JP2019113469A - Self-discharge inspection method for power storage device - Google Patents

Self-discharge inspection method for power storage device Download PDF

Info

Publication number
JP2019113469A
JP2019113469A JP2017248746A JP2017248746A JP2019113469A JP 2019113469 A JP2019113469 A JP 2019113469A JP 2017248746 A JP2017248746 A JP 2017248746A JP 2017248746 A JP2017248746 A JP 2017248746A JP 2019113469 A JP2019113469 A JP 2019113469A
Authority
JP
Japan
Prior art keywords
soc
battery
current
storage device
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017248746A
Other languages
Japanese (ja)
Other versions
JP6973045B2 (en
Inventor
壮滋 後藤
Soji Goto
壮滋 後藤
極 小林
Kyoku Kobayashi
極 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017248746A priority Critical patent/JP6973045B2/en
Publication of JP2019113469A publication Critical patent/JP2019113469A/en
Application granted granted Critical
Publication of JP6973045B2 publication Critical patent/JP6973045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

To provide a power storage device self-discharge inspection method for a power storage device with which it is possible to the acceptability of a power storage device in a short time by a new technique different from a technique that acquires a voltage drop amount ΔVa.SOLUTION: The self-discharge inspection method for a power storage device 1 comprises: an SOC adjustment step S4 for adjusting the SOC of a power storage device 1 to an inspection SOC (KS) within a super-average differential OCV range SA; a voltage application step S5 for continuously applying an output voltage VS from an external power supply EP to the power storage device 1 and continuously sending a current IB to the power storage device 1; current acquisition steps S6, S26 for acquiring a temporal change of the current IB or a converged current value IBs into which the current IB converges; and determination steps S7, S27 for determining the acceptability of the power storage device 1 on the basis of the temporal change of the current IB or the converged current value IBs.SELECTED DRAWING: Figure 2

Description

本発明は、蓄電デバイスの自己放電の大きさを検査することにより、当該蓄電デバイスの良否を判定する蓄電デバイスの自己放電検査方法に関する。   The present invention relates to a self-discharge inspection method of a storage device that determines the quality of the storage device by inspecting the magnitude of the self-discharge of the storage device.

リチウムイオン二次電池などの蓄電デバイスの製造にあたって、電極体の内部に鉄や銅などの金属異物が混入する場合があり、混入した金属異物に起因して蓄電デバイスに内部短絡が生じることがある。このため、蓄電デバイスの製造過程において、蓄電デバイスに内部短絡が生じているか否かを検査することがある。   In the production of a storage device such as a lithium ion secondary battery, metallic foreign matter such as iron or copper may be mixed into the inside of the electrode body, and an internal short circuit may occur in the storage device due to the mixed metallic foreign matter . For this reason, in the process of manufacturing the storage device, it may be inspected whether or not an internal short circuit has occurred in the storage device.

この内部短絡の検査手法としては、例えば、以下が知られている。即ち、組み立てた蓄電デバイスを初充電した後、この蓄電デバイスを放置して自己放電させ(端子開放した状態で放電させ)、この自己放電前後にそれぞれ測定したデバイス電圧から自己放電による電圧低下量ΔVaを求める。そして、この電圧低下量ΔVaが基準低下量ΔVbよりも大きい場合に(ΔVa>ΔVb)、当該蓄電デバイスを内部短絡が生じている不良品と判定する。なお、関連する従来技術として、特許文献1(特許文献1の特許請求の範囲等を参照)が挙げられる。   As the inspection method of this internal short circuit, the following is known, for example. That is, after the assembled power storage device is initially charged, the power storage device is left to self-discharge (discharge in the open state of the terminal), and the voltage drop amount ΔVa due to self-discharge from the device voltage measured before and after this self-discharge. Ask for Then, when the voltage decrease amount ΔVa is larger than the reference decrease amount ΔVb (ΔVa> ΔVb), the power storage device is determined as a defective product in which an internal short circuit occurs. In addition, as related prior art, patent document 1 (refer the claim etc. of patent document 1) is mentioned.

特開2010−153275号公報JP, 2010-153275, A

しかしながら、上述のように電圧低下量ΔVaの多寡に基づいて蓄電デバイスの良否を判定する手法では、電圧計の測定分解能(例えば10μV)などを考慮すると、蓄電デバイスの良否を適切に判定するには、良品の電圧低下量ΔVaと不良品の電圧低下量ΔVaとの差が、電圧測定の測定分解能に対して十分に大きくなるまで、例えば20倍以上(200μV以上)となるまで待つ必要がある。しかるに、蓄電デバイスの容量が大きい場合や許容する短絡電流が小さい場合などでは、電圧低下量ΔVaの測定時間(自己放電させる時間)を長期間、例えば数日以上要する場合があり、検査時間が長く掛かっていた。   However, in the method of determining the quality of the power storage device based on the amount of voltage drop amount ΔVa as described above, in consideration of the measurement resolution of the voltmeter (for example, 10 μV), to appropriately determine the quality of the power storage device. It is necessary to wait until, for example, 20 times or more (200 μV or more) until the difference between the non-defective voltage drop amount ΔVa and the non-defective product voltage drop amount ΔVa becomes sufficiently large with respect to the measurement resolution of voltage measurement. However, if the capacity of the storage device is large or the allowable short circuit current is small, the measurement time (time for self-discharge) of the voltage drop amount ΔVa may take a long time, for example, several days or more, and the inspection time is long. It was hanging.

そこで、本発明者らは、蓄電デバイスに、外部直流電源からこの蓄電デバイスのOCVに等しい出力電圧VSを印加し続けて、外部直流電源から蓄電デバイスに電流IBを流し続け、電流IBの経時変化または電流IBが収束した収束電流値IBsの大きさを検知し、検知した電流IBの経時変化または収束電流値IBsの大きさに基づいて、当該蓄電デバイスの良否を判定する自己放電検査(短絡検査)の手法を提案している。
更に加えて、この手法によって自己放電検査を行うにあたり、蓄電デバイスのSOCを適切な範囲とすると、電流IBの収束を早めることができることが判ってきた。
Therefore, the present inventors continue to apply the output voltage VS equal to the OCV of the storage device from the external DC power supply to the storage device, and keep the current IB flowing from the external DC power supply to the storage device, thereby changing the current IB with time. Alternatively, a self-discharge test (short-circuit test) that detects the magnitude of the convergence current value IBs in which the current IB has converged and determines the quality of the storage device based on the time-dependent change of the detected current IB or the magnitude of the convergence current value IBs ) Has been proposed.
Furthermore, it has been found that the convergence of the current IB can be accelerated by setting the SOC of the storage device in an appropriate range when performing a self-discharge test by this method.

本発明は、かかる現状に鑑みてなされたものであって、電圧低下量ΔVaを取得する手法とは異なる新たな手法で、かつ短時間に、蓄電デバイスの良否を判定できる蓄電デバイスの自己放電検査方法を提供することを目的とする。   The present invention has been made in view of the present situation, and is a new method different from the method of acquiring the voltage drop amount ΔVa, and a self-discharge test of the storage device capable of determining the quality of the storage device in a short time. Intended to provide a method.

上記課題を解決するための本発明の一態様は、蓄電デバイスのSOCを、超平均微分OCV範囲内の予め定めた検査SOCに調整するSOC調整工程と、上記検査SOCに調整した上記蓄電デバイスに外部直流電源から出力電圧VSを印加し続けて、上記外部直流電源から上記蓄電デバイスに電流IBを流し続ける電圧印加工程と、上記電流IBの経時変化または上記電流IBが収束する収束電流値IBsを知得する電流知得工程と、知得した上記電流IBの経時変化または上記収束電流値IBsに基づいて、当該蓄電デバイスの良否を判定する判定工程と、を備える蓄電デバイスの自己放電検査方法である。   One aspect of the present invention for solving the above problems is an SOC adjustment step of adjusting the SOC of the storage device to a predetermined inspection SOC within a super average differential OCV range, and the storage device adjusted to the inspection SOC The voltage application step of continuing to apply the output voltage VS from the external DC power supply and continuing the flow of the current IB from the external DC power supply to the storage device, the time-dependent change of the current IB or the convergence current value IBs at which the current IB converges A self-discharge inspection method of a power storage device, comprising: a current obtaining step to obtain; and a determining step of determining the quality of the power storage device based on a change with time of the current IB or the convergence current value IBs obtained. .

上述の蓄電デバイスの自己放電検査方法は、上述のSOC調整工程、電圧印加工程、電流知得工程及び判定工程を備えるため、従来の電圧低下量ΔVaを測定する手法とは異なる新たな手法で、かつ短時間に、蓄電デバイスの良否を判定できる。
更に、上述の自己放電検査方法では、電圧印加工程を行うに先立ち、SOC調整工程において蓄電デバイスを超平均微分OCV範囲内の検査SOCに調整する。検査SOCを超平均微分OCV範囲内とした蓄電デバイスを用いて電圧印加工程を行うことにより、電流IBが収束するまでの電流収束時間taを、検査SOCを超平均微分OCV範囲外とした蓄電デバイスを用いて電圧印加工程を行う場合よりも短くできる。このため、上述の自己放電検査方法では、SOCが超平均微分OCV範囲外の蓄電デバイスを用いる場合よりも、電流知得工程及び判定工程をより早期に行うことができ、自己放電検査を短時間で行うことができる。
The above-described self-discharge inspection method of the storage device includes the above-described SOC adjustment step, voltage application step, current acquisition step, and determination step, so a new method different from the conventional method of measuring the voltage drop amount ΔVa And in a short time, it is possible to determine the quality of the power storage device.
Furthermore, in the above-described self-discharge inspection method, prior to the voltage application step, the storage device is adjusted to the inspection SOC within the super average differential OCV range in the SOC adjustment step. By performing the voltage application step using the storage device in which the inspection SOC is in the super average differential OCV range, the power storage device in which the current convergence time ta until the current IB converges is out of the super average differential OCV range Can be made shorter than when performing a voltage application process using Therefore, in the above-described self-discharge inspection method, the current acquisition step and the determination step can be performed earlier than in the case of using the storage device whose SOC is outside the super average differential OCV range, and the self-discharge inspection can be performed in a short time. Can be done with

なお、「平均微分OCV」とは、当該蓄電デバイスのSOC(0−100%)とOCV(開放電圧)との関係を示す「SOC−OCV曲線」を、SOCで微分した「SOC−ΔOCV/ΔSOC曲線」について、SOC0−100%の範囲におけるΔOCV/ΔSOCの平均値をいう。そして、「超平均微分OCV範囲」とは、ΔV/ΔSOCがこの平均微分OCVよりも高くなるSOCの範囲をいう。   In addition, "average differential OCV" is SOC-ΔOCV / ΔSOC obtained by differentiating by SOC the "SOC-OCV curve" showing the relationship between SOC (0 to 100%) and OCV (open circuit voltage) of the storage device. “Curve” refers to the average value of ΔOCV / ΔSOC in the range of SOC 0-100%. The “super-average differential OCV range” refers to a range of SOC in which ΔV / ΔSOC is higher than the average differential OCV.

