JP2021131952A - Inspection method of battery - Google Patents

Inspection method of battery Download PDF

Info

Publication number
JP2021131952A
JP2021131952A JP2020025796A JP2020025796A JP2021131952A JP 2021131952 A JP2021131952 A JP 2021131952A JP 2020025796 A JP2020025796 A JP 2020025796A JP 2020025796 A JP2020025796 A JP 2020025796A JP 2021131952 A JP2021131952 A JP 2021131952A
Authority
JP
Japan
Prior art keywords
battery
resistance
current value
voltage
correlation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020025796A
Other languages
Japanese (ja)
Inventor
才昇 大倉
Toshinori Okura
才昇 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020025796A priority Critical patent/JP2021131952A/en
Publication of JP2021131952A publication Critical patent/JP2021131952A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide an inspection method of a battery which evaluates the resistance of a battery from a change in a current value Ib (t) of a current flowing from an external DC power supply to the battery.SOLUTION: An inspection method of a battery 1 includes a capacity acquisition step S10, a voltage application step S20 of continuing to apply an output voltage Vb from an external DC power supply EP to a battery 1, a current detection step S30 of detecting a current value Ib (t1) of a current I flowing through the battery 1, a resistance estimation step S40 of estimating a self-discharge resistance Rp (tn) and a series circuit resistance Re (tn) using an equation of a theoretical current value Ii (t), a correlation coefficient acquisition step S50 of obtaining a correlation coefficient Kr (tn) between the equation of the theoretical current value Ii (t) and the current value Ib (t1), and a battery evaluation step S60, S65 of evaluating the battery 1 on the basis of the self-discharge resistance Rp (tn) when the correlation coefficient Kr (tn) is equal to or greater than a reference correlation coefficient Krk.SELECTED DRAWING: Figure 3

Description

本発明は、電池の抵抗を評価する電池の検査方法に関する。 The present invention relates to a battery inspection method for evaluating battery resistance.

リチウムイオン二次電池などの電池の製造に当たっては、電極体の内部に鉄や銅などの金属異物が混入する場合があり、混入した金属異物に起因して電池に内部短絡が生じることがある。このため、電池に内部短絡が生じているか否かを外寸ことがある。
この内部短絡の検査方法として、以下の手法が知られている。即ち、予め電池を充電しておき、電池に外部直流電源を接続する。次に、外部直流電源から電池に、この電池の検査直前の検査前電池電圧Vaに等しい出力電圧Vb(Vb=Va)を印加し続ける。そして、外部直流電源から電池に流れる電流の電流値Ib(t)がほぼ一定となって安定した後に、この安定時電流値Ibsを検知する。次に、検知した安定時電流値Ibsが予め定めた基準電流値Ibkのよりも大きい場合(Ibs>Ibk)に、当該電池を内部短絡が生じている不良品と判定する。なお、このような電池の検査方法に関連する従来技術として、例えば特許文献1が挙げられる。
In the manufacture of batteries such as lithium ion secondary batteries, metallic foreign substances such as iron and copper may be mixed inside the electrode body, and the mixed metallic foreign substances may cause an internal short circuit in the battery. Therefore, it may be determined whether or not the battery has an internal short circuit.
The following methods are known as methods for inspecting this internal short circuit. That is, the battery is charged in advance, and an external DC power supply is connected to the battery. Next, the output voltage Vb (Vb = Va) equal to the pre-inspection battery voltage Va immediately before the inspection of the battery is continuously applied from the external DC power source to the battery. Then, after the current value Ib (t) of the current flowing from the external DC power supply to the battery becomes substantially constant and stable, the current value Ibs at the time of stabilization is detected. Next, when the detected stable current value Ibs is larger than the predetermined reference current value Ibk (Ibs> Ibk), the battery is determined to be a defective product with an internal short circuit. As a conventional technique related to such a battery inspection method, for example, Patent Document 1 can be mentioned.

特開2019−016558号公報JP-A-2019-016558

しかしながら、上述の電池の検査方法では、電池に流れる電流の電流値Ib(t)がほぼ一定の安定時電流値Ibsになるのに時間が掛かるという問題があった。 However, the above-mentioned battery inspection method has a problem that it takes time for the current value Ib (t) of the current flowing through the battery to reach a substantially constant stable current value Ibs.

本発明は、かかる現状に鑑みてなされたものであって、外部直流電源から電池に流れる電流の電流値Ib(t)の変化から、当該電池の抵抗を評価する新たな電池の検査方法を提供するものである。 The present invention has been made in view of the current situation, and provides a new battery inspection method for evaluating the resistance of the battery from a change in the current value Ib (t) of the current flowing from the external DC power source to the battery. It is something to do.

上記課題を解決するための本発明の一態様は、電池の抵抗を評価する電池の検査方法であって、電池の電池容量Cpを取得する容量取得工程と、外部直流電源から上記電池に、検査前電池電圧Vaに等しい出力電圧Vbを印加し続けて、上記外部直流電源から上記電池に電流を流し続ける電圧印加工程と、上記出力電圧Vbの印加継続時間t1,t2,…における上記電流の電流値Ib(t1),Ib(t2),…を検知する電流検知工程と、上記電池に上記外部直流電源を接続した検査回路の等価回路として、上記電池容量Cpと自己放電抵抗Rpの並列回路に、直列回路抵抗Reを直列接続し、これらに上記外部直流電源の上記出力電圧Vbを印加する等価回路を想定し、この等価回路に流れる理論電流値Ii(t)の式と、既に得られている上記印加継続時間t1,t2,…,tnにおける上記電流値Ib(t1),Ib(t2),…,Ib(tn)とを用いて、自己放電抵抗Rp(tn)及び直列回路抵抗Re(tn)を推定する抵抗推定工程と、推定した上記自己放電抵抗Rp(tn)及び上記直列回路抵抗Re(tn)を含む上記理論電流値Ii(t)の式と、取得した上記電流値Ib(t1),Ib(t2),…,Ib(tn)との相関係数Kr(tn)を得る相関係数取得工程と、上記相関係数Kr(tn)が予め定めた基準相関係数Krk以上となった場合に、推定した上記自己放電抵抗Rp(tn)に基づいて、上記電池を評価する電池評価工程と、を備える電池の検査方法である。 One aspect of the present invention for solving the above problems is a battery inspection method for evaluating the resistance of a battery, which includes a capacity acquisition step of acquiring the battery capacity Cp of the battery and an inspection of the battery from an external DC power source. A voltage application step in which an output voltage Vb equal to the pre-battery voltage Va is continuously applied and a current continues to flow from the external DC power source to the battery, and a current of the current at the application duration t1, t2, ... Of the output voltage Vb. As an equivalent circuit of the current detection process for detecting the values Ib (t1), Ib (t2), ... And the inspection circuit in which the external DC power supply is connected to the battery, the parallel circuit of the battery capacity Cp and the self-discharge resistance Rp is used. Assuming an equivalent circuit in which the series circuit resistors Re are connected in series and the output voltage Vb of the external DC power supply is applied to them, the equation of the theoretical current value Ii (t) flowing in this equivalent circuit and the equation of the theoretical current value Ii (t) already obtained have already been obtained. The self-discharge resistance Rp (tn) and the series circuit resistance Re ( The resistance estimation step for estimating tn), the equation of the theoretical current value Ii (t) including the estimated self-discharge resistance Rp (tn) and the series circuit resistance Re (tn), and the acquired current value Ib ( The correlation coefficient acquisition process for obtaining the correlation coefficient Kr (tn) with t1), Ib (t2), ..., Ib (tn) and the reference correlation coefficient Krk or more in which the above correlation coefficient Kr (tn) is predetermined. This is a battery inspection method including a battery evaluation step of evaluating the battery based on the estimated self-discharge resistance Rp (tn).

上述の電池の検査方法では、上述の容量取得工程、電圧印加工程、電流検知工程、抵抗推定工程、相関係数取得工程及び電池評価工程を行って、電池の抵抗を評価する。抵抗推定工程では、外部直流電源から電池に流れる電流の電流値Ib(t)の変化から当該電池の自己放電抵抗Rp(tn)を推定し、電池評価工程では、推定した自己放電抵抗Rp(tn)に基づいて当該電池を評価する。このように、上述の電池の検査方法では、外部直流電源から電池に流れる電流の電流値Ib(t)の変化から、当該電池の抵抗を評価できる。 In the above-mentioned battery inspection method, the resistance of the battery is evaluated by performing the above-mentioned capacity acquisition step, voltage application step, current detection step, resistance estimation step, correlation coefficient acquisition step, and battery evaluation step. In the resistance estimation step, the self-discharge resistance Rp (tn) of the battery is estimated from the change in the current value Ib (t) of the current flowing from the external DC power supply to the battery, and in the battery evaluation step, the estimated self-discharge resistance Rp (tn) is estimated. ) To evaluate the battery. As described above, in the above-mentioned battery inspection method, the resistance of the battery can be evaluated from the change in the current value Ib (t) of the current flowing from the external DC power source to the battery.

