JP6031875B2 - Method and apparatus for inspecting assembled battery - Google Patents

Method and apparatus for inspecting assembled battery Download PDF

Info

Publication number
JP6031875B2
JP6031875B2 JP2012169348A JP2012169348A JP6031875B2 JP 6031875 B2 JP6031875 B2 JP 6031875B2 JP 2012169348 A JP2012169348 A JP 2012169348A JP 2012169348 A JP2012169348 A JP 2012169348A JP 6031875 B2 JP6031875 B2 JP 6031875B2
Authority
JP
Japan
Prior art keywords
battery
capacity
assembled battery
voltage
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012169348A
Other languages
Japanese (ja)
Other versions
JP2014029273A (en
Inventor
正規 渡邉
正規 渡邉
公伸 寺尾
公伸 寺尾
敏之 加治屋
敏之 加治屋
恭平 下山
恭平 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP2012169348A priority Critical patent/JP6031875B2/en
Publication of JP2014029273A publication Critical patent/JP2014029273A/en
Application granted granted Critical
Publication of JP6031875B2 publication Critical patent/JP6031875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、直列接続された複数の電池セルで構成される組電池の製造工程における検査方法および該検査方法を用いた装置に関する。   The present invention relates to an inspection method in a manufacturing process of an assembled battery composed of a plurality of battery cells connected in series, and an apparatus using the inspection method.

組電池の製造工程においては、組電池全体の性能(品質)の検査が行われ、一定の品質基準を満たす組電池のみが製品として出荷されている。組電池の性能を検査する指標の1つに組電池の電池容量が挙げられる。従来、組電池の電池容量を測定するには、一旦組電池を満充電状態にしてから空充電状態になるまで放電を行い、この間に放電された電流量に基づいて電池容量を測定したり、反対に一旦組電池を空充電状態にしてから満充電状態になるまで充電を行い、この間に充電された電流量に基づいて電池容量を測定したりする方法が採られていた。   In the assembled battery manufacturing process, the performance (quality) of the entire assembled battery is inspected, and only assembled batteries satisfying a certain quality standard are shipped as products. One of the indexes for examining the performance of the assembled battery is the battery capacity of the assembled battery. Conventionally, in order to measure the battery capacity of an assembled battery, once the assembled battery is fully charged, it is discharged until it is in an empty charge state, and the battery capacity is measured based on the amount of current discharged during this period, On the other hand, a method has been adopted in which the battery pack is once charged in an empty state and then charged until it is fully charged, and the battery capacity is measured based on the amount of current charged during this time.

また、下記特許文献1には、二次電池の充電状態である残存容量(SOC)を高精度および短時間に推定できる方法および装置が記載されている。   Patent Document 1 listed below describes a method and apparatus that can estimate the remaining capacity (SOC) of a secondary battery in a highly accurate and short time.

特開2005−106747号公報JP 2005-106747 A

しかしながら、上述した従来技術のように、一旦組電池を満充電状態(または空充電状態)にしてから空充電状態(または満充電状態)になるまで放電(または充電)を行う方法では、測定に多くの時間が必要となるという問題点がある。組電池の製造工程では、性能検査の後にも各種の工程を行う必要があり、なるべく短時間に検査を行えることが望ましい。   However, as in the prior art described above, in the method of discharging (or charging) until the assembled battery is once fully charged (or fully charged) and then fully charged (or fully charged), measurement is performed. There is a problem that a lot of time is required. In the manufacturing process of the assembled battery, it is necessary to perform various processes after the performance inspection, and it is desirable to perform the inspection in as short a time as possible.

また、上述した特許文献1の技術は、組電池の残存容量を推定するにとどまっており、組電池の検査に用いることはできない。   In addition, the technique of Patent Document 1 described above is only used to estimate the remaining capacity of the assembled battery, and cannot be used for inspection of the assembled battery.

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、組電池の電池容量を短時間に検査することが可能な組電池の検査方法および検査装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide an assembled battery inspection method and inspection apparatus capable of inspecting the battery capacity of the assembled battery in a short time. To do.

上述した問題を解決し、目的を達成するため、請求項1の発明にかかる組電池の検査方法は、直列接続された複数の電池セルで構成される組電池の検査方法であって、前記組電池の充放電工程と、前記充放電工程の途中で前記組電池の電圧を測定し、該測定電圧値をセル数で除した平均セル電圧値を求める平均セル電圧測定工程と、前記平均セル電圧値と前記電池セルの種類に応じた電池容量特性カーブとから前記組電池の満充電容量を推定する電池容量推定工程と、前記電池容量推定工程で推定した満充電容量に応じて合否を判定する容量判定工程と、を有することを特徴とする。
請求項2の発明にかかる組電池の検査方法は、前記容量判定工程において合格と判定された組電池の各電池セルの電圧バラツキを測定する電圧バラツキ測定工程と、前記電圧バラツキの値が所定の判定ライン以下であるか否かに応じて合否を判定する電圧バラツキ判定工程とをさらに有し、前記所定の判定ラインは、前記電池容量特性カーブに基づいて定められることを特徴とする。
請求項3の発明にかかる組電池の検査方法は、前記所定の判定ラインは、検査を行う温度環境に応じて変更されることを特徴とする。
請求項4の発明にかかる組電池の検査装置は、直列接続された複数の電池セルで構成される組電池の検査装置であって、前記組電池の充放電手段と、前記充放電手段による充放電の途中で前記組電池の電圧を測定し、該測定電圧値をセル数で除した平均セル電圧値を求める平均セル電圧測定手段と、前記電池セルの種類に応じた電池容量特性カーブを記憶する記憶手段と、前記平均セル電圧値と前記記憶手段に記憶した前記電池容量特性カーブとから前記組電池の満充電容量を推定する電池容量推定手段と、前記電池容量推定手段で推定した満充電容量に応じて合否を判定する容量判定手段と、を有することを特徴とする。
請求項5の発明にかかる組電池の検査装置は、前記容量判定手段に合格と判定された組電池の各電池セルの電圧バラツキを測定する電圧バラツキ測定手段と、前記電圧バラツキが所定の判定ライン以下であるときは合格と判定する電圧バラツキ判定手段と、をさらに有し、前記所定の判定ラインは、前記電池容量特性カーブに基づいて定められことを特徴とする。
請求項6の発明にかかる組電池の検査装置は、前記所定の判定ラインは、検査を行う温度環境に応じて変更されることを特徴とする。
In order to solve the above-described problems and achieve the object, an assembled battery inspection method according to the invention of claim 1 is an assembled battery inspection method including a plurality of battery cells connected in series. A battery charge / discharge step, an average cell voltage measurement step of measuring the voltage of the assembled battery in the middle of the charge / discharge step, and obtaining an average cell voltage value obtained by dividing the measured voltage value by the number of cells, and the average cell voltage A battery capacity estimation step of estimating a full charge capacity of the assembled battery from a value and a battery capacity characteristic curve corresponding to the type of the battery cell, and determining pass / fail according to the full charge capacity estimated in the battery capacity estimation step A capacity determination step.
According to the assembled battery inspection method of the second aspect of the present invention, there is provided a voltage variation measuring step of measuring a voltage variation of each battery cell of the assembled battery determined to be acceptable in the capacity determining step, and the value of the voltage variation is a predetermined value. And a voltage variation determination step of determining pass / fail according to whether or not it is below the determination line, wherein the predetermined determination line is determined based on the battery capacity characteristic curve.
In the assembled battery inspection method according to a third aspect of the invention, the predetermined determination line is changed according to a temperature environment in which the inspection is performed.
An inspection apparatus for an assembled battery according to a fourth aspect of the invention is an inspection apparatus for an assembled battery including a plurality of battery cells connected in series, and charging / discharging means for the assembled battery and charging / discharging by the charging / discharging means. Average cell voltage measuring means for measuring the voltage of the assembled battery in the middle of discharge and obtaining an average cell voltage value obtained by dividing the measured voltage value by the number of cells, and a battery capacity characteristic curve corresponding to the type of the battery cell are stored. Storage means, battery capacity estimation means for estimating a full charge capacity of the assembled battery from the average cell voltage value and the battery capacity characteristic curve stored in the storage means, and full charge estimated by the battery capacity estimation means Capacity determination means for determining pass / fail according to the capacity.
An inspection apparatus for an assembled battery according to the invention of claim 5 is a voltage variation measuring means for measuring a voltage variation of each battery cell of the assembled battery that has been determined to pass the capacity determining means, and the voltage variation is a predetermined determination line. And a voltage variation determining means for determining that it is acceptable when the following is true, wherein the predetermined determination line is defined based on the battery capacity characteristic curve.
The assembled battery inspection apparatus according to claim 6 is characterized in that the predetermined determination line is changed according to a temperature environment in which the inspection is performed.

