JP7141012B2 - Secondary battery system - Google Patents

Secondary battery system Download PDF

Info

Publication number
JP7141012B2
JP7141012B2 JP2018045644A JP2018045644A JP7141012B2 JP 7141012 B2 JP7141012 B2 JP 7141012B2 JP 2018045644 A JP2018045644 A JP 2018045644A JP 2018045644 A JP2018045644 A JP 2018045644A JP 7141012 B2 JP7141012 B2 JP 7141012B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
differential curve
voltage
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045644A
Other languages
Japanese (ja)
Other versions
JP2019158597A (en
Inventor
明洋 田力
英司 遠藤
雅大 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2018045644A priority Critical patent/JP7141012B2/en
Publication of JP2019158597A publication Critical patent/JP2019158597A/en
Application granted granted Critical
Publication of JP7141012B2 publication Critical patent/JP7141012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池システムに係り、詳しくは、二次電池の劣化度合いを表す劣化指標を推定する機能を備えた二次電池システムに関する。 The present invention relates to a secondary battery system, and more particularly to a secondary battery system having a function of estimating a deterioration index indicating the degree of deterioration of a secondary battery.

二次電池の劣化度合いを表す劣化指標として、新品時の満充電容量に対する現状の満充電容量の比率であるSOH(State of Health)が広く知られている。この劣化指標SOHは、例えば二次電池を電池残容量0の状態から満充電まで充電して、実際の満充電容量を測定して得られることができる。しかしながら、劣化指標を推定するために電池残容量0の状態から満充電まで充電しなければならず、推定に要する時間が大幅に長くなるといった問題点がある。 As a deterioration index representing the degree of deterioration of a secondary battery, SOH (State of Health), which is the ratio of the current full charge capacity to the new full charge capacity, is widely known. This deterioration index SOH can be obtained, for example, by charging a secondary battery from a state of zero remaining battery capacity to full charge and measuring the actual full charge capacity. However, in order to estimate the deterioration index, it is necessary to charge the battery from a state where the remaining battery capacity is 0 to a fully charged state, which poses a problem that the time required for estimation is significantly lengthened.

そこで、二次電池の充放電時の電池容量及び電池電圧をパラメータとした微分特性を有する微分曲線が二次電池の劣化状態に応じて形状が異なることを利用して、微分曲線上に現れる特徴点の推移や変化量等に基づき二次電池の劣化指標を推定する種々の手法が提案されている。
例えば特許文献1に記載された二次電池システムでは、二次電池の充電時に電池容量Qを算出すると共に、電池電圧Vの変化量dVに対する電池容量Qの変化量dQの割合である微分値dQ/dVを求め、微分値dQ/dVと電池電圧Vとの関係から微分曲線V-dQ/dVを算出している。
Therefore, using the fact that a differential curve having differential characteristics with parameters of battery capacity and battery voltage during charging and discharging of the secondary battery changes in shape according to the deterioration state of the secondary battery, the characteristics appearing on the differential curve Various methods have been proposed for estimating the deterioration index of a secondary battery based on the point transition, the amount of change, and the like.
For example, in the secondary battery system described in Patent Document 1, the battery capacity Q is calculated when the secondary battery is charged, and the differential value dQ, which is the ratio of the change amount dQ of the battery capacity Q to the change amount dV of the battery voltage V, is calculated. /dV, and from the relationship between the differential value dQ/dV and the battery voltage V, a differential curve V-dQ/dV is calculated.

そして、所定の電池電圧Vの範囲内で微分曲線V-dQ/dVに現れる特徴点の電圧値、詳しくはピーク形状の頂点部分である極大点の電圧値から、二次電池の劣化指標である容量低下率を求めている。
また、特許文献2に記載された二次電池システムでは、微分曲線V-dQ/dVに現れる特徴点から、詳しくは微分曲線V-dQ/dVの極大点の微分値dQ/dV(極大値)から二次電池の劣化指標を求めている。
Then, the voltage value of the characteristic point appearing on the differential curve V-dQ/dV within the range of the predetermined battery voltage V, more specifically, the voltage value of the maximum point, which is the apex portion of the peak shape, is used as a deterioration index of the secondary battery. We are looking for the rate of capacity decrease.
Further, in the secondary battery system described in Patent Document 2, from the characteristic points appearing on the differential curve V-dQ/dV, more specifically, the differential value dQ/dV (maximum value) of the maximum point of the differential curve V-dQ/dV The deterioration index of the secondary battery is obtained from

特開2013-19709号公報JP 2013-19709 A 特開2014-139897号公報JP 2014-139897 A

しかしながら、特許文献1あるいは特許文献2における二次電池システムにおいては、微分曲線V-dQ/dVの極大点の微分値dQ/dVや極大点の電池電圧Vから二次電池の劣化指標を推定しているので、ノイズ等により極大点が変動した場合に、劣化指標の推定誤差を招く虞があった。
このように、上記特許文献1及び2に記載された二次電池システムは、劣化指標の推定精度に関して十分に満足できるものではなかった。
However, in the secondary battery system in Patent Document 1 or Patent Document 2, the deterioration index of the secondary battery is estimated from the differential value dQ/dV at the maximum point of the differential curve V-dQ/dV and the battery voltage V at the maximum point. Therefore, when the local maximum point fluctuates due to noise or the like, there is a risk of an estimation error of the deterioration index.
As described above, the secondary battery systems described in Patent Literatures 1 and 2 are not sufficiently satisfactory in terms of estimation accuracy of the deterioration index.

