JP2019091622A - Self-discharge inspection method for power storage device - Google Patents

Self-discharge inspection method for power storage device Download PDF

Info

Publication number
JP2019091622A
JP2019091622A JP2017219751A JP2017219751A JP2019091622A JP 2019091622 A JP2019091622 A JP 2019091622A JP 2017219751 A JP2017219751 A JP 2017219751A JP 2017219751 A JP2017219751 A JP 2017219751A JP 2019091622 A JP2019091622 A JP 2019091622A
Authority
JP
Japan
Prior art keywords
battery
self
storage device
convergence
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017219751A
Other languages
Japanese (ja)
Other versions
JP6794974B2 (en
Inventor
壮滋 後藤
Soji Goto
壮滋 後藤
極 小林
Kyoku Kobayashi
極 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017219751A priority Critical patent/JP6794974B2/en
Publication of JP2019091622A publication Critical patent/JP2019091622A/en
Application granted granted Critical
Publication of JP6794974B2 publication Critical patent/JP6794974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

To provide a self-discharge inspection method of power storage device capable of determining the quality of the power storage device, by a novel method, in a shorter time than the method for acquiring the convergence current value IBs.SOLUTION: A self-discharge inspection method of a power storage device 1 includes a voltage application step S5 for feeding a current IB continuously to the power storage device 1, by applying the output voltage VS continuously from an external DC power supply EP to the precharged power storage device 1, a current detection step S6 of detecting the pre-convergence current value IB(tb) when the pre-convergence time tb elapsed before the current value IB(t) converges, a resistance acquisition step S7 of acquiring the self-discharge resistance Rp from the pre-convergence time tb and the pre-convergence current value IB(tb), on the basis of relation of the voltage application time t, the current value IB(t) and the self-discharge resistance Rp, and a determination step S8 of determining the quality of the power storage device 1 on the basis of the self-discharge resistance Rp.SELECTED DRAWING: Figure 2

Description

本発明は、蓄電デバイスの自己放電の大きさを検査することにより、当該蓄電デバイスの良否を判定する蓄電デバイスの自己放電検査方法に関する。   The present invention relates to a self-discharge inspection method of a storage device that determines the quality of the storage device by inspecting the magnitude of the self-discharge of the storage device.

リチウムイオン二次電池などの蓄電デバイスの製造にあたって、電極体の内部に鉄や銅などの金属異物が混入する場合があり、混入した金属異物に起因して蓄電デバイスに内部短絡が生じることがある。このため、蓄電デバイスの製造過程において、蓄電デバイスに内部短絡が生じているか否かを検査することがある。   In the production of a storage device such as a lithium ion secondary battery, metallic foreign matter such as iron or copper may be mixed into the inside of the electrode body, and an internal short circuit may occur in the storage device due to the mixed metallic foreign matter . For this reason, in the process of manufacturing the storage device, it may be inspected whether or not an internal short circuit has occurred in the storage device.

この内部短絡の検査手法としては、例えば、以下が知られている。即ち、組み立てた蓄電デバイスを初充電した後、蓄電デバイスを高温下で放置しエージングする。その後、蓄電デバイスを放置して自己放電させ(端子開放した状態で放電させ)、この自己放電前後にそれぞれ測定したデバイス電圧から自己放電による電圧低下量ΔVaを求める。そして、この電圧低下量ΔVaが基準低下量ΔVbよりも大きい場合に(ΔVa>ΔVb)、当該蓄電デバイスを内部短絡が生じている不良品と判定する。なお、関連する従来技術として、特許文献1(特許文献1の特許請求の範囲等を参照)が挙げられる。   As the inspection method of this internal short circuit, the following is known, for example. That is, after initially charging the assembled power storage device, the power storage device is left under high temperature to be aged. Thereafter, the storage device is left to self-discharge (discharge in the open state of the terminal), and the voltage drop amount ΔVa due to the self-discharge is determined from the device voltage measured before and after the self-discharge. Then, when the voltage decrease amount ΔVa is larger than the reference decrease amount ΔVb (ΔVa> ΔVb), the power storage device is determined as a defective product in which an internal short circuit occurs. In addition, as related prior art, patent document 1 (refer the claim etc. of patent document 1) is mentioned.

特開2010−153275号公報JP, 2010-153275, A

しかしながら、上述のように電圧低下量ΔVaの多寡に基づいて蓄電デバイスの良否を判定する手法では、電圧計の測定分解能(例えば10μV)などを考慮すると、蓄電デバイスの良否を適切に判定するには、良品の電圧低下量ΔVaと不良品の電圧低下量ΔVaとの差が、電圧測定の測定分解能に対して十分に大きくなるまで、例えば20倍以上(200μV以上)となるまで待つ必要がある。しかるに、蓄電デバイスの容量が大きい場合や許容する短絡電流が小さい場合などでは、電圧低下量ΔVaの測定時間(自己放電させる時間)を長期間、例えば数日以上要する場合があり、検査時間が長く掛かっていた。   However, in the method of determining the quality of the power storage device based on the amount of voltage drop amount ΔVa as described above, in consideration of the measurement resolution of the voltmeter (for example, 10 μV), to appropriately determine the quality of the power storage device. It is necessary to wait until, for example, 20 times or more (200 μV or more) until the difference between the non-defective voltage drop amount ΔVa and the non-defective product voltage drop amount ΔVa becomes sufficiently large with respect to the measurement resolution of voltage measurement. However, if the capacity of the storage device is large or the allowable short circuit current is small, the measurement time (time for self-discharge) of the voltage drop amount ΔVa may take a long time, for example, several days or more, and the inspection time is long. It was hanging.

これに対し、本発明者は、以下の手法により蓄電デバイスの良否を判定することを考案した。即ち、予め充電された蓄電デバイスのデバイス電圧VB1を測定する。そして、このデバイス電圧VB1に等しい出力電圧VSを、外部直流電源から蓄電デバイスに印加し続け、外部直流電源から蓄電デバイスに電流を流し続けて、電流値が収束した後に、その収束電流値IBsを検知する。その後、検知した収束電流値IBsの多寡に基づいて、当該蓄電デバイスの良否を判定する。この手法によれば、従来の電圧低下量ΔVaを測定する手法よりも、検査時間を短くし得る。
しかしながら、検査時間を更に短くすることが望ましい。
On the other hand, the present inventor devised to determine the quality of the electricity storage device by the following method. That is, the device voltage VB1 of the power storage device charged in advance is measured. Then, the output voltage VS equal to the device voltage VB1 is continuously applied from the external DC power supply to the storage device, and the current is continuously supplied from the external DC power supply to the storage device, and after the current value converges, the convergence current value IBs Detect Thereafter, based on the detected convergence current value IBs, it is determined whether the power storage device is good or bad. According to this method, the inspection time can be made shorter than the conventional method of measuring the voltage drop amount ΔVa.
However, it is desirable to further shorten the inspection time.