なお、電池評価工程において、自己放電抵抗Rp(tn)に基づいて電池を評価する手法としては、例えば、自己放電抵抗Rp(tn)が予め定めた基準抵抗Rpkよりも小さい場合(Rp(tn)<Rpk)に、当該電池を抵抗の小さい(内部短絡が生じている)不良品と判定する手法が挙げられる。また、自己放電抵抗Rp(tn)の大きさに基づいて、電池を抵抗(内部短絡)の程度に応じた複数のグループにランク分けする手法も挙げられる。
また、上述の電池の検査方法は、電池の製造過程において行うことができるほか、自動車等に搭載され、或いは単独で市場に置かれた以降の使用済の電池に対して行うこともできる。
In the battery evaluation step, as a method of evaluating the battery based on the self-discharge resistance Rp (tn), for example, when the self-discharge resistance Rp (tn) is smaller than the predetermined reference resistance Rpk (Rp (tn)). <Rpk) includes a method of determining the battery as a defective product having a small resistance (an internal short circuit has occurred). Another method is to rank the batteries into a plurality of groups according to the degree of resistance (internal short circuit) based on the magnitude of the self-discharge resistance Rp (tn).
In addition, the above-mentioned battery inspection method can be performed in the process of manufacturing a battery, or can be performed on a used battery mounted on an automobile or the like or placed on the market independently.

更に、上記の電池の検査方法であって、前記容量取得工程において、前記電池容量Cpは、前記電池を、SOC100%からSOC0%の電池電圧Vの範囲うち、第1電池電圧V1から第2電池電圧V2まで強制放電または充電して(但し、上記電池をSOC100%からSOC0%の範囲にわたり強制放電または充電する場合を除く)、この部分電圧区間ΔV=V1−V2に放電または充電した部分電気量ΔQを測定し、Cp=ΔQ/ΔVにより得る電池の検査方法とするのが好ましい。 Further, in the above-mentioned battery inspection method, in the capacity acquisition step, the battery capacity Cp is such that the battery is subjected to the first battery voltage V1 to the second battery within the range of the battery voltage V of SOC 100% to SOC 0%. The amount of partial electricity discharged or charged in this partial voltage section ΔV = V1-V2 after forcibly discharging or charging up to the voltage V2 (except when the above battery is forcibly discharged or charged in the range of SOC 100% to SOC 0%). It is preferable to use a battery inspection method in which ΔQ is measured and obtained by Cp = ΔQ / ΔV.

容量取得工程において当該電池の電池容量Cpを得る手法としては、例えば、当該電池を全電圧区間(SOC100%からSOC0%の範囲)にわたり強制放電または充電して、その際の放電電流値(または充電電流値)と放電時間(または充電時間)との積により算出する手法が挙げられる。これに対し、上述の検査方法では、部分電圧区間ΔV=V1−V2に強制放電または充電した部分電気量ΔQを測定し、Cp=ΔQ/ΔVにより電池容量Cpを得るため、電池を全電圧区間にわたり強制放電または充電しなくても済む。 As a method of obtaining the battery capacity Cp of the battery in the capacity acquisition step, for example, the battery is forcibly discharged or charged over the entire voltage section (SOC 100% to SOC 0%), and the discharge current value (or charging) at that time is charged. A method of calculating by the product of the current value) and the discharge time (or charge time) can be mentioned. On the other hand, in the above-mentioned inspection method, the partial electric energy ΔQ forcibly discharged or charged in the partial voltage section ΔV = V1-V2 is measured, and the battery capacity Cp is obtained by Cp = ΔQ / ΔV. There is no need to forcibly discharge or charge the battery.

実施形態に係る電池の斜視図である。It is a perspective view of the battery which concerns on embodiment. 実施形態に係る電池の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the battery which concerns on embodiment. 実施形態に係る電池の検査方法(検査工程)のフローチャートである。It is a flowchart of the battery inspection method (inspection process) which concerns on embodiment. 実施形態に係る電池の検査方法に係り、電池に外部直流電源を接続した検査回路の回路図である。It is a circuit diagram of the inspection circuit which concerns on the inspection method of the battery which concerns on embodiment, and connected the external DC power source to the battery. 良品及び不良品の電池について、出力電圧Vbの印加継続時間tと、出力電圧Vb、電池電圧V(t)、及び、電池に流れる電流の電流値Ib(t)との関係を模式的に示すグラフである。For non-defective and defective batteries, the relationship between the application duration t of the output voltage Vb, the output voltage Vb, the battery voltage V (t), and the current value Ib (t) of the current flowing through the battery is schematically shown. It is a graph. 良品の電池の一例及び不良品の電池の一例について、出力電圧Vbの印加継続時間t(t=0〜tsの範囲)と、電池に流れる電流の実測された電流値Ib(t)との関係を示すグラフである。For an example of a non-defective battery and an example of a defective battery, the relationship between the application duration t (range of t = 0 to ts) of the output voltage Vb and the measured current value Ib (t) of the current flowing through the battery. It is a graph which shows. 図6に示した良品の電池について、出力電圧Vbの印加継続時間t(t=0〜teの範囲)と、電池に流れる電流の実測された電流値Ib(t)及び理論電流値Ii(t)との関係を示すグラフである。For the non-defective battery shown in FIG. 6, the application duration t (range of t = 0 to te) of the output voltage Vb, the measured current value Ib (t) of the current flowing through the battery, and the theoretical current value Ii (t). ) Is a graph showing the relationship with. 図6に示した不良品の電池について、出力電圧Vbの印加継続時間t(t=0〜teの範囲)と、電池に流れる電流の実測された電流値Ib(t)及び理論電流値Ii(t)との関係を示すグラフである。For the defective battery shown in FIG. 6, the application duration t (range of t = 0 to te) of the output voltage Vb, the measured current value Ib (t) of the current flowing through the battery, and the theoretical current value Ii ( It is a graph which shows the relationship with t). 図6に示した良品及び不良品の電池について、出力電圧Vbの印加継続時間t(t=0〜teの範囲)と、推定した自己放電抵抗Rp(t)との関係を示す片対数グラフである。A semi-log graph showing the relationship between the application duration t (range of t = 0 to te) of the output voltage Vb and the estimated self-discharge resistance Rp (t) for the non-defective and defective batteries shown in FIG. be. 図6に示した良品及び不良品の電池について、出力電圧Vbの印加継続時間t(t=0〜teの範囲)と、推定した直列回路抵抗Re(t)との関係を示す片対数グラフである。For the non-defective and defective batteries shown in FIG. 6, a semi-log graph showing the relationship between the application duration t (range of t = 0 to te) of the output voltage Vb and the estimated series circuit resistance Re (t). be. 図6に示した良品の電池について、出力電圧Vbの印加継続時間t(t=0〜teの範囲)と、相関係数Kr(t)との関係を示すグラフである。6 is a graph showing the relationship between the application duration t (range of t = 0 to te) of the output voltage Vb and the correlation coefficient Kr (t) of the non-defective battery shown in FIG.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1に、本実施形態に係る電池1の斜視図を示す。この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、直方体箱状の電池ケース10と、この内部に収容された扁平状捲回型の電極体20及び電解液17と、電池ケース10に支持された正極端子部材30及び負極端子部材40等から構成される。電池1の公称容量は、5.0Ahである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a perspective view of the battery 1 according to the present embodiment. The battery 1 is a square and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric vehicle. The battery 1 includes a rectangular parallelepiped box-shaped battery case 10, a flat wound electrode body 20 and an electrolytic solution 17 housed therein, and a positive electrode terminal member 30 and a negative electrode terminal member 40 supported by the battery case 10. Etc. The nominal capacity of battery 1 is 5.0 Ah.

次いで、上記電池1の抵抗を評価する検査方法を含む電池1の製造方法について説明する(図2〜図4参照)。まず「組立工程S1」(図2参照)において、電池1を組み立てる。即ち、電池ケース10のケース蓋部材13を用意し、これに正極端子部材30及び負極端子部材40を固設する(図1参照)。その後、正極端子部材30及び負極端子部材40を、別途形成した電極体20の正極板及び負極板にそれぞれ溶接する。その後、この電極体20を電池ケース10のケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、電解液17を注液孔13hから電池ケース10内に注液し、封止部材15で注液孔13hを封止する。これにより、電池1が形成される。 Next, a method of manufacturing the battery 1 including an inspection method for evaluating the resistance of the battery 1 will be described (see FIGS. 2 to 4). First, in the "assembly process S1" (see FIG. 2), the battery 1 is assembled. That is, the case lid member 13 of the battery case 10 is prepared, and the positive electrode terminal member 30 and the negative electrode terminal member 40 are fixedly attached to the case lid member 13 (see FIG. 1). After that, the positive electrode terminal member 30 and the negative electrode terminal member 40 are welded to the positive electrode plate and the negative electrode plate of the separately formed electrode body 20, respectively. After that, the electrode body 20 is inserted into the case body member 11 of the battery case 10, and the opening of the case body member 11 is closed by the case lid member 13. Then, the case body member 11 and the case lid member 13 are welded to form the battery case 10. After that, the electrolytic solution 17 is injected into the battery case 10 from the injection hole 13h, and the injection hole 13h is sealed by the sealing member 15. As a result, the battery 1 is formed.

