧として印加した充電を行う充電工程と、前記充電工程中に前記二次電池が出力する電流を測定する電流測定工程と、前記電流測定工程で測定された電流値の収束値に基づき前記二次電池の内部短絡の有無を判断する良品判定工程と、を有する。   An abnormality detection method for a secondary battery according to the present invention is an abnormality detection method for inspecting the presence or absence of an internal short circuit in a secondary battery, and the voltage is adjusted to a predetermined voltage with respect to the secondary battery at the first temperature. A voltage adjusting step, a temperature adjusting step in which the secondary battery is set to a second temperature lower than the first temperature in a state where the charging is stopped, and the secondary battery having the second temperature. A voltage measuring step for measuring voltage, a charging step for charging the secondary battery that has reached the second temperature by applying the voltage measured in the voltage measuring step as a constant voltage, and during the charging step A current measurement step for measuring a current output from the secondary battery, and a non-defective product determination step for determining the presence or absence of an internal short circuit of the secondary battery based on a convergence value of the current value measured in the current measurement step. .

本発明にかかる二次電池の異常検出装置は、二次電池に対して充電を行う充電部と、前記二次電池から出力される電流を計測する電流計と、前記二次電池の電圧を計測する電圧計と、前記充電部が出力する電圧の設定と、前記二次電池の良否判断と、を行う検査処理部と、前記二次電池を第1の温度よりも低い第2の温度に設定する恒温槽と、を有し、前記検査処理部は、前記充電部に、前記第1の温度とした二次電池に対して電圧を所定の電圧に調整することを指示した後に充電の停止を指示する充電処理と、前記第2の温度とした二次電池の電圧値を前記電圧計から取得する電圧測定処理と、前記電圧計から取得した電圧値を定電圧として前記二次電池に印加して充電を再開することを前記充電部に指示する充電再開処理と、前記充電再開処理後に前記二次電池が出力する電流を測定する電流測定処理と、前記電流測定処理で測定された電流値の収束値に基づき前記二次電池の内部短絡の有無を判断する良品判定処理と、を実施する。   An abnormality detection device for a secondary battery according to the present invention includes a charging unit that charges a secondary battery, an ammeter that measures a current output from the secondary battery, and a voltage of the secondary battery. A voltmeter that performs the setting of the voltage output from the charging unit and the quality determination of the secondary battery, and sets the secondary battery to a second temperature lower than the first temperature. And the inspection processing unit stops charging after instructing the charging unit to adjust the voltage to a predetermined voltage with respect to the secondary battery having the first temperature. A charging process for instructing, a voltage measurement process for acquiring a voltage value of the secondary battery at the second temperature from the voltmeter, and a voltage value acquired from the voltmeter as a constant voltage applied to the secondary battery. Charging resumption processing for instructing the charging unit to resume charging, and recharging A current measurement process for measuring the current output from the secondary battery after the process, and a non-defective product determination process for determining the presence or absence of an internal short circuit of the secondary battery based on a convergence value of the current value measured in the current measurement process; To implement.

本発明にかかる二次電池の異常検出方法及び異常検出装置は、充電後の二次電池に対して電圧を印加することなく測定環境である第2の温度に設定し、その後、第2の温度となった二次電池の電圧を測定して、その測定した電圧を定電圧として二次電池に印加した状態で二次電池の電流を測定する。そのため、二次電池の温度変動に伴う電圧の変化に起因して発生する充放電電流の影響を受けることなく、第2の温度となった二次電池が出力する電流を測定することができる。つまり、本発明にかかる二次電池の異常検出方法及び異常検出装置は、二次電池の内部の微小短絡の検査において二次電池の温度変化に伴い発生する充放電電流の影響を小さくするために要する時間を短縮することができる。   An abnormality detection method and an abnormality detection device for a secondary battery according to the present invention set a second temperature as a measurement environment without applying a voltage to a secondary battery after charging, and then the second temperature. The voltage of the secondary battery is measured, and the current of the secondary battery is measured in a state where the measured voltage is applied to the secondary battery as a constant voltage. Therefore, the current output from the secondary battery at the second temperature can be measured without being affected by the charging / discharging current generated due to the change in voltage accompanying the temperature fluctuation of the secondary battery. In other words, the secondary battery abnormality detection method and abnormality detection device according to the present invention are designed to reduce the influence of the charging / discharging current caused by the temperature change of the secondary battery in the inspection of the micro short circuit inside the secondary battery. The time required can be shortened.

本発明にかかる二次電池の異常検出方法及び異常検出装置によれば、二次電池の内部の微小短絡の検出に必要な時間を短縮することができる。   According to the abnormality detection method and the abnormality detection device for the secondary battery according to the present invention, it is possible to shorten the time required for detecting the minute short circuit inside the secondary battery.

実施の形態1にかかる異常検出装置の概略図である。1 is a schematic diagram of an abnormality detection apparatus according to a first embodiment. 実施の形態1にかかる異常検出方法のフローチャートである。3 is a flowchart of an abnormality detection method according to the first exemplary embodiment. 実施の形態1にかかる異常検出方法を適用した場合における二次電池の出力電流の時間変化を説明するグラフである。6 is a graph for explaining a temporal change in output current of the secondary battery when the abnormality detection method according to the first embodiment is applied. 比較例にかかる異常検出方法を適用した場合における二次電池の出力電流の時間変化を説明するグラフである。It is a graph explaining the time change of the output current of a secondary battery at the time of applying the abnormality detection method concerning a comparative example. 実施の形態1にかかる異常検出方法を適用した場合における二次電池の出力電流の1時間毎の電流平均値の時間変化と標準偏差の時間変化を説明するグラフである。6 is a graph for explaining the time change of the current average value and the time change of the standard deviation of the output current of the secondary battery every hour when the abnormality detection method according to the first embodiment is applied. 比較例にかかる異常検出方法を適用した場合における二次電池の出力電流の1時間毎の電流平均値の時間変化と標準偏差の時間変化を説明するグラフである。It is a graph explaining the time change of the electric current average value for every hour of the output current of a secondary battery at the time of applying the abnormality detection method concerning a comparative example, and the time change of a standard deviation. 二次電池の電圧とリーク電流の標準偏差との関係を説明するグラフである。It is a graph explaining the relationship between the voltage of a secondary battery, and the standard deviation of leakage current. 二次電池の温度とリーク電流の標準偏差との関係を説明するグラフである。It is a graph explaining the relationship between the temperature of a secondary battery, and the standard deviation of leakage current.

