JP6308145B2 - Secondary battery inspection method - Google Patents

Secondary battery inspection method Download PDF

Info

Publication number
JP6308145B2
JP6308145B2 JP2015039177A JP2015039177A JP6308145B2 JP 6308145 B2 JP6308145 B2 JP 6308145B2 JP 2015039177 A JP2015039177 A JP 2015039177A JP 2015039177 A JP2015039177 A JP 2015039177A JP 6308145 B2 JP6308145 B2 JP 6308145B2
Authority
JP
Japan
Prior art keywords
secondary battery
inspection method
voltage
aging
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015039177A
Other languages
Japanese (ja)
Other versions
JP2016162559A (en
Inventor
陽祐 志村
陽祐 志村
友秀 角
友秀 角
嘉夫 松山
嘉夫 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015039177A priority Critical patent/JP6308145B2/en
Priority to US15/053,525 priority patent/US10126373B2/en
Priority to CN201610105618.3A priority patent/CN105929333B/en
Priority to KR1020160023643A priority patent/KR101733073B1/en
Publication of JP2016162559A publication Critical patent/JP2016162559A/en
Application granted granted Critical
Publication of JP6308145B2 publication Critical patent/JP6308145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、二次電池の検査方法に関し、例えば、低温出力を保証するための低温出力検査を有する二次電池の検査方法に関する。   The present invention relates to a secondary battery inspection method, for example, a secondary battery inspection method having a low temperature output inspection for guaranteeing a low temperature output.

二次電池の検査工程では、二次電池が低温環境下に置かれた場合の出力能力を保証するための低温出力検査がある。特許文献1では、二次電池の充電率(SOC:State Of Charge)を3〜15%に設定するステップと、10℃〜30℃の環境下においてSOCが3〜15%の二次電池の抵抗を測定するステップとを有する。また、特許文献1に記載の技術では、エージング工程の後に測定ステップを行い、当該測定ステップの測定結果に基づき低温出力検査を行う。   In the inspection process of the secondary battery, there is a low temperature output inspection for guaranteeing the output capability when the secondary battery is placed in a low temperature environment. In Patent Document 1, a step of setting the state of charge (SOC) of the secondary battery to 3 to 15% and the resistance of the secondary battery having an SOC of 3 to 15% in an environment of 10 to 30 ° C Measuring. In the technique described in Patent Document 1, a measurement step is performed after the aging process, and a low-temperature output inspection is performed based on the measurement result of the measurement step.

特開2013−084508号公報JP 2013-084508 A

しかしながら、エージング工程の後に低温出力検査を行った場合、SEI被膜の形成反応が完了した後の電圧降下量を元に低温出力検査を行うため、測定される二次電池の抵抗(例えば、反応抵抗)が小さく、測定精度を十分に確保出来ない問題がある。   However, when the low-temperature output inspection is performed after the aging process, the low-temperature output inspection is performed based on the amount of voltage drop after the SEI film formation reaction is completed. ) Is small, and there is a problem that sufficient measurement accuracy cannot be secured.

本発明は、上記事情に鑑みてなされたものであり、低温出力検査の精度を向上させることを目的とするものである。   The present invention has been made in view of the above circumstances, and aims to improve the accuracy of low-temperature output inspection.

本発明にかかる二次電池の検査方法の一態様は、二次電池の検査方法であって、検査対象セルを予め定められた所定の電圧まで充電する充電工程と、前記所定の電圧以下の電圧で放電を行い、前記放電の前後の電圧降下量を算出する電圧降下量算出工程と、前記電圧降下量が閾値以下である場合に良品と判定する良品判定工程と、前記良品判定工程後にエージングを行うエージング工程と、を有する。   One aspect of the inspection method for a secondary battery according to the present invention is a method for inspecting a secondary battery, a charging step of charging a cell to be inspected to a predetermined voltage, and a voltage equal to or lower than the predetermined voltage. A voltage drop amount calculating step for calculating a voltage drop amount before and after the discharge, a non-defective product determining step for determining a non-defective product when the voltage drop amount is equal to or less than a threshold value, and aging after the non-defective product determining step. An aging step to be performed.

本発明にかかる二次電池の検査方法では、エージング工程を行う前に二次電池を放電させたときの電圧降下量を測定し、当該測定結果に基づき低温出力検査を行う。これにより、本発明にかかる二次電池の検査方法では、SEI被膜の形成反応が完了する前の電圧降下量をもとに低温出力検査を行うため、測定される反応抵抗が大きくなり、二次電池の反応抵抗と低温出力との相関を高くすることができる。   In the inspection method of the secondary battery according to the present invention, the amount of voltage drop when the secondary battery is discharged is measured before the aging process is performed, and the low temperature output inspection is performed based on the measurement result. Thereby, in the inspection method of the secondary battery according to the present invention, since the low temperature output inspection is performed based on the voltage drop amount before the formation reaction of the SEI film is completed, the measured reaction resistance increases, The correlation between the battery reaction resistance and the low-temperature output can be increased.

本発明にかかる二次電池の検査方法によれば、低温出力検査の測定精度を向上させることができる。   According to the secondary battery inspection method of the present invention, the measurement accuracy of the low-temperature output inspection can be improved.