本発明は、かかる現状に鑑みてなされたものであって、電圧低下量ΔVaを取得する手法とは異なる新たな手法により、また、収束電流値IBsを取得する手法よりも短い時間で、蓄電デバイスの良否を判定できる蓄電デバイスの自己放電検査方法を提供することを目的とする。   The present invention has been made in view of the current situation, and uses a new method different from the method of acquiring the voltage drop amount ΔVa, and also takes a shorter time than the method of acquiring the convergence current value IBs. It is an object of the present invention to provide a self-discharge inspection method of a power storage device capable of determining the quality of

上記課題を解決するための本発明の一態様は、予め充電された蓄電デバイスに外部直流電源から出力電圧VSを印加し続けて、上記外部直流電源から上記蓄電デバイスに電流を流し続ける電圧印加工程と、電圧印加後、電圧印加時間tが、上記電流の電流値IB(t)が収束するよりも前で、予め定めた収束前時間tbを経過したときの収束前電流値IB(tb)を検知する電流検知工程と、上記電圧印加時間t、上記電流値IB(t)及び上記蓄電デバイスの自己放電抵抗Rpの関係に基づいて、上記収束前時間tb及び上記収束前電流値IB(tb)から当該蓄電デバイスの自己放電抵抗Rpを取得する抵抗取得工程と、取得した上記自己放電抵抗Rpに基づいて、当該蓄電デバイスの良否を判定する判定工程と、を備える蓄電デバイスの自己放電検査方法である。   One mode of the present invention for solving the above-mentioned subject is a voltage application process which continues applying current from the external DC power supply to the storage device by continuing to apply the output voltage VS from the external DC power supply to the storage device charged in advance. And, after the voltage application, the pre-convergence current value IB (tb) when the pre-convergence time tb is determined before the voltage application time t converges on the current value IB (t) of the current. The pre-convergence time tb and the pre-convergence current value IB (tb) based on the relationship between the current detection step to be detected, the voltage application time t, the current value IB (t), and the self-discharge resistance Rp of the storage device. A storage step of obtaining a self-discharge resistance Rp of the storage device from the storage device, and a determination step of determining the quality of the storage device based on the acquired self-discharge resistance Rp It is a self-discharge inspection method.

上述の蓄電デバイスの自己放電検査方法では、外部直流電源から蓄電デバイスに流れる電流値IB(t)が収束するよりも前の、予め定めた収束前時間tbにおける収束前電流値IB(tb)を検知する。そして、これら収束前時間tb及び収束前電流値IB(tb)から当該蓄電デバイスの自己放電抵抗Rpを取得して、この自己放電抵抗Rpに基づいて当該蓄電デバイスの良否を判定する。このため、従来の電圧低下量ΔVaを測定する手法とは異なる新たな手法で、かつ短時間に、蓄電デバイスの良否を判定できる。また、前述の収束電流値IBsを検知する手法に比しても、より短い時間で、蓄電デバイスの良否を判定できる。   In the self-discharge inspection method of the storage device described above, the pre-convergence current value IB (tb) at a predetermined pre-convergence time tb before convergence of the current value IB (t) flowing from the external DC power supply to the storage device is calculated. Detect Then, the self-discharge resistance Rp of the storage device is acquired from the pre-convergence time tb and the pre-convergence current value IB (tb), and the quality of the storage device is determined based on the self-discharge resistance Rp. For this reason, it is possible to determine the quality of the power storage device in a short time by a new method different from the conventional method of measuring the voltage drop amount ΔVa. In addition, the quality of the power storage device can be determined in a shorter time than the method of detecting the convergence current value IBs described above.

なお、上述の蓄電デバイスの自己放電検査方法は、蓄電デバイスの製造過程において行うことができるほか、自動車等に搭載された或いは単独で市場に置かれた以降の使用済の蓄電デバイスに対して行うこともできる。
「蓄電デバイス」としては、例えば、リチウムイオン二次電池等の電池、電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタが挙げられる。
The above-mentioned self-discharge inspection method of a storage device can be performed in the manufacturing process of the storage device, and also performed on a used storage device mounted on a car or the like or used after being put on the market alone. It can also be done.
Examples of the "storage device" include a battery such as a lithium ion secondary battery, a capacitor such as an electric double layer capacitor, and a lithium ion capacitor.

「電圧印加工程」としては、外部直流電源から印加する出力電圧VSとして、検査直前の蓄電デバイスのデバイス電圧VB1(開放電圧)に等しい(VS=VB1)電圧を印加し続ける工程や、電圧印加開始後、出力電圧VSをデバイス電圧VB1から徐々に、或いは階段状に上昇させる手法も挙げられる。
「電流検知工程」は、1つの収束前時間tbについての収束前電流値IB(tb)だけを検知する場合のほか、互いに異なる複数の収束前時間tb1,tb2,…についての複数の収束前電流値IB(tb1),IB(tb2),…を検知してもよい。後者の場合、抵抗取得工程では、複数の収束前時間tb1,tb2,…及び収束前電流値IB(tb1),IB(tb1),…を用いて、複数の自己放電抵抗Rp1,Rp2,…をそれぞれ取得する。
また、外部直流電源から流れる電流の「電流値IB(t)が収束する時間」(電流収束時間ta)は、電流値IBの大きさがほぼ一定となったと見なせるまでの時間をいい、例えば、所定時間毎に得る電流値IB(t)の変化分が、予め定めた範囲内(例えば、±0.1μA以下/secなど)になるまでの時間をいう。
In the “voltage application step”, a step of continuing to apply a voltage (VS = VB1) equal to the device voltage VB1 (open voltage) of the storage device immediately before the test as the output voltage VS applied from the external DC power supply After that, there is also a method of gradually or stepwise increasing the output voltage VS from the device voltage VB1.
In the “current detection step”, in addition to the case where only the pre-convergence current value IB (tb) for one pre-convergence time tb is detected, a plurality of pre-convergence currents for a plurality of different pre-convergence times tb1, tb2,. The values IB (tb1), IB (tb2),... May be detected. In the latter case, in the resistance acquiring step, the plurality of self-discharge resistances Rp1, Rp2,... Are calculated using the plurality of pre-convergence times tb1, tb2,... And the pre-convergence current values IB (tb1), IB (tb1),. Get each one.
In addition, “the time when current value IB (t) converges” (current convergence time ta) of the current flowing from the external DC power source refers to the time until it can be considered that the magnitude of current value IB becomes substantially constant, for example, It refers to the time until the variation of the current value IB (t) obtained every predetermined time falls within a predetermined range (for example, ± 0.1 μA or less).

「判定工程」において、「自己放電抵抗Rp」に基づいて当該蓄電デバイスの良否を判定する手法としては、例えば、自己放電抵抗Rpが基準抵抗値RKよりも小さい場合に(Rp<RK)、その蓄電デバイスを不良品と判定する手法が挙げられる。また、自己放電抵抗Rpの大きさに基づいて、その蓄電デバイスの自己放電の程度をランク分けする判定手法も挙げられる。また、抵抗取得工程で、複数の自己放電抵抗Rp1,Rp2,…をそれぞれ取得した場合には、判定工程で、複数の自己放電抵抗Rp1,Rp2,…を用い、これらの平均値、加重平均値、中央値など算出し、これと基準抵抗値RKとを比較して、当該蓄電デバイスの良否を判定したり、自己放電の程度のランク分けを行うと良い。
また、抵抗取得工程で得た自己放電抵抗Rpから一旦収束電流値IBsを算出し、収束電流値IBsが基準電流値IKよりも大きい場合に(IBs>IK)、その蓄電デバイスを不良品と判定する手法や、収束電流値IBsの大きさに基づいて、その蓄電デバイスの自己放電の程度をランク分けする判定手法を採用することもできる。
In the “determination step”, as a method of determining the quality of the storage device based on “self-discharge resistance Rp”, for example, when self-discharge resistance Rp is smaller than reference resistance value RK (Rp <RK), There is a method of determining a storage device as a defective product. In addition, there is also a determination method of ranking the degree of self-discharge of the power storage device based on the magnitude of the self-discharge resistance Rp. Moreover, when the plurality of self-discharge resistances Rp1, Rp2,... Are respectively acquired in the resistance acquisition step, the plurality of self-discharge resistances Rp1, Rp2,. It is good to calculate the median etc. and compare this with the reference resistance value RK to judge the quality of the power storage device or to rank the degree of self-discharge.
Also, once the convergence current value IBs is calculated from the self-discharge resistance Rp obtained in the resistance acquisition step, and the convergence current value IBs is larger than the reference current value IK (IBs> IK), the storage device is judged defective. It is also possible to adopt a determination method of ranking the degree of self-discharge of the power storage device based on the method to be performed or the magnitude of the convergence current value IBs.