以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。   Embodiments of the present invention will be described below with reference to the drawings. For clarity of explanation, the following description and drawings are omitted and simplified as appropriate. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted as necessary.

図1に実施の形態1にかかる異常検出装置1のブロック図を示す。図1に示すように、実施の形態1にかかる異常検出装置1は、検査処理部11、充電部12、電流計13、電圧計14、恒温槽15を有する。なお、二次電池10は、異常検出装置1は、これらの構成を用いて二次電池10の異常(例えば、内部の微小短絡故障)の有無を検査する。なお、以下の説明では、二次電池10はリチウムイオン電池であるものとする。また、図1では、二次電池10を恒温槽15の外に出した状態から恒温槽15に入れる様子を示しているが、検査中は二次電池10を恒温槽15に入れたままにして、恒温槽15の温度を検査の段階毎に変化させても構わない。   FIG. 1 is a block diagram of an abnormality detection apparatus 1 according to the first embodiment. As shown in FIG. 1, the abnormality detection device 1 according to the first embodiment includes an inspection processing unit 11, a charging unit 12, an ammeter 13, a voltmeter 14, and a thermostatic chamber 15. In the secondary battery 10, the abnormality detection device 1 uses these configurations to inspect the secondary battery 10 for an abnormality (for example, an internal micro short-circuit failure). In the following description, it is assumed that the secondary battery 10 is a lithium ion battery. Further, FIG. 1 shows a state in which the secondary battery 10 is put into the thermostat 15 from a state where it is out of the thermostat 15, but the secondary battery 10 is kept in the thermostat 15 during the inspection. The temperature of the thermostatic chamber 15 may be changed at each inspection stage.

検査処理部11は、充電部12が二次電池10に対して充放電を行う場合に二次電池10に与える電圧値或いは電流値の制御を行う。検査処理部11は、電圧計14から得た計測結果に応じて充電部12の出力電圧を設定することもできる。また、検査処理部11は、電流計13から得た測定結果に応じて二次電池10の良否判定を行う。   The inspection processing unit 11 controls a voltage value or a current value given to the secondary battery 10 when the charging unit 12 charges / discharges the secondary battery 10. The inspection processing unit 11 can also set the output voltage of the charging unit 12 according to the measurement result obtained from the voltmeter 14. In addition, the inspection processing unit 11 determines the quality of the secondary battery 10 according to the measurement result obtained from the ammeter 13.

充電部12は、二次電池10に対する充放電を行う。ここで、充電部12は、二次電池10に定電流を与えて(電圧は可変)充電を行う定電流充電と、二次電池10に定電流と定電圧を与えて充電を行う定電流定電圧充電と、二次電池10に定電圧を与えて(電流は可変)充電を行う定電圧充電と、を行うことが出来るものとする。   The charging unit 12 charges and discharges the secondary battery 10. Here, the charging unit 12 applies constant current to the secondary battery 10 (voltage is variable) to perform charging, and constant current constant to perform charging by applying constant current and constant voltage to the secondary battery 10. It is assumed that voltage charging and constant voltage charging in which charging is performed by applying a constant voltage to the secondary battery 10 (current is variable) can be performed.

電流計13は、二次電池10の負極と充電部12との間に設けられ、二次電池10が出力する電流の大きさを測定する。電圧計14は、二次電池10の正極と負極との間の電圧を測定する。つまり、電圧計14は、二次電池10が発生する電圧を測定する。   The ammeter 13 is provided between the negative electrode of the secondary battery 10 and the charging unit 12 and measures the magnitude of the current output from the secondary battery 10. The voltmeter 14 measures the voltage between the positive electrode and the negative electrode of the secondary battery 10. That is, the voltmeter 14 measures the voltage generated by the secondary battery 10.

恒温槽15は、庫内を一定の温度の雰囲気に維持する装置である。恒温槽15内に二次電池10を一定時間以上入れると二次電池10の温度を恒温槽15に設定した温度にすることができる。また、恒温槽15の庫内の温度は変更可能である。   The thermostat 15 is a device that maintains the interior of the cabinet in an atmosphere having a constant temperature. When the secondary battery 10 is placed in the thermostat 15 for a predetermined time or more, the temperature of the secondary battery 10 can be set to the temperature set in the thermostat 15. Moreover, the temperature in the chamber of the thermostat 15 can be changed.

続いて、実施の形態1にかかる異常検出装置を用いた異常検出方法について説明する。そこで、実施の形態1にかかる異常検出方法を説明するフローチャートを図2に示す。図2に示すように、実施の形態1にかかる異常検出方法では、二次電池10の検査を開始すると、まず、第1の温度の雰囲気中で二次電池10の電圧を所定の電圧に調整する(ステップS1)。ここで、第1の温度は、室温以上の電圧であり、より好ましくは室温である。第1の温度を室温とすることで、二次電池10の温度を変更するための工程を省略することができる。また、所定の電圧は、1.0V〜3.45Vの範囲内であることが好ましい。定電圧充電時に二次電池10に与える電圧の詳細は後述する。ステップS1の電圧調整工程では、二次電池10に対して、定電圧充電、定電流充電、定電流定電圧充電のいずれかの方法を用いて充電を行う。   Next, an abnormality detection method using the abnormality detection apparatus according to the first embodiment will be described. FIG. 2 is a flowchart for explaining the abnormality detection method according to the first embodiment. As shown in FIG. 2, in the abnormality detection method according to the first embodiment, when the inspection of the secondary battery 10 is started, first, the voltage of the secondary battery 10 is adjusted to a predetermined voltage in the atmosphere at the first temperature. (Step S1). Here, the first temperature is a voltage equal to or higher than room temperature, more preferably room temperature. By setting the first temperature to room temperature, a step for changing the temperature of the secondary battery 10 can be omitted. The predetermined voltage is preferably in the range of 1.0 V to 3.45 V. Details of the voltage applied to the secondary battery 10 during constant voltage charging will be described later. In the voltage adjustment step of step S1, the secondary battery 10 is charged using any one of constant voltage charging, constant current charging, and constant current constant voltage charging.