次に、「初充電工程S2」(図2参照)において、この組み立てた電池1を初充電する。具体的には、拘束治具(不図示)を用いて、電池1を電池厚み方向に圧縮した状態で拘束する。本実施形態では、この電池1を拘束した状態で、初充電工程S2から後述する検査工程S5まで行う。その後、電池1に充放電装置(不図示)を接続して、環境温度20℃下において、定電流定電圧(CCCV)充電により、SOC90%に相当する電池電圧Vまで電池1を初充電する。 Next, in the "first charging step S2" (see FIG. 2), the assembled battery 1 is first charged. Specifically, a restraint jig (not shown) is used to restrain the battery 1 in a compressed state in the battery thickness direction. In the present embodiment, with the battery 1 restrained, the initial charging step S2 to the inspection step S5 described later are performed. After that, a charging / discharging device (not shown) is connected to the battery 1 to charge the battery 1 for the first time to a battery voltage V corresponding to 90% SOC by constant current constant voltage (CCCV) charging at an ambient temperature of 20 ° C.

次に、「高温エージング工程S3」において、充電された電池1を環境温度40〜85℃の温度下で、端子開放した状態で放置して、高温エージングする。初充電直後の電池1の電池電圧Vは不安定で、安定するまで時間を要するが、この高温エージング工程S3を行うことにより、電池電圧Vの安定化を促進できる。なお、本実施形態では、この高温エージング工程S3を終えた電池1の電池電圧Vは、SOC約86%に相当する電池電圧となっている。
次に、「冷却工程S4」において、電池1を環境温度20℃下に放置して、放置冷却することにより、電池1の電池温度を20℃とする。
Next, in the "high temperature aging step S3", the charged battery 1 is left at an ambient temperature of 40 to 85 ° C. with the terminals open to perform high temperature aging. The battery voltage V of the battery 1 immediately after the initial charge is unstable and takes time to stabilize. However, by performing this high temperature aging step S3, the stabilization of the battery voltage V can be promoted. In the present embodiment, the battery voltage V of the battery 1 that has completed the high temperature aging step S3 is a battery voltage corresponding to about 86% of SOC.
Next, in the "cooling step S4", the battery 1 is left at an ambient temperature of 20 ° C. and then left to cool to bring the battery temperature of the battery 1 to 20 ° C.

次に、「検査工程S5」(図3も参照)を行う。この検査工程S5は、環境温度20℃下で行う。検査工程S5は、容量取得工程S10、電圧印加工程S20、電流検知工程S30、抵抗推定工程S40、相関係数取得工程S50、電池評価工程S60,S65を含む。 Next, "inspection step S5" (see also FIG. 3) is performed. This inspection step S5 is performed at an environmental temperature of 20 ° C. The inspection step S5 includes a capacity acquisition step S10, a voltage application step S20, a current detection step S30, a resistance estimation step S40, a correlation coefficient acquisition step S50, and a battery evaluation steps S60 and S65.

まず「容量取得工程S10」において、当該電池1の電池容量Cpを取得する。本実施形態では、上述の冷却工程S4後の電池1(SOC約86%に相当する電池電圧V)に充放電装置(不図示)を接続し、1Cの定電流で、SOC85%に相当する電池電圧VまでSOCの約1%分を強制放電させる。なお、この放電開始時におけるSOC約86%に相当する電池電圧Vが、前述の「第1電池電圧V1」に該当し、放電終了時におけるSOC85%に相当する電池電圧Vが、前述の「第2電池電圧V2」に該当する。 First, in the "capacity acquisition step S10", the battery capacity Cp of the battery 1 is acquired. In the present embodiment, a charging / discharging device (not shown) is connected to the battery 1 (battery voltage V corresponding to about 86% SOC) after the cooling step S4 described above, and a battery corresponding to 85% SOC at a constant current of 1C. Forcibly discharges about 1% of SOC up to the voltage V. The battery voltage V corresponding to about 86% of SOC at the start of discharging corresponds to the above-mentioned "first battery voltage V1", and the battery voltage V corresponding to 85% of SOC at the end of discharging corresponds to the above-mentioned "No. 1". 2 Battery voltage V2 ”corresponds.

そして、この第1電池電圧V1から第2電池電圧V2までの部分電圧区間ΔV=V1−V2(V)に放電された部分電気量ΔQ(C)を測定し、電池容量Cp=ΔQ/ΔVにより、当該電池1の局所的な電池容量Cp(F)を算出する。
このように局所的な電池容量Cpを得ることで、当該電池1を全電圧区間(SOC100%からSOC0%の範囲)にわたり強制放電または充電しなくても済む。
また、電池容量Cpの大きさは、電池1毎にバラツキがある。このため、電池1毎に実際に測定した電池容量Cpを用いて、後述する抵抗推定工程S40を行うことで、当該電池1の自己放電抵抗Rp及び直列回路抵抗Reをより正確に推定できる。そして、電池評価工程S60,S65において、当該電池1をより適切に評価できる。
Then, the partial electric amount ΔQ (C) discharged in the partial voltage section ΔV = V1-V2 (V) from the first battery voltage V1 to the second battery voltage V2 is measured, and the battery capacity Cp = ΔQ / ΔV is used. , The local battery capacity Cp (F) of the battery 1 is calculated.
By obtaining the local battery capacity Cp in this way, it is not necessary to forcibly discharge or charge the battery 1 over the entire voltage section (range of SOC 100% to SOC 0%).
Further, the size of the battery capacity Cp varies from battery to battery 1. Therefore, the self-discharge resistance Rp and the series circuit resistance Re of the battery 1 can be more accurately estimated by performing the resistance estimation step S40 described later using the battery capacity Cp actually measured for each battery 1. Then, in the battery evaluation steps S60 and S65, the battery 1 can be evaluated more appropriately.

次に、「電圧印加工程S20」において、外部直流電源EPから電池1に、検査前電池電圧Vaに等しい出力電圧Vb(Vb=Va)を印加し続けて、外部直流電源EPから電池1に電流Iを流し続ける(図4参照)。まず、上述の容量取得工程S10後の電池1に外部直流電源EPを接続して、検査回路100を構成する。具体的には、電池1の正極端子部材30及び負極端子部材40に、外部直流電源EPの一対のプローブP1,P2をそれぞれ接触させる。 Next, in the "voltage application step S20", the output voltage Vb (Vb = Va) equal to the pre-inspection battery voltage Va is continuously applied from the external DC power supply EP to the battery 1, and the current is applied from the external DC power supply EP to the battery 1. Continue to flow I (see Figure 4). First, the external DC power supply EP is connected to the battery 1 after the capacity acquisition step S10 described above to form the inspection circuit 100. Specifically, the pair of probes P1 and P2 of the external DC power supply EP are brought into contact with the positive electrode terminal member 30 and the negative electrode terminal member 40 of the battery 1, respectively.

本実施形態では、この検査回路100の等価回路110として、図4に示すように、電池1の電池容量Cpと電池1の自己放電抵抗Rpとからなる並列回路115に、直列回路抵抗Reを直列接続し、これらに外部直流電源EPの出力電圧Vbを印加する等価回路を想定している。
具体的には、電池容量Cpは、電池1(電池成分1C)の電池容量であり、自己放電抵抗Rpは、主に電池1の内部短絡によって生じる抵抗であり、電池抵抗Rsは、電池1の直流抵抗である。等価回路上、電池容量Cpと自己放電抵抗Rpの並列回路115に、電池抵抗Rsが直列接続される。
In the present embodiment, as the equivalent circuit 110 of the inspection circuit 100, as shown in FIG. 4, the series circuit resistance Re is connected in series to the parallel circuit 115 including the battery capacity Cp of the battery 1 and the self-discharge resistance Rp of the battery 1. It is assumed that the equivalent circuit is connected and the output voltage Vb of the external DC power supply EP is applied to them.
Specifically, the battery capacity Cp is the battery capacity of the battery 1 (battery component 1C), the self-discharge resistance Rp is a resistance mainly caused by an internal short circuit of the battery 1, and the battery resistance Rs is the battery 1 of the battery 1. It is a DC resistance. On the equivalent circuit, the battery resistance Rs is connected in series to the parallel circuit 115 of the battery capacity Cp and the self-discharge resistance Rp.