更に、上記の蓄電デバイスの自己放電検査方法であって、前記電流検知工程は、互いに異なる複数の収束前時間tb1,tb2,…についての収束前電流値IB(tb1),IB(tb2),…をそれぞれ検知し、前記抵抗値取得工程は、複数の前記収束前時間tb1,tb2,…及び複数の前記収束前電流値IB(tb1),IB(tb2),…を用いて、複数の自己放電抵抗Rp1,Rp2,…を取得し、前記判定工程は、複数の前記自己放電抵抗Rp1,Rp2,…に基づいて、当該蓄電デバイスの良否を判定する蓄電デバイスの自己放電検査方法とするのが好ましい。   Furthermore, in the self-discharge inspection method of the above-mentioned storage device, the current detection step includes pre-convergence current values IB (tb1), IB (tb2), ... for a plurality of different pre-convergence times tb1, tb2,. Are respectively detected, and the resistance value obtaining step uses a plurality of pre-convergence times tb1, tb2,... And a plurality of pre-convergence current values IB (tb1), IB (tb2),. It is preferable to obtain resistances Rp1, Rp2,..., And the determination step is a self-discharge inspection method of a storage device to determine the quality of the storage device based on the plurality of self-discharge resistances Rp1, Rp2,. .

上述の自己放電検査方法では、複数の収束前時間tb1,tb2,…についての収束前電流値IB(tb1),IB(tb2),…を用いて、複数の自己放電抵抗Rp1,Rp2,…を取得し、これらの自己放電抵抗Rp1,Rp2,…に基づいて(具体的には、これらの平均値Rpaや中央値Rpm、あるいは自己放電抵抗Rp1等から得た収束電流値IBs1,IBs2,…の平均値などを用いて)、当該蓄電デバイスの良否を判定するので、当該蓄電デバイスの良否をより適切に判定できる。   In the above-described self-discharge inspection method, the plurality of self-discharge resistances Rp1, Rp2,... Are calculated using the pre-convergence current values IB (tb1), IB (tb2), ... for the plurality of pre-convergence times tb1, tb2,. Based on these self-discharge resistances Rp1, Rp2,... (Specifically, their average value Rpa, median value Rpm, or convergence current values IBs1, IBs2, etc. obtained from self-discharge resistance Rp1, etc. Since the quality of the said electrical storage device is determined using an average value etc., the quality of the said electrical storage device can be determined more appropriately.

また、他の態様は、組み立てた未充電の蓄電デバイスを予め定めた充電状態まで初充電して、予め充電された蓄電デバイスとする初充電工程と、前記のいずれかに記載の蓄電デバイスの自己放電検査方法により、当該蓄電デバイスの自己放電検査を行う自己放電検査工程と、を備える蓄電デバイスの製造方法である。   In another aspect, an initial charging step of initially charging the assembled non-charged storage device to a predetermined charge state to obtain a pre-charged storage device, and the self-storage device described in any of the above A self-discharge inspection step of performing a self-discharge inspection of the storage device according to a discharge inspection method.

上述の蓄電デバイスの製造方法では、初充電工程の後に、蓄電デバイスの自己放電検査を行う自己放電検査工程を備えるので、蓄電デバイスの初期段階における自己放電検査を適切に行った蓄電デバイスを製造できる。   In the method of manufacturing the storage device described above, since the self-discharge inspection step of performing the self-discharge inspection of the storage device is provided after the initial charging step, it is possible to manufacture the storage device properly subjected to the self-discharge inspection at the initial stage of the storage device. .

実施形態に係る電池の斜視図である。It is a perspective view of the battery concerning an embodiment. 実施形態に係る電池の自己放電検査方法を含む、電池の製造方法のフローチャートである。It is a flowchart of the manufacturing method of a battery including the self-discharge test method of the battery which concerns on embodiment. 実施形態に係る電池の自己放電検査方法に関し、電池に外部直流電源を接続した状態の等価回路図である。It is an equivalent circuit schematic of the state which connected the external DC power supply to the battery regarding the self-discharge test method of the battery which concerns on embodiment. 良品及び不良品の各電池について自己放電検査を行った場合の、電圧印加時間tと出力電圧VS、電池電圧VB及び電流IBとの関係を模式的に示すグラフである。It is a graph which shows typically the relationship of the voltage application time t, the output voltage VS, the battery voltage VB, and electric current IB at the time of performing a self-discharge test about each battery of non-defective goods and inferior goods. 外部直流電源から電池に電圧を印加した場合の、電圧印加時間tと電流IBとの関係を、実測値及び計算値について示すグラフである。It is a graph which shows the relationship of voltage application time t and current IB at the time of applying voltage to a battery from an external DC power supply about an actual measurement value and a calculation value.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1に、本実施形態に係る電池(蓄電デバイス)1の斜視図を示す。この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。また、電極体20は、扁平状の捲回型電極体であり、帯状の正極板と帯状の負極板とを、帯状で樹脂製の多孔質膜からなる一対のセパレータを介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。また、電池ケース10内には、電解液(不図示)が収容されており、その一部は電極体20内に含浸されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a perspective view of a battery (power storage device) 1 according to the present embodiment. The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, and an electric car. The battery 1 includes a battery case 10, an electrode body 20 housed inside the battery case 10, and a positive electrode terminal member 50 and a negative electrode terminal member 60 supported by the battery case 10. Among them, the battery case 10 has a rectangular box shape and is made of metal (in the present embodiment, aluminum). The electrode assembly 20 is a flat wound electrode assembly, and a strip-like positive electrode plate and a strip-like negative electrode plate are superimposed on each other via a pair of separators made of a porous resin film and an axial line It is wound around and compressed into a flat shape. In addition, an electrolytic solution (not shown) is accommodated in the battery case 10, and a part thereof is impregnated in the electrode body 20.

次いで、上記電池1の自己放電検査方法を含む電池1の製造方法について説明する(図2参照)。まず、「組立工程S1」において、未充電の電池(未充電の蓄電デバイス)1xを組み立てる。電池ケース10のケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する。その後、正極端子部材50及び負極端子部材60を、別途形成した電極体20の正極板及び負極板にそれぞれ溶接する。その後、電極体20を電池ケース10のケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、電解液(不図示)を注液孔13hから電池ケース10内に注液し、封止部材15で注液孔13hを封止する。これにより、未充電の電池1xが形成される。   Then, the manufacturing method of the battery 1 including the self-discharge test method of the said battery 1 is demonstrated (refer FIG. 2). First, in "assembly step S1", an uncharged battery (uncharged storage device) 1x is assembled. The case lid member 13 of the battery case 10 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixed thereto. Thereafter, the positive electrode terminal member 50 and the negative electrode terminal member 60 are respectively welded to the positive electrode plate and the negative electrode plate of the electrode body 20 separately formed. Thereafter, the electrode body 20 is inserted into the case body member 11 of the battery case 10, and the opening of the case body member 11 is closed by the case lid member 13. Then, the case body member 11 and the case lid member 13 are welded to form the battery case 10. Thereafter, an electrolytic solution (not shown) is injected into the battery case 10 through the injection hole 13 h, and the injection hole 13 h is sealed by the sealing member 15. Thereby, an uncharged battery 1x is formed.