一般に、リチウムニッケルコバルトマンガン酸化物系のリチウムイオン二次電池では、SOC−ΔOCV/ΔSOC曲線は、低SOCの範囲(例えば、SOC=0−20%)では、SOCが小さいほどΔOCV/ΔSOCが大きくなり、中SOCの範囲(例えば、SOC=20−70%)では、ΔOCV/ΔSOCが全体的に小さくかつ概ね一定であり、高SOCの範囲(例えば、SOC=70−100%)では、SOCが大きいほどΔOCV/ΔSOCが大きくなる曲線形状を示す。従って、この場合には、「超平均微分OCV範囲」は、このSOC−ΔOCV/ΔSOC曲線において、ΔOCV/ΔSOCが平均微分OCVよりも高くなるSOCの範囲(例えば、SOC=0−13%、SOC90−100%の2つからなる範囲、或いはSOC=0−13%のみ)が該当する。   In general, in the lithium-nickel-cobalt-manganese-based lithium ion secondary battery, the SOC-ΔOCV / ΔSOC curve shows that ΔOCV / ΔSOC increases as the SOC decreases in the low SOC range (for example, SOC = 0-20%) In the middle SOC range (for example, SOC = 20-70%), ΔOCV / ΔSOC is generally small and almost constant, and in the high SOC range (for example, SOC = 70-100%), the SOC is The larger the curve, the larger the ΔOCV / ΔSOC. Therefore, in this case, the “super-average differential OCV range” is the SOC range in which ΔOCV / ΔSOC is higher than the average differential OCV in this SOC-ΔOCV / ΔSOC curve (for example, SOC = 0-13%, SOC90 This corresponds to two ranges of −100%, or only SOC = 0-13%.

なお、上述の蓄電デバイスの自己放電検査方法は、蓄電デバイスの製造過程において行うことができるほか、自動車等に搭載されて或いは単独で市場に置かれた以降の使用済の蓄電デバイスに対して行うこともできる。
「蓄電デバイス」としては、例えば、リチウムイオン二次電池等の電池、電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタが挙げられる。
The above-mentioned self-discharge inspection method of a storage device can be performed in the manufacturing process of the storage device, and also performed on a used storage device mounted on a car or the like or after being put on the market alone. It can also be done.
Examples of the "storage device" include a battery such as a lithium ion secondary battery, a capacitor such as an electric double layer capacitor, and a lithium ion capacitor.

「電圧印加工程」としては、外部直流電源から印加する出力電圧VSとして、検査直前の蓄電デバイスのデバイス電圧VB1(開放電圧)に等しい(VS=VB1)電圧を印加し続ける工程や、電圧印加開始後、出力電圧VSをデバイス電圧VB1から徐々に、或いは階段状に上昇させる工程も挙げられる。
「収束電流値IBs」は、電流IBの大きさがほぼ一定となったと見なせる電流値をいい、例えば、所定時間毎に得る電流IB(t)の変化分が、予め定めた範囲内(例えば、±0.1μA以下/secなど)になったときの電流値をいう。また、収束電流値IBsを知得する手法としては、収束電流値IBsの大きさを実測する手法のほか、電流IBが収束する前に、電流IBの大きさや変化から収束電流値IBsの大きさを推定する場合も含む。
In the “voltage application step”, a step of continuing to apply a voltage (VS = VB1) equal to the device voltage VB1 (open voltage) of the storage device immediately before the test as the output voltage VS applied from the external DC power supply Thereafter, there is also a step of gradually or stepwise increasing the output voltage VS from the device voltage VB1.
The “convergence current value IBs” is a current value that can be considered that the magnitude of the current IB is substantially constant. For example, the change in the current IB (t) obtained every predetermined time is within a predetermined range (for example, The current value when it becomes ± 0.1 μA or less / sec). Further, as a method of obtaining the convergence current value IBs, in addition to a method of measuring the magnitude of the convergence current value IBs, before the current IB converges, the magnitude of the convergence current value IBs is Also includes estimation.

「判定工程」において、「収束電流値IBs」に基づいて当該蓄電デバイスの良否を判定する手法としては、例えば、収束電流値IBsが基準電流値IKよりも大きい場合に(IBs>IK)、その蓄電デバイスを不良品と判定する手法が挙げられる。また、収束電流値IBsの大きさに基づいて、その蓄電デバイスの自己放電の程度をランク分けする判定手法も挙げられる。
また、「電流IBの経時変化」に基づいて当該蓄電デバイスの良否を判定する手法としては、例えば、所定の検知期間QTに増加した電流IBの電流増加量ΔIBが基準増加量ΔIBKよりも大きい場合に(ΔIB>ΔIBK)、その蓄電デバイスを不良品と判定する手法が挙げられる。また、この電流増加量ΔIBの大きさに基づいて、その蓄電デバイスの自己放電の程度をランク分けする判定手法も挙げられる。
As a method of determining the quality of the power storage device based on the “convergent current value IBs” in the “determination step”, for example, when the convergent current value IBs is larger than the reference current value IK (IBs> IK), There is a method of determining a storage device as a defective product. Further, there is also a determination method of ranking the degree of self-discharge of the storage device based on the magnitude of the convergence current value IBs.
Further, as a method of determining the quality of the power storage device based on "time-dependent change of current IB", for example, when current increase amount ΔIB of current IB increased in a predetermined detection period QT is larger than reference increase amount ΔIBK (ΔIB> ΔIBK), there is a method of determining the storage device as a defective product. Also, there is a determination method of ranking the degree of self-discharge of the power storage device based on the magnitude of the current increase amount ΔIB.

更に、上記の蓄電デバイスの自己放電検査方法であって、前記SOC調整工程は、前記蓄電デバイスのSOCを、前記超平均微分OCV範囲のうち、高微分OCV範囲内の予め定めた検査SOCに調整する蓄電デバイスの自己放電検査方法とするのが好ましい。   Furthermore, in the self-discharge inspection method of the storage device, the SOC adjustment step adjusts the SOC of the storage device to a predetermined inspection SOC within a high differential OCV range within the super average differential OCV range. It is preferable to set it as the self discharge inspection method of the electrical storage device to be.

蓄電デバイスのSOCを高微分OCV範囲内のSOCに調整することにより、自己放電検査を更に短時間で行うことができる。
なお、「高微分OCV範囲」とは、「超平均微分OCV範囲」のうち、SOC−ΔOCV/ΔSOC曲線において、ΔV/ΔSOCが平均微分OCVの2倍よりも高くなるSOCの範囲(例えば、前述のリチウムニッケルコバルトマンガン酸化物系のリチウムイオン二次電池の例においては、SOC=0−9.5%の範囲)をいう。
By adjusting the SOC of the storage device to the SOC within the high differential OCV range, the self-discharge test can be performed in a shorter time.
The “high differential OCV range” refers to the SOC range in which ΔV / ΔSOC is higher than twice the average differential OCV in the SOC-ΔOCV / ΔSOC curve of the “super-average differential OCV range” (for example, the above In the example of a lithium nickel cobalt manganese oxide-based lithium ion secondary battery, the SOC

また、他の態様は、組み立てた未充電の蓄電デバイスを初充電する初充電工程と、前記のいずれかに記載の蓄電デバイスの自己放電検査方法により、当該蓄電デバイスの自己放電検査を行う自己放電検査工程と、を備える蓄電デバイスの製造方法である。   Moreover, the self-discharge which performs the self-discharge test of the said electrical storage device by the first charge process of carrying out the first charge of the assembled uncharged electrical storage device initially, and the self-discharge inspection method of the electrical storage device in any one of said And a test process.

上述の蓄電デバイスの製造方法では、初充電工程の後に、蓄電デバイスの自己放電検査を行う自己放電検査工程を備えるので、蓄電デバイスの初期段階における自己放電検査を適切に行った蓄電デバイスを製造できる。   In the method of manufacturing the storage device described above, since the self-discharge inspection step of performing the self-discharge inspection of the storage device is provided after the initial charging step, it is possible to manufacture the storage device properly subjected to the self-discharge inspection at the initial stage of the storage device. .