実施の形態1にかかる二次電池の検査方法のフローチャートである。3 is a flowchart of a secondary battery inspection method according to the first exemplary embodiment; 実施の形態1にかかる二次電池のcole−coleプロットを示すグラフである。3 is a graph showing a colle-coll plot of the secondary battery according to the first exemplary embodiment; 実施の形態1にかかる二次電池の検査方法における代用特性と低温出力との相関関係を説明するグラフである。3 is a graph for explaining a correlation between a substitute characteristic and a low-temperature output in the secondary battery inspection method according to the first embodiment; 実施の形態1にかかる二次電池の検査方法において二次電池に設定する測定電圧の違いによるcole−coleプロットの違いを示すグラフである。4 is a graph showing a difference in a colle-coll plot due to a difference in measurement voltage set for a secondary battery in the secondary battery inspection method according to the first exemplary embodiment; 実施の形態1にかかる二次電池の検査方法において二次電池に設定する測定電圧と、低温出力との相関係数と、の関係を説明するグラフである。4 is a graph for explaining a relationship between a measurement voltage set for a secondary battery and a correlation coefficient between low temperature outputs in the secondary battery inspection method according to the first exemplary embodiment; 実施の形態1にかかる二次電池の検査方法において二次電池に設定する充電率と、低温出力との相関係数と、の関係を説明するグラフである。4 is a graph for explaining a relationship between a charging rate set for a secondary battery and a correlation coefficient between low temperature outputs in the secondary battery inspection method according to the first exemplary embodiment; 実施の形態1にかかる二次電池の検査方法における初充電容量とエージング後の区間容量との関係を説明するグラフである。6 is a graph for explaining the relationship between the initial charge capacity and the section capacity after aging in the secondary battery inspection method according to the first embodiment; 実施の形態1にかかる二次電池の検査方法におけるエージング温度と代用特性のばらつきとの関係を説明するグラフである。4 is a graph for explaining a relationship between an aging temperature and a variation in substitute characteristics in the secondary battery inspection method according to the first embodiment; 比較例にかかる二次電池の検査方法のフローチャートである。It is a flowchart of the inspection method of the secondary battery concerning a comparative example. 実施の形態1にかかる二次電池の検査方法における二次電池のcole−coleプロットと、比較例にかかる二次電池の検査方法における二次電池のcole−coleプロットと、を比較する図である。FIG. 4 is a diagram for comparing a secondary battery call-core plot in the secondary battery inspection method according to the first embodiment and a secondary battery call-core plot in the secondary battery inspection method according to the comparative example; . 比較例にかかる二次電池の検査方法における代用特性と低温出力との相関関係を説明するグラフである。It is a graph explaining the correlation with the substitute characteristic and low-temperature output in the inspection method of the secondary battery concerning a comparative example. 実施の形態1にかかる二次電池の検査方法の検査時間を説明する検査工程中の二次電池の電圧変化を示すグラフである。4 is a graph illustrating a change in voltage of the secondary battery during an inspection process for explaining an inspection time of the secondary battery inspection method according to the first embodiment;

以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。   Embodiments of the present invention will be described below with reference to the drawings. For clarity of explanation, the following description and drawings are omitted and simplified as appropriate. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted as necessary.

実施の形態1にかかる二次電池の検査方法において、検査対象とする二次電池は、例えば、リチウムイオン電池である。そこで、以下の説明では、検査する二次電池は、リチウムイオン電池であるものとして説明を行う。   In the secondary battery inspection method according to the first embodiment, the secondary battery to be inspected is, for example, a lithium ion battery. Therefore, in the following description, the secondary battery to be inspected is described as being a lithium ion battery.

図1に実施の形態1にかかる二次電池の検査方法のフローチャートを示す。図1に示すように、実施の形態1にかかる二次電池の検査方法では、まず、検査対象セル(例えば、二次電池)の電圧が予め定められた所定の電圧(以下の説明では、測定電圧と称す)になるまで二次電池を充電する充電工程S1を行う。この測定電圧は、二次電池の低温出力と後述する低温出力特性検査工程S2における電圧降下量との相関係数が0.8以上となる二次電池の電圧、又は、二次電池の低温出力と低温出力特性検査工程S2における電圧降下量との相関係数が0.7以上となる二次電池の充電率に基づき決定される。   FIG. 1 is a flowchart of a secondary battery inspection method according to the first embodiment. As shown in FIG. 1, in the secondary battery inspection method according to the first embodiment, first, a voltage of an inspection target cell (for example, a secondary battery) is set to a predetermined voltage (in the following description, measured) A charging step S1 for charging the secondary battery is performed until the voltage reaches a voltage. This measured voltage is the voltage of the secondary battery at which the correlation coefficient between the low temperature output of the secondary battery and the voltage drop amount in the low temperature output characteristic inspection step S2 described later is 0.8 or the low temperature output of the secondary battery. And the charging rate of the secondary battery in which the correlation coefficient between the voltage drop amount in the low temperature output characteristic inspection step S2 is 0.7 or more.

