JP2021015745A - Method for manufacturing secondary battery - Google Patents

Method for manufacturing secondary battery Download PDF

Info

Publication number
JP2021015745A
JP2021015745A JP2019130762A JP2019130762A JP2021015745A JP 2021015745 A JP2021015745 A JP 2021015745A JP 2019130762 A JP2019130762 A JP 2019130762A JP 2019130762 A JP2019130762 A JP 2019130762A JP 2021015745 A JP2021015745 A JP 2021015745A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
current value
circuit
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019130762A
Other languages
Japanese (ja)
Other versions
JP7172891B2 (en
Inventor
嘉夫 松山
Yoshio Matsuyama
嘉夫 松山
直孝 井出
Naotaka Ide
直孝 井出
康明 大槻
Yasuaki Otsuki
康明 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019130762A priority Critical patent/JP7172891B2/en
Publication of JP2021015745A publication Critical patent/JP2021015745A/en
Application granted granted Critical
Publication of JP7172891B2 publication Critical patent/JP7172891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide a method for manufacturing a secondary battery which includes an inspection step, but has a short required time and a small energy loss.SOLUTION: A secondary battery is manufactured by performing an assembly step of assembling the secondary battery, a charging step of charging the assembled secondary battery, and an inspection step of inspecting the battery capacity of the charged secondary battery. Here, the inspection step performs a circuit configuration step of configuring a closed circuit with a secondary battery and an external power supply, a current value acquiring step of acquiring a current value of the closed circuit while a voltage is applied to the closed circuit by the secondary battery and an external power supply, and a determination step of determining whether a change amount per unit time of the acquired current value is within a predetermined appropriate range.SELECTED DRAWING: Figure 3

Description

本発明は,二次電池を製造する方法に関する。さらに詳細には,組み立てた二次電池の電池容量の検査も合わせ行うようにした二次電池の製造方法に関するものである。 The present invention relates to a method for manufacturing a secondary battery. More specifically, the present invention relates to a method for manufacturing a secondary battery in which the battery capacity of the assembled secondary battery is also inspected.

リチウムイオン二次電池などの二次電池において電池容量は,その性能を評価する主要な指標である。このため二次電池を製造するに際して,電池容量の検査をも行うようにしている例がある。そのための検査工程として使用できる技術の一例が特許文献1に記載されている。同文献の検査技術では,初期電圧から放電終了電圧まで二次電池を放電させる放電工程を行うこととしている。その際の放電電流と放電時間とにより電池容量を算出し,これに基づき二次電池の良否を判定する。 The battery capacity of a secondary battery such as a lithium ion secondary battery is a main index for evaluating its performance. For this reason, there is an example in which the battery capacity is also inspected when manufacturing a secondary battery. Patent Document 1 describes an example of a technique that can be used as an inspection process for that purpose. In the inspection technology of the same document, the discharge process of discharging the secondary battery from the initial voltage to the discharge end voltage is performed. The battery capacity is calculated from the discharge current and discharge time at that time, and the quality of the secondary battery is judged based on this.

特開2014-185927号公報Japanese Unexamined Patent Publication No. 2014-185927

しかしながら前記した従来の技術には,次のような問題点があった。検査工程での所要時間とエネルギーロスが大きいのである。その理由は,放電時間が電池容量の算出のためのパラメータの一つとなっていることにある。ある程度放電時間を長く取らないと算出精度が低くなってしまうからである。このため所要時間を短縮しにくいのである。また,放電するということは,初期充電で二次電池に投入したエネルギーをそのまま捨てるに等しいことである。このためエネルギーロスも大きいのである。 However, the above-mentioned conventional technique has the following problems. The time required for the inspection process and the energy loss are large. The reason is that the discharge time is one of the parameters for calculating the battery capacity. This is because the calculation accuracy will be low unless the discharge time is long to some extent. Therefore, it is difficult to shorten the required time. Discharging is equivalent to discarding the energy input to the secondary battery in the initial charge. Therefore, the energy loss is also large.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,検査工程を含みつつもその所要時間が短くエネルギーロスが小さい二次電池の製造方法を提供することにある。 The present invention has been made to solve the problems of the above-mentioned conventional techniques. That is, the problem is to provide a method for manufacturing a secondary battery, which includes an inspection process but has a short required time and a small energy loss.