実施形態に係る電池の斜視図である。It is a perspective view of the battery concerning an embodiment. 実施形態に係る電池の自己放電検査方法を含む、電池の製造方法のフローチャートである。It is a flowchart of the manufacturing method of a battery including the self-discharge test method of the battery which concerns on embodiment. 電池のSOCと電池電圧VB(OCV)との関係を示すグラフ(SOC−OCV曲線)である。It is a graph (SOC-OCV curve) which shows the relation between SOC of a battery, and battery voltage VB (OCV). 図3のSOC−OCV曲線をSOCで微分したSOC−ΔOCV/ΔSOC曲線である。It is the SOC- (DELTA) OCV / (DELTA) SOC curve which differentiated the SOC-OCV curve of FIG. 3 by SOC. 実施形態に係る電池の自己放電検査方法に関し、電池に外部直流電源を接続した状態の等価回路図である。It is an equivalent circuit schematic of the state which connected the external DC power supply to the battery regarding the self-discharge test method of the battery which concerns on embodiment. 局所電池容量Cxが大きい電池と小さい電池について自己放電検査を行った場合の、電圧印加時間tと電流IB(t)との関係を示すグラフである。It is a graph which shows the relationship of voltage application time t and electric current IB (t) at the time of performing a self-discharge test about the battery with large local battery capacity Cx, and a small battery. 良品及び不良品の各電池について自己放電検査を行った場合の、電圧印加時間tと出力電圧VS、電池電圧VB(t)及び電流IB(t)との関係を模式的に示すグラフである。It is a graph which shows typically the relationship of the voltage application time t, the output voltage VS, the battery voltage VB (t), and electric current IB (t) at the time of performing a self-discharge test about each battery of non-defective goods and inferior goods.

(実施形態)
以下、本発明の実施形態を、図面を参照しつつ説明する。図1に、本実施形態に係る電池(蓄電デバイス)1の斜視図を示す。この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a perspective view of a battery (power storage device) 1 according to the present embodiment. The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, and an electric car. The battery 1 includes a battery case 10, an electrode body 20 housed inside the battery case 10, and a positive electrode terminal member 50 and a negative electrode terminal member 60 supported by the battery case 10. Among them, the battery case 10 has a rectangular box shape and is made of metal (in the present embodiment, aluminum).

また、電極体20は、扁平状の捲回型電極体であり、帯状の正極板と帯状の負極板とを、帯状で樹脂製の多孔質膜からなる一対のセパレータを介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。本実施形態では、正極板の正極活物質層に含まれる正極活物質は、リチウム遷移金属複合酸化物、具体的には、リチウムニッケルコバルトマンガン酸化物であり、負極板の負極活物質層に含まれる負極活物質は、炭素材料、具体的には、黒鉛である。また、電池ケース10内には、電解液(不図示)が収容されており、その一部は電極体20内に含浸されている。   The electrode assembly 20 is a flat wound electrode assembly, and a strip-like positive electrode plate and a strip-like negative electrode plate are superimposed on each other via a pair of separators made of a porous resin film and an axial line It is wound around and compressed into a flat shape. In the present embodiment, the positive electrode active material contained in the positive electrode active material layer of the positive electrode plate is a lithium transition metal composite oxide, specifically lithium nickel cobalt manganese oxide, and is contained in the negative electrode active material layer of the negative electrode plate. The negative electrode active material to be used is a carbon material, specifically, graphite. In addition, an electrolytic solution (not shown) is accommodated in the battery case 10, and a part thereof is impregnated in the electrode body 20.

次いで、上記電池1の自己放電検査方法を含む電池1の製造方法について説明する(図2参照)。まず「組立工程S1」において、未充電の電池(未充電の蓄電デバイス)1xを組み立てる。具体的には、電池ケース10のケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する。その後、正極端子部材50及び負極端子部材60を、別途形成した電極体20の正極板及び負極板にそれぞれ溶接する。その後、電極体20を電池ケース10のケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、電解液(不図示)を注液孔13hから電池ケース10内に注液し、封止部材15で注液孔13hを封止する。これにより、未充電の電池1xが形成される。   Then, the manufacturing method of the battery 1 including the self-discharge test method of the said battery 1 is demonstrated (refer FIG. 2). First, in "assembly step S1", an uncharged battery (uncharged storage device) 1x is assembled. Specifically, the case lid member 13 of the battery case 10 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixed thereto. Thereafter, the positive electrode terminal member 50 and the negative electrode terminal member 60 are respectively welded to the positive electrode plate and the negative electrode plate of the electrode body 20 separately formed. Thereafter, the electrode body 20 is inserted into the case body member 11 of the battery case 10, and the opening of the case body member 11 is closed by the case lid member 13. Then, the case body member 11 and the case lid member 13 are welded to form the battery case 10. Thereafter, an electrolytic solution (not shown) is injected into the battery case 10 through the injection hole 13 h, and the injection hole 13 h is sealed by the sealing member 15. Thereby, an uncharged battery 1x is formed.

次に、「初充電工程S2」において、この組み立てた未充電の電池1xを初充電する。具体的には、拘束治具(不図示)を用いて、電池1xを電池厚み方向に圧縮した状態で拘束する。なお、本実施形態では、この初充電工程S2から後述する自己放電検査工程S3までを、電池1x(電池1)を圧縮した状態で行う。その後、電池1xに充放電装置(不図示)を接続して、環境温度25℃下において、定電流定電圧(CCCV)充電により、SOC90%に相当する電池電圧(デバイス電圧)VB=3.97Vまで電池1xを初充電(CCCV充電)する。本実施形態では、1Cの定電流で電池電圧VB=3.97Vになるまで充電した後、充電電流値が1/10Cになるまでこの電池電圧VB=3.97Vを維持した。   Next, in the "first charging step S2", the assembled uncharged battery 1x is initially charged. Specifically, the battery 1x is restrained in a compressed state in the battery thickness direction using a restraint jig (not shown). In the present embodiment, from the initial charging step S2 to the self-discharge inspection step S3 described later, the battery 1x (battery 1) is compressed. Thereafter, a charge / discharge device (not shown) is connected to battery 1x, and battery voltage (device voltage) VB = 3.97 V corresponding to SOC 90% by constant current constant voltage (CCCV) charging under an environmental temperature of 25 ° C. Charge the battery 1x for the first time (CCCV charge). In this embodiment, after charging until the battery voltage VB = 3.97 V with a constant current of 1 C, the battery voltage VB = 3.97 V is maintained until the charging current value becomes 1/10 C.

次に、「自己放電検査工程S3」を行う。この自己放電検査工程S3は、SOC調整工程S4、電圧印加工程S5、電流知得工程S6及び判定工程S7を含む。
まず「SOC調整工程S4」において、電池1のSOCを、超平均微分OCV範囲SA内の予め定めた検査SOC(KS)に調整する。
Next, "self-discharge inspection step S3" is performed. The self-discharge inspection step S3 includes an SOC adjustment step S4, a voltage application step S5, a current acquisition step S6 and a determination step S7.
First, in the "SOC adjustment step S4", the SOC of the battery 1 is adjusted to a predetermined inspection SOC (KS) within the super average differential OCV range SA.

ここで、図3に、電池1のSOCと電池電圧VB(OCV)とのSOC−OCV曲線を示す。また、図4に、図3のSOC−OCV曲線をSOCで微分したSOC−ΔOCV/ΔSOC曲線を示す。図3のSOC−OCV曲線は、SOCが大きくなるほど電池電圧VBが高くなる曲線形状を示す。一方、図4のSOC−ΔOCV/ΔSOC曲線は、SOC=0−20%の低SOCの範囲では、SOCが小さいほどΔOCV/ΔSOCが大きくなり、SOC=20−70%の中SOCの範囲では、ΔOCV/ΔSOCが全体的に小さくかつ概ね一定であり、SOC=70−100%の高SOCの範囲では、SOCが大きいほどΔOCV/ΔSOCが大きくなる曲線形状を示す。   Here, FIG. 3 shows an SOC-OCV curve of the SOC of the battery 1 and the battery voltage VB (OCV). Further, FIG. 4 shows an SOC-ΔOCV / ΔSOC curve obtained by differentiating the SOC-OCV curve of FIG. 3 by SOC. The SOC-OCV curve in FIG. 3 shows a curve shape in which the battery voltage VB increases as the SOC increases. On the other hand, in the SOC-ΔOCV / ΔSOC curve of FIG. 4, in the low SOC range of SOC = 0-20%, ΔOCV / ΔSOC increases as the SOC decreases, and in the middle SOC range of SOC = 20-70%, The ΔOCV / ΔSOC is generally small and substantially constant, and in the high SOC range of SOC = 70-100%, a curve shape in which ΔOCV / ΔSOC increases as the SOC increases is shown.

電池1をコンデンサと考えると(図5も参照)、電池電圧VB(V)と電荷量Q(C)と電池容量C(F)との間で、VB=Q/Cの関係が成立するはずである。しかし、実際には、電池1はコンデンサと異なり、図3に示すように、電池電圧VBは、電池1に蓄積された電荷量Q(SOC)に比例しない。即ち、局所的な電池容量である局所電池容量Cx(=1/(ΔOCV/ΔSOC))は、電池1に蓄積された電荷量Q(SOC)によって変化するSOCの関数となっている。図4に示すように、ΔOCV/ΔSOCは、SOC=0−20%の低SOCの範囲では、SOCが小さいほど大きくなり、SOC=20−70%の中SOCの範囲では、全体的に小さくかつ概ね一定であり、SOC=70−100%の高SOCの範囲では、SOCが大きいほど大きくなる。従って、ΔOCV/ΔSOCの逆数である局所電池容量Cx(=1/(ΔOCV/ΔSOC))は、上記低SOCの範囲では、SOCが小さいほど小さくなり、上記中SOCの範囲では、全体的に大きくかつ概ね一定であり、上記高SOCの範囲では、SOCが大きいほど小さくなる傾向を示している。   If battery 1 is considered as a capacitor (see also FIG. 5), the relationship of VB = Q / C should be established among battery voltage VB (V), charge amount Q (C) and battery capacity C (F) It is. However, in practice, battery 1 differs from a capacitor, and as shown in FIG. 3, battery voltage VB is not proportional to the charge amount Q (SOC) stored in battery 1. That is, the local battery capacity Cx (= 1 / (ΔOCV / ΔSOC)), which is a local battery capacity, is a function of the SOC which changes with the charge amount Q (SOC) stored in the battery 1. As shown in FIG. 4, ΔOCV / ΔSOC increases as the SOC decreases in the low SOC range of SOC = 0-20%, and is generally smaller in the medium SOC range of SOC = 20-70%. It is substantially constant, and in the high SOC range of SOC = 70-100%, the larger the SOC, the larger. Therefore, the local battery capacity Cx (= 1 / (. DELTA.OCV / .DELTA.SOC)), which is the reciprocal of .DELTA.OCV / .DELTA.SOC, becomes smaller as the SOC becomes smaller in the range of the low SOC, and becomes large largely in the range of the middle SOC And, it is generally constant, and in the high SOC range, it tends to be smaller as the SOC is larger.