特に、電気自動車に搭載した二次電池においては、当該二次電池の劣化状態は車両の航続距離に影響するものであるので、少しでも精度の高い劣化指標の推定を可能にすることが要求されている。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、二次電池の劣化指標を高い精度で推定することができる二次電池システムを提供することにある。
In particular, in the case of secondary batteries installed in electric vehicles, the state of deterioration of the secondary batteries affects the cruising range of the vehicle, so it is required to be able to estimate the deterioration index with as high accuracy as possible. ing.
SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and an object of the present invention is to provide a secondary battery system capable of estimating a deterioration index of a secondary battery with high accuracy. .

上記の目的を達成するため、本発明の二次電池システムは、二次電池の充放電を制御する充放電制御部と、二次電池の電池電圧Vと、前記電池電圧Vの変化量dVに対する前記二次電池の電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V-dQ/dVを算出する微分曲線算出部と、前記電池電圧Vの所定の領域において現れる前記微分曲線V-dQ/dVのピーク部と、前記電池電圧Vが増加するに伴って前記微分値dQ/dVが減少するように傾斜する所定の直線との交点を特徴点として特定する特徴点特定部と、前記特徴点の電池電圧に基づいて、前記二次電池の劣化指標を推定する劣化指標推定部と、を備えたことを特徴とする。 In order to achieve the above object, the secondary battery system of the present invention includes a charge/discharge control unit for controlling charge/discharge of a secondary battery, a battery voltage V of the secondary battery, and a change amount dV of the battery voltage V. a differential curve calculator for calculating a differential curve V-dQ/dV indicating a relationship with dQ/dV, which is a ratio of a change amount dQ of the battery capacity Q of the secondary battery; A feature point that specifies an intersection point between a peak portion of the differential curve V-dQ/dV and a predetermined straight line that slopes so that the differential value dQ/dV decreases as the battery voltage V increases. and a deterioration index estimator for estimating a deterioration index of the secondary battery based on the battery voltage at the characteristic point.

このように構成した二次電池システムによれば、二次電池の充電時や放電時に、微分曲線算出部により微分曲線V-dQ/dVが算出され、特徴点特定部により電池電圧Vの所定の領域において微分曲線V-dQ/dVに現れるピーク部と、前記電池電圧Vが増加するに伴って前記微分値dQ/dVが減少するように傾斜する所定の直線との交点を特徴点として特定される。そして、劣化指標推定部により、この特徴点の電池電圧に基づいて、二次電池の劣化指標が推定される。 According to the secondary battery system configured in this way, when the secondary battery is charged or discharged, the differential curve V-dQ/dV is calculated by the differential curve calculation unit, and the battery voltage V is calculated by the feature point identification unit. An intersection point between a peak appearing in the differential curve V-dQ/dV in the region and a predetermined straight line that slopes so that the differential value dQ/dV decreases as the battery voltage V increases is specified as a characteristic point. be. Then, the deterioration index estimating unit estimates the deterioration index of the secondary battery based on the battery voltage at this feature point.

本発明は、微分曲線V-dQ/dVのピーク部と、電池電圧Vが増加するに伴って微分値dQ/dVが減少するように傾斜する所定の直線との交点を特徴点として特定するので、ノイズ等により微分曲線V-dQ/dVのピークの微分値dQ/dVやピークの電池電圧に検出誤差が発生しても、特徴点を精度良く特定することができ、二次電池の劣化指標の推定精度を向上させることができる。 In the present invention, the intersection of the peak of the differential curve V-dQ/dV and a predetermined straight line that slopes so that the differential value dQ/dV decreases as the battery voltage V increases is specified as a characteristic point. Even if a detection error occurs in the differential value dQ/dV at the peak of the differential curve V-dQ/dV or in the peak battery voltage due to noise, etc., the feature point can be specified with high accuracy, and the deterioration index of the secondary battery can improve the estimation accuracy of

好ましくは、前記特徴点特定部は、前記微分曲線V-dQ/dVの前記ピーク部に内接する所定の半径の円の接点を前記特徴点として特定するとよい。
これにより、微分曲線V-dQ/dVのピーク部と所定の直線との交点である特徴点を、容易に特定することができる。
好ましくは、前記特徴点特定部は、前記ピーク部と前記所定の半径の円との接点のうち、低電圧側の接点を前記特徴点として特定するとよい。
Preferably, the feature point specifying unit specifies, as the feature point, a point of contact of a circle with a predetermined radius inscribed in the peak portion of the differential curve V-dQ/dV.
As a result, it is possible to easily specify the feature point, which is the intersection point between the peak portion of the differential curve V-dQ/dV and the predetermined straight line.
Preferably, the feature point specifying unit specifies, as the feature point, a point of contact on the low voltage side of points of contact between the peak portion and the circle of the predetermined radius.

これにより、比較的明確で容易に特定できる低電圧側の接点を特徴点として、精度よく劣化指標を推定することができる。
また、前記微分曲線算出部は、前記所定の領域より低い電池電圧から前記二次電池を充電して前記微分曲線V-dQ/dVを算出するとよい。
これにより、ピーク部と所定の半径の円との2つの接点のうち、低電圧側の接点を特徴点として特定することと合わせて、充電時に電池電圧の所定の領域で比較的早期に特徴点を特定して、二次電池の劣化指標を早期に推定することができる。
As a result, it is possible to accurately estimate the deterioration index by using the low-voltage side contacts, which are relatively clear and can be easily identified, as feature points.
Also, the differential curve calculation unit may calculate the differential curve V-dQ/dV by charging the secondary battery from a battery voltage lower than the predetermined range.
As a result, of the two contact points of the peak portion and the circle of a predetermined radius, the point of contact on the low voltage side is specified as a feature point, and the feature point is relatively early in the predetermined region of the battery voltage during charging. can be specified to estimate the deterioration index of the secondary battery at an early stage.