本発明の一態様における二次電池の製造方法は,二次電池を組み立てる組立工程と,組み立てた二次電池を充電する充電工程と,充電した二次電池の電池容量を検査する検査工程とを行うことにより二次電池を製造する方法である。ここにおいて検査工程では,二次電池と外部電源とにより閉回路を構成する回路構成工程と,二次電池および外部電源により閉回路に電圧を印加した状態での閉回路の電流値を取得する電流値取得工程と,取得した電流値の時間当たりの変化量があらかじめ定めた適正範囲内にあるか否かを判定する判定工程とを行う。 The method for manufacturing a secondary battery according to one aspect of the present invention includes an assembly step of assembling the secondary battery, a charging step of charging the assembled secondary battery, and an inspection step of inspecting the battery capacity of the charged secondary battery. It is a method of manufacturing a secondary battery by performing. Here, in the inspection process, a circuit configuration step of forming a closed circuit with a secondary battery and an external power supply, and a current for acquiring the current value of the closed circuit with a voltage applied to the closed circuit with the secondary battery and an external power supply. A value acquisition step and a determination step of determining whether or not the amount of change in the acquired current value per hour is within a predetermined appropriate range are performed.

上記態様における二次電池の製造方法では,組み立てられそして充電された二次電池に対して,電池容量の合否を検査する検査工程を行う。検査工程では,検査対象の二次電池とそれとは別の外部電源とにより構成した閉回路の電流値を取得する。その電流値の時間当たりの変化量に基づいて判定を行う。外部電源により二次電池に電圧を印加している状態で回路電流を取得するので,二次電池の放電が抑制され,電流値の変化量が安定する。このため,エネルギーロスが抑制され,また短時間での判定が可能である。電池容量が規格外であると判定された二次電池は排除すればよいので,良品の二次電池のみを製造できる。 In the method for manufacturing a secondary battery in the above aspect, an inspection step of inspecting the pass / fail of the battery capacity is performed on the assembled and charged secondary battery. In the inspection process, the current value of the closed circuit composed of the secondary battery to be inspected and another external power supply is acquired. Judgment is made based on the amount of change in the current value per hour. Since the circuit current is acquired while the voltage is applied to the secondary battery by an external power supply, the discharge of the secondary battery is suppressed and the amount of change in the current value is stable. Therefore, energy loss is suppressed and judgment can be made in a short time. Since the secondary battery whose battery capacity is determined to be out of specification may be excluded, only a non-defective secondary battery can be manufactured.

本構成によれば,検査工程を含みつつもその所要時間が短くエネルギーロスが小さい二次電池の製造方法が提供されている。 According to this configuration, a method for manufacturing a secondary battery, which includes an inspection step but has a short required time and a small energy loss, is provided.

実施の形態により製造される電池の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the battery manufactured by embodiment. 実施の形態に係る電池の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the battery which concerns on embodiment. 容量検査工程の内容を示すフローチャートである。It is a flowchart which shows the content of the capacity inspection process. 実施の形態に係る容量検査工程で使用する回路を示す回路図である。It is a circuit diagram which shows the circuit used in the capacity inspection process which concerns on embodiment. 電流値の時間当たりの変化量の変遷を示すグラフである。It is a graph which shows the transition of the amount of change of a current value per time.

以下,本発明を具体化した実施の形態について添付図面を参照しつつ詳細に説明する。本形態は,図1に示す電池1を製造する方法として本発明を具体化したものである。図1の電池1は,扁平角型の電池ケース10に電極捲回体20を収納したものである。電極捲回体20は,中央の発電部41およびその両サイドの正極接続部21,負極接続部31からなっている。電池ケース10には電極捲回体20の他に電解液19も収納されている。収納されている電解液19の一部は電極捲回体20の中に含浸されている。電池ケース10のうちの蓋部分13には,正極端子51および負極端子61が設けられている。電池ケース10の内部では,正極端子51と正極接続部21とが正極集電部材50により接続されており,負極端子61と負極接続部31とが負極集電部材60により接続されている。 Hereinafter, embodiments embodying the present invention will be described in detail with reference to the accompanying drawings. This embodiment embodies the present invention as a method for manufacturing the battery 1 shown in FIG. The battery 1 in FIG. 1 is a flat-angle battery case 10 in which an electrode winding body 20 is housed. The electrode winding body 20 includes a central power generation unit 41, positive electrode connection portions 21 on both sides thereof, and negative electrode connection portions 31. In addition to the electrode winding body 20, the electrolytic solution 19 is also housed in the battery case 10. A part of the stored electrolytic solution 19 is impregnated in the electrode winding body 20. A positive electrode terminal 51 and a negative electrode terminal 61 are provided on the lid portion 13 of the battery case 10. Inside the battery case 10, the positive electrode terminal 51 and the positive electrode connecting portion 21 are connected by the positive electrode current collecting member 50, and the negative electrode terminal 61 and the negative electrode connecting portion 31 are connected by the negative electrode current collecting member 60.