また、検査回路100において、配線抵抗Rwは、外部直流電源EP内、及び、外部直流電源EPからプローブP1,P2までに分布する配線抵抗である。また、接触抵抗R1は、外部直流電源EPの一方のプローブP1と電池1の正極端子部材30との接触抵抗であり、接触抵抗R2は、外部直流電源EPの他方のプローブP2と電池1の負極端子部材40との接触抵抗である。そして、配線抵抗Rwと接触抵抗R1,R2と電池抵抗Rsとの和(Re=Rw+R1+R2+Rs)が、この検査回路100の前述の直列回路抵抗Reである。
また、電流Iは、外部直流電源EPから電池1に流れる電流であり、自己放電電流IDは、自己放電に伴って電池1内(電池成分1C)を流れる電流である。
Further, in the inspection circuit 100, the wiring resistor Rw is a wiring resistor distributed in the external DC power supply EP and from the external DC power supply EP to the probes P1 and P2. Further, the contact resistance R1 is the contact resistance between one probe P1 of the external DC power supply EP and the positive electrode terminal member 30 of the battery 1, and the contact resistance R2 is the contact resistance between the other probe P2 of the external DC power supply EP and the negative electrode of the battery 1. This is the contact resistance with the terminal member 40. The sum of the wiring resistance Rw, the contact resistances R1 and R2, and the battery resistance Rs (Re = Rw + R1 + R2 + Rs) is the above-mentioned series circuit resistance Re of the inspection circuit 100.
The current I is the current flowing from the external DC power supply EP to the battery 1, and the self-discharge current ID is the current flowing in the battery 1 (battery component 1C) with self-discharge.

また、外部直流電源EPは、自身の直流電源EPEが発生する出力電圧Vbを可変かつ高精度に制御できるほか、電圧計EPVを有しており、電池電圧V(V)を計測できる。更に、外部直流電源EPは、電流計EPIを有しており、外部直流電源EP(直流電源EPE)から電池1に流れる電流Iの電流値Ib(μA)を高精度に計測できる。 Further, the external DC power supply EP can control the output voltage Vb generated by its own DC power supply EPE in a variable and highly accurate manner, and also has a voltmeter EPV, so that the battery voltage V (V) can be measured. Further, the external DC power supply EP has an ammeter EPI, and can measure the current value Ib (μA) of the current I flowing from the external DC power supply EP (DC power supply EPE) to the battery 1 with high accuracy.

電圧印加工程S20では、まずステップS21(図3参照)において、電流値Ib=0(μA)の条件下で、外部直流電源EPに含まれる電圧計EPVによって、当該電池1の電池電圧V(検査前電池電圧Va)を検知する。本実施形態では、この検査前電池電圧Vaとして、3.9V近傍の値が計測される。
その後、ステップS22に進み、当該電池1に対して、測定された検査前電池電圧Vaに等しい出力電圧Vb(Vb=Va)の印加を開始する。
In the voltage application step S20, first, in step S21 (see FIG. 3), the battery voltage V (inspection) of the battery 1 is performed by the voltmeter EPV included in the external DC power supply EP under the condition of the current value Ib = 0 (μA). Pre-battery voltage Va) is detected. In the present embodiment, a value near 3.9 V is measured as the pre-inspection battery voltage Va.
After that, the process proceeds to step S22, and application of an output voltage Vb (Vb = Va) equal to the measured pre-inspection battery voltage Va is started on the battery 1.

その後、ステップS23に進み、後述する相関係数取得工程S50で取得した相関係数Kr(tn)が、予め定めた基準相関係数Krk(本実施形態ではKrk=0.9)以上(Kr(tn)≧0.9)となった否かを判定する。ここで、NO、即ち、Kr(tn)≧0.9となっていない場合には、外部直流電源EPから電池1への電圧印加を継続する。即ち、外部直流電源EPから電池1に出力電圧Vbを印加し続けて、外部直流電源EPから電池1に電流Iを流し続ける。一方、YES、即ち、Kr(tn)≧0.9となっている場合には、ステップS24に進み、出力電圧Vbの印加を終了して、この電圧印加工程S20を終了する。 After that, the process proceeds to step S23, and the correlation coefficient Kr (tn) acquired in the correlation coefficient acquisition step S50, which will be described later, is equal to or greater than the predetermined reference correlation coefficient Krk (Krk = 0.9 in this embodiment) (Kr ( It is determined whether or not tn) ≥ 0.9). Here, when NO, that is, when Kr (tn) ≥ 0.9 is not satisfied, the voltage application from the external DC power supply EP to the battery 1 is continued. That is, the output voltage Vb is continuously applied to the battery 1 from the external DC power supply EP, and the current I is continuously passed from the external DC power supply EP to the battery 1. On the other hand, when YES, that is, when Kr (tn) ≥ 0.9, the process proceeds to step S24, the application of the output voltage Vb is terminated, and the voltage application step S20 is terminated.

また、出力電圧Vbの印加開始後(印加継続時間t=0以降)、電圧印加工程S20と並行して、「電流検知工程S30」(図3参照)を行い、印加継続時間t1,t2,…において、外部直流電源EPから電池1に流れる電流Iの電流値Ib(t1),Ib(t2),…を検知する。本実施形態では、印加継続時間tが1sec経過する毎に、外部直流電源EPに含まれる電流計EPIによって、電池1に流れる電流値Ib(t)(μA)を検知する。即ち、印加継続時間t=1,2,3,4,5,…(sec)における電流値Ib(1),Ib(2),Ib(3),Ib(4),Ib(5),…(μA)をそれぞれ検知する。 Further, after the application of the output voltage Vb is started (application duration t = 0 or later), the “current detection step S30” (see FIG. 3) is performed in parallel with the voltage application step S20, and the application duration t1, t2, ... In, the current values Ib (t1), Ib (t2), ... Of the current I flowing from the external DC power supply EP to the battery 1 are detected. In the present embodiment, the current value Ib (t) (μA) flowing through the battery 1 is detected by the ammeter EPI included in the external DC power supply EP every time the application duration t elapses for 1 sec. That is, the current values Ib (1), Ib (2), Ib (3), Ib (4), Ib (5), ... (ΜA) is detected respectively.

そして本実施形態では、10組(10sec分)の印加継続時間t及び電流値Ib(t)の検知結果が得られたら、抵抗推定工程S40に進む。即ち、1回目の電流検知工程S30では、印加継続時間t=1,2,…,10(sec)における電流値Ib(1),Ib(2),…,Ib(10)(μA)が得られたら、抵抗推定工程S40に進む。また、2回目の電流検知工程S30では、印加継続時間t=11,12,…,20(sec)における電流値Ib(11),Ib(12),…,Ib(20)(μA)が得られたら、抵抗推定工程S40に進む。 Then, in the present embodiment, when the detection results of the application duration t and the current value Ib (t) of 10 sets (10 sec minutes) are obtained, the process proceeds to the resistance estimation step S40. That is, in the first current detection step S30, the current values Ib (1), Ib (2), ..., Ib (10) (μA) at the application duration t = 1, 2, ..., 10 (sec) are obtained. If so, the process proceeds to the resistance estimation step S40. Further, in the second current detection step S30, the current values Ib (11), Ib (12), ..., Ib (20) (μA) at the application duration t = 11, 12, ..., 20 (sec) are obtained. Then, the process proceeds to the resistance estimation step S40.

ここで、外部直流電源EPから電池1に流れる電流Iの理論電流値Ii(t)について説明する。下記<数1>に示す理論電流値Ii(t)の式は、前述した検査回路100の等価回路110の微分方程式を、初期条件下(印加継続時間t=0において理論電流値Ii(t)=0)で解いた式である。 Here, the theoretical current value Ii (t) of the current I flowing from the external DC power supply EP to the battery 1 will be described. The equation of the theoretical current value Ii (t) shown in the following <Equation 1> is the differential equation of the equivalent circuit 110 of the inspection circuit 100 described above under the initial conditions (theoretical current value Ii (t) under the initial condition (application duration t = 0). This is the equation solved by = 0).

Figure 2021131952
Ii(t) :理論電流値(μA)
t :印加継続時間(sec)
Vb :出力電圧(V)
Rp :自己放電抵抗(Ω)
Re :直列回路抵抗(Ω)
Cp :電池容量(F)
Figure 2021131952
Ii (t): Theoretical current value (μA)
t: Application duration (sec)
Vb: Output voltage (V)
Rp: Self-discharge resistance (Ω)
Re: Series circuit resistance (Ω)
Cp: Battery capacity (F)

また、図5に、良品及び不良品の各電池1について、外部直流電源EPによる出力電圧Vbの印加継続時間tと、出力電圧Vb、電池電圧V(t)、及び、外部直流電源EPから電池1に流れる電流Iの電流値Ib(t)との関係の概略を示す。図5に示すように、電池電圧V(t)は、検査前電池電圧Vaから印加継続時間tの経過と共に徐々に低下した後、印加継続時間t=安定時間ts以降は、ほぼ一定の値(安定時電池電圧Vs)となる。但し、良品の電池1に比べて不良品の電池1は、電池電圧V(t)が大きく低下するため、安定時電池電圧Vsも低い値となる。
一方、電流値Ib(t)は、0(零)から印加継続時間tの経過と共に徐々に増加した後、印加継続時間t=安定時間ts以降は、ほぼ一定の値(安定時電流値Ibs)となる。但し、良品の電池1に比べて不良品の電池1は、電流値Ib(t)が大きく増加するため、安定時電流値Ibsも大きい値となる。
Further, in FIG. 5, for each of the non-defective and defective batteries 1, the application duration t of the output voltage Vb by the external DC power supply EP, the output voltage Vb, the battery voltage V (t), and the batteries from the external DC power supply EP The outline of the relationship between the current I flowing in 1 and the current value Ib (t) is shown. As shown in FIG. 5, the battery voltage V (t) gradually decreases from the pre-inspection battery voltage Va with the passage of the application duration t, and then is a substantially constant value after the application duration t = stabilization time ts ( Battery voltage Vs) when stable. However, since the battery voltage V (t) of the defective battery 1 is significantly lower than that of the non-defective battery 1, the stable battery voltage Vs is also lower.
On the other hand, the current value Ib (t) gradually increases from 0 (zero) with the passage of the application duration t, and then is almost constant after the application duration t = stabilization time ts (current value Ibs at stabilization). It becomes. However, since the current value Ib (t) of the defective battery 1 is greatly increased as compared with that of the non-defective battery 1, the stable current value Ibs is also large.