請求項1および請求項4の発明によれば、組電池を構成する電池セルの平均セル電圧値と、当該電池セルの種類に応じた電池容量特性カーブとから組電池の満充電容量を推定し、合否を判定する。これにより、組電池を満充電状態または空充電状態となるまで充放電させる従来の性能検査方法と比較して、短時間に組電池の性能検査を行うことができる。
請求項2および請求項5の発明によれば、組電池の満充電容量が合格(所定容量以上)であり、かつ各電池セルの電圧バラツキが所定の判定ライン以下である場合に合格と判定する。このように、満充電容量の推定とともに電圧バラツキの検査を行うことによって、短時間の測定でも検査の信頼性を向上させることができる。
請求項3および請求項6の発明によれば、検査の判定ラインを検査を行う環境の温度に応じて変更する。電池の充放電特性は温度によって変化することが知られており、このような温度による変更(補正)を行うことによって、検査の信頼性をさらに向上させることができる。
According to the first and fourth aspects of the present invention, the full charge capacity of the assembled battery is estimated from the average cell voltage value of the battery cells constituting the assembled battery and the battery capacity characteristic curve corresponding to the type of the battery cell. Judge the pass / fail. Thereby, compared with the conventional performance inspection method which charges / discharges an assembled battery until it will be in a full charge state or an empty charge state, the performance inspection of an assembled battery can be performed in a short time.
According to the inventions of claim 2 and claim 5, when the full charge capacity of the assembled battery is acceptable (greater than or equal to a predetermined capacity) and the voltage variation of each battery cell is equal to or smaller than a predetermined determination line, it is determined as acceptable. . As described above, by performing the voltage variation inspection together with the estimation of the full charge capacity, the reliability of the inspection can be improved even in a short time measurement.
According to the third and sixth aspects of the invention, the inspection determination line is changed according to the temperature of the environment in which the inspection is performed. It is known that the charge / discharge characteristics of a battery change depending on the temperature, and the reliability of inspection can be further improved by making such a change (correction) depending on the temperature.

実施の形態にかかる組電池の検査装置10の構成を示すブロック図である。It is a block diagram which shows the structure of the assembled battery test | inspection apparatus 10 concerning embodiment. 電池容量特性カーブの一例を示すグラフである。It is a graph which shows an example of a battery capacity characteristic curve. 電圧バラツキの判定ラインの一例を示す説明図である。It is explanatory drawing which shows an example of the determination line of voltage variation. 温度による判定ラインの変更を説明するための説明図である。It is explanatory drawing for demonstrating the change of the determination line by temperature. 検査装置10の検査処理手順を示すフローチャートである。4 is a flowchart showing an inspection processing procedure of the inspection apparatus 10.

以下に添付図面を参照して、本発明にかかる組電池の検査装置および検査方法の好適な実施の形態を詳細に説明する。   Exemplary embodiments of an assembled battery inspection apparatus and inspection method according to the present invention will be described below in detail with reference to the accompanying drawings.

(実施の形態)
図1は、実施の形態にかかる組電池の検査装置10の構成を示すブロック図である。実施の形態にかかる検査装置10は、直列接続された複数の電池セル202で構成される組電池20の電池容量が所定の基準容量以上であるか否かを検査(容量性能検査)する。検査装置10は、組電池20の製造工程において、たとえば複数の電池セル202を直列接続させてパッケージングした後、出荷前に一定の品質基準を満たすか否かをテストする際に用いられる。
(Embodiment)
FIG. 1 is a block diagram illustrating a configuration of an assembled battery inspection device 10 according to an embodiment. The inspection apparatus 10 according to the embodiment inspects whether or not the battery capacity of the assembled battery 20 including a plurality of battery cells 202 connected in series is equal to or greater than a predetermined reference capacity (capacity performance inspection). In the manufacturing process of the assembled battery 20, the inspection device 10 is used when testing whether or not a certain quality standard is satisfied before shipment after a plurality of battery cells 202 are connected in series and packaged, for example.

検査装置10では、一般的な容量性能検査方法(一旦組電池を満充電状態(または空充電状態)にしてから空充電状態(または満充電状態)になるまで放電(または充電)を行う方法)と比較して、短時間で検査を行うことができる。以下、検査装置10で行う容量性能検査を「時短検査」、一般的な方法で行う容量性能検査を「通常検査」という。   In the inspection apparatus 10, a general capacity performance inspection method (a method of discharging (or charging) a battery pack from a fully charged state (or a fully charged state) to a fully charged state (or fully charged state)) Compared with, inspection can be performed in a short time. Hereinafter, the capacity performance inspection performed by the inspection apparatus 10 is referred to as “time reduction inspection”, and the capacity performance inspection performed by a general method is referred to as “normal inspection”.

なお、本実施の形態において、組電池20に用いられている複数の電池セル202は、すべて同じ種類(型番等が同一)であり、均一な電池性能を有するものとする。本実施の形態において、電池セル202の仕様容量は、50Ahであるものとする。   In the present embodiment, the plurality of battery cells 202 used in the assembled battery 20 are all of the same type (model number and the like are the same) and have uniform battery performance. In the present embodiment, it is assumed that the specification capacity of the battery cell 202 is 50 Ah.

検査装置10において、組電池20の各電池セル202には、それぞれ電圧計102が接続されている。電圧計102は、電池セル202の正極側出力端子と負極側出力端子とへパラレルに接続されており、電池セル202の電池電圧を検出する。電圧計102によって検出された電池セル202の電池電圧は、後述する処理部120へ出力される。   In the inspection apparatus 10, a voltmeter 102 is connected to each battery cell 202 of the assembled battery 20. The voltmeter 102 is connected in parallel to the positive electrode side output terminal and the negative electrode side output terminal of the battery cell 202, and detects the battery voltage of the battery cell 202. The battery voltage of the battery cell 202 detected by the voltmeter 102 is output to the processing unit 120 described later.

スイッチ回路108と電流制限回路106とは直列接続され、スイッチ回路108と電流制限回路106との直列回路は充電用電源104に直列に接続されている。そして、充電用電源104の正極側出力端子がスイッチ回路108と電流制限回路106との直列回路を介して、複数の電池セル202から構成される組電池20の正極側出力端子へ接続され、また充電用電源104の負極側出力端子が組電池20の負極側出力端子へ接続されている。スイッチ回路108と電流制限回路106との直列回路は、組電池20に対して充電用電源104により充電を行う充電回路を構成している。   The switch circuit 108 and the current limiting circuit 106 are connected in series, and the series circuit of the switch circuit 108 and the current limiting circuit 106 is connected in series to the charging power source 104. Then, the positive output terminal of the charging power source 104 is connected to the positive output terminal of the battery pack 20 composed of a plurality of battery cells 202 via a series circuit of the switch circuit 108 and the current limiting circuit 106. The negative output terminal of the charging power source 104 is connected to the negative output terminal of the assembled battery 20. The series circuit of the switch circuit 108 and the current limiting circuit 106 constitutes a charging circuit that charges the assembled battery 20 with the charging power source 104.

一方、スイッチ回路112と負荷抵抗回路110とは直列に接続され、組電池20の放電回路を構成する。スイッチ回路112の負荷抵抗回路110と接続されていない他方の端子は組電池20の正極側出力端子へ接続され、また、負荷抵抗回路110のスイッチ回路112と接続されていない他方の端子は組電池20の負極側出力端子へ接続されている。   On the other hand, the switch circuit 112 and the load resistance circuit 110 are connected in series to constitute a discharge circuit of the assembled battery 20. The other terminal of the switch circuit 112 not connected to the load resistance circuit 110 is connected to the positive output terminal of the assembled battery 20, and the other terminal of the load resistance circuit 110 not connected to the switch circuit 112 is the assembled battery. 20 negative output terminals are connected.