従って、後述する電圧印加工程S5を、この局所電池容量Cxが小さくなるSOC(図4におけるΔOCV/ΔSOCが大きいSOC)で行うほど、外部直流電源EPから電池1に流れる電流IB(t)が収束するまでの収束時間taを短くでき、収束電流値IBsを検知する電流知得工程S6を早期に行うことができる。そこで、これに先立ち、このSOC調整工程S4では、電池1のSOCを、局所電池容量Cxが小さくなる(ΔOCV/ΔSOCが大きくなる)SOCに調整する。   Therefore, the current IB (t) flowing from the external DC power supply EP to the battery 1 converges as the voltage application step S5 to be described later is performed by the SOC (the SOC of ΔOCV / ΔSOC in FIG. The convergence time ta can be shortened, and the current detection step S6 for detecting the convergence current value IBs can be performed early. Therefore, prior to this, in the SOC adjustment step S4, the SOC of the battery 1 is adjusted to an SOC where the local battery capacity Cx becomes smaller (ΔOCV / ΔSOC becomes larger).

本実施形態では、具体的には、図4のSOC−ΔOCV/ΔSOC曲線において、SOC0−100%の範囲におけるΔOCV/ΔSOCの平均値である「平均微分OCV」は、LA=0.011である。そこで、ΔOCV/ΔSOCがこの平均微分OCV(LA=0.011)よりも大きくなるSOCの範囲である「超平均微分OCV範囲SA」は、SOC0−13%,SOC90−100%である。更に、ΔOCV/ΔSOCが平均微分OCVの2倍(2×LA=0.022)よりも大きくなるSOCの範囲である「高微分OCV範囲SB」は、SOC0−9.5%である。   In this embodiment, specifically, in the SOC-ΔOCV / ΔSOC curve of FIG. 4, “average differential OCV” which is an average value of ΔOCV / ΔSOC in the range of SOC 0 to 100% is LA = 0.011. . Therefore, the "super average differential OCV range SA", which is the range of SOC in which ΔOCV / ΔSOC becomes larger than this average differential OCV (LA = 0.011), is SOC 0-13% and SOC 90-100%. Furthermore, “high differential OCV range SB”, which is a range of SOC in which ΔOCV / ΔSOC becomes larger than twice the average differential OCV (2 × LA = 0.022), is SOC0−9.5%.

なお、図4における各点のΔOCV/ΔSOCの値は、図3における各点のデータに基づいて以下のようにして算出した。例えば、SOC5%におけるΔOCV/ΔSOCの値は、その前後のSOC0%におけるΔOCV/ΔSOC及び10%におけるΔOCV/ΔSOCを含めた3点で得る。具体的には、SOC0%からSOC5%までの区間の傾き、即ち、(SOC5%におけるOCV−SOC0%におけるOCV)/(5%−0%)と、SOC5%からSOC10%までの区間の傾き、即ち、(SOC10%におけるOCV−SOC5%におけるOCV)/(10%−5%)との平均を、SOC5%における微分値(ΔOCV/ΔSOC)とした。
なお、SOC0%におけるΔOCV/ΔSOCの値は、SOC0%からSOC5%までの区間の傾きをそのまま用いた。また、SOC100%におけるΔOCV/ΔSOCの値は、SOC95%からSOC100%までの区間の傾きをそのまま用いた。このようにして各点のΔOCV/ΔSOCの値を得た。
The value of ΔOCV / ΔSOC at each point in FIG. 4 was calculated as follows based on the data at each point in FIG. For example, the value of ΔOCV / ΔSOC at SOC 5% is obtained at three points including ΔOCV / ΔSOC at SOC 0% and ΔOCV / ΔSOC at 10% before and after that. Specifically, the slope of the interval from SOC 0% to SOC 5%, that is, the slope of the interval from SOC 5% to SOC 10%, (OCV at OCV at SOC 5%, OCV at SOC 0%) / (5% −0%) That is, an average of (OCV at 5% of SOC, OCV at 5% of SOC) / (10% to 5%) was taken as a derivative value (ΔOCV / ΔSOC) at 5% of SOC.
As the value of ΔOCV / ΔSOC at SOC 0%, the slope of the section from SOC 0% to SOC 5% was used as it is. Further, as the value of ΔOCV / ΔSOC at SOC 100%, the slope of the section from SOC 95% to SOC 100% was used as it is. Thus, the value of ΔOCV / ΔSOC at each point was obtained.

また、SOC0−100%の範囲におけるΔOCV/ΔSOCの平均値である「平均微分OCV」(LA=0.011)は、以下のようにして算出した。図4に記載したグラフにおいて、グラフよりも下側の面積を、SOCの各区間(例えばSOC0−5%の区間、SOC5−10%の区間など)の台形の面積をそれぞれ求めて、それらを足し合わせることにより得て、この全体の面積を100(SOC100%)で割って、ΔOCV/ΔSOCの平均値(平均微分OCV)とした。   Moreover, "average differential OCV" (LA = 0.011) which is an average value of (DELTA) OCV / (DELTA) SOC in the range of SOC0-100% was calculated as follows. In the graph described in FIG. 4, the area below the graph is determined, and the area of the trapezoid of each section of SOC (for example, section of SOC0-5%, section of SOC5-10%, etc.) is calculated and added. The total area was divided by 100 (SOC 100%) to obtain an average value of ΔOCV / ΔSOC (average differential OCV).

本実施形態のSOC調整工程S4では、電池1のSOCを、超平均微分OCV範囲SA内、更には、高微分OCV範囲SB内である検査SOC(KS=SOC8%)に調整する。具体的には、環境温度25℃下において、電池1に接続した充放電装置(不図示)により、1Cの定電流で、SOC90%に相当する電池電圧VB=3.97Vから、SOC8%に相当する電池電圧VB=3.38Vまで強制放電させて、電池1のSOCを調整した。   In the SOC adjustment step S4 of the present embodiment, the SOC of the battery 1 is adjusted to the inspection SOC (KS = SOC 8%) which is within the super average differential OCV range SA and further within the high differential OCV range SB. Specifically, at an environmental temperature of 25 ° C., the battery voltage VB = 3.97 V corresponding to 90% of SOC at a constant current of 1 C by a charge / discharge device (not shown) connected to the battery 1 corresponds to 8% of SOC The SOC of the battery 1 was adjusted by forcibly discharging the battery voltage VB to 3.38V.

また、本実施形態では、このSOC調整工程S4において、次述する「電圧印加工程S5」を行う検査SOC(本実施形態では、KS=SOC8%)における局所的な電池容量である局所電池容量Cxを求める。具体的には、当該電池1のSOC9%に相当する電池電圧VB=3.41VからSOC8%に相当する電池電圧VB=3.38Vになるまでの電圧区間(ΔOCV=3.41−3.38=0.03V)に放電された放電電気量ΔQを測定し、これを用いて局所電池容量Cx(=ΔQ/ΔOCV)を得る。   Further, in the present embodiment, a local battery capacity Cx which is a local battery capacity in an inspection SOC (in the present embodiment, KS = SOC 8%) in which “voltage application step S5” described below is performed in the SOC adjustment step S4. Ask for Specifically, a voltage section until the battery voltage VB = 3.38 V corresponding to SOC 8% from the battery voltage VB = 3.41 V corresponding to the SOC 9% of the battery 1 (ΔOCV = 3.41-3.38 The amount of discharged electricity .DELTA.Q discharged to = 0.03 V) is measured, and this is used to obtain a local battery capacity Cx (= .DELTA.Q / .DELTA.OCV).

次に、「電圧印加工程S5」において、検査SOC(KS=SOC8%)に調整した電池1に外部直流電源EPから出力電圧VSを印加し続けて、外部直流電源EPから電池1に電流IBを流し続ける(図5参照)。具体的には、まず、外部直流電源EPの一対のプローブP1,P2を電池1の正極端子部材50及び負極端子部材60にそれぞれ接触させて、外部直流電源EPを電池1に接続する。   Next, in the “voltage application step S5”, the output voltage VS is continuously applied from the external DC power supply EP to the battery 1 adjusted to the inspection SOC (KS = SOC 8%), and the current IB is supplied to the battery 1 from the external DC power supply EP. Keep flowing (see FIG. 5). Specifically, first, the external DC power supply EP is connected to the battery 1 by bringing the pair of probes P1, P2 of the external DC power supply EP into contact with the positive electrode terminal member 50 and the negative electrode terminal member 60 of the battery 1, respectively.