電池1は,リチウムイオン二次電池その他の二次電池である。本形態では,図2に示す手順により電池1を製造する。図2の手順には,組付工程,初充電工程,高温エージング工程,冷却工程,短絡検査工程,容量検査工程,の各工程が含まれている。これらのうち高温エージング工程,冷却工程,短絡検査工程は,実施しないよりも実施した方がより好ましいが,本発明として必須実施事項ではない。 The battery 1 is a lithium ion secondary battery or other secondary battery. In this embodiment, the battery 1 is manufactured by the procedure shown in FIG. The procedure of FIG. 2 includes each step of an assembly step, an initial charging step, a high temperature aging step, a cooling step, a short circuit inspection step, and a capacity inspection step. Of these, the high-temperature aging step, the cooling step, and the short-circuit inspection step are more preferably carried out than not carried out, but are not essential embodiments of the present invention.

組付工程は,上記の電極捲回体20を作製して電池ケース10に収納し,電池1とする工程である。正極端子51や負極端子61等の取り付け,電解液19の注入もこの工程の中に含まれる。初充電工程は,組み付けが済んだ電池1を初めて充電する工程である。高温エージング工程は,初充電後の電池1を所定時間(10〜30時間程度)にわたり高温(50〜100℃程度)に維持する工程である。高温エージング工程は,内部短絡による不良率を顕在化して検査の精度を上げるために行われる。冷却工程は,高温エージング工程後の電池1の温度を常温まで低下させる工程である。短絡検査工程は,電池1のうち内部短絡不良のものを検出して排除する工程である。短絡検査工程は,例えば特開2019−21510号公報の[0034]に記載されている方法により実施することができる。 The assembling step is a step of producing the above-mentioned electrode winding body 20 and storing it in the battery case 10 to form the battery 1. The attachment of the positive electrode terminal 51, the negative electrode terminal 61, and the injection of the electrolytic solution 19 are also included in this step. The initial charging step is a step of charging the assembled battery 1 for the first time. The high temperature aging step is a step of maintaining the battery 1 after the initial charging at a high temperature (about 50 to 100 ° C.) for a predetermined time (about 10 to 30 hours). The high temperature aging process is performed to improve the accuracy of inspection by clarifying the defect rate due to internal short circuit. The cooling step is a step of lowering the temperature of the battery 1 after the high temperature aging step to room temperature. The short-circuit inspection step is a step of detecting and eliminating a battery 1 having an internal short-circuit defect. The short-circuit inspection step can be carried out, for example, by the method described in [0034] of JP-A-2019-21510.

容量検査工程について説明する。この工程では,電池1の電池容量が適正な範囲内にあるか否かを個別に判定し,適正範囲内でない不良品の電池1があれば排除する。この工程は,図3に示す手順で実施される。図3に示されるように容量検査工程では,回路構成とも電流値取得と,判定とを行う。 The capacity inspection process will be described. In this step, it is individually determined whether or not the battery capacity of the battery 1 is within the appropriate range, and if there is a defective battery 1 that is not within the appropriate range, it is eliminated. This step is carried out by the procedure shown in FIG. As shown in FIG. 3, in the capacitance inspection process, the current value is acquired and the determination is performed for both the circuit configuration.

回路構成の工程では,図4に示す回路を構成する。図4の回路は,電池1の他に電源装置2と,抵抗3と,抵抗4と,電流計5とを有している。図4中の電源装置2は,電池1に対して外部から電圧を掛ける役割を果たすものである。図4中では,電源装置2のプラス端子が電池1の正極端子51に,電源装置2のマイナス端子が電池1の負極端子61に,それぞれ接続されている。これにより,電源装置2が電池1に対して逆方向の外部電圧を掛けるようにしている。 In the circuit configuration process, the circuit shown in FIG. 4 is configured. The circuit of FIG. 4 has a power supply device 2, a resistor 3, a resistor 4, and an ammeter 5 in addition to the battery 1. The power supply device 2 in FIG. 4 plays a role of applying a voltage to the battery 1 from the outside. In FIG. 4, the positive terminal of the power supply device 2 is connected to the positive electrode terminal 51 of the battery 1, and the negative terminal of the power supply device 2 is connected to the negative electrode terminal 61 of the battery 1. As a result, the power supply device 2 applies an external voltage in the opposite direction to the battery 1.