スイッチ回路108,112は、処理部120から出力される制御信号をもとに閉成される常開接点によって構成されている。また、電流制限回路106および負荷抵抗回路110は、処理部120から出力される制御信号をもとに抵抗値が可変される可変抵抗回路によって構成されている。   The switch circuits 108 and 112 are configured by normally open contacts that are closed based on a control signal output from the processing unit 120. Further, the current limiting circuit 106 and the load resistance circuit 110 are configured by a variable resistance circuit whose resistance value is variable based on a control signal output from the processing unit 120.

処理部120は、CPU、制御プログラムなどを格納・記憶するROM、制御プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺回路等とのインターフェースを取るインターフェース部などを含んで構成される。処理部120は、上記CPUが上記制御プログラムを実行することによって、記憶手段122、充放電手段124、平均セル電圧測定手段126、電池容量推定手段128、容量判定手段130、電圧バラツキ測定手段132、電圧バラツキ判定手段134を実現する。   The processing unit 120 includes a CPU, a ROM that stores and stores a control program, a RAM as an operation area of the control program, an EEPROM that holds various data in a rewritable manner, an interface unit that interfaces with peripheral circuits, and the like. Composed. When the CPU executes the control program, the processing unit 120 includes a storage unit 122, a charge / discharge unit 124, an average cell voltage measurement unit 126, a battery capacity estimation unit 128, a capacity determination unit 130, a voltage variation measurement unit 132, A voltage variation determination unit 134 is realized.

記憶手段122は、組電池20を構成する電池セル202の種類に応じた電池容量特性カーブを記憶する。電池容量特性カーブとは、当該種類の電池セル202における電池容量と電圧との標準的な関係を示す電圧―電池容量カーブである。図2は、電池容量特性カーブの一例を示すグラフである。図2において、縦軸は電池電圧(インデックス値)、横軸は残存容量(SOC)を示す。図2に示すように、電池セル202の電池電圧とSOCとは相関関係があり、残存容量が多いほど電池電圧が高くなる。記憶手段122に記録される電池容量特性カーブは、検査装置10における検査対象となる組電池20に用いられる電池セル202において、標準的な(仕様性能を満たす)電池容量特性カーブである。   The storage unit 122 stores a battery capacity characteristic curve corresponding to the type of the battery cell 202 constituting the assembled battery 20. The battery capacity characteristic curve is a voltage-battery capacity curve indicating a standard relationship between battery capacity and voltage in the battery cell 202 of the type. FIG. 2 is a graph showing an example of a battery capacity characteristic curve. In FIG. 2, the vertical axis represents the battery voltage (index value), and the horizontal axis represents the remaining capacity (SOC). As shown in FIG. 2, the battery voltage of the battery cell 202 and the SOC are correlated, and the battery voltage increases as the remaining capacity increases. The battery capacity characteristic curve recorded in the storage unit 122 is a standard battery capacity characteristic curve (satisfying specification performance) in the battery cell 202 used in the assembled battery 20 to be inspected in the inspection apparatus 10.

電池容量特性カーブの求め方の一例としては、たとえば、組電池状態での完全放電および満充電をくり返す際に、各電池セル202の電圧値の変化を測定する。この電圧値の変化を連続的に記録することによって図2に示すような電池容量特性カーブが得られる。記憶手段122に記録される電池容量特性カーブは、たとえば検査装置10において、標準的な電池セル202を用いて前記のような方法であらかじめ測定したものであってもよいし、電池セル202の製造者から提供されたデータ(電池容量特性カーブ)であってもよい。   As an example of how to obtain the battery capacity characteristic curve, for example, when the complete discharge and the full charge in the assembled battery state are repeated, the change in the voltage value of each battery cell 202 is measured. A battery capacity characteristic curve as shown in FIG. 2 is obtained by continuously recording the change in the voltage value. The battery capacity characteristic curve recorded in the storage unit 122 may be measured in advance by the above-described method using a standard battery cell 202 in the inspection apparatus 10, for example. Data (battery capacity characteristic curve) provided by a person may be used.

充放電手段124は、スイッチ回路108、電流制限回路106および充電用電源104によって構成される充電回路、またはスイッチ回路112および負荷抵抗回路110によって構成される放電回路を制御して、組電池20に充電または放電(充放電)させる。   The charging / discharging unit 124 controls the charging circuit configured by the switch circuit 108, the current limiting circuit 106, and the charging power source 104, or the discharging circuit configured by the switching circuit 112 and the load resistance circuit 110, so that the assembled battery 20 Charge or discharge (charge / discharge).

平均セル電圧測定手段126は、充放電手段124による充放電の途中で組電池20の電圧を測定し、該測定電圧値をセル数で除した平均セル電圧値を求める。平均セル電圧測定手段126は、たとえば組電池20の満容量よりも少ない第1の所定量の電流を組電池20に充電または放電させて、当該充電または放電の前後における電池セル202の平均電圧の変化を測定する。なお、本実施の形態において、平均値とは、算術平均、中央値、最頻値のいずれであってよい。   The average cell voltage measuring unit 126 measures the voltage of the assembled battery 20 during charging / discharging by the charging / discharging unit 124, and obtains an average cell voltage value obtained by dividing the measured voltage value by the number of cells. The average cell voltage measuring means 126 charges or discharges the battery pack 20 with a first predetermined amount of current smaller than the full capacity of the battery pack 20, for example, and calculates the average voltage of the battery cell 202 before and after the charge or discharge. Measure changes. In the present embodiment, the average value may be any of arithmetic average, median value, and mode value.

平均セル電圧測定手段126において充電または放電させる電流量(第1の所定量)は、組電池20の満容量よりも少なくする。これは、第1の所定量を組電池20の満容量とすると、通常検査と同等の時間がかかるためである。第1の所定量の決め方は任意であるが、たとえば、充電または放電の前後における電池セル202の平均電圧の変化が識別できる程度であればよい。   The amount of current (first predetermined amount) to be charged or discharged in the average cell voltage measuring means 126 is made smaller than the full capacity of the assembled battery 20. This is because if the first predetermined amount is the full capacity of the assembled battery 20, it takes a time equivalent to the normal inspection. The method for determining the first predetermined amount is arbitrary, but it is sufficient that the change in the average voltage of the battery cell 202 before and after charging or discharging can be identified, for example.

図2を用いて具体的に説明すると、上述のように電池セル202の仕様容量は50Ahであり、たとえば電池セル202から5Ah放電させると、SOCを10%低減させることができる。たとえば検査時における電池セル202の平均電圧が2.75であるとすると、電池セル202のSOCは50%であると推定できる。この状態から5Ah放電させると、電池セル202のSOCは40%となり、電圧はおよそ2.70(−0.05)となることが推定される。   Specifically, the specified capacity of the battery cell 202 is 50 Ah as described above. For example, when the battery cell 202 is discharged by 5 Ah, the SOC can be reduced by 10%. For example, if the average voltage of the battery cell 202 at the time of inspection is 2.75, it can be estimated that the SOC of the battery cell 202 is 50%. When 5 Ah is discharged from this state, the SOC of the battery cell 202 is 40%, and the voltage is estimated to be approximately 2.70 (−0.05).

電圧計102の測定精度が、この電圧変化(−0.05)を識別可能であれば、第1の所定量を5Ahとすることが可能である。なお、図2に示すように、電池容量特性カーブは均一ではないため、たとえば検査時における電池セル202の平均電圧(SOC)から、電池セル202の平均電圧の変化が識別できるだけの充放電量(第1の所定量)を決定すればよい。   If the measurement accuracy of the voltmeter 102 can identify this voltage change (−0.05), the first predetermined amount can be set to 5 Ah. As shown in FIG. 2, since the battery capacity characteristic curve is not uniform, for example, from the average voltage (SOC) of the battery cell 202 at the time of inspection, the charge / discharge amount that can distinguish the change in the average voltage of the battery cell 202 ( The first predetermined amount may be determined.

