JP2014134395A - Short-circuit inspection method of secondary battery - Google Patents

Short-circuit inspection method of secondary battery Download PDF

Info

Publication number
JP2014134395A
JP2014134395A JP2013001195A JP2013001195A JP2014134395A JP 2014134395 A JP2014134395 A JP 2014134395A JP 2013001195 A JP2013001195 A JP 2013001195A JP 2013001195 A JP2013001195 A JP 2013001195A JP 2014134395 A JP2014134395 A JP 2014134395A
Authority
JP
Japan
Prior art keywords
secondary battery
soc
battery
self
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013001195A
Other languages
Japanese (ja)
Inventor
Takayuki Nakayama
孝之 中山
Yasuaki Otsuki
康明 大槻
Akio Mizuguchi
暁夫 水口
Hideto Mori
秀人 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013001195A priority Critical patent/JP2014134395A/en
Publication of JP2014134395A publication Critical patent/JP2014134395A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the time required for short-circuit inspection.SOLUTION: A secondary battery short-circuit inspection method includes: an initial activation step of initially charging a secondary battery for activation; an SOC adjustment step of adjusting an SOC value by discharging the secondary battery initially charged in the initial activation step; and a self-discharge step of self-discharging the secondary battery subjected to SOC adjustment in the SOC adjustment step. On the basis of an amount of voltage drop of the secondary battery in the self-discharge step, short-circuit is detected. In the SOC adjustment step, the SOC value is adjusted so that a value obtained by dividing an inclination of a discharge curve of the secondary battery by battery capacity is 0.05 or more.

Description

本発明は、二次電池の短絡を検査する技術に関する。   The present invention relates to a technique for inspecting a short circuit of a secondary battery.

特許文献1には、第一のSOCまで充電した後、第一のSOCよりも低い第二のSOCまで放電し、放電工程の後に電池温度を低温にした状態で微小短絡を検出する技術が開示される。   Patent Document 1 discloses a technique for charging a first SOC, discharging to a second SOC lower than the first SOC, and detecting a micro short circuit in a state where the battery temperature is lowered after the discharging step. Is done.

特開2011−69775号公報JP 2011-69775 A

特許文献1に記載の技術では、放電電流密度が充電電流密度よりも低い値に設定され、低レートで放電工程が行われる。そのため、放電に要する時間が長くなり、結果的に短絡検査にかかる時間が長くなってしまう。   In the technique described in Patent Document 1, the discharge current density is set to a value lower than the charge current density, and the discharge process is performed at a low rate. For this reason, the time required for the discharge becomes long, and as a result, the time required for the short circuit inspection becomes long.

本発明の二次電池の短絡検査方法は、二次電池を初期充電して活性化する初期活性化工程と、前記初期活性化工程にて初期充電された前記二次電池を放電してSOCの値を調整するSOC調整工程と、前記SOC調整工程でのSOC調整後の二次電池を自己放電させる自己放電工程と、を備え、前記自己放電工程における二次電池の電圧降下量に基づいて短絡の有無を検出する二次電池の短絡検査方法であって、前記SOC調整工程では、前記SOCの値を、前記二次電池の放電曲線の傾きを電池容量で割った値が0.05以上となる値に調整する。
これによれば、二次電池の電池容量に依らずに最適なSOCに調整することができ、短絡検査に要する時間を短縮することができる。
The secondary battery short-circuit inspection method of the present invention includes an initial activation step of initially charging and activating the secondary battery, and discharging the secondary battery initially charged in the initial activation step to A SOC adjustment step for adjusting the value, and a self-discharge step for self-discharging the secondary battery after the SOC adjustment in the SOC adjustment step, and a short circuit based on the voltage drop amount of the secondary battery in the self-discharge step In the SOC adjustment step, the SOC value is obtained by dividing the slope of the discharge curve of the secondary battery by the battery capacity to be 0.05 or more. To a value of
According to this, it is possible to adjust to the optimum SOC regardless of the battery capacity of the secondary battery, and it is possible to shorten the time required for the short circuit inspection.