電池1と電源装置2とを結ぶ配線上に,抵抗3と電流計5とが配置されている。電流計5は,電池1と電源装置2とにより構成される閉回路に流れる回路電流を計測するものである。電流計5や抵抗3とは別に抵抗4が,正極端子51と負極端子61との間に配置されている。図4の回路では,抵抗4の抵抗値R4よりも抵抗3の抵抗値R3の方が大きい設定となっている。 A resistor 3 and an ammeter 5 are arranged on the wiring connecting the battery 1 and the power supply device 2. The ammeter 5 measures the circuit current flowing through the closed circuit composed of the battery 1 and the power supply device 2. A resistor 4 is arranged between the positive electrode terminal 51 and the negative electrode terminal 61 separately from the ammeter 5 and the resistor 3. In the circuit of FIG. 4, the resistance value R3 of the resistor 3 is set to be larger than the resistance value R4 of the resistor 4.

図4中では電池1を,内部容量CIと内部抵抗RIと短絡抵抗RSとによるモデルで表している。内部容量CIに対して,内部抵抗RIは直列に配置され短絡抵抗RSは並列に配置されている。内部容量CIは電池容量を静電容量として表したモデルである。内部抵抗RIは充放電に伴う電池1自身による損失を表したモデルである。短絡抵抗RSは電池1の自己放電を表したモデルである。前述の短絡検査工程は,短絡抵抗RSが過小である電池1を不良品として排除するための検査である。 In FIG. 4, the battery 1 is represented by a model based on the internal capacity CI, the internal resistance RI, and the short-circuit resistance RS. The internal resistance RI is arranged in series and the short-circuit resistance RS is arranged in parallel with respect to the internal capacitance CI. The internal capacity CI is a model in which the battery capacity is expressed as a capacitance. The internal resistance RI is a model showing the loss due to the battery 1 itself due to charging / discharging. The short-circuit resistor RS is a model representing the self-discharge of the battery 1. The short-circuit inspection step described above is an inspection for eliminating the battery 1 having an excessive short-circuit resistance RS as a defective product.

図4の回路を組んだら,電流値の取得を行う。取得する電流値はむろん,電流計5の読み値である。この回路電流値の取得を行う際の電源装置2の出力電圧は,電池1の開放電圧とほぼ同じくらいとする。本形態では電流値の取得を,1分間程度にわたって反復的に行う。 After building the circuit shown in FIG. 4, the current value is acquired. Of course, the current value to be acquired is the reading value of the ammeter 5. The output voltage of the power supply device 2 when acquiring the circuit current value is approximately the same as the open circuit voltage of the battery 1. In this embodiment, the current value is acquired repeatedly for about 1 minute.

取得した電流値に基づいて電池容量の判定を行う。判定の指標となるのは,電流値そのものではなくその変化量である。回路電流の変化量,特に時間当たりの変化量は,電池1の電池容量を適切に反映するからである。図4の回路を組んでいる状態では,電池1は緩やかに放電する(あるいは充電される)状況にある。このため電池電圧が徐々に変化して行きそれが回路電流の変化として現れるからである。電流値の変化は,電池容量が小さいほど速く,電池容量が大きいほど遅いこととなる。したがって,電流値の変化量に適正範囲を設定しておけばよい。取得した電流値の変化量がその適正範囲内にあれば電池1の電池容量は規格内であると判断でき,適正範囲外であれば電池1の電池容量は規格外であると判断できる。よって,電流値の変化量が適正範囲内にあるか否かを判定すればよい。 The battery capacity is determined based on the acquired current value. The index of judgment is not the current value itself but the amount of change. This is because the amount of change in the circuit current, particularly the amount of change per hour, appropriately reflects the battery capacity of the battery 1. In the state where the circuit of FIG. 4 is assembled, the battery 1 is in a state of being slowly discharged (or charged). Therefore, the battery voltage gradually changes, which appears as a change in the circuit current. The change in the current value is faster as the battery capacity is smaller, and slower as the battery capacity is larger. Therefore, an appropriate range should be set for the amount of change in the current value. If the amount of change in the acquired current value is within the appropriate range, it can be determined that the battery capacity of the battery 1 is within the standard, and if it is outside the appropriate range, it can be determined that the battery capacity of the battery 1 is out of the standard. Therefore, it is sufficient to determine whether or not the amount of change in the current value is within the appropriate range.