次に、「初充電工程S2」において、この組み立てた未充電の電池1xを、予め定めた充電状態まで初充電する。具体的には、拘束治具(不図示)を用いて、電池1xを電池厚み方向に圧縮した状態で拘束する。なお、本実施形態では、この初充電工程S2から後述する自己放電検査工程S9までを、電池1x(電池1)を圧縮した状態で行う。その後、電池1xに充放電装置(不図示)を接続して、環境温度25℃下において、定電流定電圧(CCCV)充電により、SOC100%に相当する電池電圧(デバイス電圧)VB=4.1Vまで電池1xを初充電(CCCV充電)する。本実施形態では、1Cの定電流で電池電圧VB=4.1Vになるまで充電した後、充電電流値が1/10Cになるまでこの電池電圧VB=4.1Vを維持した。   Next, in the "first charge step S2", the assembled uncharged battery 1x is initially charged to a predetermined charge state. Specifically, the battery 1x is restrained in a compressed state in the battery thickness direction using a restraint jig (not shown). In the present embodiment, the steps from the initial charging step S2 to the self-discharge inspection step S9 to be described later are performed in a state where the battery 1x (battery 1) is compressed. Thereafter, a charge / discharge device (not shown) is connected to battery 1x, and battery voltage (device voltage) VB = 4.1 V corresponding to SOC 100% by constant current constant voltage (CCCV) charging under an environmental temperature of 25 ° C. Charge the battery 1x for the first time (CCCV charge). In this embodiment, after charging until the battery voltage VB = 4.1 V with a constant current of 1 C, the battery voltage VB = 4.1 V is maintained until the charging current value becomes 1/10 C.

次に、「高温エージング工程S3」において、充電された電池1を、環境温度40〜85℃の温度下で放置して高温エージングする。具体的には、初充電後の電池1を、環境温度60℃下において、端子開放した状態で20時間にわたり放置して高温エージングする。一般に、充電直後の電池1の電池電圧VBは不安定で、安定になるまで時間を要するが、この高温エージング工程S3を行うことにより、電池電圧VBの安定化を促進できる。   Next, in the “high temperature aging step S3”, the charged battery 1 is left to stand at a temperature of 40 to 85 ° C. for high temperature aging. Specifically, the battery 1 after the initial charge is left to be exposed to high temperature for 20 hours in an open terminal at an environmental temperature of 60 ° C. Generally, the battery voltage VB of the battery 1 immediately after charging is unstable and it takes time to become stable, but performing the high temperature aging step S3 can promote the stabilization of the battery voltage VB.

次に、「冷却工程S4」において、上記電池1を環境温度20℃下に放置して、放置冷却することにより、電池1の電池温度を20℃とする。なお、この冷却工程S4及び次述する自己放電検査工程S9は、環境温度20℃下で行う。   Next, in the “cooling step S4”, the battery 1 is left at an environmental temperature of 20 ° C. and left to cool, whereby the battery temperature of the battery 1 is set to 20 ° C. The cooling step S4 and the self-discharge inspection step S9 described below are performed at an environmental temperature of 20.degree.

次に、自己放電検査工程S9を行う。この自己放電検査工程S9には、電圧印加工程S5、電流検知工程S6、抵抗取得工程S7及び判定工程S8を含む。
まず「電圧印加工程S5」において、冷却工程S4後の電池1に外部直流電源EPから出力電圧VSを印加し続けて、外部直流電源EPから電池1に電流IBを流し続ける(図3参照)。具体的には、まず、外部直流電源EPの一対のプローブP1,P2を電池1の正極端子部材50及び負極端子部材60にそれぞれ接触させて、外部直流電源EPを電池1に接続する。
Next, a self discharge inspection step S9 is performed. The self-discharge inspection step S9 includes a voltage application step S5, a current detection step S6, a resistance acquisition step S7, and a determination step S8.
First, in the “voltage application step S5”, the output voltage VS is continuously applied from the external DC power supply EP to the battery 1 after the cooling step S4, and the current IB continues to flow from the external DC power supply EP to the battery 1 (see FIG. 3). Specifically, first, the external DC power supply EP is connected to the battery 1 by bringing the pair of probes P1, P2 of the external DC power supply EP into contact with the positive electrode terminal member 50 and the negative electrode terminal member 60 of the battery 1, respectively.

なお、図3において、配線抵抗Rwは、外部直流電源EP内、及び、外部直流電源EPからプローブP1,P2までに分布する配線抵抗を示す。また、接触抵抗R1は、外部直流電源EPの一方のプローブP1と電池1の正極端子部材50との接触抵抗であり、接触抵抗R2は、外部直流電源EPの他方のプローブP2と電池1の負極端子部材60との接触抵抗である。また、電池成分1Cは、電池1の電池成分であり、電池抵抗Rsは、電池1の直流抵抗であり、自己放電抵抗Rpは、主に電池1の内部短絡によって生じる抵抗である。等価回路上、電池抵抗Rsは電池成分1Cに直列に、自己放電抵抗Rpは電池成分1Cと並列に接続される。また、回路抵抗Reは、配線抵抗Rwと接触抵抗R1,R2と電池抵抗Rsとの和(Re=Rw+R1+R2+Rs)である。また、電流IBは、外部直流電源EPから電池1に流れる電流であり、電流IDは、自己放電に伴って電池1内(電池成分1C)を流れる自己放電電流である。   In FIG. 3, the wiring resistance Rw indicates wiring resistance distributed in the external DC power supply EP and from the external DC power supply EP to the probes P1 and P2. The contact resistance R1 is a contact resistance between one probe P1 of the external DC power supply EP and the positive electrode terminal member 50 of the battery 1, and the contact resistance R2 is the other probe P2 of the external DC power supply EP and the negative electrode of the battery 1 It is a contact resistance with the terminal member 60. The battery component 1C is a battery component of the battery 1, the battery resistance Rs is a direct current resistance of the battery 1, and the self-discharge resistance Rp is a resistance mainly generated by an internal short circuit of the battery 1. In the equivalent circuit, the battery resistance Rs is connected in series to the battery component 1C, and the self-discharge resistance Rp is connected in parallel to the battery component 1C. The circuit resistance Re is the sum of the wiring resistance Rw, the contact resistances R1 and R2, and the battery resistance Rs (Re = Rw + R1 + R2 + Rs). Further, current IB is a current flowing from external DC power supply EP to battery 1, and current ID is a self-discharge current flowing in battery 1 (battery component 1C) along with self-discharge.

また、外部直流電源EPは、自身の直流電源EPEが発生する出力電圧VSを可変かつ高精度に制御できるほか、直流電源EPEから外部に流れ出る電流IBを高精度に計測可能に構成された精密直流電源である。また、外部直流電源EPは、電池電圧VBを測定可能な電圧計EPVと、外部直流電源EPから電池1に流れる電流IBを測定可能な電流計EPIとを有する。   Further, the external DC power supply EP can variably control the output voltage VS generated by its own DC power supply EPE with high accuracy, and is a precision DC configured to be able to measure the current IB flowing from the DC power supply EPE to the outside with high accuracy. It is a power source. The external DC power supply EP further includes a voltmeter EPV capable of measuring the battery voltage VB and an ammeter EPI capable of measuring the current IB flowing from the external DC power supply EP to the battery 1.

電池1に外部直流電源EPを接続した後、電流IB=0の条件下で、外部直流電源EPに含まれる電圧計EPVにより電池1の電池電圧VB(開放電圧VB1)を測定する。本実施形態では、この検査前電池電圧(開放電圧)VB1として、4.0V近傍の値が計測される。その後、時刻t=0以降、測定された検査前電池電圧VB1に等しい出力電圧VS(VS=VB1)を電池1に印加し続けて、外部直流電源EPから電池1に電流IBを流し続ける。   After the external direct current power supply EP is connected to the battery 1, the battery voltage VB (open circuit voltage VB1) of the battery 1 is measured by a voltmeter EPV included in the external direct current power supply EP under the condition of current IB = 0. In the present embodiment, a value near 4.0 V is measured as the pre-test battery voltage (open circuit voltage) VB1. Thereafter, after time t = 0, the output voltage VS (VS = VB1) equal to the measured pre-test battery voltage VB1 is continuously applied to the battery 1, and the current IB is continuously supplied from the external DC power supply EP to the battery 1.