前記自己放電工程における電圧降下量は、自己放電させる前記二次電池の電池温度の所定の電池温度からの乖離量に、前記SOC調整工程でのSOCの値及び自己放電させる前記二次電池の電池温度の前記所定の電池温度に対する乖離方向に応じて予め算出される補正係数を掛けることによって得られる補正量を、自己放電させる前記二次電池の電圧に加えることで得られる補正電圧値を用いて算出される。
これによれば、自己放電工程内での環境温度の変動に関わらず、高精度に電圧降下量を算出できる。
The amount of voltage drop in the self-discharge step is determined by the difference between the battery temperature of the secondary battery to be self-discharged from a predetermined battery temperature, the SOC value in the SOC adjustment step, and the battery of the secondary battery to be self-discharged. Using a correction voltage value obtained by adding a correction amount obtained by multiplying a correction coefficient calculated in advance according to a deviation direction of the temperature from the predetermined battery temperature to the voltage of the secondary battery to be self-discharged Calculated.
According to this, the voltage drop amount can be calculated with high accuracy regardless of the fluctuation of the environmental temperature in the self-discharge process.

本発明によれば、短絡検査に要する時間を短縮化できる。   According to the present invention, the time required for the short circuit inspection can be shortened.

二次電池の概略図である。It is the schematic of a secondary battery. 短絡検査工程を示すフローである。It is a flow which shows a short circuit inspection process. 二次電池の放電曲線の傾き/電池容量と、SOCとの相関を示すグラフである。It is a graph which shows the correlation of the inclination / battery capacity of the discharge curve of a secondary battery, and SOC. 本実施形態の実施例及び比較例において、短絡検査工程に要した時間を示す表である。In the Example and comparative example of this embodiment, it is a table | surface which shows the time required for the short circuit test process. SOC毎の電池温度に対する電圧変動を示すグラフである。It is a graph which shows the voltage fluctuation with respect to the battery temperature for every SOC. 自己放電工程中の電池温度の変動に起因する電池電圧の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the battery voltage resulting from the fluctuation | variation of the battery temperature in a self-discharge process. 所定の電池温度として補正した電圧値を示すグラフである。It is a graph which shows the voltage value correct | amended as predetermined | prescribed battery temperature. 電圧降下量を算出する実施例を示すグラフである。It is a graph which shows the Example which calculates the amount of voltage drops.

図1は、二次電池1の概略構成を示す。二次電池1は、繰り返し充放電可能な電池であり、例えば角型のリチウムイオン二次電池である。二次電池1は、密閉されたケース2内に充放電要素となる電極体3が収容されて構成される。電極体3には、正極及び負極の外部端子4が接続され、それぞれ外方に突出した状態でケース2に固定されている。
電極体3は、正極集電板、セパレータ、及び、負極集電板を積層し、巻回して構成される巻回体である。正極集電板及び負極集電板の表面には、正極及び負極の電極合剤がそれぞれ塗布されている。リチウムイオン二次電池では、リチウムイオンを含む正極活物質、導電助剤等を含有する正極合剤が正極集電板に塗布され、炭素系材料を含む負極活物質を含有する負極合剤が負極集電板に塗布される。
FIG. 1 shows a schematic configuration of the secondary battery 1. The secondary battery 1 is a battery that can be repeatedly charged and discharged, for example, a square lithium ion secondary battery. The secondary battery 1 is configured by housing an electrode body 3 serving as a charge / discharge element in a sealed case 2. A positive electrode and a negative electrode external terminal 4 are connected to the electrode body 3 and are fixed to the case 2 so as to protrude outward.
The electrode body 3 is a wound body configured by laminating and winding a positive electrode current collector plate, a separator, and a negative electrode current collector plate. The positive electrode current collector plate and the negative electrode current collector plate are coated with a positive electrode electrode mixture and a negative electrode electrode mixture, respectively. In a lithium ion secondary battery, a positive electrode active material containing lithium ions, a positive electrode mixture containing a conductive additive, etc. are applied to the positive electrode current collector plate, and a negative electrode mixture containing a negative electrode active material containing a carbon-based material is a negative electrode It is applied to the current collector.

図2は、二次電池1の短絡検査工程S1を示す。短絡検査工程S1は、組み立てられた二次電池1に存在する微小短絡を検査する工程である。
短絡検査工程S1は、組み立てられた二次電池1に初期充電をして活性化する初期活性化工程S11、初期充電が行われた二次電池1を放電してSOCの値を調整するSOC調整工程S12、及び、SOCの値が調整された二次電池1を自己放電させる自己放電工程S13を含む。
FIG. 2 shows a short circuit inspection step S <b> 1 of the secondary battery 1. The short circuit inspection step S1 is a step of inspecting a micro short circuit existing in the assembled secondary battery 1.
The short circuit inspection step S1 includes an initial activation step S11 in which the assembled secondary battery 1 is initially charged and activated, and an SOC adjustment in which the secondary battery 1 that has been initially charged is discharged to adjust the SOC value. Step S12 and a self-discharge step S13 for self-discharging the secondary battery 1 with the adjusted SOC value are included.