図1の説明に戻り、電池容量推定手段128は、平均セル電圧値と記憶手段122に記憶した電池容量特性カーブとから組電池20の満充電容量を推定する。より詳細に電池容量推定手段128における処理について説明する。上述のように、電池セル202の仕様容量は50Ahであるが、電池セル202の個体差により、それぞれの電池セル202の実際の電池容量は50Ah付近に離散的に分布していると考えられる。以下では、電池セル202の仕様容量を満たしている電池容量50Ah以上の電池セル202を「正常電池セル」、電池セル202の仕様容量を満たしていない電池容量50Ah未満の電池セル202を「劣化電池セル」という。   Returning to the description of FIG. 1, the battery capacity estimation unit 128 estimates the full charge capacity of the assembled battery 20 from the average cell voltage value and the battery capacity characteristic curve stored in the storage unit 122. The processing in the battery capacity estimation unit 128 will be described in more detail. As described above, the specification capacity of the battery cell 202 is 50 Ah, but due to individual differences of the battery cells 202, it is considered that the actual battery capacity of each battery cell 202 is discretely distributed around 50 Ah. Hereinafter, a battery cell 202 that has a battery capacity of 50 Ah or more that satisfies the specified capacity of the battery cell 202 is referred to as a “normal battery cell”, and a battery cell 202 that does not satisfy the specified capacity of the battery cell 202 is less than 50 Ah as a “deteriorated battery” It is called a cell.

図2に示した電池容量特性カーブは、当該電池セル202の容量にかかわらず共通である。すなわち、当該電池セル202が正常電池セルおよび劣化電池セルのいずれであっても変化することがない。しかしながら、電池セル202の電池容量が異なると、同じ量の電流を充電または放電させても、充放電させた電流量の電池容量に占める割合が異なるため、充放電後のSOC、すなわち電池電圧が異なることとなる。   The battery capacity characteristic curve shown in FIG. 2 is common regardless of the capacity of the battery cell 202. That is, there is no change regardless of whether the battery cell 202 is a normal battery cell or a deteriorated battery cell. However, if the battery capacities of the battery cells 202 are different, even if the same amount of current is charged or discharged, the proportion of the charged / discharged current amount in the battery capacity is different. It will be different.

具体的には、たとえば電池容量が50Ahの正常電池セルがSOC100%の状態(電圧値3の状態)から25Ahの電流を放電させたとすると、SOCは50%となり、電圧は約2.75に変化する。一方、電池容量が40Ahの劣化電池セルがSOC100%の状態(電圧値3の状態)から25Ahの電流を放電させたとすると、SOCは30%となり、電圧は約2.63に変化する。   Specifically, for example, if a normal battery cell with a battery capacity of 50 Ah discharges a current of 25 Ah from a state where the SOC is 100% (a state where the voltage value is 3), the SOC becomes 50% and the voltage changes to about 2.75. To do. On the other hand, if a deteriorated battery cell with a battery capacity of 40 Ah discharges a current of 25 Ah from a state where the SOC is 100% (a state where the voltage value is 3), the SOC becomes 30% and the voltage changes to about 2.63.

このように、充放電前後の平均電圧の変化を電池容量特性カーブと比較することによって、電池セル202の平均電池容量を推定することができる。そして、この平均電池容量から、組電池20の満充電容量を推定することができる。具体的には、たとえば電池セル202の平均電池容量に、組電池20内の電池セル202の数を掛け合わせる(電池セル202の平均電池容量×セル数)ことで、組電池20の満充電容量推定することができる。   Thus, the average battery capacity of the battery cell 202 can be estimated by comparing the change in the average voltage before and after charging and discharging with the battery capacity characteristic curve. And the full charge capacity of the assembled battery 20 can be estimated from this average battery capacity. Specifically, for example, by multiplying the average battery capacity of the battery cell 202 by the number of battery cells 202 in the assembled battery 20 (average battery capacity of the battery cell 202 × number of cells), the full charge capacity of the assembled battery 20 is obtained. Can be estimated.

なお、本発明の実施例では、電池容量推定手段128は平均セル電圧の変化を用いて組電池容量を推定したが、たとえば、最低セル電圧の変化と電池容量特性カーブを比較する、または最高セル電圧の変化と電池容量特性カーブを比較して組電池の容量を推定する手段であっても良い。   In the embodiment of the present invention, the battery capacity estimation means 128 estimates the assembled battery capacity using the change in the average cell voltage. For example, the battery capacity estimation means 128 compares the change in the minimum cell voltage with the battery capacity characteristic curve, or Means for estimating the capacity of the assembled battery by comparing the change in voltage and the battery capacity characteristic curve may be used.

容量判定手段130は、電池容量推定手段128で推定した満充電容量に応じて合否を判定する。容量判定手段130は、たとえば、推定した満充電容量が所定容量以上であるか否かを判断し、所定容量以上である場合には合格、所定容量未満である場合には不合格とする。所定容量とは、たとえば組電池20の仕様電池容量、または電池セル202の仕様電池容量(本実施の形態では50Ah)×電池セル202の数、とすることができる。また、後述のように、所定容量を温度によって変更してもよい。   The capacity determination unit 130 determines pass / fail according to the full charge capacity estimated by the battery capacity estimation unit 128. The capacity determination unit 130 determines, for example, whether or not the estimated full charge capacity is equal to or greater than a predetermined capacity. If the estimated full charge capacity is equal to or greater than the predetermined capacity, the capacity is determined to be acceptable. The predetermined capacity can be, for example, the specified battery capacity of the assembled battery 20 or the specified battery capacity of the battery cell 202 (50 Ah in the present embodiment) × the number of battery cells 202. Further, as described later, the predetermined capacity may be changed depending on the temperature.

電圧バラツキ測定手段132は、容量判定手段130に合格と判定された組電池の各電池セルの電圧バラツキを測定する。電圧バラツキ測定手段132は、たとえば、組電池20の満容量よりも少ない第2の所定量の電流を組電池20に充電または放電させて、充電後または放電後におけるそれぞれの電池セル202の電圧値の差分(電圧バラツキ)を測定する。より詳細には、電圧バラツキ測定手段132は、スイッチ回路108、電流制限回路106および充電用電源104によって構成される充電回路、またはスイッチ回路112および負荷抵抗回路110によって構成される放電回路を制御して、組電池20に充電または放電させるとともに、充電後または放電後におけるそれぞれの電池セル202の電圧値の差分を測定する。   The voltage variation measuring unit 132 measures the voltage variation of each battery cell of the assembled battery that has been determined to pass the capacity determining unit 130. The voltage variation measuring means 132, for example, charges or discharges the battery pack 20 with a second predetermined amount of current smaller than the full capacity of the battery pack 20, and the voltage value of each battery cell 202 after charging or discharging. The difference (voltage variation) is measured. More specifically, the voltage variation measuring means 132 controls a charging circuit constituted by the switch circuit 108, the current limiting circuit 106 and the charging power source 104, or a discharging circuit constituted by the switch circuit 112 and the load resistance circuit 110. Then, the battery pack 20 is charged or discharged, and the difference between the voltage values of the respective battery cells 202 after charging or discharging is measured.

それぞれの電池セル202の電圧値の差分とは、複数の電池セル202のそれぞれの電圧値のうち、最大電圧値と最小電圧値との差分であってもよいし、電池セル202の電圧値の平均値(平均電圧)と最小電圧値(または最大電圧値)との差分であってもよい。さらには、各電池セルの電圧値から標準偏差を求め該標準偏差からの差分であってもよいし、各電池セルの電圧値から中央値を求め該中央値からの差分であっても良い。以下の説明において、電池セル202の電圧値の差分は、絶対値をとるなどによって正の数として表わすものとする。   The difference between the voltage values of each battery cell 202 may be a difference between the maximum voltage value and the minimum voltage value among the voltage values of each of the plurality of battery cells 202, or the difference between the voltage values of the battery cells 202. It may be a difference between an average value (average voltage) and a minimum voltage value (or maximum voltage value). Further, the standard deviation may be obtained from the voltage value of each battery cell, and the difference from the standard deviation may be obtained, or the median value may be obtained from the voltage value of each battery cell and may be the difference from the median value. In the following description, the voltage value difference of the battery cell 202 is expressed as a positive number by taking an absolute value or the like.