次いで、実施の形態1にかかる二次電池の検査方法では、低温出力特性の検査を行う低温出力特性検査工程S2を行う。この低温出力特性検査工程S2では、まず、測定電圧以下の電圧で二次電池を放電させ、放電の前後の電圧降下量を算出する電圧降下量算出工程が含まれる。また、低温出力特性検査工程S2における放電工程では、定電流による放電を行う。低温出力特性検査工程S2では、放電に利用した定電流の大きさと放電の前後の電圧降下量とに基づき二次電池の反応抵抗を算出することができる。しかしながら、実施の形態1にかかる二次電池の検査方法では、放電に用いる定電流の大きさが予め決められているため、電圧降下量のみで後述する良品判定を行う。   Next, in the secondary battery inspection method according to the first embodiment, a low-temperature output characteristic inspection step S <b> 2 for performing inspection of low-temperature output characteristics is performed. The low temperature output characteristic inspection step S2 includes a voltage drop amount calculating step of first discharging the secondary battery at a voltage equal to or lower than the measurement voltage and calculating a voltage drop amount before and after the discharge. Further, in the discharge process in the low-temperature output characteristic inspection process S2, discharging with a constant current is performed. In the low temperature output characteristic inspection step S2, the reaction resistance of the secondary battery can be calculated based on the magnitude of the constant current used for the discharge and the amount of voltage drop before and after the discharge. However, in the secondary battery inspection method according to the first embodiment, since the magnitude of the constant current used for the discharge is determined in advance, the non-defective product determination described later is performed based only on the voltage drop amount.

次いで、実施の形態1にかかる二次電池の検査方法では、電圧降下量が閾値以下である場合に良品と判定する良品判定工程S3を行う。電圧降下量が閾値以下であるということは、二次電池の反応抵抗が十分に小さく低温出力能力に問題がないと考えられるためである。良品判定工程S3で検査対象の二次電池が不良品であると判断された場合、その時点で検査工程を終了する。一方、良品判定工程S3で検査対象の二次電池が良品であると判断された場合、容量確認工程S4を行う。   Next, in the secondary battery inspection method according to the first exemplary embodiment, a non-defective product determination step S3 is performed in which a non-defective product is determined when the voltage drop amount is equal to or less than a threshold value. The voltage drop amount being equal to or less than the threshold value is because the reaction resistance of the secondary battery is sufficiently small and it is considered that there is no problem in the low-temperature output capability. If it is determined in the non-defective product determination step S3 that the secondary battery to be inspected is a defective product, the inspection step is terminated at that time. On the other hand, when it is determined in the non-defective product determination step S3 that the secondary battery to be inspected is a non-defective product, the capacity confirmation step S4 is performed.

容量確認工程S4では、二次電池をエージングさせる電圧まで上昇させるまでの充電処理で消費された電流に基づき二次電池の電池容量を確認する。そして、容量確認工程S4で確認された電池容量が予め設定された規格値の範囲内であれば良品と判断する良品判定工程S5を行う。この良品判定工程S5において二次電池が不良品であると判断された場合、その時点で検査工程を終了する。一方、良品判定工程S5で検査対象の二次電池が良品であると判断された場合、エージング工程S6を行う。   In the capacity confirmation step S4, the battery capacity of the secondary battery is confirmed based on the current consumed in the charging process until the voltage is increased to a voltage for aging the secondary battery. Then, a non-defective product determination step S5 is performed in which the battery capacity confirmed in the capacity confirmation step S4 is determined to be non-defective if the battery capacity is within a preset standard value range. When it is determined that the secondary battery is defective in the non-defective product determination step S5, the inspection process is terminated at that time. On the other hand, when it is determined in the non-defective product determination step S5 that the secondary battery to be inspected is a non-defective product, an aging step S6 is performed.

エージング工程S6では、二次電池を所定の電圧でエージング処理する。また、エージング工程S6では、複数の二次電池の温度差が予め設定した温度範囲内となるように温度制御する。ここで、この温度範囲は、基準温度に対して−3℃〜+3℃の範囲で設定されることが好ましい。   In the aging step S6, the secondary battery is aged at a predetermined voltage. In the aging step S6, the temperature is controlled so that the temperature difference between the plurality of secondary batteries is within a preset temperature range. Here, this temperature range is preferably set in a range of −3 ° C. to + 3 ° C. with respect to the reference temperature.

上述したように、実施の形態1にかかる二次電池の検査方法では、エージング工程S6を行う前に低温出力特性検査工程S2を行う。二次電池は、エージング工程S6を経ることで活性化されて使用可能となるが、活性化されることで反応抵抗が小さくなるという特徴がある。つまり、実施の形態1にかかる二次電池の検査方法では、エージング工程S6の前に容量確認工程S4を行うことで、大きな反応抵抗を測定できる。以下では、低温出力特性検査工程S2、充電工程S1の測定電圧、容量確認工程S4、エージング工程S6についてより詳細に説明する。   As described above, in the secondary battery inspection method according to the first embodiment, the low temperature output characteristic inspection step S2 is performed before the aging step S6. The secondary battery is activated through the aging step S6 and can be used. However, the activated secondary battery has a feature that the reaction resistance is reduced. That is, in the secondary battery inspection method according to the first embodiment, the large reaction resistance can be measured by performing the capacity confirmation step S4 before the aging step S6. Hereinafter, the low-temperature output characteristic inspection step S2, the measurement voltage of the charging step S1, the capacity confirmation step S4, and the aging step S6 will be described in more detail.