この判定について,図5のグラフを用いてさらに説明する。図5のグラフの縦軸は,電流値の時間当たりの変化量[μA/秒]である。横軸は,電流値の取得開始からの経過時間[秒]である。図5のグラフは,良品の電池1(電池容量が定格どおりのもの)および不良品の電池1(電池容量が定格から外れているもの)についての以下の条件下でのものである。 This determination will be further described with reference to the graph of FIG. The vertical axis of the graph in FIG. 5 is the amount of change [μA / sec] of the current value per hour. The horizontal axis is the elapsed time [seconds] from the start of acquisition of the current value. The graph of FIG. 5 shows the non-defective battery 1 (the battery capacity is as rated) and the defective battery 1 (the battery capacity is out of the rating) under the following conditions.

[電池1について]
電池種:リチウムイオン二次電池
正極活物質:三元系リチウム塩
負極活物質:カーボン
電解液19の電解質:六フッ化リン酸リチウム
電解液19の溶媒:混合溶媒(エチレンカーボネート,ジメチルカーボネート,エチルメチルカーボネート)
定格電池容量:3.8Ah(アンペアアワー)
電池電圧:3.9V(電流値取得の開始時)
[About battery 1]
Battery type: Lithium ion secondary battery Positive electrode Active material: Three-way lithium salt Negative electrode Active material: Carbon electrolyte 19 Electrolyte: Lithium hexafluorophosphate Solvent 19 solvent: Mixed solvent (ethylene carbonate, dimethyl carbonate, ethyl Methyl carbonate)
Rated battery capacity: 3.8Ah (ampere hour)
Battery voltage: 3.9V (at the start of current value acquisition)

[回路について]
抵抗値R3:1kΩ
抵抗値R4:10Ω
[About the circuit]
Resistance value R3: 1kΩ
Resistance value R4: 10Ω

上記の条件で,図4の回路における電源装置2の出力電圧を3.95Vとして測定を開始したところ,電流計5の読み値は30mA程度となり,その後徐々に増加した。電流値の取得間隔は10秒とした。 Under the above conditions, when the measurement was started with the output voltage of the power supply device 2 in the circuit of FIG. 4 set to 3.95 V, the reading value of the ammeter 5 was about 30 mA, and then gradually increased. The acquisition interval of the current value was 10 seconds.

図5から分かるように,良品,不良品それぞれ,電流値取得の初期からほぼ一定の時間当たり変化量を示している。ただし良品の時間当たり変化量と不良品の時間当たり変化量との間には4μA/秒程度の有意な差がある。このため良品と不良品とを明瞭に区別することができる。図5の例における不良品は良品よりも低い時間当たり変化量を示している。これは不良品の電池容量が定格に対して過大であることを意味する。電池容量が過小であるような不良品であれば良品よりも高い時間当たり変化量が示されることとなる。もちろんこれも,図5中に示した電池容量が過大である不良品と同様に明瞭に区別可能である。 As can be seen from FIG. 5, each of the non-defective product and the defective product shows a substantially constant amount of change per hour from the initial stage of current value acquisition. However, there is a significant difference of about 4 μA / sec between the amount of change per hour of good products and the amount of change per hour of defective products. Therefore, a good product and a defective product can be clearly distinguished. The defective product in the example of FIG. 5 shows a lower amount of change per hour than the non-defective product. This means that the battery capacity of the defective product is excessive with respect to the rating. If the product is defective such that the battery capacity is too small, the amount of change per hour will be higher than that of the non-defective product. Of course, this is also clearly distinguishable as in the defective product shown in FIG. 5 in which the battery capacity is excessive.