また、前記二次電池の温度を検出する温度検出部を備え、前記劣化指標推定手段は、前記特徴点における前記電池電圧Vと前記二次電池の温度とに基づいて、前記二次電池の劣化指標を推定するとよい。
これにより、広い温度範囲で二次電池の劣化指標の推定精度を向上させることができる。
Further, a temperature detection unit that detects the temperature of the secondary battery is provided, and the deterioration index estimation means detects the deterioration of the secondary battery based on the battery voltage V and the temperature of the secondary battery at the feature point. Estimate a metric.
This makes it possible to improve the estimation accuracy of the deterioration index of the secondary battery over a wide temperature range.

本発明の二次電池システムによれば、二次電池の劣化指標を高い精度で推定することができる。 According to the secondary battery system of the present invention, the deterioration index of the secondary battery can be estimated with high accuracy.

本発明の実施形態の二次電池システムを示す概略構成図である。1 is a schematic configuration diagram showing a secondary battery system according to an embodiment of the invention; FIG. SOH100%における微分曲線V-dQ/dVの一例を示す特性図である。FIG. 4 is a characteristic diagram showing an example of a differential curve V-dQ/dV at 100% SOH; SOH86%における微分曲線V-dQ/dVの一例を示す特性図である。FIG. 4 is a characteristic diagram showing an example of a differential curve V-dQ/dV at SOH 86%; SOH73%における微分曲線V-dQ/dVの一例を示す特性図である。FIG. 4 is a characteristic diagram showing an example of a differential curve V-dQ/dV at SOH 73%; SOH62%における微分曲線V-dQ/dVの一例を示す特性図である。FIG. 4 is a characteristic diagram showing an example of a differential curve V-dQ/dV at SOH 62%; 図2~図5の微分曲線V-dQ/dVをまとめて記載した特性図である。FIG. 6 is a characteristic diagram summarizing the differential curves V−dQ/dV of FIGS. 2 to 5; FIG. 微分曲線V-dQ/dVの特徴点における微分値dQ/dVと電圧値Vとの関係の一例を示す特性図である。4 is a characteristic diagram showing an example of a relationship between a differential value dQ/dV and a voltage value V at a characteristic point of a differential curve V-dQ/dV; FIG.

以下、本発明を具体化した二次電池システムの一実施形態を説明する。
図1は本実施形態の二次電池システムを示す概略構成図である。
本実施形態の二次電池システム1は電気自動車に搭載されており、走行用動力源である走行モータに電力を供給している。全体として二次電池システム1は、その全体を統合制御するメインコントローラ2、及びメインコントローラ2に並列に接続された複数の二次電池モジュール3から構成されている。
An embodiment of a secondary battery system embodying the present invention will be described below.
FIG. 1 is a schematic configuration diagram showing the secondary battery system of this embodiment.
The secondary battery system 1 of this embodiment is mounted on an electric vehicle, and supplies electric power to a running motor, which is a power source for running the vehicle. As a whole, the secondary battery system 1 is composed of a main controller 2 for integrated control of the whole, and a plurality of secondary battery modules 3 connected in parallel to the main controller 2 .

二次電池モジュール3は、組電池4(二次電池)、サブコントローラ5及び充放電制御部6から構成されている。
組電池4は、所期の電池容量及び出力電圧を達成するために複数の単電池を組み合わせて構成されている。本実施形態の組電池4は、その正極電極板にLiMn及びLiMO(Mは、Co,Ni,Al,Mn,Feの内、少なくとも1つを含む遷移金属元素)が含まれている。
The secondary battery module 3 includes an assembled battery 4 (secondary battery), a sub-controller 5 and a charge/discharge control section 6 .
The assembled battery 4 is configured by combining a plurality of cells in order to achieve desired battery capacity and output voltage. The assembled battery 4 of the present embodiment contains LiMn 2 O 4 and LiMO 2 (M is a transition metal element containing at least one of Co, Ni, Al, Mn, and Fe) in its positive electrode plate. there is

組電池4には電圧センサ7、電流センサ8及び温度センサ9(温度検出部)が接続されている。電圧センサ7により組電池4の電池電圧Vが検出され、電流センサ8により組電池4の入出力電流Iが検出され、温度センサ9により組電池4の電池温度Tが検出され、それらの検出情報はサブコントローラ5に入力される。
サブコントローラ5は、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等から構成されている。サブコントローラ5は充放電制御部6を駆動して組電池4の充放電を制御する機能を奏し、充放電制御の際には、組電池4の劣化指標に応じて最大許容電流や最大許容電圧を調整する。なお、本実施形態においては、組電池4の劣化指標として、新品時の満充電容量に対する現状の満充電容量の比率であるSOH(State of Health)を使用する。
A voltage sensor 7 , a current sensor 8 and a temperature sensor 9 (temperature detection section) are connected to the assembled battery 4 . The voltage sensor 7 detects the battery voltage V of the assembled battery 4, the current sensor 8 detects the input/output current I of the assembled battery 4, the temperature sensor 9 detects the battery temperature T of the assembled battery 4, and the detection information thereof. is input to the sub-controller 5.
The sub-controller 5 includes an input/output device (not shown), a storage device (ROM, RAM, etc.) for storing control programs, control maps, etc., a central processing unit (CPU), a timer counter, and the like. The sub-controller 5 has a function of controlling charging and discharging of the assembled battery 4 by driving the charging/discharging control unit 6. During charging/discharging control, the maximum allowable current and maximum allowable voltage are controlled according to the deterioration index of the assembled battery 4. to adjust. In this embodiment, SOH (State of Health), which is the ratio of the current full charge capacity to the new full charge capacity, is used as the deterioration index of the assembled battery 4 .