まず、低温出力特性検査工程S2について詳細に説明する。そこで、図2に実施の形態1にかかる二次電池のcole−coleプロットを示すグラフを示す。cole−coleプロットは、複素インピーダンス平面プロットであり、測定対象がコンデンサ成分を含んでいると、プロットが半円を描き、その実軸(横軸)を切る点が二次電池の反応抵抗に相当する。図2に示す例でも、完全な半円ではないもののプロットは半円を描く。そして、その半円の始点と、半円が切れる点との間の抵抗値を以下では代用特性と称す。詳しくは後述するが、エージング工程S6の前に低温出力特性検査工程S2を行うことで、大きな値の代用特性を測定することができる。   First, the low temperature output characteristic inspection step S2 will be described in detail. FIG. 2 is a graph showing a colle-core plot of the secondary battery according to the first embodiment. The Cole-Cole plot is a complex impedance plane plot. When the measurement target includes a capacitor component, the plot draws a semicircle and the point that cuts the real axis (horizontal axis) corresponds to the reaction resistance of the secondary battery. . In the example shown in FIG. 2, the plot draws a semicircle although it is not a complete semicircle. The resistance value between the starting point of the semicircle and the point at which the semicircle is cut is hereinafter referred to as substitute characteristics. As will be described in detail later, by performing the low temperature output characteristic inspection step S2 before the aging step S6, it is possible to measure a substitute characteristic having a large value.

また、この代用特性は、二次電池の低温出力と相関関係を有する。そこで、図3に実施の形態1にかかる二次電池の検査方法における代用特性と低温出力との相関関係を説明するグラフを示す。図3に示すように、実施の形態1にかかる二次電池の検査方法では、相関係数Rが0.919と高い値を示す。 Further, this substitute characteristic has a correlation with the low temperature output of the secondary battery. FIG. 3 is a graph for explaining the correlation between the substitute characteristics and the low-temperature output in the secondary battery inspection method according to the first embodiment. As shown in FIG. 3, the inspection method of a secondary battery according to the first embodiment, showing a high value of the correlation coefficient R 2 is 0.919.

続いて、充電工程S1の測定電圧について説明する。二次電池は、測定電圧の大きさにより測定できる代用特性の大きさが大きく異なる。そこで、図4に実施の形態1にかかる二次電池の検査方法において二次電池に設定する測定電圧の違いによるcole−coleプロットの違いを示すグラフを示す。図4に示すように、cole−coleプロットの半円は、測定電圧が低いほど大きくなる。   Then, the measurement voltage of charge process S1 is demonstrated. Secondary batteries vary greatly in the magnitude of substitute characteristics that can be measured depending on the magnitude of the measurement voltage. FIG. 4 is a graph showing the difference in the colle-coll plot due to the difference in the measurement voltage set for the secondary battery in the secondary battery inspection method according to the first embodiment. As shown in FIG. 4, the semicircle of the colle-coll plot becomes larger as the measurement voltage is lower.

ここで、当該測定電圧と、図3で説明した相関係数Rとの関係について説明する。図5に実施の形態1にかかる二次電池の検査方法において二次電池に設定する測定電圧と、低温出力との相関係数と、の関係を説明するグラフを示す。図5では、測定時の電池電圧を横軸にとり、縦軸に各測定電圧において得られた代用特性と低温出力との相関係数を示した。図5に示すように、0.8以上の相関係数Rを得ようとした場合、測定電圧としては3.44V以下の電圧としなけれならない。そこで、実施の形態1にかかる二次電池の検査方法では、測定電圧が3.44V以下の電圧の領域であれば検査可能な測定電圧であるとする。 Here, the relationship between the measured voltage and the correlation coefficient R 2 described in FIG. 3 will be described. FIG. 5 shows a graph for explaining the relationship between the measurement voltage set in the secondary battery and the correlation coefficient between the low temperature output in the secondary battery inspection method according to the first embodiment. In FIG. 5, the horizontal axis represents the battery voltage at the time of measurement, and the vertical axis represents the correlation coefficient between the substitute characteristics and the low temperature output obtained at each measured voltage. As shown in FIG. 5, when obtaining a 0.8 or more correlation coefficients R 2, it does not have the following voltage 3.44V is used as a measuring voltage. Therefore, in the secondary battery inspection method according to the first embodiment, it is assumed that the measurement voltage can be inspected if the measurement voltage is in the region of 3.44 V or less.

測定電圧は、図5に示すように、二次電池に与える絶対的な電圧として設定することも可能であるが、二次電池の充電率(SOC:State Of Charge)から設定することもできる。そこで、図6に実施の形態1にかかる二次電池の検査方法において二次電池に設定する充電率と、低温出力との相関係数と、の関係を説明するグラフを示す。図6に示すように、二次電池が出荷可能な状態であるときのSOCが15%未満となる電圧に二次電池の測定電圧を設定すると、相関係数Rとして0.7以上の値を得ることができる。つまり、実施の形態1にかかる二次電池の検査方法では、測定電圧としてSOCが15%未満となる電圧に相当する電圧を設定可能とすることもできる。 As shown in FIG. 5, the measurement voltage can be set as an absolute voltage applied to the secondary battery, but can also be set from the state of charge (SOC) of the secondary battery. FIG. 6 shows a graph for explaining the relationship between the charging rate set for the secondary battery and the correlation coefficient between the low temperature output in the secondary battery inspection method according to the first embodiment. As shown in FIG. 6, when the measurement voltage of the secondary battery is set to a voltage at which the SOC is less than 15% when the secondary battery is ready for shipment, a value of 0.7 or more as the correlation coefficient R 2 Can be obtained. That is, in the secondary battery inspection method according to the first embodiment, a voltage corresponding to a voltage at which the SOC is less than 15% can be set as the measurement voltage.