ここで、図4に、良品及び不良品の各電池1について、電圧印加時間tと、出力電圧VS、電池電圧VB(t)及び電流IB(t)との関係の概略を示す。また、図5に、良品の電池1についての電圧印加時間tと電流IBとの関係を示す。図5中に「実測値」として実線で示すグラフは、実際に電流値IB(t)を測定して得られた電圧印加時間tと電流値IB(t)との関係を示したグラフである。一方、図5中に「計算値」として破線で示すグラフは、以下の数式1に示した電流値IB(t)の理論式に基づいて描いたグラフである。数式1の理論式は、電池1に外部直流電源EPを接続した等価回路の微分方程式を、初期条件下(電圧印加時間t=0)で解いた式である。   Here, FIG. 4 schematically shows the relationship among the voltage application time t, the output voltage VS, the battery voltage VB (t) and the current IB (t) for each of the non-defective and defective batteries 1. As shown in FIG. Further, FIG. 5 shows the relationship between the voltage application time t and the current IB for the non-defective battery 1. The graph shown by a solid line as "measured value" in FIG. 5 is a graph showing the relationship between the voltage application time t and the current value IB (t) obtained by actually measuring the current value IB (t). . On the other hand, a graph indicated by a broken line as “calculated value” in FIG. 5 is a graph drawn based on the theoretical formula of the current value IB (t) shown in the following formula 1. The theoretical formula of Formula 1 is a formula which solved the differential equation of the equivalent circuit which connected external direct-current power supply EP to the battery 1 on initial conditions (voltage application time t = 0).

Figure 2019091622
Figure 2019091622

t :電圧印加時間(sec)
IB :電流値(μA)
VS :出力電圧(V)
VB1:検査前電池電圧(V)
Rp :自己放電抵抗(Ω)
Re :回路抵抗(Ω)
C :電池容量(mAh)
t: Voltage application time (sec)
IB: Current value (μA)
VS: Output voltage (V)
VB1: Battery voltage before inspection (V)
Rp: Self-discharge resistance (Ω)
Re: Circuit resistance (Ω)
C: Battery capacity (mAh)

なお、本実施形態(図5のグラフ)では、電池容量C=5000mAhとした。また、出力電圧VS=検査前電池電圧VB1は、前述の電圧印加工程S5で測定された電圧値を用いる。また、回路抵抗Reは、予め多数の電池1について回路抵抗Reを測定した結果の平均値を用いた。   In the present embodiment (the graph of FIG. 5), the battery capacity C is set to 5000 mAh. Further, as the output voltage VS = the pre-inspection battery voltage VB1, the voltage value measured in the above-described voltage application step S5 is used. Moreover, the circuit resistance Re used the average value of the result of having measured circuit resistance Re about the many batteries 1 beforehand.

図4に示すように、外部直流電源EPから電池1に印加する出力電圧VSは、本実施形態では、電圧印加時間tの経過に拘わらず、電圧印加直前に測定された検査前電池電圧VB1に等しい大きさとする。一方、電池電圧VB(t)は、検査前電池電圧VB1から電圧印加時間tの経過と共に徐々に低下した後、収束時間ta以降は、収束して一定の値(収束電池電圧VB2)となる。但し、良品の電池1に比べて不良品の電池1は、電池電圧VB(t)が大きく低下するため、収束電池電圧VB2も相対的に低い値となる。   As shown in FIG. 4, in the present embodiment, the output voltage VS applied from the external DC power supply EP to the battery 1 is the pre-test battery voltage VB1 measured immediately before the voltage application regardless of the elapse of the voltage application time t. Make the same size. On the other hand, the battery voltage VB (t) gradually decreases with the elapse of the voltage application time t from the pre-test battery voltage VB1, and after the convergence time ta, it converges and becomes a constant value (converged battery voltage VB2). However, the battery voltage VB (t) of the defective battery 1 is significantly lower than that of the non-defective battery 1, so that the convergence battery voltage VB2 also has a relatively low value.

このように電池電圧VB(t)、電流IB(t)が変化する理由は、以下である。電池1では、自己放電により電池成分1Cから自己放電電流IDが流れ出ることによって、電池成分1Cの電圧が、及び、電池電圧VB(t)が徐々に低下する。その際、不良品の電池1は、良品の電池1に比べて自己放電に伴う電流IDが大きいため、電池電圧VB(t)の低下が大きい。一方、電池電圧VB(t)が出力電圧VSよりも低く(VS<VB(t))なると、外部直流電源EPから電池1(電池成分1C)に向けて電圧差ΔV=VS−VB(t)の大きさに応じた電流IBが流れて、電池1(電池成分1C)が充電される。電圧差ΔV=VS−VB(t)が小さいうちは、電流IBも小さいため、外部直流電源EPから電池1に流れ込む電流IBよりも、電池成分1Cから流れ出る自己放電電流IDが大きいため、電池成分1Cの電圧及び電池電圧VB(t)が徐々に低下する。しかし、電池電圧VB(t)が更に低下し、電流IBが増加して自己放電電流IDの大きさにほぼ等しく(IB=ID)なると(図4中、収束時間taにおいて)、電池成分1Cの電圧及び電池電圧VB(t)の低下が止まり、これ以降、電池電圧VBは収束電池電圧VB2に維持される(自己放電抵抗Rpを流れる自己放電電流IDは、外部直流電源EPからの電流IBでまかなわれる。)。   The reason why the battery voltage VB (t) and the current IB (t) change in this way is as follows. In the battery 1, when the self discharge current ID flows out from the battery component 1C due to the self discharge, the voltage of the battery component 1C and the battery voltage VB (t) gradually decrease. At that time, since the current ID accompanying the self-discharge is larger than the non-defective battery 1 in the non-defective battery 1, the drop of the battery voltage VB (t) is large. On the other hand, when battery voltage VB (t) is lower than output voltage VS (VS <VB (t)), the voltage difference ΔV = VS−VB (t) from external DC power supply EP toward battery 1 (battery component 1C) The current IB corresponding to the magnitude of the current flows, and the battery 1 (battery component 1C) is charged. Since the current IB is small while the voltage difference ΔV = VS−VB (t) is small, the self discharge current ID flowing out of the battery component 1C is larger than the current IB flowing into the battery 1 from the external DC power supply EP. The voltage of 1 C and the battery voltage VB (t) gradually decrease. However, when battery voltage VB (t) further decreases and current IB increases and becomes approximately equal to the magnitude of self-discharge current ID (IB = ID) (at convergence time ta in FIG. 4), battery component 1C The voltage and battery voltage VB (t) stops decreasing, and thereafter the battery voltage VB is maintained at the convergence battery voltage VB2 (the self-discharge current ID flowing through the self-discharge resistor Rp is the current IB from the external DC power supply EP) Will be covered.).

一方、外部直流電源EPから電池1に流れる電流IB(t)は、電圧印加を開始した時刻t=0におけるIB(0)=0(零)から、電圧印加時間tの経過と共に徐々に増加するが、収束時間ta以降は、収束してほぼ一定の値(収束電流値IBs)となる(図4のほか、図5も参照)。
なお、本実施形態では、電圧印加の開始(t=0)以降、電流値IB(t)を60sec毎に検知し、電流値IB(t)の変化分が予め定めた範囲内(本実施形態では、±0.1μA以下/sec)になるまでの時間tを収束時間taとした。また、この収束時間taにおける電流値IB(ta)を収束電流値IBsとした。図5に示す例では、収束時間ta=120,000sec(約33.3hr)であり、収束電流値IBs=62μAであった。
On the other hand, current IB (t) flowing from external DC power supply EP to battery 1 gradually increases with the lapse of voltage application time t from IB (0) = 0 (zero) at time t = 0 when voltage application is started. However, after the convergence time ta, it converges to become a substantially constant value (convergence current value IBs) (see FIG. 5 as well as FIG. 4).
In the present embodiment, after the start of voltage application (t = 0), the current value IB (t) is detected every 60 seconds, and the variation of the current value IB (t) is within a predetermined range (this embodiment) In this case, the time t until ± 0.1 μA or less is defined as the convergence time ta. Further, the current value IB (ta) at this convergence time ta is taken as the convergence current value IBs. In the example shown in FIG. 5, the convergence time ta is 120,000 sec (about 33.3 hr), and the convergence current value IBs is 62 μA.