電圧バラツキ測定手段132における充電または放電させる電流量(第2の所定量)は、平均セル電圧測定手段126における第1の所定量と同様に決めればよい。第1の所定量と第2の所定量とは、異なる量であってもよいし、同一の量であってもよい。   The amount of current (second predetermined amount) to be charged or discharged in the voltage variation measuring unit 132 may be determined in the same manner as the first predetermined amount in the average cell voltage measuring unit 126. The first predetermined amount and the second predetermined amount may be different amounts or the same amount.

なお、平均セル電圧測定手段126による測定または電圧バラツキ測定手段132による測定の少なくともいずれかは、電池容量特性カーブの傾きが相対的に大きい箇所に対応する電池状態において、平均電圧または電圧値の差分の測定を行うようにしてもよい。図2を用いて具体的に説明すると、図2の電池容量特性カーブにおいては、SOCが低いとき(たとえばSOC0%〜10%付近)は、SOCが高いとき(たとえばSOC60%〜100%付近)と比較して、電池容量特性カーブの傾きが相対的に大きい。このため、SOC0%〜10%付近で測定を行うと、SOC60%〜100%付近で測定を行った場合と比較して、同じ充放電量でも充放電前後における電圧の変化が大きくなる。このため、たとえば電圧測定時に測定誤差が場合に、当該測定誤差の影響を小さくすることができる。   Note that at least one of the measurement by the average cell voltage measurement unit 126 and the measurement by the voltage variation measurement unit 132 is the difference between the average voltage or the voltage value in the battery state corresponding to the location where the slope of the battery capacity characteristic curve is relatively large. Measurement may be performed. Specifically, referring to FIG. 2, in the battery capacity characteristic curve of FIG. 2, when the SOC is low (for example, SOC near 0% to 10%), the SOC is high (for example, SOC near 60% to 100%). In comparison, the slope of the battery capacity characteristic curve is relatively large. For this reason, when the measurement is performed in the vicinity of SOC 0% to 10%, the change in voltage before and after charging / discharging becomes larger even when the measurement is performed in the vicinity of SOC 60% to 100% even with the same charge / discharge amount. For this reason, for example, when there is a measurement error during voltage measurement, the influence of the measurement error can be reduced.

このような方法を採る場合、電池容量特性カーブの傾きが相対的に大きい箇所に対応する電池状態(図2の例ではSOC0%〜10%付近)となるまで、組電池20を充電または放電させてから平均セル電圧測定手段126による測定または電圧バラツキ測定手段132による測定を行うこととなる。   When such a method is adopted, the battery pack 20 is charged or discharged until the battery state corresponding to a location where the slope of the battery capacity characteristic curve is relatively large (SOC 0% to 10% in the example of FIG. 2) is reached. After that, measurement by the average cell voltage measurement unit 126 or measurement by the voltage variation measurement unit 132 is performed.

電圧バラツキ判定手段134は、電圧バラツキ測定手段132によって測定された電圧バラツキが所定の判定ライン以下であるときは合格と判定する。本来、電池セル202の電池容量が仕様電池容量を満たしていれば、仕様電池容量付近で各電池セル202の電圧差は0となるはずである。しかしながら、実際には各種の要因によって電池セル202の電圧にはバラツキが許容される。   The voltage variation determination unit 134 determines that the voltage is acceptable when the voltage variation measured by the voltage variation measurement unit 132 is equal to or less than a predetermined determination line. Originally, if the battery capacity of the battery cell 202 satisfies the specified battery capacity, the voltage difference between the battery cells 202 should be zero near the specified battery capacity. However, in practice, variations in the voltage of the battery cell 202 are allowed due to various factors.

ここで、組電池20の充電および放電は、いずれかの電池セル202が所定の上限電圧または下限電圧になると終了する。このため、電池セル202の電圧にバラツキがあると、電池セル202に対する充放電をフルに行うことができずに、組電池全体としてその性能を最大限利用することができない可能性がある。このため、電圧バラツキ判定手段134は、電圧バラツキ測定手段132によって測定された電圧バラツキが大きい場合には、当該組電池20を不合格と判定する。不合格と判定された組電池20は、基準外品として出荷停止となったり、通常検査による再検査を行って品質基準を満たしているかが確認される。   Here, the charging and discharging of the assembled battery 20 are terminated when any one of the battery cells 202 reaches a predetermined upper limit voltage or lower limit voltage. For this reason, if there is variation in the voltage of the battery cell 202, the battery cell 202 cannot be fully charged / discharged, and the performance of the assembled battery as a whole may not be fully utilized. For this reason, when the voltage variation measured by the voltage variation measuring unit 132 is large, the voltage variation determining unit 134 determines that the assembled battery 20 is unacceptable. The assembled battery 20 determined to be rejected is confirmed as being out of standard as a non-standard product, or re-inspected by a normal inspection to meet quality standards.

図3は、電圧バラツキの判定ラインの一例を示す説明図である。図3のグラフにおいて、縦軸は電圧バラツキ(インデックス値)であり、横軸は満充電容量の推定値(Ah)である。図3は、所定の判定ライン(満充電容量の検査基準値)を50Ahとした場合を例にしている。満充電容量が50Ah未満の場合は、電圧バラツキの大きさに関わらず、時短検査は不合格(NG)としている。時短検査が不合格とされた組電池20は、基準外品として検査され製品としての出荷が見合されるか、または通常検査(再検査)を受けることとなる。   FIG. 3 is an explanatory diagram illustrating an example of a determination line for voltage variation. In the graph of FIG. 3, the vertical axis represents voltage variation (index value), and the horizontal axis represents the estimated value (Ah) of the full charge capacity. FIG. 3 shows an example in which a predetermined determination line (inspection reference value for full charge capacity) is 50 Ah. When the full charge capacity is less than 50 Ah, the short time inspection is rejected (NG) regardless of the magnitude of voltage variation. The assembled battery 20 in which the short-time inspection is rejected is either inspected as a non-standard product and shipped as a product, or undergoes a normal inspection (re-inspection).

満充電容量が50Ah以上の場合、図3の例では、満充電容量が大きくなるほど、電圧バラツキの許容上限値が大きくなる。たとえば、満充電容量が50Ahの場合、電圧0.01までの差分が許容される(OK)。また、満充電容量が52Ahの場合、電圧0.015の差分が許容される。なお、図3に示した電圧バラツキの判定ラインは一例であり、図3に示したような直線のみならず、曲線や一定値などとなる可能性もある。   When the full charge capacity is 50 Ah or more, in the example of FIG. 3, the allowable upper limit value of the voltage variation increases as the full charge capacity increases. For example, when the full charge capacity is 50 Ah, a difference up to a voltage of 0.01 is allowed (OK). Further, when the full charge capacity is 52 Ah, a difference of voltage 0.015 is allowed. Note that the voltage variation determination line shown in FIG. 3 is an example, and not only a straight line as shown in FIG. 3 but also a curve or a constant value may be obtained.

また、電圧バラツキの判定ライン、または所定容量(満充電容量の検査基準値)の少なくともいずれかを検査を行う温度環境応じて変更するようにしてもよい。組電池20をはじめとする電池は、温度によってその性能が変化することが知られている。組電池20の量産工場では、測定環境の温度を均一にするには時間やコストがかかり、効率が低下するため、このような温度による判定ラインの補正は、時短検査の精度向上に有効である。具体的には、高温になるほど充放電特性が向上する。このため、たとえば図4に示すように、高温になるほど判定ライン(所定容量や所定値)を上げて検査を行うようにしてもよい。   In addition, at least one of a voltage variation determination line and a predetermined capacity (inspection reference value of full charge capacity) may be changed according to the temperature environment to be inspected. It is known that the performance of batteries including the assembled battery 20 changes depending on the temperature. In a mass production factory of the assembled battery 20, it takes time and cost to make the temperature of the measurement environment uniform, and the efficiency is lowered. Therefore, correction of the determination line based on such temperature is effective for improving the accuracy of the short-time inspection. . Specifically, charge / discharge characteristics improve as the temperature increases. Therefore, for example, as shown in FIG. 4, the inspection may be performed by increasing the determination line (predetermined capacity or predetermined value) as the temperature increases.