なお、図5において、配線抵抗Rwは、外部直流電源EP内、及び、外部直流電源EPからプローブP1,P2までに分布する配線抵抗を示す。また、接触抵抗R1は、外部直流電源EPの一方のプローブP1と電池1の正極端子部材50との接触抵抗であり、接触抵抗R2は、外部直流電源EPの他方のプローブP2と電池1の負極端子部材60との接触抵抗である。また、電池成分1Cは、電池1の電池成分であり、電池抵抗Rsは、電池1の直流抵抗であり、自己放電抵抗Rpは、主に電池1の内部短絡によって生じる抵抗である。等価回路上、電池抵抗Rsは電池成分1Cに直列に、自己放電抵抗Rpは電池成分1Cと並列に接続される。また、回路抵抗Reは、配線抵抗Rwと接触抵抗R1,R2と電池抵抗Rsとの和(Re=Rw+R1+R2+Rs)である。また、電流IBは、外部直流電源EPから電池1に流れる電流であり、電流IDは、自己放電に伴って電池1内(電池成分1C)を流れる自己放電電流である。   In FIG. 5, the wiring resistance Rw indicates wiring resistance distributed in the external DC power supply EP and from the external DC power supply EP to the probes P1 and P2. The contact resistance R1 is a contact resistance between one probe P1 of the external DC power supply EP and the positive electrode terminal member 50 of the battery 1, and the contact resistance R2 is the other probe P2 of the external DC power supply EP and the negative electrode of the battery 1 It is a contact resistance with the terminal member 60. The battery component 1C is a battery component of the battery 1, the battery resistance Rs is a direct current resistance of the battery 1, and the self-discharge resistance Rp is a resistance mainly generated by an internal short circuit of the battery 1. In the equivalent circuit, the battery resistance Rs is connected in series to the battery component 1C, and the self-discharge resistance Rp is connected in parallel to the battery component 1C. The circuit resistance Re is the sum of the wiring resistance Rw, the contact resistances R1 and R2, and the battery resistance Rs (Re = Rw + R1 + R2 + Rs). Further, current IB is a current flowing from external DC power supply EP to battery 1, and current ID is a self-discharge current flowing in battery 1 (battery component 1C) along with self-discharge.

また、外部直流電源EPは、自身の直流電源EPEが発生する出力電圧VSを可変かつ高精度に制御できるほか、直流電源EPEから外部に流れ出る電流IBを高精度に計測可能に構成された精密直流電源である。また、外部直流電源EPは、電池電圧VBを測定可能な電圧計EPVと、外部直流電源EPから電池1に流れる電流IBを測定可能な電流計EPIとを有する。   Further, the external DC power supply EP can variably control the output voltage VS generated by its own DC power supply EPE with high accuracy, and is a precision DC configured to be able to measure the current IB flowing from the DC power supply EPE to the outside with high accuracy. It is a power source. The external DC power supply EP further includes a voltmeter EPV capable of measuring the battery voltage VB and an ammeter EPI capable of measuring the current IB flowing from the external DC power supply EP to the battery 1.

電池1に外部直流電源EPを接続した後、電流IB=0の条件下で、外部直流電源EPに含まれる電圧計EPVにより電池1の電池電圧VB(開放電圧VB1)を測定する。本実施形態では、この検査前電池電圧(開放電圧)VB1として、3.38V近傍の値が計測される。その後、時刻t=0以降、測定された検査前電池電圧VB1に等しい出力電圧VS(VS=VB1)を電池1に印加し続けて、外部直流電源EPから電池1に電流IBを流し続ける。   After the external direct current power supply EP is connected to the battery 1, the battery voltage VB (open circuit voltage VB1) of the battery 1 is measured by a voltmeter EPV included in the external direct current power supply EP under the condition of current IB = 0. In the present embodiment, a value near 3.38 V is measured as the pre-test battery voltage (open circuit voltage) VB1. Thereafter, after time t = 0, the output voltage VS (VS = VB1) equal to the measured pre-test battery voltage VB1 is continuously applied to the battery 1, and the current IB is continuously supplied from the external DC power supply EP to the battery 1.

ここで、外部直流電源EPから電池1に流れる電流IB(t)の理論式について説明する。下記<数1>の理論式は、電池1に外部直流電源EPを接続した等価回路の微分方程式を、初期条件下(電圧印加時間t=0)で解いた式である。   Here, a theoretical formula of the current IB (t) flowing from the external DC power supply EP to the battery 1 will be described. The theoretical equation of <Equation 1> below is an equation in which the differential equation of the equivalent circuit in which the external DC power supply EP is connected to the battery 1 is solved under initial conditions (voltage application time t = 0).

Figure 2019113469
Figure 2019113469

t :電圧印加時間(sec)
IB :電流(μA)
VS :出力電圧(V)
VB1:検査前電池電圧(V)
Rp :自己放電抵抗(Ω)
Re :回路抵抗(Ω)
Cx :局所電池容量(F)
t: Voltage application time (sec)
IB: Current (μA)
VS: Output voltage (V)
VB1: Battery voltage before inspection (V)
Rp: Self-discharge resistance (Ω)
Re: Circuit resistance (Ω)
Cx: Local battery capacity (F)

上記<数1>の理論式において、収束する時間(電圧印加時間t)に関係する各ネイピア数(e)の指数{−(Re+Rp)t/ReRpCx}について考える。この指数の分子・分母をそれぞれRpで割ると、{−(Re/Rp+1)t/ReCx}となる。ここで、自己放電抵抗Rpが回路抵抗Reよりも十分に大きい場合(例えば、回路抵抗Reが数Ωに対して自己放電抵抗Rpが数百Ωなど)、Re/Rpは、1に比べて十分に小さい値であるため、これを無視することができ、上記指数は{−t/ReCx}と近似できる。すると、<数1>の理論式から下記<数2>の近似式が得られる。   Consider the exponent {− (Re + Rp) t / ReRpCx} of the number of Napiers (e) related to the convergence time (voltage application time t) in the above theoretical formula <1>. The numerator and denominator of this exponent are respectively divided by Rp to obtain {-(Re / Rp + 1) t / ReCx}. Here, when the self-discharge resistance Rp is sufficiently larger than the circuit resistance Re (for example, the self-discharge resistance Rp is several hundreds Ω for a circuit resistance Re of several Ω, etc.), Re / Rp is sufficient compared to 1 The value can be ignored and the above index can be approximated as {−t / ReCx}. Then, the following approximate expression of <expression 2> is obtained from the theoretical expression of <expression 1>.

Figure 2019113469
Figure 2019113469

図6に、局所電池容量Cxの小さい電池1と大きい電池1について、電圧印加時間tと電流IB(t)との関係を示す。これらのグラフは、上記<数2>に示した電流IB(t)の式に基づいて描いたグラフであり、「局所電池容量Cx:小」として実線で示すグラフは、<数2>の式において、局所電池容量Cx=5,500Fとしたグラフであり、「局所電池容量Cx:大」として破線で示すグラフは、<数2>の式において、局所電池容量Cx=55,000Fとしたグラフである。
なお、図6のグラフでは、出力電圧VS=検査前電池電圧VB1は、前述の電圧印加工程S5で測定された電圧値(具体的には、VS=VB1=4.0V)を用いた。また、回路抵抗Re及び自己放電抵抗Rpは、予め多数の良品の電池1について回路抵抗Re及び自己放電抵抗Rpをそれぞれ測定した結果の各平均値(具体的には、Re=0.1Ω、Rp=200kΩ)をそれぞれ用いた。
FIG. 6 shows the relationship between the voltage application time t and the current IB (t) for the battery 1 with a small local battery capacity Cx and the battery 1 with a large local battery capacity Cx. These graphs are graphs drawn based on the equation of the current IB (t) shown in the above <Equation 2>, and the graph shown by a solid line as “local battery capacity Cx: small” is an equation of <Equation 2> Is a graph with a local battery capacity Cx = 5,500 F, and a graph shown by a broken line as “local battery capacity Cx: large” is a graph with a local battery capacity Cx = 55,000 F in the equation <Equation 2>. It is.
In the graph of FIG. 6, the output voltage VS = the battery voltage before inspection VB1 uses the voltage value (specifically, VS = VB1 = 4.0 V) measured in the above-described voltage application step S5. In addition, the circuit resistance Re and the self-discharge resistance Rp are average values of the results of measurement of the circuit resistance Re and the self-discharge resistance Rp in advance for a number of non-defective batteries 1 (specifically, Re = 0.1Ω, Rp = 200 kΩ) were used respectively.

ここで、図7に、良品及び不良品の各電池1について、電圧印加時間tと、出力電圧VS、電池電圧VB(t)及び電流IB(t)との関係の概略を示す。図7に示すように、外部直流電源EPから電池1に印加する出力電圧VSは、本実施形態では、電圧印加時間tの経過に拘わらず、電圧印加直前に測定された検査前電池電圧VB1に等しい大きさとする。一方、電池電圧VB(t)は、検査前電池電圧VB1から電圧印加時間tの経過と共に徐々に低下した後、収束時間ta以降は、収束して一定の値(収束電池電圧VB2)となる。但し、良品の電池1に比べて不良品の電池1は、電池電圧VB(t)が大きく低下するため、収束電池電圧VB2も相対的に低い値となる。   Here, FIG. 7 schematically shows the relationship among the voltage application time t, the output voltage VS, the battery voltage VB (t), and the current IB (t) for each of the non-defective and defective batteries 1. As shown in FIG. 7, in the present embodiment, the output voltage VS applied from the external DC power supply EP to the battery 1 is the pre-test battery voltage VB1 measured immediately before the voltage application regardless of the passage of the voltage application time t. Make the same size. On the other hand, the battery voltage VB (t) gradually decreases with the elapse of the voltage application time t from the pre-test battery voltage VB1, and after the convergence time ta, it converges and becomes a constant value (converged battery voltage VB2). However, the battery voltage VB (t) of the defective battery 1 is significantly lower than that of the non-defective battery 1, so that the convergence battery voltage VB2 also has a relatively low value.