また、サブコントローラ5は、組電池4のSOHを推定するために必要な微分曲線を算出する微分曲線算出部10を備えている。本実施形態では微分曲線としてV-dQ/dVを用いている。微分曲線V-dQ/dVとは、組電池4の電池電圧Vと、組電池4の電池電圧Vの変化量dVに対する電池容量Qの変化量dQの割合である微分値dQ/dVとの関係を示すものである。 The sub-controller 5 also includes a differential curve calculator 10 that calculates a differential curve necessary for estimating the SOH of the assembled battery 4 . In this embodiment, V-dQ/dV is used as the differential curve. The differential curve V-dQ/dV is the relationship between the battery voltage V of the assembled battery 4 and the differential value dQ/dV, which is the ratio of the variation dQ of the battery capacity Q to the variation dV of the battery voltage V of the assembled battery 4. is shown.

微分曲線算出部10は、組電池4の充電時または放電時に所定時間毎に組電池4の電池容量Qを逐次算出すると共に、これに同期して電池電圧Vを取得し、組電池4の電池電圧Vの変化量dVに対する電池容量Qの変化量dQの割合である微分値dQ/dVを算出する。そして、得られた微分値dQ/dVと電池電圧Vとの関係を示す曲線として微分曲線V-dQ/dVを算出する。 The differential curve calculation unit 10 sequentially calculates the battery capacity Q of the assembled battery 4 at predetermined time intervals during charging or discharging of the assembled battery 4, acquires the battery voltage V in synchronization with this calculation, and calculates the battery voltage of the assembled battery 4. A differential value dQ/dV, which is the ratio of the variation dQ of the battery capacity Q to the variation dV of the voltage V, is calculated. Then, a differential curve V-dQ/dV is calculated as a curve showing the relationship between the obtained differential value dQ/dV and the battery voltage V. FIG.

図2~図5は微分曲線V-dQ/dVの一例を示す特性図である。図2~図5では、微分値dQ/dVを縦軸とし、電池電圧Vを横軸として微分曲線V-dQ/dVが表されている。組電池4の充電または放電に伴って組電池4の充電率(SOC:State of Charge)と共に電池電圧Vが増加または低下し、それに応じて微分値dQ/dVが変化することにより、例えば図2~5に示すように微分曲線V-dQ/dV上には、電圧値Vの所定範囲(例えば3.85V~4.05V付近)においてピーク形状が現れる。以下、この所定範囲に現れる1つのピーク形状全体をピーク部Pという。なお、ピーク部Pは、図2ではP1、図3ではP2、図4ではP3、図5ではP4として記載している。 2 to 5 are characteristic diagrams showing examples of differential curves V-dQ/dV. 2 to 5, the differential curve V-dQ/dV is shown with the differential value dQ/dV on the vertical axis and the battery voltage V on the horizontal axis. As the assembled battery 4 is charged or discharged, the battery voltage V increases or decreases along with the state of charge (SOC) of the assembled battery 4, and the differential value dQ/dV changes accordingly. 5, a peak shape appears on the differential curve V-dQ/dV in a predetermined range of voltage value V (for example, around 3.85 V to 4.05 V). An entire peak shape appearing in this predetermined range will be referred to as a peak portion P hereinafter. 2, P2 in FIG. 3, P3 in FIG. 4, and P4 in FIG.

微分曲線算出部10は、算出した微分曲線V-dQ/dV及び温度センサ9により検出された電池温度T(以下、これらを実測データと称する)をメインコントローラ2に出力する。SOHの推定に微分曲線V-dQ/dV上の何れの特徴点を特定し、どのように推定するのかは本発明の特徴部分であるため、その手法については後に詳述する。
なおサブコントローラ5は、組電池4の充放電に伴う入出力電流Iを所定時間毎に積算して組電池4のSOCを算出し、その情報もメインコントローラ2に出力する。
The differential curve calculator 10 outputs the calculated differential curve V−dQ/dV and the battery temperature T detected by the temperature sensor 9 (hereinafter referred to as measured data) to the main controller 2 . Since it is a characteristic part of the present invention to specify which feature point on the differential curve V-dQ/dV for estimating SOH and how to estimate it, the method will be described in detail later.
The sub-controller 5 calculates the SOC of the assembled battery 4 by integrating the input/output current I associated with charging and discharging of the assembled battery 4 every predetermined time, and outputs the information to the main controller 2 as well.

一方、メインコントローラ2はサブコントローラ5と同様に、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等から構成されている。
メインコントローラ2は、入出力部12、データ保存部13、特徴点特定部15、SOH推定部16(劣化指標推定部)及び充放電指令部17を備えている。
On the other hand, like the sub-controller 5, the main controller 2 includes an input/output device (not shown), a storage device (ROM, RAM, etc.) for storing control programs, control maps, etc., a central processing unit (CPU), a timer counter, etc. consists of
The main controller 2 includes an input/output unit 12 , a data storage unit 13 , a feature point identification unit 15 , an SOH estimation unit 16 (deterioration index estimation unit), and a charge/discharge command unit 17 .