図5において良品,不良品いずれも値が安定しているということは,判定のために特に長時間掛ける必要はないということである。このため,図5中では4分程度の経過時間における変化量をプロットしているが,実際には1分程度で十分である。その後は電流値の取得を打ち切ってもよい。このため,容量検査工程での電池1の放電量は1.5μAh程度に留まる。これは,従来技術では数10分程度の時間を掛けて数Ah程度も放電させながら検査をしていたことと比べて,大幅な短時間化および省エネルギー化ができたことになる。 The fact that the values of both the non-defective product and the defective product are stable in FIG. 5 means that it is not necessary to spend a particularly long time for the determination. Therefore, although the amount of change in the elapsed time of about 4 minutes is plotted in FIG. 5, about 1 minute is actually sufficient. After that, the acquisition of the current value may be stopped. Therefore, the discharge amount of the battery 1 in the capacity inspection step remains at about 1.5 μAh. This means that the time and energy saving can be significantly reduced as compared with the conventional technique in which the inspection is performed while discharging several Ah over a period of several tens of minutes.

ここで抵抗3は,電源装置2の出力電圧のばらつきの影響を緩和して検査ノイズを低減する役割を果たしている。回路電流をIc,電源装置2の出力電圧をVm,電池1の電圧をVcell,で表すと,回路電流Icは下の(1)式で与えられる。これより,抵抗値R3が大きいほど,電圧Vmの揺らぎに起因する回路電流Icのばらつき,すなわち検査ノイズが小さいのである。前述の抵抗値R3の設定は,この観点から定めたものである。
Ic = (Vm−Vcell)/R3 ……(1)
Here, the resistor 3 plays a role of mitigating the influence of variation in the output voltage of the power supply device 2 and reducing inspection noise. When the circuit current is represented by Ic, the output voltage of the power supply device 2 is represented by Vm, and the voltage of the battery 1 is represented by Vcell, the circuit current Ic is given by the following equation (1). From this, the larger the resistance value R3, the smaller the variation in the circuit current Ic due to the fluctuation of the voltage Vm, that is, the inspection noise. The setting of the resistance value R3 described above is determined from this viewpoint.
Ic = (Vm-Vcell) / R3 …… (1)

本形態での上記のような回路電流の変化量に基づく電池容量の判定は,図4に示されるもののうち電池1と電流計5と抵抗3だけでも原理的には可能である。しかしそれだけでは,上記のように短い所要時間および高い省エネルギー性を得つつ,なおかつ高い判定精度をも得ることはできない。これら3者だけの場合,電池1を単純に放電させながら回路電流を測定することになる。この場合には放電量の抑制は抵抗3のみにより行われることになるので,判定時間の短縮および省エネルギー化と,判定精度との両立が困難なためである。本形態では電源装置2で電池1に電圧を印加しつつ電流値を測定するので,両立が可能となっている。 In principle, the determination of the battery capacity based on the amount of change in the circuit current as described above in the present embodiment is possible only with the battery 1, the ammeter 5, and the resistor 3 among those shown in FIG. However, with that alone, it is not possible to obtain high determination accuracy while obtaining the short required time and high energy saving as described above. In the case of only these three, the circuit current is measured while simply discharging the battery 1. In this case, since the discharge amount is suppressed only by the resistor 3, it is difficult to achieve both shortening of the determination time and energy saving and determination accuracy. In this embodiment, the power supply device 2 measures the current value while applying a voltage to the battery 1, so that both are possible.

本形態ではまた抵抗4が設けられていることによっても,検査時間の短縮が図られている。本形態では前述のように回路電流の変化量で判定を行うので,迅速な判定のためには変化量がある程度大きく現れた方が有利である。回路電流の変化は,検査開始後の電池電圧Vcellの変化(低下)によって起こる。回路電流の変化量をΔIc,電池電圧の変化量をΔVcell,で表すと,回路電流の変化量ΔIcは下の(2)式で与えられる。
ΔIc = (Vm−ΔVcell)/R3 ……(2)
In this embodiment, the inspection time is also shortened by providing the resistor 4. In this embodiment, since the determination is made based on the amount of change in the circuit current as described above, it is advantageous that the amount of change appears to some extent for quick determination. The change in the circuit current is caused by the change (decrease) in the battery voltage Vcell after the start of the inspection. When the amount of change in the circuit current is represented by ΔIc and the amount of change in the battery voltage is represented by ΔVcell, the amount of change in the circuit current ΔIc is given by the following equation (2).
ΔIc = (Vm−ΔVcell) / R3 …… (2)