このように電池電圧VB(t)、電流IB(t)が変化する理由は、以下である。電池1では、自己放電により電池成分1Cから自己放電電流IDが流れ出ることによって、電池成分1Cの電圧が、及び、電池電圧VB(t)が徐々に低下する。その際、不良品の電池1は、良品の電池1に比べて自己放電電流IDが大きいため、電池電圧VB(t)が早く低下する。一方、電池電圧VB(t)が出力電圧VSよりも低く(VS<VB(t))なると、外部直流電源EPから電池1(電池成分1C)に向けて電圧差ΔV=VS−VB(t)の大きさに応じた電流IBが流れて、電池1(電池成分1C)が充電される。電圧差ΔV=VS−VB(t)が小さいうちは、電流IBも小さいため、外部直流電源EPから電池1に流れ込む電流IBよりも、電池成分1Cから流れ出る自己放電電流IDが大きい(ID>IB(t))ので、電池成分1Cの電圧及び電池電圧VB(t)が徐々に低下する。しかし、電池電圧VB(t)が更に低下し、電流IBが増加して自己放電電流IDの大きさにほぼ等しく(IB=ID)なると(図7中、収束時間taになると)、電池成分1Cの電圧及び電池電圧VB(t)の低下が止まり、これ以降、電池電圧VBは収束電池電圧VB2に維持される(自己放電抵抗Rpを流れる自己放電電流IDは、外部直流電源EPからの電流IBでまかなわれる。)。   The reason why the battery voltage VB (t) and the current IB (t) change in this way is as follows. In the battery 1, when the self discharge current ID flows out from the battery component 1C due to the self discharge, the voltage of the battery component 1C and the battery voltage VB (t) gradually decrease. At this time, the battery voltage VB (t) drops quickly because the non-defective battery 1 has a large self-discharge current ID as compared with the non-defective battery 1. On the other hand, when battery voltage VB (t) is lower than output voltage VS (VS <VB (t)), the voltage difference ΔV = VS−VB (t) from external DC power supply EP toward battery 1 (battery component 1C) The current IB corresponding to the magnitude of the current flows, and the battery 1 (battery component 1C) is charged. Since the current IB is small while the voltage difference ΔV = VS−VB (t) is small, the self-discharge current ID flowing out of the battery component 1C is larger than the current IB flowing into the battery 1 from the external DC power supply EP (ID> IB (T), the voltage of the battery component 1C and the battery voltage VB (t) gradually decrease. However, when battery voltage VB (t) further decreases and current IB increases and becomes approximately equal to the magnitude of self-discharge current ID (IB = ID) (when convergence time ta in FIG. 7), battery component 1C And the battery voltage VB is maintained at the convergent battery voltage VB2 (the self-discharge current ID flowing through the self-discharge resistor Rp is the current IB from the external DC power supply EP). Will be covered by

一方、外部直流電源EPから電池1に流れる電流IB(t)は、電圧印加を開始した時刻t=0におけるIB(0)=0(零)から、電圧印加時間tの経過と共に徐々に増加するが、収束時間ta以降は、収束してほぼ一定の値(収束電流値IBs)となる(図7のほか、図6も参照)。
なお、図6のグラフにおいては、電圧印加の開始(t=0)以降、60sec毎の電流IB(t)の変化分が予め定めた範囲内(±0.1μA以下/sec)になるまでの時間tを収束時間taとした。また、この収束時間taにおける電流値IB(ta)を収束電流値IBsとした。図6に実線で示す「局所電池容量Cx:小」の例では、収束時間ta=1,500sec(約0.42hr)であり、「局所電池容量Cx:大」の例では、収束時間ta=13,000sec(約3.61hr)であった。また、いずれも収束電流値IBsは、IBs=20μAである。
On the other hand, current IB (t) flowing from external DC power supply EP to battery 1 gradually increases with the lapse of voltage application time t from IB (0) = 0 (zero) at time t = 0 when voltage application is started. However, after the convergence time ta, it converges and becomes a substantially constant value (convergence current value IBs) (see also FIG. 6 as well as FIG. 7).
In the graph of FIG. 6, after the start of voltage application (t = 0), the change in current IB (t) every 60 seconds becomes within a predetermined range (± 0.1 μA or less). The time t is taken as the convergence time ta. Further, the current value IB (ta) at this convergence time ta is taken as the convergence current value IBs. In the example of “local battery capacity Cx: small” shown by the solid line in FIG. 6, the convergence time ta = 1,500 sec (about 0.42 hr), and in the example of “local battery capacity Cx: large”, the convergence time ta = 1 It was 13,000 sec (about 3.61 hr). In all cases, the convergence current value IBs is IBs = 20 μA.

図6のグラフ及び<数2>の式から明らかなように、局所電池容量Cxが小さいほど収束時間taが短くなるため、局所電池容量Cxが小さいほど収束電流値IBsを検知する後述の電流知得工程S6を早期に行うことができる。
一方で、前述のように、局所電池容量Cx(=1/(ΔOCV/ΔSOC))は、SOCの大きさによって変化する(図3及び図4参照)。前述のSOC調整工程S4では、電池1のSOCを、局所電池容量Cxが小さくなるSOCに調整している。具体的には、電池1のSOCを、超平均微分OCV範囲SA内の、更には、高微分OCV範囲SB内の検査SOC(KS=SOC8%)に調整している。このため、この電圧印加工程S5における電流IB(t)の収束時間taが特に短くなるので、電流知得工程S6で収束電流値IBsを早期に検知できる。
As is apparent from the graph of FIG. 6 and the equation <Equation 2>, the smaller the local battery capacity Cx, the shorter the convergence time ta. Therefore, the smaller the local battery capacity Cx is, the later mentioned current knowledge detecting the convergence current value IBs Acquisition process S6 can be performed at an early stage.
On the other hand, as described above, the local battery capacity Cx (= 1 / (ΔOCV / ΔSOC)) changes according to the size of the SOC (see FIGS. 3 and 4). In the aforementioned SOC adjustment step S4, the SOC of the battery 1 is adjusted to an SOC that reduces the local battery capacity Cx. Specifically, the SOC of the battery 1 is adjusted to the inspection SOC (KS = SOC 8%) within the super-average differential OCV range SA and further within the high differential OCV range SB. Therefore, since the convergence time ta of the current IB (t) in the voltage application step S5 is particularly shortened, the convergence current value IBs can be detected early in the current acquisition step S6.

また、電圧印加の開始後(t=0以降)、電圧印加工程S5と並行して、「電流知得工程S6」において、外部直流電源EPから電池1に流れる電流IB(t)が収束する収束電流値IBsを知得する。本実施形態では、多数の電池を用いた実験により、局所電池容量Cxと収束時間taとの関係を予め得ておき、この関係に基づいて、前述のSOC調整工程S4で得られた局所電池容量Cxから収束時間taを予測する。そして、その予測された収束時間taになったときに、電流値IB(ta)を測定し、これを収束電流値IBsとする。   Further, after the start of voltage application (after t = 0), in parallel with voltage application process S5, convergence of the current IB (t) flowing from external DC power supply EP to battery 1 is converged in "current acquisition process S6". Get the current value IBs. In this embodiment, the relationship between the local battery capacity Cx and the convergence time ta is obtained in advance by experiments using a large number of batteries, and based on this relationship, the local battery capacity obtained in the aforementioned SOC adjustment step S4. The convergence time ta is predicted from Cx. Then, when the predicted convergence time ta comes, the current value IB (ta) is measured, and this is taken as a convergence current value IBs.

なお、この電流知得工程S6が終了したら、外部直流電源EPから電池1への電圧印加を停止して電圧印加工程S5を終了する。その後、外部直流電源EPを電池1から離して、更に、拘束治具(図示外)による電池1の圧縮を解除する。   When the current detection step S6 is completed, the voltage application from the external DC power supply EP to the battery 1 is stopped to end the voltage application step S5. Thereafter, the external DC power supply EP is separated from the battery 1, and the compression of the battery 1 by the restraint jig (not shown) is released.

また別途、「判定工程S7」において、電流知得工程S6で知得した収束電流値IBsの大きさに基づいて、当該電池1の良否を判定する。具体的には、収束電流値IBsが基準電流値IK(図7参照)よりも大きい場合(IBs<IK)に、当該電池1を不良品と判定し、当該電池1を除去する。一方、収束電流値IBsが基準電流値IK以上の場合(IBs≧IK)には、その電池1を良品と判定する。かくして、電池1が完成する。   In addition, separately in the “determination step S7”, the quality of the battery 1 is determined based on the magnitude of the convergence current value IBs acquired in the current acquisition step S6. Specifically, when the convergence current value IBs is larger than the reference current value IK (see FIG. 7) (IBs <IK), the battery 1 is determined to be defective, and the battery 1 is removed. On the other hand, when the convergence current value IBs is equal to or greater than the reference current value IK (IBs ≧ IK), the battery 1 is determined to be a non-defective product. Thus, the battery 1 is completed.

以上で説明したように、電池1の自己放電検査方法は、SOC調整工程S4、電圧印加工程S5、電流知得工程S6及び判定工程S7を備えるため、従来の電圧低下量ΔVaを測定する手法とは異なる新たな手法で、かつ短時間に、電池1の良否を判定できる。
しかも、電池1の自己放電検査方法では、電圧印加工程S5を行うに先立ち、SOC調整工程S4において電池1を超平均微分OCV範囲SA内の検査SOC(KS、本実施形態ではKS=8%)に調整する。このように、検査SOCを、局所電池容量Cxが小さくなる、超平均微分OCV範囲SA内とした電池1を用いて電圧印加工程S5を行うことにより、電流IBが収束するまでの電流収束時間taを、検査SOCを超平均微分OCV範囲SA外の電池1を用いて電圧印加工程S5を行う場合よりも短くできる。このため、SOCが超平均微分OCV範囲SA外の電池1を用いる場合よりも、電流知得工程S6及び判定工程S7をより早期に行うことができ、自己放電検査を短時間で行うことができる。
As described above, since the self-discharge inspection method of the battery 1 includes the SOC adjustment step S4, the voltage application step S5, the current acquisition step S6 and the determination step S7, the conventional method of measuring the voltage drop amount .DELTA.Va Can determine the quality of the battery 1 in a new method and in a short time.
Moreover, in the self-discharge inspection method of the battery 1, before performing the voltage application step S5, the inspection SOC within the super average differential OCV range SA (KS, KS = 8% in the present embodiment) in the SOC adjustment step S4. Adjust to Thus, current convergence time ta until current IB converges is performed by performing voltage application step S5 using battery 1 with inspection SOC set within super-average differential OCV range SA where local battery capacity Cx is small. The test SOC can be made shorter than in the case where the voltage application step S5 is performed using the battery 1 outside the super average differential OCV range SA. Therefore, the current acquisition step S6 and the determination step S7 can be performed earlier than when the battery 1 whose SOC is outside the super average differential OCV range SA is used, and the self-discharge test can be performed in a short time. .