データ保存部13は、入出力部12を介して各二次電池モジュール3のサブコントローラ5から入力された実測データを記憶する。またデータ保存部13には、予め微分曲線V-dQ/dV上の特定の特徴点Ptの電圧値Vtと組電池4のSOHとの相関関係を示すデータ(以下、基準データと称する)が温度域毎に記憶されている。
基準データの作成処理は、以下の通りである。
The data storage unit 13 stores actual measurement data input from the sub-controller 5 of each secondary battery module 3 via the input/output unit 12 . The data storage unit 13 also stores data (hereinafter referred to as reference data) indicating the correlation between the voltage value Vt of a specific feature point Pt on the differential curve V-dQ/dV and the SOH of the assembled battery 4 in advance. stored for each region.
The processing for creating the reference data is as follows.

まず、本実施形態の組電池4と同一規格の組電池4の劣化試験を実施し、未使用の組電池4の充放電を繰り返して寿命限界まで段階的に劣化させる。劣化過程の各SOHにおいて、異なる複数の温度域の下で組電池4を充放電させる。
そして、上記した微分曲線算出部10の処理と同じく、充放電により得られた電池電圧V及び電池容量Qに基づき微分値dQ/dVを算出し、電池電圧Vと微分値dQ/dVとの関係を示す微分曲線V-dQ/dVを算出した上で、微分曲線V-dQ/dV上に出現した特定の特徴点Ptの位置(V,dQ/dV)を求める。結果として特定の特徴点Ptの電圧値Vtと組電池4のSOHとの相関関係が温度域毎に定められ、各二次電池モジュール3の共通の基準データとして予めデータ保存部13に記憶される。
First, the assembled battery 4 of the same standard as that of the assembled battery 4 of the present embodiment is subjected to a deterioration test, and the unused assembled battery 4 is repeatedly charged and discharged to gradually deteriorate to the end of its life. At each SOH in the deterioration process, the assembled battery 4 is charged and discharged under a plurality of different temperature ranges.
Then, similar to the processing of the differential curve calculation unit 10 described above, the differential value dQ/dV is calculated based on the battery voltage V and the battery capacity Q obtained by charging and discharging, and the relationship between the battery voltage V and the differential value dQ/dV After calculating the differential curve V-dQ/dV indicating , the position (V, dQ/dV) of the specific feature point Pt appearing on the differential curve V-dQ/dV is obtained. As a result, the correlation between the voltage value Vt of the specific feature point Pt and the SOH of the assembled battery 4 is determined for each temperature range, and is stored in advance in the data storage unit 13 as common reference data for each secondary battery module 3. .

SOH推定部16は、データ保存部13に記憶された各二次電池モジュール3の基準データを読み出して逐次実測データと比較して、それぞれの二次電池モジュール3について現在の組電池4のSOHを推定する。詳しくは、実測データの電池温度Tに基づき温度域を特定し、その温度域に対応する各SOHの基準データの中から、実測データの特定の特徴点の位置に対して一致または最も近い特徴点を有する基準データを選択し、その基準データのSOHを推定値と見なす。本実施形態における特徴点Ptは、電池電圧Vと微分値dQ/dVとの関係を示すグラフ上で、所定の傾きを有する直線Lと、測定した微分曲線V-dQ/dVとの交点とする。 The SOH estimating unit 16 reads the reference data of each secondary battery module 3 stored in the data storage unit 13 and sequentially compares it with the actual measurement data to obtain the current SOH of the assembled battery 4 for each secondary battery module 3. presume. Specifically, a temperature range is specified based on the battery temperature T of the actual measurement data, and from among the reference data of each SOH corresponding to the temperature range, the feature point that matches or is closest to the position of the specific feature point of the actual measurement data is selected. and take the SOH of that reference data as an estimate. The feature point Pt in this embodiment is the intersection of the straight line L having a predetermined slope and the measured differential curve V-dQ/dV on the graph showing the relationship between the battery voltage V and the differential value dQ/dV. .

このときの実測データは微分曲線V-dQ/dVの全領域が算出されている必要はなく、上記所定範囲の電池電圧Vの領域を含むものであれば特徴点Ptの特定、延いてはSOHの推定が可能である。本発明の劣化指標推定部は、このような部分的な微分曲線V-dQ/dVを算出する場合も含むものとする。
なお、各SOH間及び各温度域間は基準データを特定できないため、補間処理により基準データを算出してもよい。
The actual measurement data at this time does not need to be calculated for the entire area of the differential curve V-dQ/dV. can be estimated. The deterioration index estimator of the present invention shall also include a case of calculating such a partial differential curve V-dQ/dV.
Since the reference data cannot be specified between each SOH and between each temperature range, the reference data may be calculated by interpolation processing.

充放電指令部17は、SOH推定部16により推定されたSOH等に基づき、各二次電池モジュール3のサブコントローラ5に入出力部12を介して充放電制御の指令を出力する。例えば所定値未満のSOHが推定された二次電池モジュール3に対しては、充放電時の最大許容電流や最大許容電圧を制限する指令を出力する。この指令に基づくサブコントローラ5による充放電制御により、劣化の進行した組電池4の保護が図られる。 The charge/discharge command unit 17 outputs a charge/discharge control command to the sub-controller 5 of each secondary battery module 3 via the input/output unit 12 based on the SOH and the like estimated by the SOH estimation unit 16 . For example, for the secondary battery module 3 whose SOH is estimated to be less than a predetermined value, a command is output to limit the maximum allowable current and maximum allowable voltage during charging and discharging. The charge/discharge control by the sub-controller 5 based on this command protects the assembled battery 4 whose deterioration has progressed.