次いで、実施の形態1にかかる異常検出方法では、二次電池10への充電を停止する(ステップS2)。その後、二次電池10を恒温槽15に入れて、二次電池の温度を第1の温度よりも低い第2の温度にする(ステップS3)。ここで、第2の温度は、10℃以下、より好ましくは0℃である。第2の温度として好ましい温度の詳細は後述する。   Next, in the abnormality detection method according to the first embodiment, charging of the secondary battery 10 is stopped (step S2). Then, the secondary battery 10 is put into the thermostat 15 and the temperature of a secondary battery is made into 2nd temperature lower than 1st temperature (step S3). Here, the second temperature is 10 ° C. or lower, more preferably 0 ° C. Details of the preferable temperature as the second temperature will be described later.

次いで、実施の形態1にかかる異常検出方法では、第2の温度となった二次電池10の電圧を電圧計14により測定し、検査処理部11が充電部12に測定した電圧を二次電池10に与えて充電を行うことを指示する(ステップS4)。そして、二次電池10は、ステップS4で定電圧が印加された状態の二次電池10から出力される電流を電流計13により測定する(ステップS5)。このステップS5で計測される電流値は、二次電池10で発生するリーク電流が主成分となる。検査処理部11は、ステップS5で測定された電流値の収束値に基づき二次電池10の良否判定を行い(ステップS6)、二次電池10の検査を終了する。   Next, in the abnormality detection method according to the first embodiment, the voltage of the secondary battery 10 that has reached the second temperature is measured by the voltmeter 14, and the voltage measured by the inspection processing unit 11 at the charging unit 12 is the secondary battery. 10 to instruct charging (step S4). And the secondary battery 10 measures the electric current output from the secondary battery 10 in the state to which the constant voltage was applied by step S4 with the ammeter 13 (step S5). The current value measured in step S5 is mainly composed of a leakage current generated in the secondary battery 10. The inspection processing unit 11 determines the quality of the secondary battery 10 based on the convergence value of the current value measured in Step S5 (Step S6), and ends the inspection of the secondary battery 10.

ステップS6の良否判定においては、電流の収束値の絶対値に基づく判定(以下、絶対値判定と称す)と、電流の収束値の相対値に基づく判定(以下、相対値判定と称す)が考えられる。絶対値判定では、良品と判定可能な電流の収束値の範囲を設定し、その範囲に基づき良否判定を行う。相対値判定では、製造ロットが同一の二次電池10の電流の収束値を記憶しておき、収束値が他の収束値から外れた二次電池を不良として判定する等の方法で二次電池10の不良を判定する。相対値判定を用いた場合、製造ロット間の自己放電電流のばらつきの影響を排除できるため、より高精度な判定が可能である。   In the quality determination in step S6, determination based on the absolute value of the current convergence value (hereinafter referred to as absolute value determination) and determination based on the relative value of the current convergence value (hereinafter referred to as relative value determination) are considered. It is done. In the absolute value determination, a range of current convergence values that can be determined as non-defective products is set, and quality determination is performed based on the range. In the relative value determination, the secondary battery 10 is stored by storing the convergence value of the current of the secondary battery 10 having the same production lot, and the secondary battery whose convergence value is out of the other convergence values is determined as defective. Ten defects are determined. When the relative value determination is used, it is possible to eliminate the influence of the variation of the self-discharge current between the production lots, and therefore it is possible to make a determination with higher accuracy.

ここで、測定対象の二次電池10の特性について説明する。まず、温度を第1の温度から第2の温度にした二次電池10の電流出力特性について説明する。そこで、図3に実施の形態1にかかる異常検出方法を適用した場合における二次電池10の出力電流の時間変化を説明するグラフを示す。また、図4に、比較例にかかる異常検出方法を適用した場合における二次電池の出力電流の時間変化を説明するグラフを示す。   Here, the characteristics of the secondary battery 10 to be measured will be described. First, the current output characteristics of the secondary battery 10 in which the temperature is changed from the first temperature to the second temperature will be described. FIG. 3 shows a graph for explaining the change over time of the output current of the secondary battery 10 when the abnormality detection method according to the first embodiment is applied. FIG. 4 shows a graph for explaining the time change of the output current of the secondary battery when the abnormality detection method according to the comparative example is applied.

なお、比較例にかかる異常検出方法では、第1の温度で実施した充電処理で印加した定電圧を印加したまま二次電池10の温度を第1の温度から第2の温度に変化させ、第2の温度となった二次電池10の出力電流を測定する異常検出方法である。   In the abnormality detection method according to the comparative example, the temperature of the secondary battery 10 is changed from the first temperature to the second temperature while the constant voltage applied in the charging process performed at the first temperature is applied, This is an abnormality detection method for measuring the output current of the secondary battery 10 having a temperature of 2.

図3に示すように、実施の形態1にかかる異常検出方法では、二次電池10の出力電流を測定開始後、1時間が経過する前に出力電流が安定した状態となる。一方、図4に示す比較例では、二次電池10の出力電流の測定開始後、8時間が経過しても出力電流が安定しない。   As shown in FIG. 3, in the abnormality detection method according to the first embodiment, the output current becomes stable before 1 hour elapses after the measurement of the output current of the secondary battery 10 is started. On the other hand, in the comparative example shown in FIG. 4, the output current is not stable even after 8 hours have elapsed since the measurement of the output current of the secondary battery 10 was started.

これは、二次電池10は、温度が低下すると出力電圧が上昇する特性があるところ、二次電池10の温度を第1の温度から第2の温度へ変化させ、その後に二次電池10の出力電流を計測する期間、二次電池10に定電圧を印加させ続けるためである。二次電池10の出力電圧が温度変化に伴い変化しているのに対して、定電圧を印加し続けると、二次電池10に電圧を定電圧を維持するための放電電流が発生する。このような放電電流の発生を自己放電現象と称す。比較例にかかる異常検出方法を適用した場合、この自己放電現象の影響が収束するまでに実施の形態1にかかる異常検出方法よりも長い時間を要する。   This is because the secondary battery 10 has a characteristic that the output voltage increases when the temperature decreases, so the temperature of the secondary battery 10 is changed from the first temperature to the second temperature, and then the secondary battery 10 This is because the constant voltage is continuously applied to the secondary battery 10 during the period of measuring the output current. While the output voltage of the secondary battery 10 changes with a change in temperature, if a constant voltage is continuously applied, a discharge current for maintaining the voltage at the constant voltage is generated in the secondary battery 10. Generation of such a discharge current is called a self-discharge phenomenon. When the abnormality detection method according to the comparative example is applied, it takes a longer time than the abnormality detection method according to the first embodiment until the influence of the self-discharge phenomenon converges.