このように電池電圧V(t)及び電流値Ib(t)が変化する理由は、以下の通りである。即ち、電池1では、自己放電により電池成分1Cから自己放電電流IDが流れ出ることによって、電池成分1Cの電圧及び電池電圧V(t)が徐々に低下する。その際、不良品の電池1は、良品の電池1に比べて、短絡に伴い自己放電電流IDが大きいため、電池電圧V(t)の低下が大きい。
一方、電池電圧V(t)が出力電圧Vbよりも低くなると、外部直流電源EPから電池1(電池成分1C)に向けて、電圧差ΔVb=Vb−V(t)の大きさに応じた電流Iが流れ込んで、電池1(電池成分1C)が充電される。
The reason why the battery voltage V (t) and the current value Ib (t) change in this way is as follows. That is, in the battery 1, the self-discharge current ID flows out from the battery component 1C due to self-discharge, so that the voltage of the battery component 1C and the battery voltage V (t) gradually decrease. At that time, since the defective battery 1 has a larger self-discharge current ID due to a short circuit than the non-defective battery 1, the battery voltage V (t) drops significantly.
On the other hand, when the battery voltage V (t) becomes lower than the output voltage Vb, the current corresponding to the magnitude of the voltage difference ΔVb = Vb−V (t) from the external DC power supply EP toward the battery 1 (battery component 1C). I flows in and the battery 1 (battery component 1C) is charged.

電圧差ΔVb=Vb−V(t)が小さいうちは、外部直流電源EPから電池1に流れ込む電流Iが少ないため、この電流Iよりも、電池成分1Cから流れ出る自己放電電流IDの方が多い。このため、電池成分1Cの電圧及び電池電圧V(t)が徐々に低下する。
しかし、電池電圧V(t)が更に低下し、電流Iが増加して自己放電電流IDの大きさにほぼ等しくなると(図5中、安定時間tsにおいて)、電池成分1Cの電圧及び電池電圧V(t)の低下がほぼ止まると共に、電流値Ib(t)の増加がほぼ止まる。このため、印加継続時間t=安定時間ts以降、電池電圧V(t)がほぼ一定の安定時電池電圧Vsとなると共に、電流値Ib(t)がほぼ一定の安定時電流値Ibsとなる。
While the voltage difference ΔVb = Vb−V (t) is small, the current I flowing from the external DC power supply EP into the battery 1 is small, so that the self-discharge current ID flowing out from the battery component 1C is larger than this current I. Therefore, the voltage of the battery component 1C and the battery voltage V (t) gradually decrease.
However, when the battery voltage V (t) further decreases and the current I increases to be substantially equal to the magnitude of the self-discharge current ID (in FIG. 5, at the stable time ts), the voltage of the battery component 1C and the battery voltage V The decrease in (t) almost stops, and the increase in the current value Ib (t) almost stops. Therefore, after the application duration t = the stabilization time ts, the battery voltage V (t) becomes the stable battery voltage Vs which is substantially constant, and the current value Ib (t) becomes the stable current value Ibs which is substantially constant.

ここで、図6に、良品の電池1の一例及び不良品の電池1の一例について、出力電圧Vbの印加継続時間t(t=0〜安定時間tsの範囲)と、実際に測定して得られた電流値Ib(t)との関係を示す。なお、安定時間tsは、例えば15〜30hr程度(54,000〜108,000sec程度)である。
更に、図7に、良品の電池について、出力電圧Vbの印加継続時間t(t=0〜teの範囲)と、実際に測定された電流値Ib(t)及び理論電流値Ii(t)との関係を示す。また、図8に、不良品の電池について、出力電圧Vbの印加継続時間t(t=0〜teの範囲)と、実際に測定された電流値Ib(t)及び理論電流値Ii(t)との関係を示す。なお、印加継続時間t=teは、上述の安定時間tsの5分の1の時間である。
Here, FIG. 6 shows an example of the non-defective battery 1 and an example of the defective battery 1 obtained by actually measuring the application duration t (range of t = 0 to stable time ts) of the output voltage Vb. The relationship with the obtained current value Ib (t) is shown. The stabilization time ts is, for example, about 15 to 30 hr (about 54,000 to 108,000 sec).
Further, in FIG. 7, for a non-defective battery, the application duration t (range of t = 0 to te) of the output voltage Vb, the actually measured current value Ib (t), and the theoretical current value Ii (t) are shown. The relationship is shown. Further, FIG. 8 shows the application duration t (range of t = 0 to te) of the output voltage Vb, the actually measured current value Ib (t), and the theoretical current value Ii (t) of the defective battery. Show the relationship with. The application duration t = te is one-fifth of the above-mentioned stabilization time ts.

なお、図7及び図8の理論電流値Ii(t)のグラフでは、前述の理論電流値Ii(t)の式<数1>のうち、電池容量Cpに、前述の容量取得工程S10で取得した電池容量Cpの値をそれぞれ代入すると共に、出力電圧Vb(=検査前電池電圧Va)に、電圧印加工程S20のステップS21で測定された検査前電池電圧Vaの値をそれぞれ代入した。また、式<数1>の自己放電抵抗Rp及び直列回路抵抗Reには、後述する抵抗推定工程S40で推定した、印加継続時間t=teにおける自己放電抵抗Rp(te)及び直列回路抵抗Re(te)の値をそれぞれ代入した。 In the graph of the theoretical current value Ii (t) of FIGS. 7 and 8, the battery capacity Cp of the equation <Equation 1> of the theoretical current value Ii (t) described above is acquired in the capacity acquisition step S10 described above. The values of the battery capacity Cp were substituted, and the values of the pre-inspection battery voltage Va measured in step S21 of the voltage application step S20 were substituted into the output voltage Vb (= pre-inspection battery voltage Va). Further, the self-discharge resistance Rp and the series circuit resistance Re of the equation <Equation 1> include the self-discharge resistance Rp (te) and the series circuit resistance Re (te) at the application duration t = te estimated in the resistance estimation step S40 described later. The values of te) were substituted respectively.

図6〜図8の各グラフから判るように、良品の電池1においても不良品の電池1においても、外部直流電源EPから電池1に流れる電流Iの電流値Ib(t)は、印加継続時間tの経過と共に徐々に増加して、各々ほぼ一定の値(安定時電流値Ibs)に収束していく。但し、良品の電池1に比べて不良品の電池1は、電流値Ib(t)が大きく増加する。このため、印加継続時間t=安定時間ts以降に電流値Ib(t)=安定時電流値Ibsを検知して、この安定時電流値Ibsの大きさに基づいて電池1を評価すれば、適切に電池1を評価できる。 As can be seen from the graphs of FIGS. 6 to 8, in both the non-defective battery 1 and the defective battery 1, the current value Ib (t) of the current I flowing from the external DC power supply EP to the battery 1 is the application duration. It gradually increases with the passage of t and converges to a substantially constant value (current value Ibs at stable time). However, the current value Ib (t) of the defective battery 1 is significantly increased as compared with that of the non-defective battery 1. Therefore, it is appropriate to detect the current value Ib (t) = stable current value Ibs after the applied duration t = stable time ts and evaluate the battery 1 based on the magnitude of the stable current value Ibs. Battery 1 can be evaluated.

しかし、この手法では、印加継続時間t=安定時間tsが経過する(安定時電流値Ibsを検知できる)まで待つ必要があり、検査工程S5が長く掛かる。これに対し、図7の良品の電池1においても図8の不良品の電池1においても、印加継続時間t=teにおいて導かれる理論電流値Ii(t)のグラフと、実際に測定された電流値Ib(t)のグラフとがそれぞれ良く一致している。このことから、自己放電抵抗Rp及び直列回路抵抗Reを適切に推定できれば、後述するように、安定時間tsの5分の1の時間teよりも短い時間で、検査工程S5を終えることが可能であることが理解できる。 However, in this method, it is necessary to wait until the application duration t = the stabilization time ts elapses (the stable current value Ibs can be detected), and the inspection step S5 takes a long time. On the other hand, in both the non-defective battery 1 of FIG. 7 and the defective battery 1 of FIG. 8, the graph of the theoretical current value Ii (t) derived at the application duration t = te and the actually measured current The graphs with values Ib (t) are in good agreement with each other. From this, if the self-discharge resistance Rp and the series circuit resistance Re can be estimated appropriately, the inspection step S5 can be completed in a time shorter than the time te, which is one-fifth of the stable time ts, as will be described later. I can understand that there is.