続いて、容量確認工程S4について詳細に説明する。上述したように、容量確認工程S4では、二次電池をエージングさせる電圧まで上昇させるまでの充電処理で消費された電流に基づき二次電池の電池容量を確認する。そこで、エージング前の状態に行う容量確認工程S4により得られる充電容量(例えば、初充電容量)と、エージング後の区間容量との関係を説明するグラフを図7に示す。図7に示すように、エージング前に行う容量確認工程S4で得られる初充電容量(3.44−3.97V)と、エージング後に計測される区間容量(3.29〜3.819V)と、の間には0.8855と高い相関係数Rを得ることができる。つまり、実施の形態1にかかる二次電池の検査方法では、容量確認工程S4において得た初充電容量から図7のグラフを用いて計算を行うことで、高い精度でエージング後の電池容量を推定することができる。 Subsequently, the capacity confirmation step S4 will be described in detail. As described above, in the capacity confirmation step S4, the battery capacity of the secondary battery is confirmed based on the current consumed in the charging process until the voltage is increased to the voltage for aging the secondary battery. Therefore, FIG. 7 shows a graph for explaining the relationship between the charge capacity (for example, initial charge capacity) obtained by the capacity confirmation step S4 performed before the aging and the section capacity after the aging. As shown in FIG. 7, the initial charge capacity (3.44-3.97V) obtained in the capacity confirmation step S4 performed before aging, the section capacity (3.29 to 3.819V) measured after aging, A correlation coefficient R 2 as high as 0.8855 can be obtained. That is, in the secondary battery inspection method according to the first embodiment, the battery capacity after aging is estimated with high accuracy by performing calculation using the graph of FIG. 7 from the initial charge capacity obtained in the capacity confirmation step S4. can do.

続いて、エージング工程S6について説明する。実施の形態1にかかる二次電池の検査方法では、エージング工程S6の前に代用特性を測定するため、エージング温度によりこの代用特性がばらつくことが懸念される。そこで、図8に実施の形態1にかかる二次電池の検査方法におけるエージング温度と代用特性のばらつきとの関係を説明するグラフを示す。図8では、エージング温度により変動する代用特性の範囲をハッチングの領域で示した。この図8からわかるように、代用抵抗は、エージング温度により変動する。そこで、実施の形態1にかかる二次電池の検査方法では、エージング温度として、代用特性のばらつきが−5mΩ〜+5mΩの範囲に収まる範囲をエージング温度の管理範囲とする。より具体的には、実施の形態1にかかる二次電池の検査方法では、63℃を基準温度とし、この基準温度に対して−3℃〜+3℃の範囲をエージング温度の管理範囲とする。   Subsequently, the aging step S6 will be described. In the secondary battery inspection method according to the first embodiment, since the substitute characteristics are measured before the aging step S6, there is a concern that the substitute characteristics vary depending on the aging temperature. FIG. 8 is a graph for explaining the relationship between the aging temperature and the variation in the substitute characteristics in the secondary battery inspection method according to the first embodiment. In FIG. 8, the range of the substitute characteristics that fluctuates depending on the aging temperature is indicated by a hatched area. As can be seen from FIG. 8, the substitute resistance varies depending on the aging temperature. Therefore, in the secondary battery inspection method according to the first embodiment, the aging temperature management range is a range in which the variation in the substitute characteristics falls within the range of −5 mΩ to +5 mΩ as the aging temperature. More specifically, in the secondary battery inspection method according to the first embodiment, 63 ° C. is set as a reference temperature, and a range of −3 ° C. to + 3 ° C. is set as a management range of the aging temperature with respect to the reference temperature.

ここで、エージング後に容量確認検査及び低温出力検査を行う比較例と対比して、実施の形態1にかかる二次電池の検査方法について説明する。そこで、比較例にかかる二次電池の検査方法のフローチャートを図9に示す。   Here, the secondary battery inspection method according to the first embodiment will be described in comparison with a comparative example in which a capacity check inspection and a low-temperature output inspection are performed after aging. FIG. 9 shows a flowchart of the secondary battery inspection method according to the comparative example.

図9に示すように、比較例にかかる二次電池の検査方法では、まず、初充電工程S11を行う。この初充電工程では、二次電池の電圧がエージング処理の電圧に達するまで充電を行う。次いで、高温エージング工程S12を行う。この高温エージング工程S12は、図1で説明したエージング工程S6と同じ工程である。次いで、自己放電工程S13を行う。この自己放電工程S13では、二次電池を放置した状態で二次電池に放電を行わせる。   As shown in FIG. 9, in the secondary battery inspection method according to the comparative example, first, an initial charging step S11 is performed. In this initial charging step, charging is performed until the voltage of the secondary battery reaches the voltage of the aging process. Next, the high temperature aging step S12 is performed. This high temperature aging process S12 is the same process as the aging process S6 described in FIG. Next, the self-discharge process S13 is performed. In this self-discharge step S13, the secondary battery is discharged while the secondary battery is left unattended.