一方、実施の形態1にかかる異常検出方法では、電圧を印加することなく二次電池10を第1の温度から第2の温度にする。その後、実施の形態1にかかる異常検出方法では、第2の温度となった二次電池10の電圧を測定し、この測定電圧を定電圧として二次電池10に印加した状態で二次電池10の出力電流を測定する。これにより、実施の形態1にかかる異常検出方法では、自己放電現象の影響が抑制され、出力電流値が収束するまでの時間を短くすることができる。   On the other hand, in the abnormality detection method according to the first embodiment, the secondary battery 10 is changed from the first temperature to the second temperature without applying a voltage. Thereafter, in the abnormality detection method according to the first embodiment, the voltage of the secondary battery 10 that has reached the second temperature is measured, and the secondary battery 10 is applied to the secondary battery 10 as a constant voltage. Measure the output current. Thereby, in the abnormality detection method according to the first embodiment, the influence of the self-discharge phenomenon is suppressed, and the time until the output current value converges can be shortened.

続いて、二次電池10の出力電流のばらつき(標準偏差)について説明する。そこで、図5に実施の形態1にかかる異常検出方法を適用した場合における二次電池の出力電流の1時間毎の電流平均値の時間変化と標準偏差の時間変化を説明するグラフを示す。また、図6に比較例にかかる異常検出方法を適用した場合における二次電池の出力電流の1時間毎の電流平均値の時間変化と標準偏差の時間変化を説明するグラフを示す。なお、図5及び図6に示したグラフは、二次電池10を第2の温度に設定した後に出力電流を測定したときのものである。   Next, the variation (standard deviation) in the output current of the secondary battery 10 will be described. FIG. 5 shows a graph for explaining the time change of the average current value and the time change of the standard deviation for each hour of the output current of the secondary battery when the abnormality detection method according to the first embodiment is applied. FIG. 6 shows a graph for explaining the time change of the average current value and the time change of the standard deviation for each hour of the output current of the secondary battery when the abnormality detection method according to the comparative example is applied. The graphs shown in FIGS. 5 and 6 are obtained when the output current is measured after setting the secondary battery 10 to the second temperature.

図5に示すように、実施の形態1にかかる異常検出方法を用いた場合、二次電池10の出力電流は、電流測定を開始してから1時間経過後から安定した状態を維持し、計測値の標準偏差も0.2以下となっている。一方、図6に示すように、比較例にかかる異常検出方法を用いた場合、時間の経過と共に電流の計測値は安定状態に近づくが、計測値の標準偏差は測定開始後15時間が経過しても0.6以上の値となってしまっている。   As shown in FIG. 5, when the abnormality detection method according to the first embodiment is used, the output current of the secondary battery 10 is measured in a stable state after an hour has elapsed since the start of current measurement. The standard deviation of the value is also 0.2 or less. On the other hand, as shown in FIG. 6, when the abnormality detection method according to the comparative example is used, the measured value of the current approaches a stable state with the passage of time, but the standard deviation of the measured value is 15 hours after the start of measurement. However, the value is 0.6 or more.

実施の形態1にかかる異常検出方法を用いて、測定時に二次電池10に与える電圧値と、第2の温度の設定値とを適切に設定することで、図5のような結果を得ることができる。これは、適切な電圧及び温度を設定することで、二次電池10内の電気化学反応が抑制されるためである。なお、実施の形態1にかかる異常検出方法を適用した場合、第2の温度の二次電池10から出力される出力電流は、リーク電流を主成分とするものであるため、以下では、二次電池10のリーク電流の特性について説明する。   By using the abnormality detection method according to the first embodiment and appropriately setting the voltage value applied to the secondary battery 10 during measurement and the set value of the second temperature, a result as shown in FIG. 5 is obtained. Can do. This is because the electrochemical reaction in the secondary battery 10 is suppressed by setting an appropriate voltage and temperature. Note that when the abnormality detection method according to the first embodiment is applied, the output current output from the secondary battery 10 at the second temperature is mainly composed of a leakage current. The characteristics of the leakage current of the battery 10 will be described.

そこで、二次電池10に与える電圧と温度について以下で説明する。図7に二次電池10の電圧とリーク電流の標準偏差との関係を説明するグラフを示し、図8に二次電池10の温度とリーク電流の標準偏差との関係を説明するグラフを示す。   Therefore, the voltage and temperature applied to the secondary battery 10 will be described below. FIG. 7 shows a graph for explaining the relationship between the voltage of the secondary battery 10 and the standard deviation of the leakage current, and FIG. 8 shows a graph for explaining the relationship between the temperature of the secondary battery 10 and the standard deviation of the leakage current.

図7に示すように、二次電池10は、印加する電圧が3.45V以下となるとリーク電流の標準偏差が1.5以下となる。特に、二次電池10に与える電圧が3.0V以下となる領域においては、リーク電流の標準偏差が0.5以下となるため、よりリーク電流のばらつきが小さくなる。なお、二次電池10に与える電圧の下限は、1.0Vとする。これは、二次電池10に与える電圧が1.0Vを下回ると負極の電位の上昇が大きくなり集電体として使われる銅が溶出してしまうためである。このようなことから、二次電池10に与える電圧は、1.0V〜3.45Vとすることが好ましい。   As shown in FIG. 7, in the secondary battery 10, the standard deviation of the leakage current is 1.5 or less when the applied voltage is 3.45V or less. In particular, in a region where the voltage applied to the secondary battery 10 is 3.0 V or less, the standard deviation of the leakage current is 0.5 or less, so that the variation in leakage current is further reduced. In addition, the minimum of the voltage given to the secondary battery 10 shall be 1.0V. This is because when the voltage applied to the secondary battery 10 is less than 1.0 V, the potential of the negative electrode increases greatly and copper used as a current collector is eluted. For this reason, it is preferable that the voltage applied to the secondary battery 10 is 1.0 V to 3.45 V.