[初期活性化工程S11]
まず、二次電池1に適宜の充放電装置を接続し、所定の電流密度で第一のSOCまで充電する。第一のSOCの値は、例えば80%以上の高SOCとして設定される。このときに用いられる所定の電流密度は、0.02[C]以上のCレートである。第一のSOCとして、例えば3.6V以上の充電状態まで充電される。
[Initial activation step S11]
First, an appropriate charging / discharging device is connected to the secondary battery 1 and charged to a first SOC at a predetermined current density. The value of the first SOC is set as a high SOC of 80% or more, for example. The predetermined current density used at this time is a C rate of 0.02 [C] or more. For example, the first SOC is charged to a charging state of 3.6 V or higher.

次に、二次電池1を高温雰囲気下で保持し、内部に含有される化学物質(電極活物質)を活性化させる。例えば、常温よりも高く、かつ、二次電池1に含まれるセパレータが溶融しない程度の高温(例えば40℃〜85℃程度)の雰囲気に曝す。
このように、二次電池1を高温下でエージングすることによって、二次電池1内部の化学反応を促進させることができ、それに起因する微小短絡(化学短絡)を積極的に発生させて検出精度を向上している。
なお、初期活性化工程S11は、二次電池1を活性化し、内部の化学反応を促進するものであれば適用可能であり、上記のものに限定されない。
Next, the secondary battery 1 is held in a high temperature atmosphere, and a chemical substance (electrode active material) contained therein is activated. For example, it is exposed to an atmosphere at a high temperature (for example, about 40 ° C. to 85 ° C.) that is higher than normal temperature and that does not melt the separator included in the secondary battery 1.
In this way, by aging the secondary battery 1 at a high temperature, the chemical reaction inside the secondary battery 1 can be promoted, and a micro short circuit (chemical short circuit) resulting therefrom is actively generated to detect accuracy. Has improved.
The initial activation step S11 is applicable as long as it activates the secondary battery 1 and promotes an internal chemical reaction, and is not limited to the above.

[SOC調整工程S12]
二次電池1に充放電装置を接続し、初期活性化工程S11と同等の電流密度で、第一のSOCよりも低い第二のSOCまで放電する。つまり、高レートの放電(0.02[C]以上の放電)が行われる。
[SOC adjustment step S12]
A charging / discharging device is connected to the secondary battery 1 and discharged to a second SOC lower than the first SOC at a current density equivalent to the initial activation step S11. That is, high-rate discharge (discharge of 0.02 [C] or more) is performed.

図3は、(二次電池1の放電曲線の傾き[V/SOC]/電池容量[Ah])とSOC[%]との相関を示す。SOC調整工程S12では、(二次電池1の放電曲線の傾き[V/SOC]/電池容量[Ah])の計算式によって求められる値、即ち二次電池1の放電曲線の傾きを電池容量で割った値が0.05以上となるSOCまで放電を行う。つまり、二次電池1の電池容量及び放電特性に応じてSOC調整工程S12で調整するSOCの値を変更する。
このように、SOC調整工程S12において、二次電池1の電池容量に応じて、自己放電工程S13での電圧降下が顕著に現れるSOCに調整することによって、不良品の良品からの電圧乖離量を大きくして検出感度を向上するとともに、良品の電圧ばらつきを低減できる。
FIG. 3 shows a correlation between (inclination of discharge curve of secondary battery 1 [V / SOC] / battery capacity [Ah]) and SOC [%]. In the SOC adjustment step S12, the value obtained by the formula of (the slope of the discharge curve of the secondary battery 1 [V / SOC] / the battery capacity [Ah]), that is, the slope of the discharge curve of the secondary battery 1 is expressed by the battery capacity. Discharge is carried out until the SOC at which the divided value is 0.05 or more. That is, the SOC value adjusted in the SOC adjustment step S12 is changed according to the battery capacity and discharge characteristics of the secondary battery 1.
Thus, in SOC adjustment process S12, according to the battery capacity of the secondary battery 1, by adjusting to SOC in which the voltage drop in the self-discharge process S13 appears remarkably, the voltage divergence amount from the non-defective product of the defective product is adjusted. The detection sensitivity can be improved by increasing the voltage, and the voltage variation of non-defective products can be reduced.