その後、比較例にかかる二次電池の検査方法では、容量確認工程S14を行う。この容量確認工程S14では、二次電池に対して定電流で放電を行わせ、放電時に得られる電流値から二次電池の容量確認を行う。次いで、容量確認工程S14で得られた電池容量が規格の範囲内であるか否かを確認する良品判定工程S15を行う。この良品判定工程S15において二次電池が不良品であると判断された場合、検査工程を終了する。一方、良品判定工程S15において二次電池が良品であると判断された場合、比較例にかかる二次電池の検査方法では、二次電池の電圧を測定電圧まで上昇させた上でエージング工程S16を行う。その後、比較例にかかる二次電池の検査方法では、低温出力特性検査工程S17を行う。この低温出力特性検査工程S17は、図1で示した低温出力特性検査工程S2と同じ処理である。そして、低温出力特性検査工程S17において得られた電圧降下量が閾値以下であるか否かを判断する良品判定工程S18を行う。良品判定工程S18で検査対象の二次電池が不良品であると判断された場合、当該二次電池を不良品と判定した上で検査工程を終了する。一方、良品判定工程S18で検査対象の二次電池が良品であると判断された場合、当該二次電池を出荷可能な状態であると判断して検査工程を終了する。   Thereafter, in the secondary battery inspection method according to the comparative example, a capacity confirmation step S14 is performed. In this capacity confirmation step S14, the secondary battery is discharged at a constant current, and the capacity of the secondary battery is confirmed from the current value obtained at the time of discharge. Next, a non-defective product determination step S15 for confirming whether or not the battery capacity obtained in the capacity confirmation step S14 is within the standard range is performed. When it is determined that the secondary battery is a defective product in the non-defective product determination step S15, the inspection process is terminated. On the other hand, when it is determined in the non-defective product determination step S15 that the secondary battery is a non-defective product, in the secondary battery inspection method according to the comparative example, the aging step S16 is performed after increasing the voltage of the secondary battery to the measurement voltage. Do. Thereafter, in the secondary battery inspection method according to the comparative example, a low-temperature output characteristic inspection step S17 is performed. This low temperature output characteristic inspection step S17 is the same process as the low temperature output characteristic inspection step S2 shown in FIG. Then, a non-defective product determination step S18 is performed to determine whether or not the voltage drop amount obtained in the low temperature output characteristic inspection step S17 is equal to or less than a threshold value. When it is determined in the non-defective product determination step S18 that the secondary battery to be inspected is defective, the secondary battery is determined to be defective and the inspection process is terminated. On the other hand, when it is determined in the non-defective product determination step S18 that the secondary battery to be inspected is a non-defective product, it is determined that the secondary battery can be shipped and the inspection process is terminated.

続いて、比較例にかかる二次電池の検査方法の低温出力特性検査工程S17で得られる代用特性と、実施の形態1にかかる二次電池の検査方法の低温出力特性検査工程S2で得られる代用特性と、の違いについて説明する。そこで、図10に実施の形態1にかかる二次電池の検査方法における二次電池のcole−coleプロットと、比較例にかかる二次電池の検査方法における二次電池のcole−coleプロットとと、を比較する図を示す。   Subsequently, the substitute characteristics obtained in the low temperature output characteristic inspection step S17 of the secondary battery inspection method according to the comparative example, and the substitute characteristics obtained in the low temperature output characteristic inspection step S2 of the secondary battery inspection method according to the first embodiment. The difference between characteristics will be described. Therefore, in FIG. 10, the secondary battery call-core plot in the secondary battery inspection method according to the first embodiment, and the secondary battery colle-core plot in the secondary battery inspection method according to the comparative example, The figure which compares is shown.

図10に示すように、比較例にかかる二次電池の検査方法において得られる代用特性は、実施の形態1にかかる二次電池の検査方法において得られる代用特性よりも著しく小さい。つまり、エージング処理後に代用特性を得た場合、エージング処理前に得た代用特性よりも小さな代用特性しか得られない。   As shown in FIG. 10, the substitute characteristic obtained in the secondary battery inspection method according to the comparative example is significantly smaller than the substitute characteristic obtained in the secondary battery inspection method according to the first embodiment. That is, when the substitute characteristic is obtained after the aging process, only a substitute characteristic smaller than the substitute characteristic obtained before the aging process can be obtained.

また、図11に比較例にかかる二次電池の検査方法における代用特性と低温出力との相関関係を説明するグラフを示す。図11に示すように、比較例にかかる二次電池の検査方法における代用特性と低温出力との相関係数Rは、0.4975であり、図3で説明した実施の形態1にかかる二次電池の検査方法において得られる相関係数Rより遙かに小さい。このようなことから、実施の形態1にかかる二次電池の検査方法は、測定精度が高いことがわかる。 FIG. 11 is a graph illustrating the correlation between the substitute characteristics and the low-temperature output in the secondary battery inspection method according to the comparative example. As shown in FIG. 11, the correlation coefficient R 2 between the substitute characteristic and the low-temperature output in the secondary battery inspection method according to the comparative example is 0.4975, and the second embodiment according to the first embodiment described with reference to FIG. much smaller than the correlation coefficient R 2 obtained in the inspection method of the next cell. From this, it can be seen that the secondary battery inspection method according to the first embodiment has high measurement accuracy.

続いて、図12に実施の形態1にかかる二次電池の検査方法の検査時間を説明する検査工程中の二次電池の電圧変化を示すグラフを示す。図12には、比較例にかかる二次電池の検査方法を適用した検査工程中の二次電池の電圧変化も示した。   Next, FIG. 12 shows a graph showing the voltage change of the secondary battery during the inspection process for explaining the inspection time of the secondary battery inspection method according to the first embodiment. FIG. 12 also shows the voltage change of the secondary battery during the inspection process to which the secondary battery inspection method according to the comparative example is applied.