また、図8に示すように、二次電池10の温度は、10℃以下に設定するとリーク電流の標準偏差を0.8以下に抑えることができる。特に、二次電池10の温度を0℃以下に設定するとリーク電流の標準偏差は0.4以下となりより好ましい結果を得ることができる。なお、二次電池10の温度の下限は、−40℃とする。これは、温度が−40℃以下となると二次電池10の電解液が凍結し、微小短絡による電流が流れなくなり、電流の計測値の信頼性が損なわれるためである。   Further, as shown in FIG. 8, when the temperature of the secondary battery 10 is set to 10 ° C. or less, the standard deviation of the leakage current can be suppressed to 0.8 or less. In particular, when the temperature of the secondary battery 10 is set to 0 ° C. or less, the standard deviation of the leakage current becomes 0.4 or less, and a more preferable result can be obtained. In addition, the minimum of the temperature of the secondary battery 10 shall be -40 degreeC. This is because when the temperature is −40 ° C. or lower, the electrolytic solution of the secondary battery 10 is frozen, the current due to the short circuit does not flow, and the reliability of the measured current value is impaired.

上記説明より、実施の形態1にかかる異常検出方法は、第1の温度(例えば、常温)とした二次電池10に対して電圧を所定の電圧に調整する電圧調整工程と、充電を停止した状態で二次電池を第1の温度よりも低い第2の温度(例えば、10℃以下の温度)とする温度調整工程と、第2の温度となった二次電池10の電圧を測定する電圧測定工程と、第2の温度となった二次電池に対して電圧測定工程で測定した電圧を定電圧として印加した充電を行う充電工程と、充電工程中に二次電池10が出力する電流を測定する電流測定工程と、電流測定工程で測定された電流値の収束値に基づき二次電池10の内部短絡の有無を判断する良品判定工程と、を有する。   From the above description, in the abnormality detection method according to the first embodiment, the voltage adjustment step of adjusting the voltage to a predetermined voltage with respect to the secondary battery 10 set to the first temperature (for example, room temperature) and the charging are stopped. A temperature adjusting step for setting the secondary battery to a second temperature lower than the first temperature (for example, a temperature of 10 ° C. or lower) in the state, and a voltage for measuring the voltage of the secondary battery 10 that has reached the second temperature A charging step for charging the secondary battery that has reached the second temperature with the voltage measured in the voltage measuring step applied as a constant voltage, and a current output by the secondary battery 10 during the charging step. A current measuring step for measuring, and a non-defective product determining step for determining the presence or absence of an internal short circuit of the secondary battery 10 based on the convergence value of the current value measured in the current measuring step.

また、実施の形態1にかかる異常検出装置1は、二次電池10に対して充電を行う充電部12と、二次電池10から出力される電流を計測する電流計13と、二次電池の電圧を計測する電圧計14と、充電部12が出力する電圧の設定と、二次電池の良否判断と、を行う検査処理部11と、二次電池10を第1の温度よりも低い第2の温度に設定する恒温槽15と、を有する。そして、実施の形態1にかかる異常検出装置1は、検査処理部11は、充電部12に、第1の温度とした二次電池10に対して電圧を所定の電圧に調整することを指示した後に充電の停止を指示する充電処理と、第2の温度とした二次電池10の電圧値を電圧計14から取得する電圧測定処理と、電圧計14から取得した電圧値を定電圧として二次電池に印加して充電を再開することを充電部12に指示する充電再開処理と、充電再開処理後に二次電池10が出力する電流を測定する電流測定処理と、電流測定処理で測定された電流値の収束値に基づき二次電池の内部短絡の有無を判断する良品判定処理と、を実施する。   The abnormality detection device 1 according to the first embodiment includes a charging unit 12 that charges the secondary battery 10, an ammeter 13 that measures a current output from the secondary battery 10, and a secondary battery. A voltmeter 14 that measures voltage, a setting of a voltage output from the charging unit 12, and a quality determination of the secondary battery, and an inspection processing unit 11 that performs the determination of the quality of the secondary battery, and a second battery 10 that is lower than the first temperature And a constant temperature bath 15 set to a temperature of. Then, in the abnormality detection device 1 according to the first embodiment, the inspection processing unit 11 instructs the charging unit 12 to adjust the voltage to a predetermined voltage with respect to the secondary battery 10 having the first temperature. A charging process for instructing to stop charging later, a voltage measuring process for acquiring the voltage value of the secondary battery 10 at the second temperature from the voltmeter 14, and a secondary using the voltage value acquired from the voltmeter 14 as a constant voltage Charge resumption processing for instructing the charging unit 12 to resume charging by applying to the battery, current measurement processing for measuring the current output from the secondary battery 10 after the charge resumption processing, and current measured by the current measurement processing And a non-defective product determination process for determining the presence or absence of an internal short circuit of the secondary battery based on the convergence value.

つまり、実施の形態1にかかる異常検出装置1及び異常検出方法では、二次電池10の電圧が所定の電圧となるまで充電した後に、電圧を加えない状態で第1の温度から第2の温度に二次電池10の温度を低下させる。そして、低温となった二次電池10の電圧を測定して、測定した電圧を二次電池10に印加した状態で二次電池10の出力電流の大きさを測定する。   That is, in the abnormality detection device 1 and the abnormality detection method according to the first embodiment, after charging until the voltage of the secondary battery 10 reaches a predetermined voltage, the second temperature is changed from the first temperature without applying the voltage. The temperature of the secondary battery 10 is lowered. And the voltage of the secondary battery 10 which became low temperature is measured, and the magnitude of the output current of the secondary battery 10 is measured in a state where the measured voltage is applied to the secondary battery 10.