また、電圧印加の開始後(t=0以降)、電圧印加工程S5と並行して、「電流検知工程S6」において、電圧印加時間tが、電流値IB(t)が収束するよりも前で、予め定めた収束前時間tbを経過したときの収束前電流値IB(tb)を検知する。前述のように、図5の例では、収束時間ta=120,000sec(約33.3hr)である。これに対し、電流検知工程S6では、この収束時間ta=120,000secよりも前の、収束前時間tb1=10,000secを経過した時点で、収束前電流値IB(tb1)(μA)を、外部直流電源EPの電流計EPIで検知する。   In addition, after the start of voltage application (after t = 0), in parallel with voltage application process S5, voltage application time t is before convergence of current value IB (t) in "current detection process S6". A pre-convergence current value IB (tb) when a predetermined pre-convergence time tb has passed is detected. As described above, in the example of FIG. 5, the convergence time ta is 120,000 sec (about 33.3 hr). On the other hand, in the current detection step S6, when the pre-convergence time tb1 = 10,000 sec before the convergence time ta = 120,000 sec, the pre-convergence current value IB (tb1) (μA) is It detects with the ammeter EPI of external DC power supply EP.

また本実施形態では、収束前時間tb2=20,000secを経過した時点での収束前電流値IB(tb2)(μA)、及び、収束前時間tb3=30,000secを経過した時点での収束前電流値IB(tb3)(μA)もそれぞれ検知する。   In the present embodiment, the pre-convergence current value IB (tb2) (μA) at the time when the pre-convergence time tb2 = 20,000 sec has passed and the pre-convergence when the pre-convergence time tb3 = 30,000 sec has passed The current value IB (tb3) (μA) is also detected.

電流検知工程S6の後は、「抵抗取得工程S7」において、電圧印加時間t、電流値IB(t)及び自己放電抵抗Rpの関係に基づいて、収束前時間tb及び収束前電流値IB(tb)から当該電池1の自己放電抵抗Rpを取得する。本実施形態では、前述の数式1を用いて、収束前時間tb1及び当該時刻での収束前電流値IB(tb1)から自己放電抵抗Rp1を取得する。また、収束前時間tb2及び収束前電流値IB(tb2)から自己放電抵抗Rp2を取得し、収束前時間tb3及び収束前電流値IB(tb3)から自己放電抵抗Rp3を取得する。   After the current detection step S6, in the “resistance acquisition step S7”, the pre-convergence time tb and the pre-convergence current value IB (tb) based on the relationship between the voltage application time t, the current value IB (t) and the self-discharge resistance Rp. ) To obtain the self-discharge resistance Rp of the battery 1. In the present embodiment, the self-discharge resistance Rp1 is acquired from the pre-convergence time tb1 and the pre-convergence current value IB (tb1) at the time using the above-described Equation 1. Also, the self-discharge resistance Rp2 is acquired from the pre-convergence time tb2 and the pre-convergence current value IB (tb2), and the self-discharge resistance Rp3 is acquired from the pre-convergence time tb3 and the pre-convergence current value IB (tb3).

具体的には、以下のような数値計算による近似値を得る。即ち、「収束前時間tb1」と「仮の自己放電抵抗Rp1h」を数式1に代入し、「仮の収束前電流値IBh(tb1)」を得る。これを多数の「仮の自己放電抵抗Rp1h」について行い、「実際に測定した収束前電流値IB(tb1)」に最も近い「仮の収束前電流値IBh(tb1)」が得られる「仮の自己放電抵抗Rp1h」を、真の自己放電抵抗Rp1(Ω)とする。同様にして、収束前時間tb2及び収束前電流値IB(tb2)から、自己放電抵抗Rp2(Ω)を得る。また、収束前時間tb3と収束前電流値IB(tb3)から自己放電抵抗Rp3(Ω)を得る。   Specifically, an approximate value is obtained by numerical calculation as follows. That is, the “pre-convergence time tb1” and the “temporary self-discharge resistance Rp1h” are substituted into Equation 1 to obtain a “provisional pre-convergence current value IBh (tb1)”. This is performed on a large number of "provisional self-discharge resistances Rp1h", and "provisional pre-convergence current value IBh (tb1)" closest to "actually measured pre-convergence current value IB (tb1)" is obtained Let self-discharge resistance Rp1 h be a true self-discharge resistance Rp1 (Ω). Similarly, the self-discharge resistance Rp2 (.OMEGA.) Is obtained from the pre-convergence time tb2 and the pre-convergence current value IB (tb2). Further, the self-discharge resistance Rp3 (Ω) is obtained from the pre-convergence time tb3 and the pre-convergence current value IB (tb3).

なお、この抵抗取得工程S7が終了したら、外部直流電源EPから電池1への電圧印加を停止して電圧印加工程S5を終了する。その後、外部直流電源EPを電池1から離して、更に、拘束治具(図示外)による電池1の圧縮を解除する。   When the resistance acquisition step S7 is completed, the voltage application from the external DC power supply EP to the battery 1 is stopped to end the voltage application step S5. Thereafter, the external DC power supply EP is separated from the battery 1, and the compression of the battery 1 by the restraint jig (not shown) is released.

また別途、「判定工程S8」において、取得した自己放電抵抗Rpに基づいて、当該電池1の良否を判定する。本実施形態では、抵抗取得工程S7で取得した自己放電抵抗Rp1,Rp2,Rp3の平均値Rpaが、基準抵抗値RKよりも小さい場合(Rpa<RK)に、当該電池1を不良品と判定し、当該電池1を除去する。一方、自己放電抵抗Rp1,Rp2,Rp3の平均値Rpaが、基準抵抗値RK以上の場合(Rpa≧RK)には、その電池1を良品と判定する。かくして、電池1が完成する。   In addition, separately in the "determination step S8", the quality of the battery 1 is determined based on the acquired self-discharge resistance Rp. In the present embodiment, when the average value Rpa of the self-discharge resistances Rp1, Rp2 and Rp3 acquired in the resistance acquisition step S7 is smaller than the reference resistance value RK (Rpa <RK), the battery 1 is determined to be defective. , Remove the battery 1. On the other hand, when the average value Rpa of the self-discharge resistances Rp1, Rp2 and Rp3 is equal to or greater than the reference resistance value RK (Rpa ≧ RK), the battery 1 is determined to be a non-defective product. Thus, the battery 1 is completed.

前述のように、電流値IB(t)が収束した後に収束電流値IBsを検知して、この収束電流値IBsの多寡に基づいて、当該電池1の良否を判定する手法も考えられる。即ち、収束電流値IBsを測定し、得られた収束電流値IBsが基準電流値IK(図4参照)よりも大きい場合に(IBs>IK)、当該電池1を不良品と判定し、収束電流値IBsが基準電流値IK以下の場合に(IBs≦IK)、当該電池1を良品と判定することもできる。   As described above, a method may also be considered in which the convergence current value IBs is detected after the current value IB (t) converges, and the quality of the battery 1 is determined based on the convergence current value IBs. That is, the convergence current value IBs is measured, and when the obtained convergence current value IBs is larger than the reference current value IK (see FIG. 4) (IBs> IK), the battery 1 is determined to be defective and the convergence current When the value IBs is equal to or less than the reference current value IK (IBs ≦ IK), the battery 1 can also be determined as a non-defective product.