次に、「抵抗推定工程S40」について説明する。この抵抗推定工程S40では、前述の理論電流値Ii(t)の式<数1>と、既に得られている印加継続時間t1,t2,…,tnにおける電流値Ib(t1),Ib(t2),…,Ib(tn)とを用いて、自己放電抵抗Rp(tn)及び直列回路抵抗Re(tn)を推定する。
具体的には、まず理論電流値Ii(t)の式<数1>のうち、電池容量Cpに、前述の容量取得工程S10で取得した当該電池1の電池容量Cpの値を代入すると共に、出力電圧Vb(=検査前電池電圧Va)に、電圧印加工程S20のステップS21で測定された当該電池1の検査前電池電圧Vaの値を代入する。
Next, the “resistance estimation step S40” will be described. In this resistance estimation step S40, the above-mentioned equation <Equation 1> of the theoretical current value Ii (t) and the current values Ib (t1), Ib (t2) at the already obtained application durations t1, t2, ..., Tn ), ..., Ib (tn) are used to estimate the self-discharge resistance Rp (tn) and the series circuit resistance Re (tn).
Specifically, first, in the equation <Equation 1> of the theoretical current value Ii (t), the value of the battery capacity Cp of the battery 1 acquired in the above-mentioned capacity acquisition step S10 is substituted into the battery capacity Cp, and the value of the battery capacity Cp is substituted. The value of the pre-inspection battery voltage Va of the battery 1 measured in step S21 of the voltage application step S20 is substituted into the output voltage Vb (= pre-inspection battery voltage Va).

次に、1回目の抵抗推定工程S40では、印加継続時間t=1,2,3,…,10(sec)における電流値Ib(1),Ib(2),Ib(3),…,Ib(10)(μA)が得られているため、これら10組の検知結果を理論電流値Ii(t)の式<数1>にそれぞれ代入し、最小二乗法により、自己放電抵抗Rp(10)(Ω)及び直列回路抵抗Re(10)(Ω)を推定する。また、例えば2回目の抵抗推定工程S40では、印加継続時間t=1,2,…,20(sec)における電流値Ib(1),Ib(2),…,Ib(20)(μA)が既に得られているため、これら20組の検知結果を理論電流値Ii(t)の式<数1>に代入し、最小二乗法により、自己放電抵抗Rp(20)(Ω)及び直列回路抵抗Re(20)(Ω)を推定する。 Next, in the first resistance estimation step S40, the current values Ib (1), Ib (2), Ib (3), ..., Ib at the application duration t = 1, 2, 3, ..., 10 (sec). (10) Since (μA) is obtained, these 10 sets of detection results are substituted into the equation <Equation 1> of the theoretical current value Ii (t), and the self-discharge resistance Rp (10) is obtained by the minimum square method. Estimate (Ω) and series circuit resistance Re (10) (Ω). Further, for example, in the second resistance estimation step S40, the current values Ib (1), Ib (2), ..., Ib (20) (μA) at the application duration t = 1, 2, ..., 20 (sec) are set. Since it has already been obtained, these 20 sets of detection results are substituted into the equation <Equation 1> of the theoretical current value Ii (t), and the self-discharge resistance Rp (20) (Ω) and the series circuit resistance are obtained by the minimum square method. Estimate Re (20) (Ω).

ここで、図6に示した良品及び不良品の電池1について、図9に、出力電圧Vbの印加継続時間t(t=0〜teの範囲)と、推定した自己放電抵抗Rp(t)との関係を示し、図10に、出力電圧Vbの印加継続時間t(t=0〜teの範囲)と、推定した直列回路抵抗Re(t)との関係を示す。なお、自己放電抵抗Rp(t)及び直列回路抵抗Re(t)は、本実施形態では10sec毎に、自己放電抵抗Rp(10),Rp(20),Rp(30),…及び直列回路抵抗Re(10),Re(20),Re(30),…が得られるが、図9及び図10のグラフは、10secよりも大きな間隔で得られた自己放電抵抗Rp(t)及び直列回路抵抗Re(t)の各値を用いて作成してある。 Here, with respect to the non-defective and defective batteries 1 shown in FIG. 6, the application duration t (range of t = 0 to te) of the output voltage Vb and the estimated self-discharge resistance Rp (t) are shown in FIG. FIG. 10 shows the relationship between the application duration t (range of t = 0 to te) of the output voltage Vb and the estimated series circuit resistance Re (t). The self-discharge resistance Rp (t) and the series circuit resistance Re (t) are the self-discharge resistance Rp (10), Rp (20), Rp (30), ... And the series circuit resistance every 10 seconds in this embodiment. Re (10), Re (20), Re (30), ... Can be obtained, but the graphs of FIGS. 9 and 10 show the self-discharge resistance Rp (t) and the series circuit resistance obtained at intervals larger than 10 sec. It is created using each value of Re (t).

図9から判るように、良品の電池1においても不良品の電池1においても、印加継続時間tの経過と共に、自己放電抵抗Rp(t)の値が安定して、各々ほぼ一定の値(真の値)に収束していく。また、図10から判るように、良品の電池1においても不良品の電池1においても、印加継続時間tの経過と共に、直列回路抵抗Re(t)の値が安定して、各々ほぼ一定の値(真の値)に収束していく。このことから、理論電流値Ii(t)の式と、実測された電流値Ib(t1),Ib(t2),…との後述する相関係数Kr(t)は、印加継続時間tの経過と共に、Kr(t)の値が大きくなってKr(t)=1に近づいていくと考えられる。 As can be seen from FIG. 9, in both the non-defective battery 1 and the defective battery 1, the value of the self-discharge resistance Rp (t) becomes stable with the lapse of the application duration t, and each value is almost constant (true). (Value of) converges. Further, as can be seen from FIG. 10, in both the non-defective battery 1 and the defective battery 1, the value of the series circuit resistance Re (t) becomes stable with the lapse of the application duration t, and each value is substantially constant. It converges to (true value). From this, the equation of the theoretical current value Ii (t) and the correlation coefficient Kr (t) of the actually measured current values Ib (t1), Ib (t2), ... At the same time, it is considered that the value of Kr (t) increases and approaches Kr (t) = 1.

次に、「相関係数取得工程S50」において、推定した自己放電抵抗Rp(tn)及び直列回路抵抗Re(tn)を含む理論電流値Ii(t)の式と、これまでに取得した電流値Ib(t1),Ib(t2),…,Ib(tn)との相関係数Kr(tn)を得る。
具体的には、1回目の相関係数取得工程S50では、理論電流値Ii(t)の式<数1>のうち、自己放電抵抗Rp及び直列回路抵抗Reに、1回目の抵抗推定工程S40で推定した自己放電抵抗Rp(10)及び直列回路抵抗Re(10)を代入する。そして、この理論電流値Ii(t)の式と、これまでに取得した電流値Ib(1),Ib(2),Ib(3),…,Ib(10)との相関係数Kr(10)を得る。
Next, in the "correlation coefficient acquisition step S50", the equation of the theoretical current value Ii (t) including the estimated self-discharge resistance Rp (tn) and the series circuit resistance Re (tn) and the current values acquired so far. The correlation coefficient Kr (tn) with Ib (t1), Ib (t2), ..., Ib (tn) is obtained.
Specifically, in the first correlation coefficient acquisition step S50, in the equation <Equation 1> of the theoretical current value Ii (t), the self-discharge resistance Rp and the series circuit resistance Re are combined with the first resistance estimation step S40. Substitute the self-discharge resistance Rp (10) and the series circuit resistance Re (10) estimated in. Then, the correlation coefficient Kr (10) between the equation of the theoretical current value Ii (t) and the current values Ib (1), Ib (2), Ib (3), ..., Ib (10) acquired so far. ).

また、例えば2回目の相関係数取得工程S50では、理論電流値Ii(t)の式<数1>のうち、自己放電抵抗Rp及び直列回路抵抗Reに、直近(2回目)の抵抗推定工程S40で推定した自己放電抵抗Rp(20)及び直列回路抵抗Re(20)を代入する。そして、この理論電流値Ii(t)の式と、これまでに取得した電流値Ib(1),Ib(2),Ib(3),…,Ib(20)との相関係数Kr(20)を得る。 Further, for example, in the second correlation coefficient acquisition step S50, the nearest (second) resistance estimation step to the self-discharge resistance Rp and the series circuit resistance Re in the equation <Equation 1> of the theoretical current value Ii (t). Substitute the self-discharge resistance Rp (20) and the series circuit resistance Re (20) estimated in S40. Then, the correlation coefficient Kr (20) between the equation of the theoretical current value Ii (t) and the current values Ib (1), Ib (2), Ib (3), ..., Ib (20) acquired so far. ).