これにより、二次電池10の自己放電現象が最小限に抑制され、出力電流が収束するまでの時間を削減することができる。このように、出力電流が収束するまでの時間を短縮することで、充電設備、恒温槽を含む検査設備の占有時間を短くすることができる。また、二次電池10の自己放電現象を抑制した検査を行うことで、二次電池10の充放電に必要な電力を削減することができる。   Thereby, the self-discharge phenomenon of the secondary battery 10 is suppressed to the minimum, and the time until the output current converges can be reduced. Thus, by shortening the time until the output current converges, the occupation time of the inspection equipment including the charging equipment and the thermostat can be shortened. Moreover, the electric power required for charging / discharging of the secondary battery 10 can be reduced by performing the test | inspection which suppressed the self-discharge phenomenon of the secondary battery 10. FIG.

また、出力電流の計測時に二次電池10に与える電圧を1.0V〜3.45Vとすることで、二次電池10の電気化学反応を抑制してリーク電流のばらつきを抑制することができる。二次電池10は、低温になるほど電気化学反応が抑制されるが、出力電流の計測時に二次電池10に与える電圧を1.0V〜3.45V(より好ましくは、1.0V〜3.0V)とすることで、二次電池10の電気化学反応が抑制されるため、第2の温度の設定温度を高く設定しても高い検査精度を維持することができる。このように、第2の温度の設定温度を高くすることで、二次電池10を第2の温度にするまでの時間と、二次電池10を第2の温度から第1の温度に戻すまでの時間と、恒温槽15で消費される電力と、を削減することができる。また、第2の温度を高くすることで、結露対策に要するコストも削減することができる。   Further, by setting the voltage applied to the secondary battery 10 at the time of measuring the output current to 1.0 V to 3.45 V, it is possible to suppress the electrochemical reaction of the secondary battery 10 and suppress the variation in the leak current. In the secondary battery 10, the electrochemical reaction is suppressed as the temperature decreases, but the voltage applied to the secondary battery 10 when measuring the output current is 1.0 V to 3.45 V (more preferably, 1.0 V to 3.0 V). ), The electrochemical reaction of the secondary battery 10 is suppressed, so that high inspection accuracy can be maintained even if the set temperature of the second temperature is set high. In this way, by increasing the set temperature of the second temperature, the time until the secondary battery 10 is changed to the second temperature, and until the secondary battery 10 is returned from the second temperature to the first temperature. And the electric power consumed in the thermostat 15 can be reduced. Further, by increasing the second temperature, it is possible to reduce the cost required for countermeasures against condensation.

なお、二次電池10の検査温度となる第2の温度を−40℃〜10℃(より好ましくは−40℃〜−10℃)とすることで、リーク電流のばらつきを更に抑制することができるため、検査精度を向上させることができる。   Note that by setting the second temperature, which is the inspection temperature of the secondary battery 10, to −40 ° C. to 10 ° C. (more preferably −40 ° C. to −10 ° C.), variation in leakage current can be further suppressed. Therefore, inspection accuracy can be improved.

また、実施の形態1にかかる異常検出方法では、第2の温度となった二次電池10を予め設定された電圧値に合わせ込む必要がない。そのため、実施の形態1にかかる異常検出方法を用いることで、二次電池10を予め設定された電圧値に合わせ込むための充放電電力を必要としない。また、二次電池10の充放電工程を省略することで、充放電電流が測定対象のリーク電流に重畳しないため、測定に要する時間を短縮することができる。   Further, in the abnormality detection method according to the first embodiment, it is not necessary to adjust the secondary battery 10 that has reached the second temperature to a preset voltage value. Therefore, by using the abnormality detection method according to the first embodiment, charge / discharge power for adjusting the secondary battery 10 to a preset voltage value is not required. Further, by omitting the charging / discharging process of the secondary battery 10, the charging / discharging current is not superimposed on the leakage current to be measured, so that the time required for measurement can be shortened.

また、実施の形態1にかかる異常検出方法を用いることで、自己放電現象を抑制できるため、リーク電流の測定精度を向上させ、二次電池10の故障判断の精度をたかめることができる。   Moreover, since the self-discharge phenomenon can be suppressed by using the abnormality detection method according to the first embodiment, the measurement accuracy of the leakage current can be improved and the accuracy of the failure determination of the secondary battery 10 can be increased.

また、実施の形態1にかかる異常検出方法では、二次電池10に対して充電を行う第1の温度として室温を設定することが好ましい。これは、室温であれば、恒温槽との温度調節のための設備及び温度調節のための時間を必要としないためである。   In the abnormality detection method according to the first embodiment, it is preferable to set room temperature as the first temperature at which the secondary battery 10 is charged. This is because if it is room temperature, the equipment for temperature control with a thermostat and the time for temperature control are not required.

上記説明は、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。   In the above description, the invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited to the embodiments already described, and various modifications can be made without departing from the scope of the invention. It goes without saying that changes are possible.

1 異常検出装置
10 二次電池
11 検査処理部
12 充電部
13 電流計
14 電圧計
15 恒温槽
DESCRIPTION OF SYMBOLS 1 Abnormality detection apparatus 10 Secondary battery 11 Inspection processing part 12 Charging part 13 Ammeter 14 Voltmeter 15 Constant temperature bath

Claims (4)