しかし、この手法によれば、電流値IBが収束して収束電流値IBsとなるまで、具体的には、図5の例では、電圧印加時間tが少なくとも収束時間ta=120,000sec(約33.3hr)を経過するまで電流値IB(t)の測定を待つ必要があり、検査時間が長く掛かる(但し、数日を要していた従来の手法に比べると短い。)。   However, according to this method, until the current value IB converges to become the convergence current value IBs, specifically, in the example of FIG. It is necessary to wait for the measurement of the current value IB (t) until the lapse of .3 hr), which takes a long time for inspection (but shorter than the conventional method which required several days).

これに対し、本実施形態では、電流値IB(t)の測定を、収束時間taより前、具体的には、収束前時間tb1=10,000sec(約2.8hr)、tb2=20,000sec(約5.6hr)、tb3=30,000sec(約8.3hr)で行い、自己放電抵抗Rp1,Rp2,Rp3を取得して、電池1の良否を判定できており、これら以降に電流値IB(t)の測定を行う必要がない。このため、電流検知工程S6を収束電流値IBsを測定する手法に比べて短くでき、自己放電検査の検査時間を短くできる。具体的には、図5の例では、33.3−8.3=25.0hrの分だけ、電流検知工程S6を短くでき、自己放電検査の検査時間を短くできる。   On the other hand, in the present embodiment, the measurement of the current value IB (t) is performed before the convergence time ta, specifically, before convergence time tb1 = 10,000 sec (about 2.8 hr), tb2 = 20,000 sec (About 5.6 hr), tb3 = 30,000 sec (about 8.3 hr), the self-discharge resistances Rp1, Rp2 and Rp3 are obtained, and the quality of the battery 1 can be judged. There is no need to perform the measurement of (t). Therefore, the current detection step S6 can be shortened as compared to the method of measuring the convergence current value IBs, and the inspection time of the self-discharge inspection can be shortened. Specifically, in the example of FIG. 5, the current detection step S6 can be shortened by an amount of 33.3−8.3 = 25.0 hr, and the inspection time of the self-discharge inspection can be shortened.

以上で説明したように、電池1の自己放電検査方法を含む製造方法では、外部直流電源EPから電池1に流れる電流値IB(t)が収束するよりも前の、予め定めた収束前時間tbにおける収束前電流値IB(tb)を検知している。そして、これら収束前時間tb及び収束前電流値IB(tb)から当該電池1の自己放電抵抗Rpを取得して、この自己放電抵抗Rpに基づいて電池1の良否を判定している。このため、従来の電圧低下量ΔVaを測定する手法とは異なる新たな手法で、かつ短時間に、電池1の良否を判定できる。また、収束電流値IBsを検知する手法に比べても、より短い時間で、電池1の良否を判定できる。   As described above, in the manufacturing method including the self-discharge inspection method of battery 1, the pre-convergence time tb determined in advance before the current value IB (t) flowing from external DC power supply EP to battery 1 converges. The pre-convergence current value IB (tb) at is detected. Then, the self-discharge resistance Rp of the battery 1 is obtained from the pre-convergence time tb and the pre-convergence current value IB (tb), and the quality of the battery 1 is determined based on the self-discharge resistance Rp. For this reason, the quality of the battery 1 can be determined in a short time by a new method different from the conventional method of measuring the voltage drop amount ΔVa. Further, the quality of the battery 1 can be determined in a shorter time than the method of detecting the convergence current value IBs.

更に、本実施形態では、複数の収束前時間tb1,tb2,…についての収束前電流値IB(tb1),IB(tb2),…を用いて、複数の自己放電抵抗Rp1,Rp2,…を取得し、その平均値Rpaに基づいて当該電池1の良否を判定している。これにより、当該電池1の良否をより適切に判定できる。   Furthermore, in the present embodiment, the plurality of self-discharge resistances Rp1, Rp2,... Are acquired using the pre-convergence current values IB (tb1), IB (tb2),. The quality of the battery 1 is determined based on the average value Rpa. Thereby, the quality of the said battery 1 can be determined more appropriately.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、自己放電抵抗Rp1,Rp2,Rp3の3つを取得して電池1の良否を判断したが、精度の点で実施形態に劣るが、1つの自己放電抵抗Rp1のみを得て電池1の良否を判断することもできる。但しこの場合には、収束前電流値IB(tb)を得る収束前時間tbを遅くすると、判定の精度を高くできる。
また、実施形態では、判定工程S8において、自己放電抵抗Rp1,Rp2,Rp3の平均値Rpaを用いて、当該電池1の良否を判定したが、これに限られない。例えば、自己放電抵抗Rp1,Rp2,Rp3の中央値や、自己放電抵抗Rp1,Rp2,Rp3の加重平均値(遅く取得した抵抗ほど重い加重とする。例えば、(Rp1+2Rp2+3Rp3)/6)を用いて、当該電池1の良否を判定することもできる。
Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be appropriately modified and applied without departing from the scope of the invention.
For example, in the embodiment, three self-discharge resistances Rp1, Rp2 and Rp3 are obtained to judge the quality of the battery 1. However, although it is inferior to the embodiment in accuracy, only one self-discharge resistance Rp1 is obtained The quality of the battery 1 can also be determined. However, in this case, if the pre-convergence time tb for obtaining the pre-convergence current value IB (tb) is delayed, the determination accuracy can be increased.
In the embodiment, in the determination step S8, the quality of the battery 1 is determined using the average value Rpa of the self-discharge resistances Rp1, Rp2, and Rp3. However, the present invention is not limited thereto. For example, using the median value of the self-discharge resistances Rp1, Rp2 and Rp3 or the weighted average value of the self-discharge resistances Rp1, Rp2 and Rp3 (the heavier the resistance obtained later, for example, (Rp1 + 2Rp2 + 3Rp3) / 6). The quality of the battery 1 can also be determined.

また、実施形態では、電圧印加工程S5において、外部直流電源EPから電池1に印加する出力電圧VSを、電圧印加時間tの経過に拘わらず一定(VS=VB1)としたが、これに限られない。例えば、電圧印加の開始時(電圧印加時間t=0)における出力電圧VSは、電池1の検査前電池電圧VB1と等しい大きさ(VS=VB1)とする一方、電圧印加後の出力電圧VSを徐々にあるいは階段状に上昇させる手法も挙げられる。   In the embodiment, although the output voltage VS applied from the external DC power supply EP to the battery 1 is constant (VS = VB1) regardless of the passage of the voltage application time t in the voltage application step S5, the invention is limited thereto. Absent. For example, the output voltage VS at the start of voltage application (voltage application time t = 0) has a magnitude (VS = VB1) equal to the pre-test battery voltage VB1 of the battery 1, while the output voltage VS after voltage application is There is also a method of gradually or stepwise rising.