また充放電指令部17は、何れかの二次電池モジュール3で寿命限界を下回るSOHが推定された場合等には、運転席に設けられた表示部18に車両点検を促すメッセージを表示する。これにより販社等で車両点検が実施されて、必要に応じて組電池4が交換される。
なお、以上の説明では、各二次電池モジュール3の組電池4全体を対象として、電池電圧V、入出力電流I及び温度Tの検出処理、微分曲線V-dQ/dVの算出処理、SOHの推定処理を実施したが、これに限るものではない。例えば、組電池4を構成する単電池毎に各処理を実施したり、或いは複数の単電池からなる単電池群毎に各処理を実施したりしてもよい。また、微分曲線算出部10、データ保存部13、特徴点特定部15、SOH推定部16は必ずしもメインコントローラ2やサブコントローラ5に存在する必要は無く、外部PCのソフトウェアなどでこれらの処理を行ってもよい。
In addition, the charge/discharge command unit 17 displays a message prompting vehicle inspection on the display unit 18 provided in the driver's seat when the SOH is estimated to fall below the life limit of any of the secondary battery modules 3 . As a result, the vehicle is inspected at the sales company or the like, and the assembled battery 4 is replaced if necessary.
In the above description, the battery voltage V, the input/output current I, and the temperature T are detected, the differential curve V-dQ/dV is calculated, and the SOH is calculated for the entire assembled battery 4 of each secondary battery module 3. Although the estimation process was performed, it is not limited to this. For example, each process may be performed for each unit cell that constitutes the assembled battery 4, or each process may be performed for each unit cell group composed of a plurality of cells. Further, the differential curve calculation unit 10, the data storage unit 13, the feature point identification unit 15, and the SOH estimation unit 16 do not necessarily exist in the main controller 2 or the sub-controller 5, and these processes are performed by software of an external PC. may

データ保存部13は、更に、SOH毎の特徴点Ptを結んだ直線Lが、電池温度T毎に記憶されている。以下に、直線Lの設定方法について説明する。
組電池4は、例えばSOH100%、電池温度Tが摂氏25℃において図2に示す微分曲線V-dQ/dVが得られている。そして、本実施形態の二次電池システムは、微分曲線V-dQ/dV上に出現している複数の特徴点の中から、SOHの推定に好適な特徴点として、電池電圧Vの所定範囲において現れるピーク部Pに内接する円Aとの接点を特徴点Ptとした。
The data storage unit 13 further stores, for each battery temperature T, a straight line L connecting the feature points Pt for each SOH. A method for setting the straight line L will be described below.
For the assembled battery 4, for example, when the SOH is 100% and the battery temperature T is 25 degrees Celsius, the differential curve V-dQ/dV shown in FIG. 2 is obtained. Then, in the secondary battery system of the present embodiment, among a plurality of feature points appearing on the differential curve V-dQ/dV, as feature points suitable for estimating SOH, in a predetermined range of the battery voltage V, A point of contact with a circle A inscribed in the appearing peak portion P was defined as a feature point Pt.

図2~5は、電池温度Tが摂氏25℃で各SOHにおいて、完全放電状態から充電した際の実測値に基づいた微分曲線V-dQ/dVの例である。図2はSOH100%、図3はSOH86%、図4はSOH73%、図5はSOH62%である。図6は、図2~図5の微分曲線V-dQ/dVをまとめて記載した特性図である。更に、図2~図6には、ピーク部P(P1~P4)に内接する所定の半径Rの円Aを記載している。所定の半径Rは、一定の値であり、図2~図4に示すように、微分曲線V-dQ/dVに2カ所で内接するように、組電池4の仕様によって適宜設定すればよい。なお、特徴点Ptについては、図2ではPt1、図3ではPt2、図4ではPt3、図5ではPt4と記載している。特徴点Ptの電圧値Vtについては、図2ではVt1、図3ではVt2、図4ではVt3、図5ではVt4と記載している。 2 to 5 are examples of differential curves V-dQ/dV based on actual measurements when the battery temperature T is 25° C. and each SOH is charged from a fully discharged state. 2 is SOH 100%, FIG. 3 is SOH 86%, FIG. 4 is SOH 73%, and FIG. 5 is SOH 62%. FIG. 6 is a characteristic diagram summarizing the differential curves V-dQ/dV of FIGS. 2 to 5. In FIG. Furthermore, FIGS. 2 to 6 show a circle A with a predetermined radius R inscribed in the peak portions P (P1 to P4). The predetermined radius R is a constant value, and may be appropriately set according to the specifications of the assembled battery 4 so as to inscribe the differential curve V-dQ/dV at two points as shown in FIGS. 2, Pt2 in FIG. 3, Pt3 in FIG. 4, and Pt4 in FIG. 2, Vt2 in FIG. 3, Vt3 in FIG. 4, and Vt4 in FIG. 5, respectively.

発明者は、組電池4を各SOHの状態で、微分曲線V-dQ/dVを測定した。その結果、図2~5に示すように、微分曲線V-dQ/dVにおけるピーク部P(P1~P4)は、劣化の進行に伴って高電圧側に移行することが確認された。これは、組電池4の劣化に伴い、組電池4の内部抵抗が増加することや正極及び負極の劣化が原因と考えられる。
そこで、本実施形態では、完全放電状態から充電を開始して微分曲線V-dQ/dVにおける電池電圧Vの所定範囲において現れる上向きのピーク部Pに内接する所定の半径Rの円Aと微分曲線V-dQ/dVとの2つの接点のうち、電池電圧Vの低い側の接点を特徴点Ptとした。
The inventor measured the differential curve V-dQ/dV for the assembled battery 4 in each SOH state. As a result, as shown in FIGS. 2 to 5, it was confirmed that the peak portion P (P1 to P4) in the differential curve V-dQ/dV shifts to the high voltage side as the deterioration progresses. This is considered to be caused by an increase in the internal resistance of the assembled battery 4 and deterioration of the positive electrode and the negative electrode as the assembled battery 4 deteriorates.
Therefore, in the present embodiment, charging is started from a completely discharged state, and a circle A with a predetermined radius R inscribed in an upward peak portion P that appears in a predetermined range of the battery voltage V in the differential curve V-dQ/dV and the differential curve Of the two points of contact with V-dQ/dV, the point of contact with the lower battery voltage V was defined as the feature point Pt.