なお、本実施の形態においては、検査対象となる組電池20を一定温度(たとえば25℃)の空調室に所定時間(たとえば10時間)設置し、組電池20内の温度が所定の範囲(たとえば20℃〜30℃)になるように調整してから容量性能検査を行うものとする。この場合であっても、組電池20内の温度は一定ではなく所定の範囲(たとえば20℃〜30℃)をもつため、温度による判定ラインの補正は有効である。   In the present embodiment, the assembled battery 20 to be inspected is installed in an air-conditioned room at a constant temperature (for example, 25 ° C.) for a predetermined time (for example, 10 hours), and the temperature in the assembled battery 20 is within a predetermined range (for example, for example). It is assumed that the capacity performance inspection is performed after adjusting the temperature to 20 ° C to 30 ° C. Even in this case, since the temperature in the assembled battery 20 is not constant and has a predetermined range (for example, 20 ° C. to 30 ° C.), the correction of the determination line by the temperature is effective.

図4は、温度による判定ラインの変更を説明するための説明図である。図4(a)は20℃における判定ライン、図4(b)は25℃における判定ライン、図4(c)は30℃における判定ラインを示す。また、図4のグラフにおいて、縦軸は電圧バラツキ(インデックス値)であり、横軸は満充電容量の推定値(Ah)である。   FIG. 4 is an explanatory diagram for explaining the change of the determination line due to temperature. 4A shows a determination line at 20 ° C., FIG. 4B shows a determination line at 25 ° C., and FIG. 4C shows a determination line at 30 ° C. In the graph of FIG. 4, the vertical axis represents voltage variation (index value), and the horizontal axis represents the estimated value (Ah) of the full charge capacity.

図4(a)〜(c)では、組電池20の温度が高いほど、満充電容量の検査基準値および電圧バラツキの許容上限値が大きくなっている。これにより、温度による電池の特性変化を補正して、検査の精度を向上させることができる。なお、図4では満充電容量の検査基準値および電圧バラツキの許容上限値のいずれも温度によって変更することとしたが、これらのいずれかのみを温度によって変更してもよい。   4A to 4C, as the temperature of the assembled battery 20 is higher, the inspection reference value of the full charge capacity and the allowable upper limit value of the voltage variation are larger. Thereby, the characteristic change of the battery due to temperature can be corrected, and the accuracy of inspection can be improved. In FIG. 4, both the inspection reference value of the full charge capacity and the allowable upper limit value of the voltage variation are changed depending on the temperature, but only one of these may be changed depending on the temperature.

なお、図3および図4に示すような検査の判定ライン(所定容量や所定値)は、電池セル202の特性(電池容量特性カーブ)に基づいて、検査の実施者などによってあらかじめ定めておく。   Note that the inspection determination lines (predetermined capacity and predetermined value) as shown in FIGS. 3 and 4 are determined in advance by the inspector or the like based on the characteristics of the battery cell 202 (battery capacity characteristic curve).

このように、検査装置10は、容量判定手段130によって組電池20の満充電容量が所定容量以上であり、かつ電圧バラツキ判定手段134によって電圧バラツキが所定値以下である場合、組電池20の電池容量が基準容量以上であると検査する。電池容量が基準容量以上であると検査された組電池20は、時短検査による容量性能検査に合格したものとして、組電池20の製造工程のつぎのステップに移される。   As described above, when the full charge capacity of the assembled battery 20 is equal to or greater than the predetermined capacity by the capacity determination unit 130 and the voltage variation is equal to or less than the predetermined value by the voltage variation determination unit 134, the inspection apparatus 10 Check that the capacity is above the reference capacity. The assembled battery 20 inspected that the battery capacity is equal to or greater than the reference capacity is transferred to the next step of the manufacturing process of the assembled battery 20 as having passed the capacity performance inspection by the short time inspection.

また、検査装置10は、組電池20の満充電容量が所定容量より小さい一定容量以下の場合、または電圧バラツキが所定量より大きい一定値以上の場合、当該組電池20を基準外品として検査する。基準外品と検査された組電池20は出荷が停止される。これは、検査対象となる組電池20が明らかに品質基準を満たしておらず、出荷することができないことによる。   Further, the inspection device 10 inspects the assembled battery 20 as a non-standard product when the full charge capacity of the assembled battery 20 is equal to or smaller than a predetermined capacity smaller than a predetermined capacity or when the voltage variation is equal to or larger than a certain value larger than a predetermined amount. . Shipment of the assembled battery 20 inspected as a non-standard product is stopped. This is because the assembled battery 20 to be inspected clearly does not meet the quality standard and cannot be shipped.

また、検査装置10は、組電池20の満充電容量が所定容量未満かつ一定容量以上である場合、または電圧バラツキが所定量より大きく一定値未満の場合、当該組電池20に対して通常検査(再検査)を行うように評価する。これは、時短検査は検査の精度を確保するため、通常検査よりも検査判定ラインを高くしており、時短検査で不合格だった組電池20も通常検査を行えば容量性能検査に合格できる可能性があるためである。通常検査において電池容量が基準容量以上であると評価された組電池20は、容量性能検査に合格したものとして、組電池20の製造工程のつぎのステップに移される。また、通常検査でも基準外品と評価された組電池20は出荷が停止される。   Further, when the full charge capacity of the assembled battery 20 is less than a predetermined capacity and greater than or equal to a certain capacity, or when the voltage variation is larger than a predetermined amount and less than a certain value, the inspection apparatus 10 performs a normal inspection on the assembled battery 20 ( Evaluate to perform (re-inspection). This is because the inspection determination line has a higher inspection judgment line than the normal inspection in order to ensure the accuracy of the inspection, and the assembled battery 20 that has failed the time reduction inspection can pass the capacity performance inspection if the normal inspection is performed. It is because there is sex. The assembled battery 20 evaluated in the normal inspection as having a battery capacity equal to or higher than the reference capacity is transferred to the next step of the manufacturing process of the assembled battery 20 as having passed the capacity performance inspection. In addition, shipment of the assembled battery 20 that is evaluated as a non-standard product in the normal inspection is stopped.

図5は、検査装置10の検査処理手順を示すフローチャートである。図5のフローチャートでは、判断の閾値となる数値(たとえば所定容量、所定値など)を容量X、値Nなどと表記している。なお、上述のように、検査装置10による検査に先立って、検査対象となる組電池20を一定温度の空調室に所定時間設置し、組電池20内の温度が所定の範囲(たとえば20℃〜30℃)になるように調整しておく。   FIG. 5 is a flowchart showing the inspection processing procedure of the inspection apparatus 10. In the flowchart of FIG. 5, numerical values (for example, a predetermined capacity, a predetermined value, etc.) that serve as determination thresholds are represented as a capacity X, a value N, and the like. As described above, prior to the inspection by the inspection apparatus 10, the assembled battery 20 to be inspected is placed in a constant temperature air-conditioned room for a predetermined time, and the temperature in the assembled battery 20 is within a predetermined range (for example, 20 ° C. to 20 ° C.). 30 ° C.).

図5のフローチャートにおいて、検査装置10は、組電池20の検査の開始が指示されると(ステップS501:Yes)、まず、充放電手段124によって、電池セル202の満充電容量を推定するための充放電(充電または放電)を行う(ステップS502)。つぎに、平均セル電圧測定手段126は、充電または放電の前後における電池セル202の平均電圧の変化を測定する(ステップS503)。   In the flowchart of FIG. 5, when the inspection apparatus 10 is instructed to start inspection of the assembled battery 20 (step S501: Yes), first, the charging / discharging unit 124 estimates the full charge capacity of the battery cell 202. Charging / discharging (charging or discharging) is performed (step S502). Next, the average cell voltage measuring unit 126 measures the change in the average voltage of the battery cell 202 before and after charging or discharging (step S503).