ここで、図6に示した良品の電池1について、図11に出力電圧Vbの印加継続時間t(t=0〜teの範囲)と相関係数Kr(t)との関係を示す。なお、相関係数Kr(t)は、本実施形態では10sec毎に相関係数Kr(10),Kr(20),Kr(30),…が得られるが、図11のグラフは、10secよりも大きな間隔で得られた相関係数Kr(t)の各値を用いて作成してある。
図11から判るように、相関係数Kr(t)は、基本的に、印加継続時間tの経過と共に次第に大きくなって、Kr(t)=1に近づいていく。
Here, with respect to the non-defective battery 1 shown in FIG. 6, the relationship between the application duration t (range of t = 0 to te) of the output voltage Vb and the correlation coefficient Kr (t) is shown in FIG. As the correlation coefficient Kr (t), in the present embodiment, the correlation coefficients Kr (10), Kr (20), Kr (30), ... Are obtained every 10 seconds, but the graph in FIG. 11 shows the correlation coefficient from 10 seconds. Is also created using each value of the correlation coefficient Kr (t) obtained at large intervals.
As can be seen from FIG. 11, the correlation coefficient Kr (t) basically gradually increases with the passage of the application duration t and approaches Kr (t) = 1.

なお、本実施形態では、後述するように、基準相関係数KrkをKrk=0.9に設定している。図11に示した例では、相関係数Kr(t)が基準相関係数Krk=0.9に達する到達時間tgは、時間te(安定時間tsの5分の1)よりも更に短くなっている。また、具体的なデータの記載は省略するが、他の複数の電池について本検査を行った結果を見ても、到達時間tgは、時間te(安定時間tsの5分の1)より更に短くなっていた。 In this embodiment, as will be described later, the reference correlation coefficient Krk is set to Krk = 0.9. In the example shown in FIG. 11, the arrival time tg at which the correlation coefficient Kr (t) reaches the reference correlation coefficient Krk = 0.9 is further shorter than the time te (one-fifth of the stable time ts). There is. Further, although the description of specific data is omitted, the arrival time tg is even shorter than the time te (one-fifth of the stable time ts) even when looking at the results of the main inspection for a plurality of other batteries. It was.

次に、「電池評価工程S60,S65」のうち、ステップS60において、相関係数Kr(tn)が、予め定めた基準相関係数Krk以上(Kr(tn)≧Krk)となった否かを判定する。本実施形態では、相関係数Kr(tn)=0.9以上となれば、理論電流値Ii(t)の式と実測された電流値Ib(1),Ib(2),…,Ib(tn)との相関が十分に高くなり、この理論電流値Ii(t)に含まれる自己放電抵抗Rp(tn)及び直列回路抵抗Re(tn)がそれぞれ真の値に近い値になると考えて、基準相関係数Krk=0.9に設定した。
具体的には、1回目のステップS60では、Kr(10)≧0.9となった否かを判定する。また、2回目のステップS60では、Kr(20)≧0.9となった否かを判定する。
Next, in the "battery evaluation steps S60 and S65", whether or not the correlation coefficient Kr (tn) is equal to or higher than the predetermined reference correlation coefficient Krk (Kr (tn) ≥ Krk) in step S60. judge. In the present embodiment, when the correlation coefficient Kr (tn) = 0.9 or more, the equation of the theoretical current value Ii (t) and the measured current values Ib (1), Ib (2), ..., Ib ( Considering that the correlation with tn) becomes sufficiently high and the self-discharge resistance Rp (tn) and the series circuit resistance Re (tn) included in this theoretical current value Ii (t) are close to the true values, respectively. The reference correlation coefficient Krk = 0.9 was set.
Specifically, in the first step S60, it is determined whether or not Kr (10) ≥ 0.9. Further, in the second step S60, it is determined whether or not Kr (20) ≥ 0.9.

ここで、NO、即ち、相関係数Kr(tn)≧0.9となっていない場合には、前述の電流検知工程S30に戻る。そして、電流検知工程S30において、更に10組(10sec分)の印加継続時間t及び電流値Ib(t)の検知結果を得る。なお、図11に示した例では、印加継続時間t=到達時間tgとなるまでは、相関係数Kr(tn)が基準相関係数Krk=0.9よりも小さいため、このステップS60でNOと判断される。
一方、YES、即ち、相関係数Kr(tn)≧0.9となっている場合には、ステップS65に進み、最終的に得られた(直近の)自己放電抵抗Rp(tn)の大きさに基づいて、当該電池1を評価する。なお、図11に示した例では、印加継続時間t=到達時間tgにおいて相関係数Kr(tn)が基準相関係数Krk=0.9となるため、このステップS60でYESと判断される。
Here, when NO, that is, when the correlation coefficient Kr (tn) ≥ 0.9 is not satisfied, the process returns to the above-mentioned current detection step S30. Then, in the current detection step S30, further 10 sets (10 sec minutes) of application duration t and current value Ib (t) are obtained. In the example shown in FIG. 11, the correlation coefficient Kr (tn) is smaller than the reference correlation coefficient Krk = 0.9 until the application duration t = arrival time tg. Therefore, NO in this step S60. Is judged.
On the other hand, if YES, that is, when the correlation coefficient Kr (tn) ≥ 0.9, the process proceeds to step S65, and the finally obtained (most recent) self-discharge resistance Rp (tn) magnitude. The battery 1 is evaluated based on the above. In the example shown in FIG. 11, since the correlation coefficient Kr (tn) is the reference correlation coefficient Krk = 0.9 when the application duration t = arrival time tg, it is determined to be YES in this step S60.

具体的には、本実施形態では、自己放電抵抗Rp(tn)が、予め定めた基準抵抗Rpkよりも小さい場合(Rp(tn)<Rpk)に、当該電池1を抵抗が低く内部短絡が生じている不良品と判定し、当該電池1を除去する。
なお、具体的なデータの記載は省略するが、良品、不良品に拘わらず検査を行ったいずれの電池1においても、前述のように、時間te(安定時間tsの5分の1)よりも更に短い印加継続時間t(到達時間tg)で、相関係数Kr(tn)≧0.9を満たすことが判っている。従来の検査方法では、印加継続時間t=安定時間tsが経過するまで待つ必要があったのに対し、本実施形態では、印加継続時間t=te(ts/5)よりも更に短い時間で電池1を評価できる。
Specifically, in the present embodiment, when the self-discharge resistance Rp (tn) is smaller than the predetermined reference resistance Rpk (Rp (tn) <Rpk), the resistance of the battery 1 is low and an internal short circuit occurs. It is determined that the product is defective, and the battery 1 is removed.
Although the description of specific data is omitted, as described above, the time te (one-fifth of the stable time ts) is longer than that of the battery 1 inspected regardless of whether it is a non-defective product or a defective product. It is known that the correlation coefficient Kr (tn) ≥ 0.9 is satisfied with a shorter application duration t (arrival time tg). In the conventional inspection method, it is necessary to wait until the application duration t = stabilization time ts elapses, whereas in the present embodiment, the battery is applied in a shorter time than the application duration t = te (ts / 5). 1 can be evaluated.

また、並行して行っている電圧印加工程S20においても、前述したように、相関係数Kr(tn)が基準相関係数Krk=0.9以上となった否かを判定する(ステップS23)。そして、NO、即ち、Kr(tn)≧0.9となっていない場合には、出力電圧Vbの印加を継続する。一方、YES、即ち、Kr(tn)≧0.9となっている場合には、出力電圧Vbの印加を終了して、電圧印加工程S20を終了する。
これにより、検査工程S5が終了する。検査工程S5が終了したら、外部直流電源EPを電池1から離して、更に、拘束治具(図示外)による電池1の拘束を解除する。かくして、電池1が完成する。
Further, also in the voltage application step S20 performed in parallel, as described above, it is determined whether or not the correlation coefficient Kr (tn) becomes the reference correlation coefficient Krk = 0.9 or more (step S23). .. Then, when NO, that is, when Kr (tn) ≥ 0.9 is not satisfied, the application of the output voltage Vb is continued. On the other hand, when YES, that is, when Kr (tn) ≥ 0.9, the application of the output voltage Vb is terminated, and the voltage application step S20 is terminated.
As a result, the inspection step S5 is completed. When the inspection step S5 is completed, the external DC power supply EP is separated from the battery 1, and the restraint of the battery 1 by the restraint jig (not shown) is further released. Thus, the battery 1 is completed.

以上説明したように、電池1の検査方法では、容量取得工程S10、電圧印加工程S20、電流検知工程S30、抵抗推定工程S40、相関係数取得工程S50及び電池評価工程S60,S65を行って、当該電池1の抵抗を評価する。抵抗推定工程S40では、外部直流電源EPから電池1に流れる電流Iの電流値Ib(t)の変化から当該電池1の自己放電抵抗Rp(tn)を推定し、電池評価工程S60,S65では、推定した自己放電抵抗Rp(tn)に基づいて当該電池1を評価する。このように、上述の電池1の検査方法では、外部直流電源EPから電池1に流れる電流の電流値Ib(t)の変化から、当該電池1の抵抗を評価できる。 As described above, in the inspection method of the battery 1, the capacity acquisition step S10, the voltage application step S20, the current detection step S30, the resistance estimation step S40, the correlation coefficient acquisition step S50, and the battery evaluation steps S60 and S65 are performed. The resistance of the battery 1 is evaluated. In the resistance estimation step S40, the self-discharge resistance Rp (tn) of the battery 1 is estimated from the change in the current value Ib (t) of the current I flowing from the external DC power supply EP to the battery 1, and in the battery evaluation steps S60 and S65, the self-discharge resistance Rp (tn) is estimated. The battery 1 is evaluated based on the estimated self-discharge resistance Rp (tn). As described above, in the above-described battery 1 inspection method, the resistance of the battery 1 can be evaluated from the change in the current value Ib (t) of the current flowing from the external DC power supply EP to the battery 1.