[自己放電工程S13]
常温下で二次電池1を自己放電させて、所定時間経過後の電圧降下量に基づいて微小短絡の有無を検出する。
このとき、各二次電池1の所定の測定ポイントにおける電圧降下量が閾値よりも大きい二次電池1は、短絡が存在していると判定し、不良品として判定される。
[Self-discharge process S13]
The secondary battery 1 is self-discharged at room temperature, and the presence or absence of a micro short circuit is detected based on the amount of voltage drop after a predetermined time has elapsed.
At this time, the secondary battery 1 in which the amount of voltage drop at a predetermined measurement point of each secondary battery 1 is larger than the threshold value is determined as a short circuit and is determined as a defective product.

[実施例]
図4は、本実施形態に基づいた短絡検査工程に沿って短絡検査した実施例1から実施例3と、本実施形態のSOC調整工程S12と異なるSOC調整工程を含む短絡検査工程に沿って短絡検査した比較例1とにかかった検査日数を示す。
[Example]
FIG. 4 is a short circuit along the short circuit inspection process including the SOC adjustment process different from the SOC adjustment process S12 of the present embodiment, and Examples 1 to 3 in which the short circuit inspection is performed along the short circuit inspection process based on the present embodiment. The number of inspection days taken for Comparative Example 1 inspected is shown.

実施例1に係る二次電池は、電池容量:25[Ah]であり、SOC調整工程S12において、(二次電池の放電曲線の傾き[V/SOC]/電池容量[Ah])の計算式によって求められる値が0.05以上となるSOCの値である、SOC:9[%]まで放電した後に、自己放電工程S13で短絡検査にかかった日数を測定した。このときの(二次電池の放電曲線の傾き[V/SOC]/電池容量[Ah])の計算式によって求められる値は、0.05である。実施例1に係る二次電池に必要な検査日数は10日であった。
実施例2に係る二次電池は、電池容量:5[Ah]であり、SOC調整工程S12において、(二次電池の放電曲線の傾き[V/SOC]/電池容量[Ah])の計算式によって求められる値が0.05以上となるSOCの値である、SOC:20[%]まで放電した後に、自己放電工程S13で短絡検査にかかった日数を測定した。このときの(二次電池の放電曲線の傾き[V/SOC]/電池容量[Ah])の計算式によって求められる値は、0.09である。実施例2に係る二次電池に必要な検査日数は5日であった。
実施例3に係る二次電池は、電池容量:10[Ah]であり、SOC調整工程S12において、(二次電池の放電曲線の傾き[V/SOC]/電池容量[Ah])の計算式によって求められる値が0.05以上となるSOCの値である、SOC:15[%]まで放電した後に、自己放電工程S13で短絡検査にかかった日数を測定した。このときの(二次電池の放電曲線の傾き[V/SOC]/電池容量[Ah])の計算式によって求められる値は、0.06である。実施例3に係る二次電池に必要な検査日数は15日であった。
The secondary battery according to Example 1 has a battery capacity of 25 [Ah], and in the SOC adjustment step S12, a calculation formula of (slope of secondary battery discharge curve [V / SOC] / battery capacity [Ah]). After discharging to SOC: 9 [%], which is the SOC value that is obtained by 0.05, the number of days required for the short circuit inspection in the self-discharge step S13 was measured. At this time, the value obtained by the calculation formula of (the slope of the discharge curve of the secondary battery [V / SOC] / battery capacity [Ah]) is 0.05. The number of inspection days required for the secondary battery according to Example 1 was 10 days.
The secondary battery according to Example 2 has a battery capacity of 5 [Ah]. In the SOC adjustment step S12, a calculation formula of (slope of secondary battery discharge curve [V / SOC] / battery capacity [Ah]). After discharging to SOC: 20 [%], which is the SOC value that is obtained by 0.05, the number of days required for the short circuit inspection in the self-discharge step S13 was measured. At this time, the value obtained by the calculation formula of (gradient of discharge curve of secondary battery [V / SOC] / battery capacity [Ah]) is 0.09. The number of inspection days required for the secondary battery according to Example 2 was 5 days.
The secondary battery according to Example 3 has a battery capacity of 10 [Ah]. In the SOC adjustment step S12, a calculation formula of (slope of secondary battery discharge curve [V / SOC] / battery capacity [Ah]). After discharging to SOC: 15 [%], which is the SOC value that is obtained by 0.05, the number of days required for the short circuit inspection in the self-discharge step S13 was measured. At this time, the value obtained by the calculation formula of (gradient of discharge curve of secondary battery [V / SOC] / battery capacity [Ah]) is 0.06. The number of inspection days required for the secondary battery according to Example 3 was 15 days.