つづいて、電池容量推定手段128は、平均セル電圧測定手段126によって測定された平均電圧の変化から組電池20の満充電容量を推定する(ステップS504)。組電池20の満充電容量は、たとえば電池セル202の平均電池容量に、組電池20内の電池セル202の数を掛け合わせる(電池セル202の平均電池容量×セル数)ことで推定することができる。   Subsequently, the battery capacity estimation unit 128 estimates the full charge capacity of the assembled battery 20 from the change in the average voltage measured by the average cell voltage measurement unit 126 (step S504). The full charge capacity of the assembled battery 20 can be estimated by, for example, multiplying the average battery capacity of the battery cells 202 by the number of battery cells 202 in the assembled battery 20 (average battery capacity of the battery cells 202 × number of cells). it can.

容量判定手段130は、組電池20の満充電容量が所定容量(容量X)以上であるか否かを判断する(ステップS505)。電池セル202の満充電容量が所定容量(容量X)未満の場合(ステップS505:No)、容量判定手段130は、満充電容量が所定容量より小さい一定容量(容量Z)以下であるか否かを判断する(ステップS506)。満充電容量が一定容量(容量Z)以下である場合(ステップS506:Yes)、容量判定手段130は、ステップS511に移行して、検査対象の組電池20は基準外品であると評価して(ステップS511)、本フローチャートによる処理を終了する。また、満充電容量が一定容量(容量Z)より大きい場合(ステップS506:No)、容量判定手段130は、ステップS512に移行して、検査対象の組電池20に対して通常検査を行うよう評価して(ステップS512)、本フローチャートによる処理を終了する。   The capacity determination unit 130 determines whether or not the full charge capacity of the assembled battery 20 is equal to or greater than a predetermined capacity (capacity X) (step S505). When the full charge capacity of the battery cell 202 is less than the predetermined capacity (capacity X) (step S505: No), the capacity determination unit 130 determines whether or not the full charge capacity is equal to or smaller than a certain capacity (capacity Z) smaller than the predetermined capacity. Is determined (step S506). When the full charge capacity is equal to or less than a certain capacity (capacity Z) (step S506: Yes), the capacity determination unit 130 proceeds to step S511 and evaluates that the assembled battery 20 to be inspected is a nonstandard product. (Step S511), the process according to this flowchart is terminated. Further, when the full charge capacity is larger than the certain capacity (capacity Z) (step S506: No), the capacity determination unit 130 proceeds to step S512 and evaluates to perform a normal inspection on the assembled battery 20 to be inspected. In step S512, the process according to this flowchart is terminated.

一方、ステップS505において、電池セル202の満充電容量が所定容量(容量X)以上である場合(ステップS505:Yes)、電圧バラツキ測定手段132によって、組電池20の各電池セル202の電圧バラツキ(電圧値の差分)を測定する(ステップS507)。   On the other hand, in step S505, when the full charge capacity of the battery cell 202 is equal to or greater than the predetermined capacity (capacity X) (step S505: Yes), the voltage variation measuring unit 132 causes the voltage variation of each battery cell 202 of the assembled battery 20 ( The voltage value difference is measured (step S507).

つづいて、電圧バラツキ判定手段134は、電圧バラツキ測定手段132によって測定された電圧バラツキが所定値(値N)以下であるか否かを判断する(ステップS508)。電圧バラツキが所定値(値N)以下である場合(ステップS508:Yes)、電圧バラツキ判定手段134は、組電池の容量性能は品質基準を満たす(合格)と評価して(ステップS509)、本フローチャートの処理を終了する。   Subsequently, the voltage variation determining unit 134 determines whether or not the voltage variation measured by the voltage variation measuring unit 132 is equal to or less than a predetermined value (value N) (step S508). When the voltage variation is equal to or smaller than the predetermined value (value N) (step S508: Yes), the voltage variation determination means 134 evaluates that the capacity performance of the assembled battery satisfies the quality standard (pass) (step S509), and this The process of the flowchart ends.

一方、電圧バラツキが所定値(値N)より大きい場合(ステップS508:No)、電圧バラツキ判定手段134は、電圧バラツキが所定値より大きい一定値(値M)以上であるか否かを判断する(ステップS510)。電圧バラツキが一定値(値M)以上である場合(ステップS510:Yes)、電圧バラツキ判定手段134は、検査対象の組電池20は基準外品であると評価して(ステップS511)、本フローチャートによる処理を終了する。また、電圧バラツキが一定値(値M)より小さい場合(ステップS510:No)、電圧バラツキ判定手段134は、検査対象の組電池20に対して通常検査を行うよう評価して(ステップS512)、本フローチャートによる処理を終了する。   On the other hand, when the voltage variation is larger than the predetermined value (value N) (step S508: No), the voltage variation determination means 134 determines whether or not the voltage variation is equal to or larger than a certain value (value M) larger than the predetermined value. (Step S510). When the voltage variation is greater than or equal to a certain value (value M) (step S510: Yes), the voltage variation determination means 134 evaluates that the assembled battery 20 to be inspected is a nonstandard product (step S511), and this flowchart. The process by is terminated. Further, when the voltage variation is smaller than the constant value (value M) (step S510: No), the voltage variation determination means 134 evaluates to perform a normal inspection on the assembled battery 20 to be inspected (step S512), The process according to this flowchart ends.

以上説明したように、実施の形態にかかる検査装置10によれば、組電池20を構成する電池セル202の平均セル電圧値と、当該電池セル202の種類に応じた電池容量特性カーブとから組電池20の満充電容量を推定し、合否を判定する。これにより、組電池20を満充電状態または空充電状態となるまで充放電させる従来の性能検査方法と比較して、短時間に組電池20の性能検査を行うことができる。   As described above, according to the inspection apparatus 10 according to the embodiment, the combination is made from the average cell voltage value of the battery cells 202 constituting the assembled battery 20 and the battery capacity characteristic curve corresponding to the type of the battery cells 202. The full charge capacity of the battery 20 is estimated, and pass / fail is determined. Thereby, compared with the conventional performance inspection method which charges / discharges the assembled battery 20 until it becomes a full charge state or an empty charge state, the performance inspection of the assembled battery 20 can be performed in a short time.

また、検査装置10によれば、組電池20の満充電容量が合格(所定容量以上)であり、かつ各電池セル202の電圧バラツキが所定の判定ライン以下である場合に合格と判定する。このように、満充電容量の推定とともに電圧バラツキの検査を行うことによって、短時間の測定でも検査の信頼性を向上させることができる。   Moreover, according to the test | inspection apparatus 10, it determines with a pass when the full charge capacity of the assembled battery 20 is a pass (it is more than predetermined capacity), and the voltage variation of each battery cell 202 is below a predetermined | prescribed determination line. As described above, by performing the voltage variation inspection together with the estimation of the full charge capacity, the reliability of the inspection can be improved even in a short time measurement.

また、検査装置10によれば、検査の判定ラインを検査を行う環境の温度に応じて変更する。電池の充放電特性は温度によって変化することが知られており、このような温度による変更(補正)を行うことによって、検査装置10による検査の信頼性をさらに向上させることができる。   Further, according to the inspection apparatus 10, the inspection determination line is changed according to the temperature of the environment in which the inspection is performed. It is known that the charge / discharge characteristics of the battery change depending on the temperature. By making such a change (correction) depending on the temperature, the reliability of the inspection by the inspection apparatus 10 can be further improved.

10……電池性能検査装置、20……組電池、102……電圧計、104……充電用電源、106……電流制限回路、108……スイッチ回路、110……負荷抵抗回路、112……スイッチ回路、120……処理部、122……記憶手段、124……充放電手段、126……平均セル電圧測定手段、128……電池容量推定手段、130……容量判定手段、132……電圧バラツキ測定手段、134……電圧バラツキ判定手段、202……電池セル。   DESCRIPTION OF SYMBOLS 10 ... Battery performance inspection apparatus, 20 ... Assembly battery, 102 ... Voltmeter, 104 ... Power supply for charging, 106 ... Current limiting circuit, 108 ... Switch circuit, 110 ... Load resistance circuit, 112 ... Switch circuit 120... Processing unit 122... Storage means 124... Charge and discharge means 126... Average cell voltage measurement means 128. Variation measuring means 134... Voltage variation determining means 202.