更に本実施形態では、容量取得工程S10で、局所的な電池容量Cpを得る。即ち、部分電圧区間ΔV=V1−V2に強制放電させた部分電気量ΔQを測定し、Cp=ΔQ/ΔVにより電池容量Cpを得る。このため、電池1を全電圧区間(SOC100%からSOC0%の範囲)にわたり強制放電または充電しなくても済む。 Further, in the present embodiment, the local battery capacity Cp is obtained in the capacity acquisition step S10. That is, the partial electric energy ΔQ forcibly discharged in the partial voltage section ΔV = V1-V2 is measured, and the battery capacity Cp is obtained by Cp = ΔQ / ΔV. Therefore, it is not necessary to forcibly discharge or charge the battery 1 over the entire voltage section (range of SOC 100% to SOC 0%).

以上において、本発明を実施形態に即して説明したが、本発明は実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。 In the above, the present invention has been described according to the embodiment, but it goes without saying that the present invention is not limited to the embodiment and can be appropriately modified and applied without departing from the gist thereof.

1 電池
100 検査回路
110 等価回路
115 並列回路
Cp 電池容量
ΔV 部分電圧区間
ΔQ 部分電気量
V 電池電圧
V1 第1電池電圧
V2 第2電池電圧
Va 検査前電池電圧
Vb 出力電圧
I 電流
Ib 電流値
Ii 理論電流値
t 印加継続時間
Rp 自己放電抵抗
Rpk 基準抵抗
Re 直列回路抵抗
Kr 相関係数
Krk 基準相関係数
EP 外部直流電源
S1 組立工程
S2 初充電工程
S3 高温エージング工程
S4 冷却工程
S5 検査工程
S10 容量取得工程
S20 電圧印加工程
S30 電流検知工程
S40 抵抗推定工程
S50 相関係数取得工程
S60,S65 電池評価工程
1 Battery 100 Inspection circuit 110 Equivalent circuit 115 Parallel circuit Cp Battery capacity ΔV Partial voltage section ΔQ Partial electricity amount V Battery voltage V1 1st battery voltage V2 2nd battery voltage Va Pre-inspection battery voltage Vb Output voltage I Current Ib Current value Ii theory Current value t Application duration Rp Self-discharge resistance Rpk Reference resistance Re Series circuit resistance Kr Correlation coefficient Krk Reference correlation coefficient EP External DC power supply S1 Assembly process S2 Initial charging process S3 High temperature aging process S4 Cooling process S5 Inspection process S10 Capacity acquisition Step S20 Voltage application step S30 Current detection step S40 Resistance estimation step S50 Correlation coefficient acquisition step S60, S65 Battery evaluation step

Claims (1)

電池の抵抗を評価する電池の検査方法であって、
電池の電池容量Cpを取得する容量取得工程と、
外部直流電源から上記電池に、検査前電池電圧Vaに等しい出力電圧Vbを印加し続けて、上記外部直流電源から上記電池に電流を流し続ける電圧印加工程と、
上記出力電圧Vbの印加継続時間t1,t2,…における上記電流の電流値Ib(t1),Ib(t2),…を検知する電流検知工程と、
上記電池に上記外部直流電源を接続した検査回路の等価回路として、上記電池容量Cpと自己放電抵抗Rpの並列回路に、直列回路抵抗Reを直列接続し、これらに上記外部直流電源の上記出力電圧Vbを印加する等価回路を想定し、
この等価回路に流れる理論電流値Ii(t)の式と、既に得られている上記印加継続時間t1,t2,…,tnにおける上記電流値Ib(t1),Ib(t2),…,Ib(tn)とを用いて、自己放電抵抗Rp(tn)及び直列回路抵抗Re(tn)を推定する
抵抗推定工程と、
推定した上記自己放電抵抗Rp(tn)及び上記直列回路抵抗Re(tn)を含む上記理論電流値Ii(t)の式と、取得した上記電流値Ib(t1),Ib(t2),…,Ib(tn)との相関係数Kr(tn)を得る相関係数取得工程と、
上記相関係数Kr(tn)が予め定めた基準相関係数Krk以上となった場合に、推定した上記自己放電抵抗Rp(tn)に基づいて、上記電池を評価する電池評価工程と、を備える
電池の検査方法。
A battery inspection method that evaluates battery resistance.
The capacity acquisition process for acquiring the battery capacity Cp of the battery and
A voltage application step in which an output voltage Vb equal to the pre-inspection battery voltage Va is continuously applied from the external DC power source to the battery, and a current is continuously applied from the external DC power source to the battery.
A current detection step for detecting the current values Ib (t1), Ib (t2), ... Of the currents at the application durations t1, t2, ... Of the output voltage Vb, and
As an equivalent circuit of the inspection circuit in which the external DC power supply is connected to the battery, a series circuit resistor Re is connected in series to the parallel circuit of the battery capacity Cp and the self-discharge resistance Rp, and the output voltage of the external DC power supply is connected to these. Assuming an equivalent circuit to which Vb is applied,
The equation of the theoretical current value Ii (t) flowing in this equivalent circuit and the above-mentioned current values Ib (t1), Ib (t2), ..., Ib ( A resistance estimation process for estimating the self-discharge resistance Rp (tn) and the series circuit resistance Re (tn) using tn), and
The equation of the theoretical current value Ii (t) including the estimated self-discharge resistance Rp (tn) and the series circuit resistance Re (tn) and the acquired current values Ib (t1), Ib (t2), ..., Correlation coefficient acquisition process for obtaining the correlation coefficient Kr (tn) with Ib (tn), and
A battery evaluation step for evaluating the battery based on the estimated self-discharge resistance Rp (tn) when the correlation coefficient Kr (tn) becomes equal to or higher than a predetermined reference correlation coefficient Krk is provided. Battery inspection method.
JP2020025796A 2020-02-19 2020-02-19 Inspection method of battery Pending JP2021131952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020025796A JP2021131952A (en) 2020-02-19 2020-02-19 Inspection method of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020025796A JP2021131952A (en) 2020-02-19 2020-02-19 Inspection method of battery

Publications (1)

Publication Number Publication Date
JP2021131952A true JP2021131952A (en) 2021-09-09

Family

ID=77551150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020025796A Pending JP2021131952A (en) 2020-02-19 2020-02-19 Inspection method of battery

Country Status (1)

Country Link
JP (1) JP2021131952A (en)

Similar Documents

Publication Publication Date Title
US7723993B2 (en) Electronic battery tester configured to predict a load test result based on open circuit voltage, temperature, cranking size rating, and a dynamic parameter
CN109962299B (en) Method for inspecting electric storage device and method for manufacturing electric storage device
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
JP2019016558A (en) Method for inspecting short circuit of power storage device and method for manufacturing power storage device
JP6794974B2 (en) Self-discharge inspection method for power storage devices
US10847849B2 (en) Inspection method of electrical storage device and manufacturing method thereof
WO2003034084A1 (en) Electronic battery tester with relative test output
CN110850306B (en) Inspection method and manufacturing method for electricity storage device
TWI785665B (en) Battery management device, battery management method
Locorotondo et al. Online state of health estimation of lithium-ion batteries based on improved ampere-count method
Wildfeuer et al. Experimental characterization of Li-ion battery resistance at the cell, module and pack level
Hossain et al. A parameter extraction method for the Thevenin equivalent circuit model of Li-ion batteries
US10884064B2 (en) Inspection apparatus of electrical storage device
CN114944677A (en) Self-discharge inspection method for electricity storage device and method for manufacturing electricity storage device
Coleman et al. State of health determination: Two pulse load test for a VRLA battery
US10768238B2 (en) Inspection method of electrical storage device and manufacturing method thereof
CN115047342A (en) Self-discharge inspection method for power storage device and manufacturing method for power storage device
JP2021131952A (en) Inspection method of battery
Dambrowski Review on methods of state-of-charge estimation with viewpoint to the modern LiFePO4/Li4Ti5O12 lithium-ion systems
JP6996423B2 (en) Inspection method and manufacturing method of power storage device
JP7278312B2 (en) SELF-DISCHARGE INSPECTION METHOD FOR ELECTRICITY STORAGE DEVICE AND METHOD FOR MANUFACTURING ELECTRICITY STORAGE DEVICE
JP7146358B2 (en) Insulation inspection method for secondary batteries
US11340302B2 (en) Test method and manufacturing method for electrical storage device
Matindoust On-line Battery Impedance Measurement Using Oscillation Excitation
CN114977358A (en) Device voltage adjustment method for electrical storage device