ここで抵抗値R3は固定値であり,出力電圧Vmは電池電圧Vcellの初期値にほぼ等しいので,電流変化量ΔIcは電池電圧の変化量ΔVcellとほぼ比例することになる。電圧変化量ΔVcellが大きい方が電流変化量ΔIcも大きく,迅速な判定のためには有利である。電圧変化量ΔVcellを大きくするには,抵抗4としてその抵抗値が小さいものを用いることで電池1をある程度放電させればよい。このため抵抗値R4は小さい方がよい。特に,抵抗値R4が抵抗値R3よりも小さいことが望ましい。前述の抵抗値R4の設定は,この観点から定めたものである。なお,抵抗値R4が小さいことは,検査時における電池1の放電量,すなわちエネルギーロスを大きくする方向の要因である。しかし上記のようにして検査時間が短時間で済むことにより,実質のエネルギーロスはさほど大きくならない。 Here, the resistance value R3 is a fixed value, and the output voltage Vm is substantially equal to the initial value of the battery voltage Vcell, so that the current change amount ΔIc is substantially proportional to the battery voltage change amount ΔVcell. The larger the voltage change amount ΔVcell, the larger the current change amount ΔIc, which is advantageous for quick determination. In order to increase the voltage change amount ΔVcell, the battery 1 may be discharged to some extent by using a resistor 4 having a small resistance value. Therefore, the resistance value R4 should be small. In particular, it is desirable that the resistance value R4 is smaller than the resistance value R3. The setting of the resistance value R4 described above is determined from this viewpoint. The small resistance value R4 is a factor in increasing the discharge amount of the battery 1 at the time of inspection, that is, the energy loss. However, since the inspection time is short as described above, the actual energy loss does not increase so much.

以上詳細に説明したように本実施の形態によれば,組み立てて充電した電池1に対して,外部電源である電源装置2とともに閉回路を構成して容量検査工程を行うこととしている。容量検査工程では,電池1に電圧を印加しつつ取得した電流値の時間当たりの変化量を判定指標として電池1の電池容量を判定する。かくして,検査工程を含みつつもその所要時間が短くエネルギーロスが小さい二次電池の製造方法が実現されている。 As described in detail above, according to the present embodiment, the capacity inspection process is performed on the assembled and charged battery 1 by forming a closed circuit together with the power supply device 2 which is an external power source. In the capacity inspection step, the battery capacity of the battery 1 is determined using the amount of change in the current value acquired while applying a voltage to the battery 1 as a determination index. Thus, a method for manufacturing a secondary battery, which includes an inspection process but has a short required time and a small energy loss, has been realized.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,対象とする二次電池の種類は,図5のグラフについての説明の中で挙げたリチウムイオン二次電池に限らず他の種類であってもよい。また,図4の回路中の抵抗4,すなわち電池1の両極端子間に,電池1から見て電源装置2と並列の位置に配置された抵抗素子は必須事項ではない。さらに抵抗3,すなわち電池1と電源装置2とにより構成される閉回路上に配置された抵抗素子も省略可能である。抵抗3を省略する場合には,電源装置2の出力電圧を極めて高精度に制御すればよい。 It should be noted that the present embodiment is merely an example and does not limit the present invention in any way. Therefore, as a matter of course, the present invention can be improved and modified in various ways without departing from the gist thereof. For example, the target type of the secondary battery is not limited to the lithium ion secondary battery mentioned in the explanation of the graph of FIG. 5, and may be another type. Further, a resistance element arranged in parallel with the power supply device 2 as viewed from the battery 1 is not an essential item between the resistors 4 in the circuit of FIG. 4, that is, the bipolar terminals of the battery 1. Further, the resistance element arranged on the closed circuit including the resistor 3, that is, the battery 1 and the power supply device 2 can be omitted. When the resistor 3 is omitted, the output voltage of the power supply device 2 may be controlled with extremely high accuracy.

1 電池
2 電源装置
5 電流計
1 Battery 2 Power supply 5 Ammeter

Claims (1)