その結果、図6に示すように、微分曲線V-dQ/dVに内接する円Aの中心Cは、直線L上に並ぶことが判明した。即ち、微分曲線V-dQ/dVと円Aの低電圧側の交点である特徴点Pt(Pt1~Pt4)は直線L上に並ぶ。更に、SOHが低下するに伴って、円A及び特徴点Ptは図6中で右下に、即ち微分値dQ/dVが低下するとともに電圧値V(Vt1~Vt4)が増加することが判明した。 As a result, it was found that the center C of the circle A inscribed in the differential curve V-dQ/dV is aligned on the straight line L, as shown in FIG. That is, characteristic points Pt (Pt1 to Pt4), which are intersections of the differential curve V-dQ/dV and the circle A on the low voltage side, are aligned on the straight line L. FIG. Furthermore, it was found that as the SOH decreases, the circle A and the feature point Pt move to the lower right in FIG. 6, that is, the differential value dQ/dV decreases and the voltage value V (Vt1 to Vt4) increases .

なお、図5に示すSOH62%の微分曲線V-dQ/dVにおいては、ピーク部P4の幅が大きく形成されており、半径Rの円Aが微分曲線V-dQ/dVの低電圧側と高電圧側の両方に接しない。これは、このピーク部P4は、破線で示すように2種類の材料によって発生する2つのピーク部Pd1、及びPd2を合わせたものであるためと推定される。したがって、低電圧側のピーク部Pd1において2カ所内接する円Aが、その他のSOHの微分曲線V-dQ/dVで規定された円Aの中心Cを結ぶ直線L上に位置することと考えられる。 In the differential curve V-dQ/dV of SOH 62% shown in FIG. Do not touch both voltage sides. It is presumed that this peak portion P4 is a combination of two peak portions Pd1 and Pd2 generated by two kinds of materials as indicated by broken lines. Therefore, it is conceivable that the circle A inscribed at two points in the peak portion Pd1 on the low voltage side lies on the straight line L connecting the center C of the circle A defined by the differential curve V-dQ/dV of the other SOH. .

図7は、本実施形態における特徴点Ptの電圧値Vtと微分値dQ/dVとの関係について、複数個計測した結果を示す特性図である。なお、図7中における□点は電池温度Tが摂氏0度、◇点は電池温度Tが摂氏25度である。
図7に示すように、組電池4を、電池温度Tが摂氏0度の場合と、電池温度Tが摂氏25度の場合の夫々において、複数のSOHで特徴点Ptの位置(電圧値Vt及び微分値dQ/dV)を実測したところ、特徴点Ptは電池温度T毎に略直線上に並んだ。
FIG. 7 is a characteristic diagram showing the results of multiple measurements of the relationship between the voltage value Vt at the feature point Pt and the differential value dQ/dV in this embodiment. In FIG. 7, □ points indicate that the battery temperature T is 0 degrees Celsius, and ◇ points indicate that the battery temperature T is 25 degrees Celsius.
As shown in FIG. 7, the position of the characteristic point Pt (voltage value Vt and When the differential value dQ/dV) was actually measured, the characteristic points Pt were arranged substantially on a straight line for each battery temperature T.

図6、7に示すように、電池温度T毎に、特徴点PtがSOHに応じて直線上に並ぶので、特徴点Ptの電圧値VtからSOHを求めることが可能となる。
本実施形態では、例えば工場等において、組電池4に対し、あらかじめ判明している複数のSOHにおいて、微分曲線V-dQ/dVを夫々計測し、内接する一定の円Aを設定し、その中心Cを結ぶ直線Lを、適宜設定した電池温度T毎に演算する。そして、この直線Lを、特徴点Ptの電圧値Vtと微分値dQ/dVとの関係を示すデータとしてデータ保存部13に記憶しておく。なお、この直線Lについては、同一の仕様の組電池4については同一のものであり共用可能である。
As shown in FIGS. 6 and 7, since the feature points Pt are aligned on a straight line according to the SOH for each battery temperature T, it is possible to obtain the SOH from the voltage value Vt of the feature point Pt.
In this embodiment, for example, in a factory or the like, the differential curves V-dQ/dV are measured at a plurality of known SOHs for the assembled battery 4, and a certain inscribed circle A is set. A straight line L connecting C is calculated for each battery temperature T set appropriately. Then, this straight line L is stored in the data storage unit 13 as data indicating the relationship between the voltage value Vt of the characteristic point Pt and the differential value dQ/dV. It should be noted that this straight line L is the same for assembled batteries 4 having the same specifications and can be used in common.