Claims (6)

直列接続された複数の電池セルで構成される組電池の検査方法であって、
前記組電池の充放電工程と、
前記充放電工程の途中で前記組電池の電圧を測定し、該測定電圧値をセル数で除した平均セル電圧値を求める平均セル電圧測定工程と、
前記平均セル電圧値と前記電池セルの種類に応じた電池容量特性カーブとから前記組電池の満充電容量を推定する電池容量推定工程と、
前記電池容量推定工程で推定した満充電容量に応じて合否を判定する容量判定工程と、
を有することを特徴とする組電池の検査方法。
An inspection method for a battery pack composed of a plurality of battery cells connected in series,
Charging and discharging the assembled battery; and
An average cell voltage measurement step of measuring the voltage of the assembled battery in the middle of the charge / discharge step and obtaining an average cell voltage value obtained by dividing the measured voltage value by the number of cells;
A battery capacity estimation step of estimating a full charge capacity of the assembled battery from the average cell voltage value and a battery capacity characteristic curve according to the type of the battery cell;
A capacity determination step for determining pass / fail according to the full charge capacity estimated in the battery capacity estimation step;
A method for inspecting an assembled battery, comprising:
前記容量判定工程において合格と判定された組電池の各電池セルの電圧バラツキを測定する電圧バラツキ測定工程と、
前記電圧バラツキの値が所定の判定ライン以下であるか否かに応じて合否を判定する電圧バラツキ判定工程とをさらに有し、
前記所定の判定ラインは、前記電池容量特性カーブに基づいて定められることを特徴とする請求項1の組電池の検査方法。
A voltage variation measuring step of measuring a voltage variation of each battery cell of the assembled battery determined to be acceptable in the capacity determining step;
A voltage variation determination step of determining pass / fail according to whether or not the value of the voltage variation is equal to or less than a predetermined determination line ;
2. The assembled battery inspection method according to claim 1, wherein the predetermined determination line is determined based on the battery capacity characteristic curve.
前記所定の判定ラインは、検査を行う温度環境に応じて変更されることを特徴とする請求項の組電池の検査方法。 The assembled battery inspection method according to claim 2 , wherein the predetermined determination line is changed according to a temperature environment in which the inspection is performed. 直列接続された複数の電池セルで構成される組電池の検査装置であって、
前記組電池の充放電手段と、
前記充放電手段による充放電の途中で前記組電池の電圧を測定し、該測定電圧値をセル数で除した平均セル電圧値を求める平均セル電圧測定手段と、
前記電池セルの種類に応じた電池容量特性カーブを記憶する記憶手段と、
前記平均セル電圧値と前記記憶手段に記憶した前記電池容量特性カーブとから前記組電池の満充電容量を推定する電池容量推定手段と、
前記電池容量推定手段で推定した満充電容量に応じて合否を判定する容量判定手段と、
を有することを特徴とする組電池の検査装置。
A battery pack inspection apparatus comprising a plurality of battery cells connected in series,
Charging and discharging means of the assembled battery;
Average cell voltage measuring means for measuring the voltage of the assembled battery in the middle of charging / discharging by the charging / discharging means and obtaining an average cell voltage value obtained by dividing the measured voltage value by the number of cells;
Storage means for storing a battery capacity characteristic curve according to the type of the battery cell;
Battery capacity estimation means for estimating a full charge capacity of the assembled battery from the average cell voltage value and the battery capacity characteristic curve stored in the storage means;
Capacity determination means for determining pass / fail according to the full charge capacity estimated by the battery capacity estimation means;
A battery pack inspection apparatus comprising:
前記容量判定手段に合格と判定された組電池の各電池セルの電圧バラツキを測定する電圧バラツキ測定手段と、
前記電圧バラツキが所定の判定ライン以下であるときは合格と判定する電圧バラツキ判定手段と、をさらに有し、
前記所定の判定ラインは、前記電池容量特性カーブに基づいて定められことを特徴とする請求項4の組電池の検査装置。
Voltage variation measuring means for measuring voltage variation of each battery cell of the assembled battery determined to pass the capacity determining means;
Voltage variation determining means for determining that the voltage variation is acceptable when the voltage variation is equal to or less than a predetermined determination line;
5. The assembled battery inspection apparatus according to claim 4, wherein the predetermined determination line is determined based on the battery capacity characteristic curve.
前記所定の判定ラインは、検査を行う温度環境に応じて変更されることを特徴とする請求項の組電池の検査装置。 The assembled battery inspection device according to claim 5 , wherein the predetermined determination line is changed according to a temperature environment in which the inspection is performed.
JP2012169348A 2012-07-31 2012-07-31 Method and apparatus for inspecting assembled battery Active JP6031875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169348A JP6031875B2 (en) 2012-07-31 2012-07-31 Method and apparatus for inspecting assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169348A JP6031875B2 (en) 2012-07-31 2012-07-31 Method and apparatus for inspecting assembled battery

Publications (2)

Publication Number Publication Date
JP2014029273A JP2014029273A (en) 2014-02-13
JP6031875B2 true JP6031875B2 (en) 2016-11-24

Family

ID=50201944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169348A Active JP6031875B2 (en) 2012-07-31 2012-07-31 Method and apparatus for inspecting assembled battery

Country Status (1)

Country Link
JP (1) JP6031875B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106910950B (en) * 2017-03-31 2021-08-31 深圳安鼎新能源技术开发有限公司 Battery grouping system and method
JP7035891B2 (en) * 2018-08-03 2022-03-15 株式会社Gsユアサ Inspection equipment, inspection method
KR102517117B1 (en) 2019-03-26 2023-04-03 주식회사 엘지에너지솔루션 Process of Capacity Calculation Method of Lithium Secondary Battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178315B2 (en) * 1994-11-21 2001-06-18 セイコーエプソン株式会社 Battery remaining capacity meter and remaining capacity calculation method
JPH0968561A (en) * 1995-09-01 1997-03-11 Nissan Motor Co Ltd Residual capacity meter for pack battery
JP3641367B2 (en) * 1998-08-14 2005-04-20 日本電信電話株式会社 Alkaline battery capacity remaining amount estimation method and capacity estimation device
TW535308B (en) * 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
JP4597501B2 (en) * 2003-10-01 2010-12-15 プライムアースEvエナジー株式会社 Method and apparatus for estimating remaining capacity of secondary battery
JP4389758B2 (en) * 2004-11-04 2009-12-24 日産自動車株式会社 Cell voltage variation abnormality detection device

Also Published As

Publication number Publication date
JP2014029273A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
US11280837B2 (en) Apparatus and method for detecting battery cell failure due to unknown discharge current
CN104698385B (en) Battery state calculating device and battery state calculating method
WO2015041091A1 (en) Secondary cell degradation diagnosis system, and degradation diagnosis method
JP7141012B2 (en) Secondary battery system
CN107925135B (en) Degradation degree estimation device and degradation degree estimation method
KR101733073B1 (en) Inspection method of secondary battery
JP2019032198A (en) Power storage device inspection method and manufacturing method
CN102590623A (en) Secondary battery tester, secondary battery testing method, and manufacturing method of secondary battery
KR101779245B1 (en) System for checking a fail in a secondary battery and method thereof
JP6308145B2 (en) Secondary battery inspection method
JP2017022852A (en) Power storage device and power storage method
CN105866551A (en) Method for detecting internal resistance of sodium-sulfur battery
JP6541412B2 (en) Charging rate calculation method and charging rate calculation device
JP6031875B2 (en) Method and apparatus for inspecting assembled battery
JP2013165029A (en) Inspection method of battery
CN111566494A (en) Battery aging process
JP5768914B2 (en) Assembled battery charge state diagnosis method
JP2010216914A (en) Method for creating index of battery life standard, and method for determining secondary battery life
JP6244850B2 (en) Battery pack and battery deterioration detection device
CN109991550B (en) Storage battery performance detection method, device, system and computer readable storage medium
JP2018010750A (en) Method of inspecting secondary battery
JP7371037B2 (en) Inspection method and program for lithium ion secondary batteries
JP5928815B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2018026210A (en) Method for inspecting lithium ion secondary battery
JP2016162545A (en) Inspection method of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R150 Certificate of patent or registration of utility model

Ref document number: 6031875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350