更に、本実施形態の電池1の自己放電検査方法では、SOC調整工程S4で、電池1のSOCを、超平均微分OCV範囲SAのうち、高微分OCV範囲SB内の検査SOC(KS)に調整しているので、自己放電検査を更に短時間で行うことができる。   Furthermore, in the self-discharge inspection method of the battery 1 of the present embodiment, the SOC of the battery 1 is adjusted to the inspection SOC (KS) within the high differential OCV range SB of the super average differential OCV range SA in the SOC adjustment step S4. Therefore, the self-discharge test can be performed in a shorter time.

(変形形態)
次いで、上記実施形態の変形形態について説明する。実施形態では、電流知得工程S6において、外部直流電源EPから電池1に流れる電流IB(t)が収束する収束電流値IBsを検知し、その後の判定工程S7で、この収束電流値IBsに基づいて電池1の良否を判定した。これに対し、本変形形態では、電流知得工程S26において、電流IB(t)が収束するよりも前の、外部直流電源EPから電池1に流れる「電流IBの経時変化」を知得し、知得した電流IBの経時変化に基づいて、その後の判定工程S27で電池1の良否を判定する点で、実施形態と異なる。
(Modified form)
Then, the modification of the said embodiment is demonstrated. In the embodiment, the convergence current value IBs at which the current IB (t) flowing from the external DC power supply EP to the battery 1 converges is detected in the current acquisition step S6, and the subsequent determination step S7 is based on the convergence current value IBs. The quality of the battery 1 was judged. On the other hand, in this modification, in the current acquisition step S26, “the change with time of the current IB” flowing from the external DC power supply EP to the battery 1 before the current IB (t) converges is known. This embodiment differs from the embodiment in that the quality of the battery 1 is determined in the subsequent determination step S27 based on the time-dependent change of the acquired current IB.

即ち、本変形形態では、実施形態と同様に、組立工程S1及び初充電工程S2を経た電池1について、自己放電検査工程S23を行う。このうち、SOC調整工程S4では、実施形態と同じく、電池1のSOCを検査SOC(KS=8%)に調整し、電圧印加工程S5では、電池1に外部直流電源EPから出力電圧VSを印加し続けて、外部直流電源EPから電池1に電流IBを流し続ける(図5参照)。   That is, in this modification, self-discharge inspection process S23 is performed about battery 1 which passed assembly process S1 and initial charge process S2 like embodiment. Among them, in the SOC adjustment step S4, as in the embodiment, the SOC of the battery 1 is adjusted to the inspection SOC (KS = 8%), and in the voltage application step S5, the output voltage VS is applied to the battery 1 from the external DC power supply EP. Then, the current IB continues to flow from the external DC power supply EP to the battery 1 (see FIG. 5).

一方、実施形態とは異なり、電流知得工程S26では、外部直流電源EPから電池1に流れる電流IB(t)の収束電流値IBsを検知するのではなく、電流IB(t)の経時変化を検知する。具体的には、電圧印加開始(t=0)後の所定の検知期間QT(本変形形態では、予め定めた電圧印加時間t1=700sec〜t2=1,400secまでの700秒間の期間)において、増加した電流IB(t)の電流増加量ΔIB(=IB(t2)−IB(t1))を得る(図6参照)。   On the other hand, unlike in the embodiment, in the current acquisition step S26, the change over time of the current IB (t) is not detected but the convergence current value IBs of the current IB (t) flowing from the external DC power supply EP to the battery 1 is detected. Detect Specifically, in a predetermined detection period QT after the start of voltage application (t = 0) (in this modification, a predetermined period of voltage application time t1 = 700 sec to t2 = 1, a period of 700 seconds up to 400 sec), A current increase amount ΔIB (= IB (t2) −IB (t1)) of the increased current IB (t) is obtained (see FIG. 6).

そして、判定工程S27では、実施形態と異なり、この電流増加量ΔIBが基準増加量ΔIBKよりも大きい場合(ΔIB>ΔIBK)には、その電池1を不良品と判定する。一方、電流増加量ΔIBが基準増加量ΔIBK以下である場合(ΔIB≦ΔIBK)には、その電池1を良品と判定する。   Then, in the determination step S27, unlike the embodiment, when the current increase amount ΔIB is larger than the reference increase amount ΔIBK (ΔIB> ΔIBK), the battery 1 is determined to be defective. On the other hand, when the current increase amount ΔIB is equal to or less than the reference increase amount ΔIBK (ΔIB ≦ ΔIBK), the battery 1 is determined to be non-defective.

本変形形態のように 外部直流電源EPから電池1に流れる電流IB(t)の経時変化に基づいて、電池1の良否を判定することもできる。かくして、本変形形態の自己放電検査方法も、従来の電圧低下量ΔVaを測定する手法とは異なる新たな手法で、かつ短時間に、電池1の良否を判定できる。   It is also possible to determine the quality of the battery 1 based on the temporal change of the current IB (t) flowing from the external DC power supply EP to the battery 1 as in the present modified embodiment. Thus, also in the self-discharge inspection method of the present modification, the quality of the battery 1 can be determined in a short time by a new method different from the conventional method of measuring the voltage drop amount ΔVa.

しかも、SOC調整工程S4で、検査SOCを局所電池容量Cxが小さくなる超平均微分OCV範囲SA内のSOC(KS=8%)とした電池1を用いているので、検査SOCを超平均微分OCV範囲SA外とした電池1を電圧印加工程S5に用いる場合よりも、電流知得工程S26及び判定工程S27をより早期に行うことができ、自己放電検査を短時間で行うことができる。更に、本変形形態では、電流IB(t)が収束するよりも早く、即ち、電圧印加時間tが前述の収束時間taに達するよりも早い時点で、電流知得工程S26を行うことができるので、自己放電検査を更に短時間で行うことができる。   Moreover, since the battery 1 is used in the SOC adjustment step S4 where the inspection SOC is the SOC (KS = 8%) within the super average differential OCV range SA where the local battery capacity Cx is small, the inspection SOC is the super average differential OCV The current detection step S26 and the determination step S27 can be performed earlier than when the battery 1 out of the range SA is used in the voltage application step S5, and the self-discharge inspection can be performed in a short time. Furthermore, in this modification, the current detection step S26 can be performed earlier than the current IB (t) converges, ie, earlier than the voltage application time t reaches the aforementioned convergence time ta. Self-discharge test can be performed in a shorter time.

以上において、本発明を実施形態及び変形形態に即して説明したが、本発明は上述の実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、電圧印加工程S5において、外部直流電源EPから電池1に印加する出力電圧VSを、電圧印加時間tの経過に拘わらず一定(VS=VB1)としたが、これに限られない。例えば、電圧印加の開始時(電圧印加時間t=0)における出力電圧VSは、電池1の検査前電池電圧VB1と等しい大きさ(VS=VB1)とする一方、電圧印加後の出力電圧VSを徐々に或いは階段状に上昇させる手法も挙げられる。
Although the present invention has been described above in accordance with the embodiment and the modified embodiment, the present invention is not limited to the above embodiment and the like, and can be appropriately modified and applied without departing from the scope of the invention Needless to say.
For example, in the embodiment, in the voltage application step S5, the output voltage VS applied from the external DC power supply EP to the battery 1 is constant (VS = VB1) regardless of the elapse of the voltage application time t. Absent. For example, the output voltage VS at the start of voltage application (voltage application time t = 0) has a magnitude (VS = VB1) equal to the pre-test battery voltage VB1 of the battery 1, while the output voltage VS after voltage application is There is also a method of gradually or stepwise rising.

また、実施形態に係る電流知得工程S6では、SOC調整工程S4で得られた局所電池容量Cxから収束時間taを予測し、この収束時間taにおける電流値IB(ta)を収束電流値IBsとしたが、収束電流値IBsの知得方法は、これに限られない。例えば、電流知得工程S6において、所定時間(例えば60sec)毎に検知した電流IB(t)の変化分が予め定めた範囲内(例えば±0.1μA以下/sec)になるタイミング(即ち、収束時間ta)における電流値IB(ta)を、収束電流値IBsとすることもできる。   Further, in the current acquisition step S6 according to the embodiment, the convergence time ta is predicted from the local battery capacity Cx obtained in the SOC adjustment step S4, and the current value IB (ta) at this convergence time ta is taken as the convergence current value IBs. However, the method of obtaining the convergence current value IBs is not limited to this. For example, in the current acquisition step S6, the timing (ie, convergence) at which the change in the current IB (t) detected every predetermined time (for example, 60 seconds) falls within a predetermined range (for example, ± 0.1 μA or less). The current value IB (ta) at time ta) can also be the convergence current value IBs.