比較例1に係る二次電池は、電池容量:25[Ah]であり、SOC調整工程において、(二次電池の放電曲線の傾き[V/SOC]/電池容量[Ah])の計算式によって求められる値が0.05未満となるSOCの値である、SOC:20[%]まで放電した後に、自己放電工程で短絡検査にかかった日数を測定した。このときの(二次電池の放電曲線の傾き[V/SOC]/電池容量[Ah])の計算式によって求められる値は、0.05未満となる0.03であり、この点で本実施形態と異なっている。比較例1に係る二次電池に必要な検査日数は20日であった。
以上のように、実施例1から実施例3と比べて、比較例1での検査日数が長くなっている。つまり、実施例1から実施例3では短絡検査に要する時間を短くすることができている。
The secondary battery according to Comparative Example 1 has a battery capacity of 25 [Ah]. In the SOC adjustment step, the calculation formula of (gradient of discharge curve of secondary battery [V / SOC] / battery capacity [Ah]) is used. The number of days required for the short circuit inspection in the self-discharge process was measured after discharging to SOC: 20 [%], which is the SOC value at which the required value is less than 0.05. At this time, the value obtained by the calculation formula of (the slope of the discharge curve of the secondary battery [V / SOC] / battery capacity [Ah]) is 0.03, which is less than 0.05. It is different from the form. The number of inspection days required for the secondary battery according to Comparative Example 1 was 20 days.
As described above, the inspection days in Comparative Example 1 are longer than those in Example 1 to Example 3. That is, in the first to third embodiments, the time required for the short circuit inspection can be shortened.

[電圧降下量の温度補正]
自己放電工程S13において短絡の有無を判定する際は、所定時間内における単位時間当たりの電圧低下量を算出することによって行われている。
自己放電工程S13における電圧降下量は、基準となる電池温度T0(例えば20℃)における電圧値として補正した値を用いて算出される。つまり、電圧降下量を求める二次電池1の電池温度を基準温度に換算して補正電圧値を求めることによって、環境温度に応じて変動し得る電圧の温度変動を吸収している。
[Temperature correction for voltage drop]
When the presence or absence of a short circuit is determined in the self-discharge process S13, it is performed by calculating a voltage drop amount per unit time within a predetermined time.
The amount of voltage drop in the self-discharge step S13 is calculated using the corrected value as the voltage value at the reference battery temperature T0 (for example, 20 ° C.). That is, by converting the battery temperature of the secondary battery 1 for obtaining the voltage drop amount to the reference temperature and obtaining the correction voltage value, the temperature fluctuation of the voltage that can fluctuate according to the environmental temperature is absorbed.

図5に示すように、電池温度の基準温度T0[℃]からの乖離に対する電池電圧の変動量ΔV[mV]を、実験によってSOC毎に測定し、基準温度T0からの乖離方向(上昇側又は下降側)に対する補正係数C[mV/℃]を求める。   As shown in FIG. 5, the battery voltage fluctuation amount ΔV [mV] with respect to the deviation of the battery temperature from the reference temperature T0 [° C.] is measured for each SOC by experiment, and the deviation direction from the reference temperature T0 (ascending side or A correction coefficient C [mV / ° C.] for the lowering side) is obtained.

そして、電池温度T1となる測定ポイントにおける電圧値V(T1)を下記の数式1を用いて、基準温度T0における電圧値V(T0)に換算する。
V(T0)=V(T1)+(T1−T0)×C・・・[数式1]
数式1において、V(T)は温度Tに依存する電池電圧の変数であり、T0は基準温度、T1は測定時の電池温度、Cは補正係数を示す。
つまり、補正電圧値V(T0)は、測定時の電池温度(T1)と基準温度(T0)との乖離量(T1−T0)に、SOCの値及び基準温度に対する乖離方向に応じて予め算出される補正係数Cを掛けることによって得られる補正量((T1−T0)×C)を、二次電池1の電圧(V(T1))に加えることで得られる。
Then, the voltage value V (T1) at the measurement point at which the battery temperature T1 is obtained is converted into the voltage value V (T0) at the reference temperature T0 using the following formula 1.
V (T0) = V (T1) + (T1−T0) × C (Equation 1)
In Equation 1, V (T) is a battery voltage variable depending on the temperature T, T0 is a reference temperature, T1 is a battery temperature at the time of measurement, and C is a correction coefficient.
In other words, the correction voltage value V (T0) is calculated in advance according to the SOC value and the deviation direction with respect to the reference temperature in the deviation amount (T1-T0) between the battery temperature (T1) and the reference temperature (T0) at the time of measurement. The correction amount ((T1−T0) × C) obtained by multiplying the correction coefficient C to be applied is added to the voltage (V (T1)) of the secondary battery 1.