図12に示すように、比較例にかかる二次電池の検査方法では、容量確認検査を省略したとしても検査時間はほとんど縮まらない。これは、高温エージング工程S12及びエージング工程S16に長い時間を要してしまうためである。一方、実施の形態1にかかる二次電池の検査方法では、低温出力特性検査工程S2及び容量確認工程S4を行い、さらにその後にエージング工程S6を行ったとしても、比較例にかかる二次電池の検査方法よりも短い時間で検査を完了することができる。さらに、実施の形態1にかかる二次電池の検査方法では、エージング工程S6を省略することで、大幅に検査時間を短縮することができる。   As shown in FIG. 12, in the secondary battery inspection method according to the comparative example, the inspection time is hardly shortened even if the capacity check inspection is omitted. This is because the high temperature aging process S12 and the aging process S16 require a long time. On the other hand, in the secondary battery inspection method according to the first embodiment, even if the low temperature output characteristic inspection step S2 and the capacity confirmation step S4 are performed, and then the aging step S6 is performed, the secondary battery according to the comparative example is The inspection can be completed in a shorter time than the inspection method. Furthermore, in the secondary battery inspection method according to the first embodiment, the inspection time can be significantly shortened by omitting the aging step S6.

上記説明より、実施の形態1にかかる二次電池の検査方法によれば、二次電池の代用特性を高い精度で測定することができる。これにより、実施の形態1にかかる二次電池の検査方法では、高い精度で低温出力特性を検査することが可能になる。   From the above description, according to the inspection method of the secondary battery according to the first embodiment, the substitute characteristics of the secondary battery can be measured with high accuracy. As a result, the secondary battery inspection method according to the first embodiment can inspect the low-temperature output characteristics with high accuracy.

また、実施の形態1にかかる二次電池の検査方法では、エージング工程S6において、複数の二次電池間の温度差を所定の温度範囲内で管理することで、エージング後の代用特性のばらつきを抑制し、かつ、低温出力特性のばらつきを抑制することができる。この温度管理は、設備の追加を行うことなく実施可能である。   Further, in the secondary battery inspection method according to the first embodiment, in the aging step S6, the temperature difference between the plurality of secondary batteries is managed within a predetermined temperature range, so that the variation in the substitute characteristics after aging is changed. It is possible to suppress the variation in low-temperature output characteristics. This temperature control can be carried out without adding equipment.

また、実施の形態1にかかる二次電池の検査方法では、エージング等にかかる時間を削減して、検査時間を大幅に短縮することができる。また、実施の形態1にかかる二次電池の検査方法では、容量確認工程S4において放電を必要としないため、容量確認工程で用いる放電装置を削減することができる。   Further, in the secondary battery inspection method according to the first embodiment, the time required for aging and the like can be reduced, and the inspection time can be greatly shortened. In the secondary battery inspection method according to the first embodiment, since no discharge is required in the capacity confirmation step S4, the number of discharge devices used in the capacity confirmation step can be reduced.

上記説明は、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。   In the above description, the invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited to the embodiments already described, and various modifications can be made without departing from the scope of the invention. It goes without saying that changes are possible.

S1 充電工程
S2 低温出力特性検査工程
S3、S5 良品判定工程
S4 容量確認工程
S6 エージング工程
S1 Charging process S2 Low temperature output characteristic inspection process S3, S5 Non-defective product determination process S4 Capacity confirmation process S6 Aging process

Claims (5)

二次電池の検査方法であって、
未エージング状態の検査対象セルを予め定められた所定の電圧まで充電する充電工程と、
未エージング状態において前記所定の電圧以下の電圧で放電を行い、前記放電の前後の電圧降下量を算出して前記電圧降下量と低温出力特性の相関関係とに基づき低温出力検査を行う電圧降下量算出工程と、
前記電圧降下量が閾値以下である場合に良品と判定する良品判定工程と、
前記良品判定工程後にエージングを行うエージング工程と、
を有する二次電池の検査方法。
A method for inspecting a secondary battery,
A charging step of charging the non-aging test target cell to a predetermined voltage;
A voltage drop amount for performing discharge at a voltage equal to or lower than the predetermined voltage in an unaged state, calculating a voltage drop amount before and after the discharge, and performing a low temperature output inspection based on a correlation between the voltage drop amount and a low temperature output characteristic A calculation process;
A non-defective product determination step for determining a non-defective product when the voltage drop amount is equal to or less than a threshold value;
An aging step of aging after the non-defective product determination step;
A method for inspecting a secondary battery.
前記所定の電圧は、前記二次電池の低温出力と前記電圧降下量との相関係数が0.8以上となる前記二次電池の電圧、又は、前記二次電池の低温出力と前記電圧降下量との相関係数が0.7以上となる前記二次電池の充電率に基づき決定される請求項1に記載の二次電池の検査方法。   The predetermined voltage is the voltage of the secondary battery at which the correlation coefficient between the low temperature output of the secondary battery and the voltage drop amount is 0.8 or more, or the low temperature output of the secondary battery and the voltage drop. The method for inspecting a secondary battery according to claim 1, wherein the method is determined based on a charging rate of the secondary battery having a correlation coefficient with an amount of 0.7 or more. 前記エージング工程では、複数の前記検査対象セルの温度差が予め設定した温度範囲内となるように温度制御がされる請求項1又は2に記載の二次電池の検査方法。   The secondary battery inspection method according to claim 1, wherein in the aging step, temperature control is performed so that a temperature difference between the plurality of inspection target cells is within a preset temperature range. 前記温度範囲は、基準温度に対して−3℃〜+3℃の範囲で設定される請求項3に記載の二次電池の検査方法。   The secondary battery inspection method according to claim 3, wherein the temperature range is set in a range of −3 ° C. to + 3 ° C. with respect to a reference temperature. 前記良品判定工程と前記エージング工程との間に前記二次電池の容量を確認する容量確認工程を有する請求項1乃至4のいずれか1項に記載の二次電池の検査方法。   The secondary battery inspection method according to claim 1, further comprising a capacity confirmation step of confirming a capacity of the secondary battery between the non-defective product determination step and the aging step.
JP2015039177A 2015-02-27 2015-02-27 Secondary battery inspection method Active JP6308145B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015039177A JP6308145B2 (en) 2015-02-27 2015-02-27 Secondary battery inspection method
US15/053,525 US10126373B2 (en) 2015-02-27 2016-02-25 Inspection method of secondary battery
CN201610105618.3A CN105929333B (en) 2015-02-27 2016-02-25 The inspection method of secondary cell
KR1020160023643A KR101733073B1 (en) 2015-02-27 2016-02-26 Inspection method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039177A JP6308145B2 (en) 2015-02-27 2015-02-27 Secondary battery inspection method