二次電池の内部短絡の有無を検査する異常検出方法であって、
第1の温度とした二次電池に対して電圧を所定の電圧に調整する電圧調整工程と、
前記充電を停止した状態で前記二次電池を前記第1の温度よりも低い第2の温度とする温度調整工程と、
前記第2の温度となった前記二次電池の電圧を測定する電圧測定工程と、
前記第2の温度となった前記二次電池に対して前記電圧測定工程で測定した電圧を定電圧として印加した充電を行う充電工程と、
前記充電工程中に前記二次電池が出力する電流を測定する電流測定工程と、
前記電流測定工程で測定された電流値の収束値に基づき前記二次電池の内部短絡の有無を判断する良品判定工程と、
を有する異常検出方法。
An abnormality detection method for inspecting whether there is an internal short circuit in a secondary battery,
A voltage adjustment step of adjusting the voltage to a predetermined voltage for the secondary battery having the first temperature;
A temperature adjusting step of setting the secondary battery to a second temperature lower than the first temperature in a state where the charging is stopped;
A voltage measuring step of measuring the voltage of the secondary battery that has reached the second temperature;
A charging step of performing charging by applying the voltage measured in the voltage measuring step as a constant voltage to the secondary battery that has reached the second temperature;
A current measuring step of measuring a current output from the secondary battery during the charging step;
A non-defective product determining step for determining the presence or absence of an internal short circuit of the secondary battery based on the convergence value of the current value measured in the current measuring step;
An abnormality detection method comprising:
前記第1の温度は、室温であり、
前記第2の温度は、−40℃〜0℃の範囲内である請求項1に記載の異常検出方法。
The first temperature is room temperature;
The abnormality detection method according to claim 1, wherein the second temperature is within a range of -40 ° C to 0 ° C.
前記電圧調整工程において前記二次電池に印加する前記所定の電圧は1.0V〜3.0Vの範囲内の電圧である請求項1又は2に記載の異常検出方法。   The abnormality detection method according to claim 1 or 2, wherein the predetermined voltage applied to the secondary battery in the voltage adjusting step is a voltage within a range of 1.0V to 3.0V. 二次電池に対して充電を行う充電部と、
前記二次電池から出力される電流を計測する電流計と、
前記二次電池の電圧を計測する電圧計と、
前記充電部が出力する電圧の設定と、前記二次電池の良否判断と、を行う検査処理部と、
前記二次電池を第1の温度よりも低い第2の温度に設定する恒温槽と、を有し、
前記検査処理部は、
前記充電部に、前記第1の温度とした二次電池に対して電圧を所定の電圧に調整することを指示した後に充電の停止を指示する充電処理と、
前記第2の温度とした二次電池の電圧値を前記電圧計から取得する電圧測定処理と、
前記電圧計から取得した電圧値を定電圧として前記二次電池に印加して充電を再開することを前記充電部に指示する充電再開処理と、
前記充電再開処理後に前記二次電池が出力する電流を測定する電流測定処理と、
前記電流測定処理で測定された電流値の収束値に基づき前記二次電池の内部短絡の有無を判断する良品判定処理と、を実施する異常検出装置。
A charging unit for charging the secondary battery;
An ammeter for measuring a current output from the secondary battery;
A voltmeter for measuring the voltage of the secondary battery;
An inspection processing unit for setting a voltage output by the charging unit and determining whether the secondary battery is good or bad;
A thermostat for setting the secondary battery to a second temperature lower than the first temperature,
The inspection processing unit
A charging process instructing the charging unit to stop charging after instructing the secondary battery having the first temperature to adjust the voltage to a predetermined voltage;
A voltage measurement process for obtaining a voltage value of the secondary battery at the second temperature from the voltmeter;
Charge resumption processing for instructing the charging unit to resume charging by applying a voltage value acquired from the voltmeter to the secondary battery as a constant voltage;
A current measurement process for measuring a current output from the secondary battery after the charge resumption process;
And a non-defective product determination process for determining whether there is an internal short circuit of the secondary battery based on a convergence value of the current value measured in the current measurement process.
JP2014226626A 2014-11-07 2014-11-07 Abnormality detection method and abnormality detection device for secondary battery Active JP6252439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226626A JP6252439B2 (en) 2014-11-07 2014-11-07 Abnormality detection method and abnormality detection device for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226626A JP6252439B2 (en) 2014-11-07 2014-11-07 Abnormality detection method and abnormality detection device for secondary battery

Publications (2)

Publication Number Publication Date
JP2016091872A true JP2016091872A (en) 2016-05-23
JP6252439B2 JP6252439B2 (en) 2017-12-27

Family

ID=56016340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226626A Active JP6252439B2 (en) 2014-11-07 2014-11-07 Abnormality detection method and abnormality detection device for secondary battery

Country Status (1)