図6に示すように、自己放電工程S13中の電池温度に±2℃程度の変動がある場合、電池電圧は電池温度の変動に連動して上昇又は下降しながら低下する。
本実施形態では、図7に示すように、各測定ポイントにおける電圧値を所定の基準温度での電圧値として補正することで、線形の電圧低下となるように算出する。これにより、工程内の環境温度変動に関わらず、高精度に電圧降下量を算出することができ検出精度を向上できる。また、電圧測定のタイミングに自由度が増え、工程計画が容易になるとともに、検査時間の短縮を図れる。
As shown in FIG. 6, when the battery temperature during the self-discharge process S13 has a fluctuation of about ± 2 ° C., the battery voltage decreases while increasing or decreasing in conjunction with the fluctuation of the battery temperature.
In the present embodiment, as shown in FIG. 7, the voltage value at each measurement point is corrected as a voltage value at a predetermined reference temperature, thereby calculating a linear voltage drop. Thereby, the voltage drop amount can be calculated with high accuracy regardless of the environmental temperature fluctuation in the process, and the detection accuracy can be improved. In addition, the degree of freedom in voltage measurement timing is increased, process planning is facilitated, and inspection time can be shortened.

[実施例]
図8は、本実施形態に基づいて電圧降下量を算出した実施例を示す。
SOC調整工程S12でSOC:3[%]に調整した二次電池1を室温:20[℃]の環境で5日間の自己放電工程S13を実施した。環境温度は±0.8[℃]の範囲で変動するものとし、電圧降下量の算出は、変動範囲内で最大となる時間の組み合わせ(t1、t2)で測定した電圧値を用いた。t1における電池温度T1は20.8[℃]、t2における電池温度T2は19.2[℃]である。
[Example]
FIG. 8 shows an example in which the voltage drop amount is calculated based on this embodiment.
The secondary battery 1 adjusted to SOC: 3 [%] in the SOC adjustment step S12 was subjected to a self-discharge step S13 for 5 days in an environment of room temperature: 20 [° C.]. The environmental temperature is assumed to fluctuate within a range of ± 0.8 [° C.], and the voltage drop is calculated by using a voltage value measured by a combination of times (t1, t2) that is maximum within the fluctuation range. The battery temperature T1 at t1 is 20.8 [° C.], and the battery temperature T2 at t2 is 19.2 [° C.].

t1における電池電圧V1(T1)は、3.3815[V]、t2における電池電圧V2(T2)は、3.3801[V]であった。
補正せずに電圧降下量を算出した場合、(3.3815−3.3801)/5=0.28[mV/day]となる。
The battery voltage V1 (T1) at t1 was 3.3815 [V], and the battery voltage V2 (T2) at t2 was 3.3801 [V].
When the voltage drop amount is calculated without correction, (3.3815-3.3801) /5=0.28 [mV / day].

数式1を用いて、それぞれの電池電圧を補正した場合は以下の通りとなる。
基準温度T0は20[℃]、補正係数Cは、基準温度よりも下降側は0.55[mV/℃]、上昇側は0.54[mV/℃]である。
V1(T0)=3.3815+(20.8−20)×0.00055=3.3819
V2(T0)=3.3801+(19.2−20)×0.00054=3.3797
従って、電圧降下量は、(3.3819−3.3797)/5=0.44[mV/day]となる。
When each battery voltage is corrected using Equation 1, the result is as follows.
The reference temperature T0 is 20 [° C.], and the correction coefficient C is 0.55 [mV / ° C.] on the lower side than the reference temperature, and 0.54 [mV / ° C.] on the higher side.
V1 (T0) = 3.3815 + (20.8-20) × 0.00055 = 3.3819
V2 (T0) = 3.3801 + (19.2-20) × 0.00054 = 3.3797
Therefore, the amount of voltage drop is (3.3819−3.3797) /5=0.44 [mV / day].

以上のように、数式1に代入して算出される補正電圧値を用いて電圧降下量を算出することで、高精度な短絡検査が可能となる。これにより、短絡検査工程S1を経た二次電池1の品質を向上できる。   As described above, by calculating the voltage drop amount using the correction voltage value calculated by substituting into Equation 1, a highly accurate short circuit inspection can be performed. Thereby, the quality of the secondary battery 1 which passed through short circuit test process S1 can be improved.