Publications (2)

Publication Number Publication Date
JP2016162559A JP2016162559A (en) 2016-09-05
JP6308145B2 true JP6308145B2 (en) 2018-04-11

Family

ID=56847110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039177A Active JP6308145B2 (en) 2015-02-27 2015-02-27 Secondary battery inspection method

Country Status (1)

Country Link
JP (1) JP6308145B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788800B2 (en) * 2017-03-22 2020-11-25 トヨタ自動車株式会社 Inspection method for non-aqueous electrolyte secondary batteries
JP6760213B2 (en) * 2017-06-21 2020-09-23 トヨタ自動車株式会社 How to manufacture a secondary battery
KR102391533B1 (en) * 2018-10-05 2022-04-28 주식회사 엘지에너지솔루션 Method for diagnosing a low voltage of a secondary cell and apparatus thereof
KR102508117B1 (en) * 2019-01-03 2023-03-09 주식회사 엘지에너지솔루션 Method of improving detection of low voltage in secondary battery activation process
JP7192581B2 (en) * 2019-03-11 2022-12-20 株式会社豊田自動織機 Voltage measurement method
JP7422378B2 (en) 2019-10-02 2024-01-26 エリーパワー株式会社 Battery cell sorting method and battery cell handling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199608A (en) * 2000-12-25 2002-07-12 Nec Tokin Tochigi Ltd Initial charging method of secondary battery
JP5644960B2 (en) * 2011-10-24 2014-12-24 日産自動車株式会社 Secondary battery inspection method
CN104487857B (en) * 2012-07-27 2017-03-08 丰田自动车株式会社 The test for short-circuit method of secondary cell
JP6044835B2 (en) * 2013-03-22 2016-12-14 トヨタ自動車株式会社 Secondary battery inspection method and inspection device
JP2015008106A (en) * 2013-06-26 2015-01-15 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2016162559A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6308145B2 (en) Secondary battery inspection method
US20200209313A1 (en) Apparatus and method for detecting battery cell failure due to unknown discharge current
JP6252439B2 (en) Abnormality detection method and abnormality detection device for secondary battery
KR101733073B1 (en) Inspection method of secondary battery
US10054645B2 (en) Deterioration determination method, deterioration determination device, and storage medium
JP5994521B2 (en) State estimation device, open-circuit voltage characteristics generation method
JP5071747B2 (en) Secondary battery inspection device, secondary battery inspection method, secondary battery manufacturing method
US11940501B2 (en) Method and apparatus for diagnosing low voltage of secondary battery cell
JP6414336B2 (en) Deterioration degree estimation device and deterioration degree estimation method
JP2016122531A (en) Voltage adjusting method for secondary battery
JP6202032B2 (en) Secondary battery inspection method
JP6090093B2 (en) Secondary battery inspection method and inspection device
KR20150144558A (en) System for checking a fail in a secondary battery and method thereof
JP2014134395A (en) Short-circuit inspection method of secondary battery
WO2016029392A1 (en) Method and apparatus for detecting ageing degree of battery
KR102350920B1 (en) device for detecting the state of charge of a battery
JP2020533607A (en) Battery maturation process
JP6031875B2 (en) Method and apparatus for inspecting assembled battery
JP6760213B2 (en) How to manufacture a secondary battery
JP2016162545A (en) Inspection method of secondary battery
JP2016029616A (en) Secondary battery inspection method
US11480627B2 (en) Method for determining micro short circuit of lithium ion secondary battery
JP5928815B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6788800B2 (en) Inspection method for non-aqueous electrolyte secondary batteries
JP2019046544A (en) Method of measuring capacity of secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180226

R151 Written notification of patent or utility model registration

Ref document number: 6308145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151