二次電池を組み立てる組立工程と,
組み立てた二次電池を充電する充電工程と,
充電した二次電池の電池容量を検査する検査工程とを行うことにより二次電池を製造するとともに,
前記検査工程では,
前記二次電池と外部電源とにより閉回路を構成する回路構成工程と,
前記二次電池および前記外部電源により前記閉回路に電圧を印加した状態での前記閉回路の電流値を取得する電流値取得工程と,
取得した電流値の時間当たりの変化量があらかじめ定めた適正範囲内にあるか否かを判定する判定工程とを行う
二次電池の製造方法。
The assembly process for assembling the secondary battery and
The charging process to charge the assembled rechargeable battery,
A secondary battery is manufactured by performing an inspection process that inspects the battery capacity of a charged secondary battery, and at the same time.
In the inspection process,
A circuit configuration process that constitutes a closed circuit with the secondary battery and an external power supply, and
A current value acquisition step of acquiring the current value of the closed circuit in a state where a voltage is applied to the closed circuit by the secondary battery and the external power source, and
A method for manufacturing a secondary battery, which comprises a determination step of determining whether or not the amount of change in the acquired current value per hour is within a predetermined appropriate range.
JP2019130762A 2019-07-15 2019-07-15 Method for manufacturing secondary battery Active JP7172891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019130762A JP7172891B2 (en) 2019-07-15 2019-07-15 Method for manufacturing secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019130762A JP7172891B2 (en) 2019-07-15 2019-07-15 Method for manufacturing secondary battery

Publications (2)

Publication Number Publication Date
JP2021015745A true JP2021015745A (en) 2021-02-12
JP7172891B2 JP7172891B2 (en) 2022-11-16

Family

ID=74530916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019130762A Active JP7172891B2 (en) 2019-07-15 2019-07-15 Method for manufacturing secondary battery

Country Status (1)

Country Link
JP (1) JP7172891B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111371A (en) * 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd Method for inspecting secondary battery precursor, its inspection device, and method for manufacturing secondary battery using the method
JP2016143580A (en) * 2015-02-03 2016-08-08 株式会社ジェイ・イー・ティ Manufacturing method for power storage device, and inspection device for structure
JP2019016558A (en) * 2017-07-10 2019-01-31 トヨタ自動車株式会社 Method for inspecting short circuit of power storage device and method for manufacturing power storage device
JP2019032198A (en) * 2017-08-07 2019-02-28 トヨタ自動車株式会社 Power storage device inspection method and manufacturing method
JP2019091622A (en) * 2017-11-15 2019-06-13 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
JP2019113469A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Self-discharge inspection method for power storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111371A (en) * 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd Method for inspecting secondary battery precursor, its inspection device, and method for manufacturing secondary battery using the method
JP2016143580A (en) * 2015-02-03 2016-08-08 株式会社ジェイ・イー・ティ Manufacturing method for power storage device, and inspection device for structure
WO2016125679A1 (en) * 2015-02-03 2016-08-11 株式会社ジェイ・イー・ティ Electricity storage device production method, structure body inspection device
JP2019016558A (en) * 2017-07-10 2019-01-31 トヨタ自動車株式会社 Method for inspecting short circuit of power storage device and method for manufacturing power storage device
JP2019032198A (en) * 2017-08-07 2019-02-28 トヨタ自動車株式会社 Power storage device inspection method and manufacturing method
JP2019091622A (en) * 2017-11-15 2019-06-13 トヨタ自動車株式会社 Self-discharge inspection method for power storage device
JP2019113469A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Self-discharge inspection method for power storage device

Also Published As

Publication number Publication date
JP7172891B2 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
US11193980B2 (en) Inspection method and manufacturing method of electrical storage device
US8589097B2 (en) Method for diagnosing the state of health of a battery
JP6939527B2 (en) Inspection method and manufacturing method of power storage device
CN110850306B (en) Inspection method and manufacturing method for electricity storage device
KR102391533B1 (en) Method for diagnosing a low voltage of a secondary cell and apparatus thereof
JP2019032198A (en) Power storage device inspection method and manufacturing method
US10884064B2 (en) Inspection apparatus of electrical storage device
JP7074731B2 (en) Inspection method of power storage device and manufacturing method of power storage device
US10928460B2 (en) Method of inspecting power storage device based on discharge current and method of producing the same
CN110794311B (en) Inspection device for power storage device
JP7172891B2 (en) Method for manufacturing secondary battery
JP7501546B2 (en) Battery inspection method and battery inspection system
JP7278312B2 (en) SELF-DISCHARGE INSPECTION METHOD FOR ELECTRICITY STORAGE DEVICE AND METHOD FOR MANUFACTURING ELECTRICITY STORAGE DEVICE
US11340302B2 (en) Test method and manufacturing method for electrical storage device
CN111679198A (en) Power estimation method and device for lithium ion power battery
JP5928815B2 (en) Method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R151 Written notification of patent or utility model registration

Ref document number: 7172891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151