[電圧安定化工程]
SOC調整工程S12は、以下のような電圧安定化工程を含んでも良い。
二次電池1を常温(10℃から30℃程度)、かつ、SOC調整工程S12後の電池温度の±3℃の範囲内で維持した状態で、所定時間放置することにより、二次電池1の電圧を安定化させる。これにより、二次電池1の放電後の電圧の跳ね上がり(電極活物質の拡散に起因する電圧上昇)をリセットする。
電圧安定化工程において、放電後の二次電池1をエージングして電圧を安定させる、つまり、内部の化学物質が安定するまで保持することによって、電圧の上昇による各二次電池1の電圧のばらつきを吸収できる。また、放電直後の二次電池1の温度をできる限り維持した状態で行うことにより、電池温度の変化に起因する電圧のばらつきが抑えられ、検出精度を向上できる。
[Voltage stabilization process]
The SOC adjustment step S12 may include the following voltage stabilization step.
By leaving the secondary battery 1 at a room temperature (about 10 ° C. to about 30 ° C.) and within a range of ± 3 ° C. of the battery temperature after the SOC adjustment step S12, the secondary battery 1 Stabilize the voltage. Thereby, the jump of the voltage after the discharge of the secondary battery 1 (the voltage increase caused by the diffusion of the electrode active material) is reset.
In the voltage stabilization process, the secondary battery 1 after discharge is aged to stabilize the voltage, that is, by maintaining the internal chemical substance until it is stabilized, the voltage variation of each secondary battery 1 due to the voltage rise Can be absorbed. In addition, by performing the process while maintaining the temperature of the secondary battery 1 immediately after discharge as much as possible, voltage variations due to changes in battery temperature can be suppressed, and detection accuracy can be improved.

1:二次電池、2:ケース、3:電極体、4:外部端子   1: Secondary battery, 2: Case, 3: Electrode body, 4: External terminal

Claims (2)

二次電池を初期充電して活性化する初期活性化工程と、
前記初期活性化工程にて初期充電された前記二次電池を放電してSOCの値を調整するSOC調整工程と、
前記SOC調整工程でのSOC調整後の二次電池を自己放電させる自己放電工程と、を備え、
前記自己放電工程における二次電池の電圧降下量に基づいて短絡の有無を検出する二次電池の短絡検査方法であって、
前記SOC調整工程では、前記SOCの値を、前記二次電池の放電曲線の傾きを電池容量で割った値が0.05以上となる値に調整することを特徴とする二次電池の短絡検査方法。
An initial activation step of initially charging and activating the secondary battery;
An SOC adjustment step of adjusting the SOC value by discharging the secondary battery initially charged in the initial activation step;
A self-discharge step of self-discharging the secondary battery after the SOC adjustment in the SOC adjustment step,
A secondary battery short circuit inspection method for detecting the presence or absence of a short circuit based on a voltage drop amount of the secondary battery in the self-discharge process,
In the SOC adjustment step, the SOC value is adjusted to a value such that a value obtained by dividing the slope of the discharge curve of the secondary battery by the battery capacity is 0.05 or more. Method.
前記自己放電工程における電圧降下量は、
自己放電させる前記二次電池の電池温度の所定の電池温度からの乖離量に、前記SOC調整工程でのSOCの値及び自己放電させる前記二次電池の電池温度の前記所定の電池温度に対する乖離方向に応じて予め算出される補正係数を掛けることによって得られる補正量を、自己放電させる前記二次電池の電圧に加えることで得られる補正電圧値を用いて算出される請求項1に記載の二次電池の短絡検査方法。
The amount of voltage drop in the self-discharge process is
The amount of deviation of the battery temperature of the secondary battery to be self-discharged from the predetermined battery temperature, the value of the SOC in the SOC adjustment step, and the direction of deviation of the battery temperature of the secondary battery to be self-discharged from the predetermined battery temperature 2. The calculation according to claim 1, wherein a correction amount obtained by multiplying a correction coefficient calculated in advance according to the value is applied to a voltage of the secondary battery to be self-discharged, and is calculated using a correction voltage value obtained by the correction voltage value. Secondary battery short circuit inspection method.
JP2013001195A 2013-01-08 2013-01-08 Short-circuit inspection method of secondary battery Pending JP2014134395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013001195A JP2014134395A (en) 2013-01-08 2013-01-08 Short-circuit inspection method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013001195A JP2014134395A (en) 2013-01-08 2013-01-08 Short-circuit inspection method of secondary battery

Publications (1)

Publication Number Publication Date
JP2014134395A true JP2014134395A (en) 2014-07-24

Family

ID=51412798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013001195A Pending JP2014134395A (en) 2013-01-08 2013-01-08 Short-circuit inspection method of secondary battery

Country Status (1)