1 電池(蓄電デバイス)
1x 未充電の電池(未充電の蓄電デバイス)
1C (電池の)電池成分
S1 組立工程
S2 初充電工程
S3,S23 自己放電検査工程
S4 SOC調整工程
S5 電圧印加工程
S6,S26 電流知得工程
S7,S27 判定工程
EP 外部直流電源
Re 回路抵抗
Rp 自己放電抵抗
Cx 局所電池容量
t 電圧印加時間
ta 収束時間
VB,VB(t) 電池電圧(デバイス電圧)
VB1 検査前電池電圧
VS 出力電圧
IB,IB(t) (外部直流電源から電池に流れる)電流
IBs 収束電流値
IK 基準電流値
SA 超平均微分OCV範囲
SB 高微分OCV範囲
KS 検査SOC
LA 平均微分OCV
1 Battery (power storage device)
1x Uncharged Battery (Uncharged Storage Device)
1C (Battery) Battery component S1 Assembly step S2 Initial charge step S3, S23 Self-discharge inspection step S4 SOC adjustment step S5 Voltage application step S6, S26 Current acquisition step S7, S27 Determination step EP External DC power source Re Circuit resistance Rp Self Discharge resistance Cx Local battery capacity t Voltage application time ta Convergence time VB, VB (t) Battery voltage (device voltage)
VB1 Battery voltage before inspection VS Output voltage IB, IB (t) Current IBs (flowing from the external DC power supply to the battery) Convergence current value IK Reference current value SA Super average differential OCV range SB High derivative OCV range KS Inspection SOC
LA mean derivative OCV

Claims (1)

蓄電デバイスのSOCを、超平均微分OCV範囲内の予め定めた検査SOCに調整するSOC調整工程と、
上記検査SOCに調整した上記蓄電デバイスに外部直流電源から出力電圧VSを印加し続けて、上記外部直流電源から上記蓄電デバイスに電流IBを流し続ける電圧印加工程と、
上記電流IBの経時変化または上記電流IBが収束する収束電流値IBsを知得する電流知得工程と、
知得した上記電流IBの経時変化または上記収束電流値IBsに基づいて、当該蓄電デバイスの良否を判定する判定工程と、を備える
蓄電デバイスの自己放電検査方法。
An SOC adjustment step of adjusting the SOC of the storage device to a predetermined inspection SOC within a super average differential OCV range;
A voltage application step of continuously applying the output voltage VS from the external DC power supply to the storage device adjusted to the inspection SOC and continuing to flow the current IB from the external DC power supply to the storage device;
A current obtaining step of obtaining a time-dependent change of the current IB or a convergence current value IBs at which the current IB converges;
Determining whether the storage device is good or bad based on the temporal change of the current IB or the convergence current value IBs, the self-discharge inspection method of the storage device.
JP2017248746A 2017-12-26 2017-12-26 Self-discharge inspection method for power storage devices Active JP6973045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017248746A JP6973045B2 (en) 2017-12-26 2017-12-26 Self-discharge inspection method for power storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248746A JP6973045B2 (en) 2017-12-26 2017-12-26 Self-discharge inspection method for power storage devices

Publications (2)

Publication Number Publication Date
JP2019113469A true JP2019113469A (en) 2019-07-11
JP6973045B2 JP6973045B2 (en) 2021-11-24

Family

ID=67221510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248746A Active JP6973045B2 (en) 2017-12-26 2017-12-26 Self-discharge inspection method for power storage devices

Country Status (1)

Country Link
JP (1) JP6973045B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019848A1 (en) * 2019-07-30 2021-02-04 日置電機株式会社 Measurement apparatus and measurement method for power storage device
JP2021015745A (en) * 2019-07-15 2021-02-12 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2021021685A (en) * 2019-07-30 2021-02-18 日置電機株式会社 Device and method for inspecting power storage device
JP2021021686A (en) * 2019-07-30 2021-02-18 日置電機株式会社 Device and method for measuring power storage device
WO2021145437A1 (en) * 2020-01-17 2021-07-22 日置電機株式会社 Device, measurement device, method, and measurement method
JP2021105557A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Inspection method of power storage device
CN114062952A (en) * 2020-08-07 2022-02-18 泰星能源解决方案有限公司 Insulation inspection method for secondary battery
WO2023016112A1 (en) * 2021-08-09 2023-02-16 江苏时代新能源科技有限公司 Cell self-discharge current detection method, apparatus and device, and computer storage medium
JP7459440B2 (en) 2020-12-29 2024-04-02 エルジー エナジー ソリューション リミテッド Battery diagnostic equipment, battery diagnostic method, battery pack and electric vehicle
JP7501546B2 (en) 2022-01-11 2024-06-18 トヨタ自動車株式会社 Battery inspection method and battery inspection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243440A (en) * 2007-03-26 2008-10-09 Nissan Motor Co Ltd Abnormality detecting device of secondary battery and abnormality detecting method of battery
JP2014134395A (en) * 2013-01-08 2014-07-24 Toyota Motor Corp Short-circuit inspection method of secondary battery
JP2014222603A (en) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 Inspection method for battery
CN104360284A (en) * 2014-12-02 2015-02-18 上海航天电源技术有限责任公司 Novel detection method for self-discharge characteristics of lithium iron phosphate system power lithium ion batteries
JP2016091872A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Abnormality detection method and abnormality detection apparatus for secondary battery
JP2017223496A (en) * 2016-06-14 2017-12-21 トヨタ自動車株式会社 Battery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243440A (en) * 2007-03-26 2008-10-09 Nissan Motor Co Ltd Abnormality detecting device of secondary battery and abnormality detecting method of battery
JP2014134395A (en) * 2013-01-08 2014-07-24 Toyota Motor Corp Short-circuit inspection method of secondary battery
JP2014222603A (en) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 Inspection method for battery
JP2016091872A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Abnormality detection method and abnormality detection apparatus for secondary battery
CN104360284A (en) * 2014-12-02 2015-02-18 上海航天电源技术有限责任公司 Novel detection method for self-discharge characteristics of lithium iron phosphate system power lithium ion batteries
JP2017223496A (en) * 2016-06-14 2017-12-21 トヨタ自動車株式会社 Battery system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172891B2 (en) 2019-07-15 2022-11-16 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2021015745A (en) * 2019-07-15 2021-02-12 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP7217681B2 (en) 2019-07-30 2023-02-03 日置電機株式会社 Measuring apparatus and measuring method for power storage device
JP2021021686A (en) * 2019-07-30 2021-02-18 日置電機株式会社 Device and method for measuring power storage device
CN114175355A (en) * 2019-07-30 2022-03-11 日置电机株式会社 Measurement device and measurement method for electricity storage device
JP2021021685A (en) * 2019-07-30 2021-02-18 日置電機株式会社 Device and method for inspecting power storage device
WO2021019848A1 (en) * 2019-07-30 2021-02-04 日置電機株式会社 Measurement apparatus and measurement method for power storage device
US11988717B2 (en) 2019-07-30 2024-05-21 Hioki E.E. Corporation Measurement apparatus of power storage device and measurement method
JP7328820B2 (en) 2019-07-30 2023-08-17 日置電機株式会社 Inspection apparatus and inspection method for power storage device
JP2021105557A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Inspection method of power storage device
JP7347208B2 (en) 2019-12-26 2023-09-20 トヨタ自動車株式会社 Inspection method for energy storage devices
WO2021145437A1 (en) * 2020-01-17 2021-07-22 日置電機株式会社 Device, measurement device, method, and measurement method
CN114062952A (en) * 2020-08-07 2022-02-18 泰星能源解决方案有限公司 Insulation inspection method for secondary battery
CN114062952B (en) * 2020-08-07 2023-08-04 泰星能源解决方案有限公司 Insulation inspection method for secondary battery
JP7459440B2 (en) 2020-12-29 2024-04-02 エルジー エナジー ソリューション リミテッド Battery diagnostic equipment, battery diagnostic method, battery pack and electric vehicle
WO2023016112A1 (en) * 2021-08-09 2023-02-16 江苏时代新能源科技有限公司 Cell self-discharge current detection method, apparatus and device, and computer storage medium
US11894527B2 (en) 2021-08-09 2024-02-06 Jiangsu Contemporary Amperex Technology Limited Battery cell self-discharge current detection method, apparatus, and device, and computer storage medium
KR102616480B1 (en) 2021-08-09 2023-12-21 지앙수 컨템포러리 엠퍼렉스 테크놀로지 리미티드 Methods, devices, instruments and computer storage media for detecting self-discharge current in battery cells
KR20230096130A (en) * 2021-08-09 2023-06-29 지앙수 컨템포러리 엠퍼렉스 테크놀로지 리미티드 Method, device, apparatus and computer storage medium for detecting self-discharge current of battery cell
JP7501546B2 (en) 2022-01-11 2024-06-18 トヨタ自動車株式会社 Battery inspection method and battery inspection system

Also Published As

Publication number Publication date
JP6973045B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP6973045B2 (en) Self-discharge inspection method for power storage devices
US10656212B2 (en) Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
JP6794974B2 (en) Self-discharge inspection method for power storage devices
KR102113722B1 (en) Inspection method and manufacturing method of electrical storage device
US10847849B2 (en) Inspection method of electrical storage device and manufacturing method thereof
US20190041466A1 (en) Inspection method and manufacturing method for electric power storage device
US11662386B2 (en) Method for inspecting self-discharge of a power storage device and method for producing the power storage device
CN112213650B (en) Inspection method and manufacturing method for power storage device
US10928460B2 (en) Method of inspecting power storage device based on discharge current and method of producing the same
US11721848B2 (en) Method for inspecting self-discharge of a power storage device, and method for producing the power storage device
US11609260B2 (en) Method for inspecting insulation of a secondary battery
US11777421B2 (en) Method for adjusting device voltage of power storage device
JP7278312B2 (en) SELF-DISCHARGE INSPECTION METHOD FOR ELECTRICITY STORAGE DEVICE AND METHOD FOR MANUFACTURING ELECTRICITY STORAGE DEVICE
JP2021051906A (en) Inspection device, inspection method and manufacturing method for power storage device
US20210173013A1 (en) Test method and manufacturing method for electrical storage device
JP2021131952A (en) Inspection method of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6973045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151