Country Link
JP (1) JP6252439B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081746A (en) * 2016-11-14 2018-05-24 トヨタ自動車株式会社 Method for inspecting secondary battery
CN109244573A (en) * 2017-07-10 2019-01-18 丰田自动车株式会社 The test for short-circuit method of electric energy storage device and the manufacturing method of electric energy storage device
JP2019032198A (en) * 2017-08-07 2019-02-28 トヨタ自動車株式会社 Power storage device inspection method and manufacturing method
CN109959873A (en) * 2017-12-25 2019-07-02 丰田自动车株式会社 The inspection method and manufacturing method of electric energy storage device
KR20190077231A (en) * 2017-12-25 2019-07-03 도요타지도샤가부시키가이샤 Inspection method and manufacturing method of electrical storage device
JP2019113469A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
KR20190096793A (en) * 2018-02-09 2019-08-20 도요타 지도샤(주) Inspection apparatus of electrical storage device
JP2020020691A (en) * 2018-08-01 2020-02-06 トヨタ自動車株式会社 Inspection device for power storage device
JP2020030916A (en) * 2018-08-21 2020-02-27 トヨタ自動車株式会社 Inspection method and manufacturing method of power storage device
JP2020042951A (en) * 2018-09-07 2020-03-19 トヨタ自動車株式会社 Inspection method of power storage device
WO2020155233A1 (en) * 2019-01-28 2020-08-06 东北大学 Method for diagnosing external short circuit fault of lithium-ion battery pack on basis of two-stage model prediction
JP2021034348A (en) * 2019-08-29 2021-03-01 プライムアースEvエナジー株式会社 Inspection method of power storage device and manufacturing method of power storage device
JP2021105557A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Inspection method of power storage device
JP2022113499A (en) * 2021-01-25 2022-08-04 プライムプラネットエナジー&ソリューションズ株式会社 Self-discharge inspection method for electricity storage device and method for manufacturing electricity storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097857A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2008243440A (en) * 2007-03-26 2008-10-09 Nissan Motor Co Ltd Abnormality detecting device of secondary battery and abnormality detecting method of battery
JP2011069775A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Method of inspecting secondary battery
US20110298417A1 (en) * 2010-06-08 2011-12-08 Tesla Motors, Inc. Methodology for charging batteries safely
JP2013118048A (en) * 2011-12-01 2013-06-13 Toyota Motor Corp Secondary battery manufacturing method
JP2014207154A (en) * 2013-04-12 2014-10-30 トヨタ自動車株式会社 Method for inspecting nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097857A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2008243440A (en) * 2007-03-26 2008-10-09 Nissan Motor Co Ltd Abnormality detecting device of secondary battery and abnormality detecting method of battery
JP2011069775A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Method of inspecting secondary battery
US20110298417A1 (en) * 2010-06-08 2011-12-08 Tesla Motors, Inc. Methodology for charging batteries safely
JP2013118048A (en) * 2011-12-01 2013-06-13 Toyota Motor Corp Secondary battery manufacturing method
JP2014207154A (en) * 2013-04-12 2014-10-30 トヨタ自動車株式会社 Method for inspecting nonaqueous electrolyte secondary battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081746A (en) * 2016-11-14 2018-05-24 トヨタ自動車株式会社 Method for inspecting secondary battery
CN109244573A (en) * 2017-07-10 2019-01-18 丰田自动车株式会社 The test for short-circuit method of electric energy storage device and the manufacturing method of electric energy storage device
JP2019016558A (en) * 2017-07-10 2019-01-31 トヨタ自動車株式会社 Method for inspecting short circuit of power storage device and method for manufacturing power storage device
CN109244573B (en) * 2017-07-10 2021-11-05 丰田自动车株式会社 Short-circuit inspection method for power storage device and manufacturing method for power storage device
JP2019032198A (en) * 2017-08-07 2019-02-28 トヨタ自動車株式会社 Power storage device inspection method and manufacturing method
KR102113722B1 (en) * 2017-12-25 2020-05-21 도요타지도샤가부시키가이샤 Inspection method and manufacturing method of electrical storage device
CN109959873A (en) * 2017-12-25 2019-07-02 丰田自动车株式会社 The inspection method and manufacturing method of electric energy storage device
KR20190077231A (en) * 2017-12-25 2019-07-03 도요타지도샤가부시키가이샤 Inspection method and manufacturing method of electrical storage device
US11193980B2 (en) 2017-12-25 2021-12-07 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of electrical storage device
EP3517986A3 (en) * 2017-12-25 2019-08-21 Toyota Jidosha Kabushiki Kaisha Inspection method and manufacturing method of electrical storage device
CN109959873B (en) * 2017-12-25 2021-06-15 丰田自动车株式会社 Inspection method and manufacturing method for electricity storage device
JP2019113469A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
KR102125919B1 (en) * 2018-02-09 2020-06-23 도요타 지도샤(주) Inspection apparatus of electrical storage device
KR20190096793A (en) * 2018-02-09 2019-08-20 도요타 지도샤(주) Inspection apparatus of electrical storage device
US10884064B2 (en) 2018-02-09 2021-01-05 Toyota Jidosha Kabushikt Kaisha Inspection apparatus of electrical storage device
JP2020020691A (en) * 2018-08-01 2020-02-06 トヨタ自動車株式会社 Inspection device for power storage device
JP2020030916A (en) * 2018-08-21 2020-02-27 トヨタ自動車株式会社 Inspection method and manufacturing method of power storage device
JP7040369B2 (en) 2018-09-07 2022-03-23 トヨタ自動車株式会社 Inspection method of power storage device
JP2020042951A (en) * 2018-09-07 2020-03-19 トヨタ自動車株式会社 Inspection method of power storage device
WO2020155233A1 (en) * 2019-01-28 2020-08-06 东北大学 Method for diagnosing external short circuit fault of lithium-ion battery pack on basis of two-stage model prediction
JP2021034348A (en) * 2019-08-29 2021-03-01 プライムアースEvエナジー株式会社 Inspection method of power storage device and manufacturing method of power storage device
JP7074731B2 (en) 2019-08-29 2022-05-24 プライムアースEvエナジー株式会社 Inspection method of power storage device and manufacturing method of power storage device
JP2021105557A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Inspection method of power storage device
JP7347208B2 (en) 2019-12-26 2023-09-20 トヨタ自動車株式会社 Inspection method for energy storage devices
JP2022113499A (en) * 2021-01-25 2022-08-04 プライムプラネットエナジー&ソリューションズ株式会社 Self-discharge inspection method for electricity storage device and method for manufacturing electricity storage device
JP7278312B2 (en) 2021-01-25 2023-05-19 プライムプラネットエナジー&ソリューションズ株式会社 SELF-DISCHARGE INSPECTION METHOD FOR ELECTRICITY STORAGE DEVICE AND METHOD FOR MANUFACTURING ELECTRICITY STORAGE DEVICE

Also Published As

Publication number Publication date
JP6252439B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6252439B2 (en) Abnormality detection method and abnormality detection device for secondary battery
US11940501B2 (en) Method and apparatus for diagnosing low voltage of secondary battery cell
US10539622B2 (en) Inspection method and manufacturing method for electric power storage device
US10627448B2 (en) Apparatus and method for detecting battery cell failure due to unknown discharge current
KR20190077231A (en) Inspection method and manufacturing method of electrical storage device
US10444294B2 (en) Electricity storage device production method and structure body inspection device
JP2012141166A (en) Self discharge defect detection device and self discharge defect detection method
JP6202032B2 (en) Secondary battery inspection method
JP2016122531A (en) Voltage adjusting method for secondary battery
JP6090093B2 (en) Secondary battery inspection method and inspection device
US10847849B2 (en) Inspection method of electrical storage device and manufacturing method thereof
JP2008243440A (en) Abnormality detecting device of secondary battery and abnormality detecting method of battery
KR20160105349A (en) Inspection method of secondary battery
JP6308145B2 (en) Secondary battery inspection method
JP2011222358A (en) Charging method of lithium ion secondary battery
KR20150144558A (en) System for checking a fail in a secondary battery and method thereof
JP2014134395A (en) Short-circuit inspection method of secondary battery
JP2014157717A (en) Battery system
JP2013185861A (en) Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery
US11609260B2 (en) Method for inspecting insulation of a secondary battery
KR20170090471A (en) Method and device for detecting an overcharging of an accumulator of a battery
JP2015032517A (en) Manufacturing method of lithium ion secondary battery
JP2020020691A (en) Inspection device for power storage device
KR101776507B1 (en) Method and system for charging battery
JP2017194282A (en) Charge amount calculation device, computer program, and charge amount calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R151 Written notification of patent or utility model registration

Ref document number: 6252439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151