Country Link
JP (1) JP2014134395A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820045B1 (en) 2015-03-31 2018-01-18 도요타 지도샤(주) Inspection method for secondary battery
CN107656210A (en) * 2017-09-14 2018-02-02 广州市香港科大霍英东研究院 A kind of method for estimating battery electric quantity state
JP2019113469A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
CN111929602A (en) * 2020-06-23 2020-11-13 上海理工大学 Single battery leakage or micro short circuit quantitative diagnosis method based on capacity estimation
CN113125977A (en) * 2021-02-23 2021-07-16 惠州市恒泰科技股份有限公司 Lithium ion battery and self-discharge screening method thereof
WO2021169488A1 (en) * 2020-02-24 2021-09-02 上海蔚来汽车有限公司 Method, system and apparatus for monitoring short circuit in battery
CN113917347A (en) * 2021-09-30 2022-01-11 蜂巢能源科技有限公司 Method for evaluating self-discharge standard of battery
US11609260B2 (en) 2020-08-07 2023-03-21 Prime Planet Energy & Solutions, Inc. Method for inspecting insulation of a secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069775A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Method of inspecting secondary battery
JP2012084332A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Method for producing lithium ion secondary battery
JP2012084346A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Method for producing lithium ion secondary battery
JP2012252839A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069775A (en) * 2009-09-28 2011-04-07 Nissan Motor Co Ltd Method of inspecting secondary battery
JP2012084332A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Method for producing lithium ion secondary battery
JP2012084346A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Method for producing lithium ion secondary battery
JP2012252839A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820045B1 (en) 2015-03-31 2018-01-18 도요타 지도샤(주) Inspection method for secondary battery
CN107656210A (en) * 2017-09-14 2018-02-02 广州市香港科大霍英东研究院 A kind of method for estimating battery electric quantity state
JP2019113469A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
WO2021169488A1 (en) * 2020-02-24 2021-09-02 上海蔚来汽车有限公司 Method, system and apparatus for monitoring short circuit in battery
TWI751032B (en) * 2020-02-24 2021-12-21 大陸商上海蔚來汽車有限公司 Method, system and device for monitoring battery short circuit
CN111929602A (en) * 2020-06-23 2020-11-13 上海理工大学 Single battery leakage or micro short circuit quantitative diagnosis method based on capacity estimation
WO2021258472A1 (en) * 2020-06-23 2021-12-30 上海理工大学 Battery cell electric leakage or micro-short-circuit quantitative diagnosis method based on capacity estimation
CN111929602B (en) * 2020-06-23 2023-06-16 上海理工大学 Single battery leakage or micro-short circuit quantitative diagnosis method based on capacity estimation
US11609260B2 (en) 2020-08-07 2023-03-21 Prime Planet Energy & Solutions, Inc. Method for inspecting insulation of a secondary battery
CN113125977A (en) * 2021-02-23 2021-07-16 惠州市恒泰科技股份有限公司 Lithium ion battery and self-discharge screening method thereof
CN113917347A (en) * 2021-09-30 2022-01-11 蜂巢能源科技有限公司 Method for evaluating self-discharge standard of battery

Similar Documents

Publication Publication Date Title
JP2014134395A (en) Short-circuit inspection method of secondary battery
JP5930342B2 (en) Secondary battery short circuit inspection method
JP6252439B2 (en) Abnormality detection method and abnormality detection device for secondary battery
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
US10539622B2 (en) Inspection method and manufacturing method for electric power storage device
US10261131B2 (en) Inspection method for secondary battery
US20190094305A1 (en) Amount of charge calculation device, recording medium, and amount of charge calculation method
JP6090093B2 (en) Secondary battery inspection method and inspection device
US10847849B2 (en) Inspection method of electrical storage device and manufacturing method thereof
JP5768769B2 (en) Secondary battery inspection method
JP2014222603A (en) Inspection method for battery
JP2009004389A (en) Inspection method of battery
JP6308145B2 (en) Secondary battery inspection method
WO2019034869A1 (en) Maturation processes for electric batteries
JP2015095332A (en) Method for manufacturing nonaqueous electrolyte secondary battery
TW201317602A (en) Secondary battery inspection method
US10027136B2 (en) Battery and electric bicycle
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
JP2017037764A (en) Method for inspecting nonaqueous electrolyte secondary battery
JP5772737B2 (en) Total battery capacity estimation method
JP2013254653A (en) Method for inspecting secondary battery
JP6176487B2 (en) Manufacturing method of secondary battery
JP2014207154A (en) Method for inspecting nonaqueous electrolyte secondary battery
JP6760213B2 (en) How to manufacture a secondary battery
JP2017194282A (en) Charge amount calculation device, computer program, and charge amount calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160506