1 電池(蓄電デバイス)
1x 未充電の電池(未充電の蓄電デバイス)
1C (電池の)電池成分
S1 組立工程
S2 初充電工程
S5 電圧印加工程
S6 電流検知工程
S7 抵抗取得工程
S8 判定工程
S9 自己放電検査工程
EP 外部直流電源
Re 回路抵抗
Rp,Rp1,Rp2,Rp3 自己放電抵抗
Rpa (自己放電抵抗の)平均値
Rpm (自己放電抵抗の)中央値
RK 基準抵抗値
C 電池容量
t 電圧印加時間
ta 収束時間
tb,tb1,tb2,tb3 収束前時間
VB,VB(t) 電池電圧(デバイス電圧)
VB1 検査前電池電圧(検査前のデバイス電圧)
VS 出力電圧
IB,IB(t) (外部直流電源から電池に流れる)電流
IB(tb),IB(tb1),IB(tb2),IB(tb3) 収束前電流値
1 Battery (power storage device)
1x Uncharged Battery (Uncharged Storage Device)
1C (Battery) Battery Component S1 Assembly Step S2 Initial Charging Step S5 Voltage Application Step S6 Current Detection Step S7 Resistance Acquisition Step S8 Determination Step S9 Self Discharge Inspection Step EP External DC Power Supply Re Circuit Resistance Rp, Rp1, Rp2, Rp3 Self Discharge Resistance Rpa Average value Rpm (Self discharge resistance) Median value Rpm (Self discharge resistance) Reference resistance value C Battery capacity t Voltage application time ta Convergence time tb, tb1, tb2, tb3 Pre-convergence time VB, VB (t) Battery Voltage (device voltage)
VB1 Battery voltage before test (device voltage before test)
VS Output voltage IB, IB (t) Current IB (tb) (flowing from the external DC power supply to the battery) IB (tb), IB (tb1), IB (tb2), IB (tb3) Current value before convergence

Claims (1)

予め充電された蓄電デバイスに外部直流電源から出力電圧VSを印加し続けて、上記外部直流電源から上記蓄電デバイスに電流を流し続ける電圧印加工程と、
電圧印加後、電圧印加時間tが、上記電流の電流値IB(t)が収束するよりも前で、予め定めた収束前時間tbを経過したときの収束前電流値IB(tb)を検知する電流検知工程と、
上記電圧印加時間t、上記電流値IB(t)及び上記蓄電デバイスの自己放電抵抗Rpの関係に基づいて、上記収束前時間tb及び上記収束前電流値IB(tb)から当該蓄電デバイスの自己放電抵抗Rpを取得する抵抗取得工程と、
取得した上記自己放電抵抗Rpに基づいて、当該蓄電デバイスの良否を判定する判定工程と、を備える
蓄電デバイスの自己放電検査方法。
A voltage application step of continuously applying an output voltage VS from an external DC power supply to the pre-charged storage device, and continuing to flow a current from the external DC power supply to the storage device;
After voltage application, a pre-convergence current value IB (tb) is detected when a predetermined pre-convergence time tb has passed before the voltage application time t is before the current value IB (t) of the current converges. Current detection process,
Based on the relationship between the voltage application time t, the current value IB (t), and the self-discharge resistance Rp of the storage device, the self-discharge of the storage device is determined from the pre-convergence time tb and the pre-convergence current value IB (tb). A resistance obtaining step of obtaining a resistance Rp;
Determining the quality of the power storage device based on the obtained self-discharge resistance Rp.
JP2017219751A 2017-11-15 2017-11-15 Self-discharge inspection method for power storage devices Active JP6794974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017219751A JP6794974B2 (en) 2017-11-15 2017-11-15 Self-discharge inspection method for power storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219751A JP6794974B2 (en) 2017-11-15 2017-11-15 Self-discharge inspection method for power storage devices

Publications (2)

Publication Number Publication Date
JP2019091622A true JP2019091622A (en) 2019-06-13
JP6794974B2 JP6794974B2 (en) 2020-12-02

Family

ID=66837447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219751A Active JP6794974B2 (en) 2017-11-15 2017-11-15 Self-discharge inspection method for power storage devices

Country Status (1)

Country Link
JP (1) JP6794974B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021015745A (en) * 2019-07-15 2021-02-12 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2021015712A (en) * 2019-07-11 2021-02-12 トヨタ自動車株式会社 Inspecting method and manufacturing method of power storage device
JP2021105557A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Inspection method of power storage device
CN113311346A (en) * 2021-05-19 2021-08-27 北京车和家信息技术有限公司 Battery cell early warning method and device, cloud platform and storage medium
JP2022048704A (en) * 2020-09-15 2022-03-28 プライムプラネットエナジー&ソリューションズ株式会社 Inspection method of secondary battery
WO2023243733A1 (en) * 2022-06-15 2023-12-21 日鉄テックスエンジ株式会社 Charge/discharge testing device and charge/discharge testing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147389A (en) * 2004-11-22 2006-06-08 Nec Tokin Corp Measuring method of self discharge amount of secondary battery
JP2012141166A (en) * 2010-12-28 2012-07-26 Yokogawa Electric Corp Self discharge defect detection device and self discharge defect detection method
US20170153290A1 (en) * 2015-11-30 2017-06-01 Battelle Energy Alliance, Llc. Systems and related methods for determining self-discharge currents and internal shorts in energy storage cells
CN108199073A (en) * 2018-01-26 2018-06-22 上海理工大学 A kind of rapid screening method of the internal resistance of cell and capacity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147389A (en) * 2004-11-22 2006-06-08 Nec Tokin Corp Measuring method of self discharge amount of secondary battery
JP2012141166A (en) * 2010-12-28 2012-07-26 Yokogawa Electric Corp Self discharge defect detection device and self discharge defect detection method
US20170153290A1 (en) * 2015-11-30 2017-06-01 Battelle Energy Alliance, Llc. Systems and related methods for determining self-discharge currents and internal shorts in energy storage cells
CN108199073A (en) * 2018-01-26 2018-06-22 上海理工大学 A kind of rapid screening method of the internal resistance of cell and capacity

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021015712A (en) * 2019-07-11 2021-02-12 トヨタ自動車株式会社 Inspecting method and manufacturing method of power storage device
JP7218684B2 (en) 2019-07-11 2023-02-07 トヨタ自動車株式会社 Electric storage device inspection method and manufacturing method
JP2021015745A (en) * 2019-07-15 2021-02-12 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP7172891B2 (en) 2019-07-15 2022-11-16 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2021105557A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Inspection method of power storage device
JP7347208B2 (en) 2019-12-26 2023-09-20 トヨタ自動車株式会社 Inspection method for energy storage devices
JP2022048704A (en) * 2020-09-15 2022-03-28 プライムプラネットエナジー&ソリューションズ株式会社 Inspection method of secondary battery
CN113311346A (en) * 2021-05-19 2021-08-27 北京车和家信息技术有限公司 Battery cell early warning method and device, cloud platform and storage medium
CN113311346B (en) * 2021-05-19 2024-02-06 北京车和家信息技术有限公司 Battery cell early warning method and device, cloud platform and storage medium
WO2023243733A1 (en) * 2022-06-15 2023-12-21 日鉄テックスエンジ株式会社 Charge/discharge testing device and charge/discharge testing equipment
JP2023182912A (en) * 2022-06-15 2023-12-27 日鉄テックスエンジ株式会社 Charging and discharging inspection device, and charging and discharging inspection facility

Also Published As

Publication number Publication date
JP6794974B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
US10656212B2 (en) Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
JP6973045B2 (en) Self-discharge inspection method for power storage devices
JP6794974B2 (en) Self-discharge inspection method for power storage devices
US11193980B2 (en) Inspection method and manufacturing method of electrical storage device
US10847849B2 (en) Inspection method of electrical storage device and manufacturing method thereof
JP2019032198A (en) Power storage device inspection method and manufacturing method
US11662386B2 (en) Method for inspecting self-discharge of a power storage device and method for producing the power storage device
CN110850306A (en) Inspection method and manufacturing method for electricity storage device
US11609260B2 (en) Method for inspecting insulation of a secondary battery
JP7218684B2 (en) Electric storage device inspection method and manufacturing method
US10768238B2 (en) Inspection method of electrical storage device and manufacturing method thereof
US11721848B2 (en) Method for inspecting self-discharge of a power storage device, and method for producing the power storage device
JP6996423B2 (en) Inspection method and manufacturing method of power storage device
JP6760213B2 (en) How to manufacture a secondary battery
JP7278312B2 (en) SELF-DISCHARGE INSPECTION METHOD FOR ELECTRICITY STORAGE DEVICE AND METHOD FOR MANUFACTURING ELECTRICITY STORAGE DEVICE
US11777421B2 (en) Method for adjusting device voltage of power storage device
JP2021131952A (en) Inspection method of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R151 Written notification of patent or utility model registration

Ref document number: 6794974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151