組電池4の使用時においては、特徴点特定部15は、例えば組電池4の充電時に、データ保存部13にあらかじめ記憶している直線Lと、計測した微分曲線V-dQ/dVとの交点である特徴点Ptを求める。そして、SOH推定部16は、特徴点Ptの電圧値Vtから基準データを用いてSOHを推定する。
詳しくは、充放電指令部17は、組電池4が完全放電状態または完全放電に近い所定量以下の充電状態から、充放電制御部6を介して組電池4を充電させる。そして、微分曲線算出部10において微分曲線V-dQ/dVを算出する。なお、微分曲線V-dQ/dVを算出する際にフィルタを用いてもよい。
When the assembled battery 4 is used, for example, when the assembled battery 4 is charged, the feature point identification unit 15 determines the intersection point between the straight line L stored in advance in the data storage unit 13 and the measured differential curve V-dQ/dV. A feature point Pt is obtained. Then, the SOH estimator 16 estimates the SOH from the voltage value Vt of the feature point Pt using the reference data.
Specifically, the charge/discharge command unit 17 charges the assembled battery 4 via the charge/discharge control unit 6 from the state where the assembled battery 4 is fully discharged or charged to a predetermined amount or less close to being completely discharged. Then, the differential curve V-dQ/dV is calculated in the differential curve calculator 10 . A filter may be used when calculating the differential curve V-dQ/dV.

特徴点特定部15は、データ保存部13から、現在の電池温度Tに近い直線Lを読み出し、この直線Lと微分曲線V-dQ/dVとの交点、詳しくは上述のように、所定の電池電圧の範囲内での低電圧側の交点を特徴点Ptとして特定する。
SOH推定部16は、データ保存部13にあらかじめ記憶しておいた基準データから、温度センサ9から入力した電池温度Tに基づく基準データを読み出し、当該基準データを用いて、特徴点Ptの電圧値Vtに基づいてSOHを推定する。なお、この電池温度Tは、充電中に変化することが予想されるので、充電中において電池電圧Vの検出とともに電池温度Tを検出して記憶しておき、変化量最大電圧値Vsにおける電池温度Tを用いればよい。
The feature point specifying unit 15 reads out the straight line L close to the current battery temperature T from the data storage unit 13, and the intersection of this straight line L and the differential curve V-dQ/dV, more specifically, the predetermined battery temperature as described above. A low-voltage crossing point within the voltage range is specified as a feature point Pt.
The SOH estimation unit 16 reads the reference data based on the battery temperature T input from the temperature sensor 9 from the reference data stored in advance in the data storage unit 13, and uses the reference data to calculate the voltage value of the characteristic point Pt. Estimate SOH based on Vt. Since this battery temperature T is expected to change during charging, the battery temperature T is detected and stored together with the detection of the battery voltage V during charging. T can be used.

以上のように、本実施形態では、微分曲線V-dQ/dVの特徴点Ptの電圧値VtからSOHを推定するので、SOHと強い相関性のある電圧値Vtとの関係を利用してSOHを精度良く推定することができる。
また、図7に示すように、電池温度Tが摂氏0℃と25℃では、変化量最大電圧値VtとSOHとの相関関係の差が少ない組電池4に対しては、例えば摂氏0℃から25℃の間の温度領域では、基準データをまとめることができ、データ保存部13におけるメモリ容量を抑えることができるとともに、SOH推定部16においてSOHを推定する際の演算負荷を抑制することができる。
As described above, in this embodiment, the SOH is estimated from the voltage value Vt at the characteristic point Pt of the differential curve V-dQ/dV. can be estimated with high accuracy.
Further, as shown in FIG. 7, when the battery temperature T is 0° C. In the temperature range between 25° C., the reference data can be collected, the memory capacity of the data storage unit 13 can be suppressed, and the calculation load when estimating the SOH in the SOH estimating unit 16 can be suppressed. .

電池温度Tによって変化量最大電圧値VsとSOHとの相関関係の差が大きい電池においては、電池温度T毎に基準データを使い分けることで、精度のよいSOHの推定が可能となる。
ところで、微分曲線V-dQ/dVにおいて微分値dQ/dVのピーク部にノイズが乗ることで、微分値dQ/dVのピーク値が変動する可能性がある。したがって、特許文献1のように微分値dQ/dVのピークにおける電圧値に基づいて電池のSOHを推定したり、特許文献2のように微分値dQ/dVのピーク値に基づいて電池のSOHを推定したりすると、推定精度が低下する虞がある。
In a battery with a large difference in the correlation between the variation maximum voltage value Vs and the SOH depending on the battery temperature T, by using different reference data for each battery temperature T, the SOH can be estimated with high accuracy.
By the way, there is a possibility that the peak value of the differential value dQ/dV fluctuates due to noise superimposed on the peak portion of the differential value dQ/dV in the differential curve V−dQ/dV. Therefore, as in Patent Document 1, the SOH of the battery is estimated based on the voltage value at the peak of the differential value dQ/dV, or as in Patent Document 2, the SOH of the battery is estimated based on the peak value of the differential value dQ/dV. If it is estimated, there is a possibility that the estimation accuracy may be lowered.

これに対し、本実施形態では、ピーク部Pに内接する内接円の接点を特徴点Ptとするので、ピーク部Pにノイズが乗ってピーク値が変化しても、その影響を回避して、SOHを精度よく推定することができる。このように、本実施形態では、ピーク値やピークの電圧値ではなく、ピーク部Pの全体形状から特定される特徴点Ptに基づいてSOHを推定することで、ノイズの影響を受け難く、精度よくSOHを推定することができる。 On the other hand, in the present embodiment, since the point of contact of the inscribed circle that inscribes the peak portion P is the feature point Pt, even if the peak value changes due to noise on the peak portion P, the influence of the noise can be avoided. , SOH can be accurately estimated. Thus, in this embodiment, by estimating the SOH based on the feature point Pt specified from the overall shape of the peak portion P, rather than the peak value or the voltage value at the peak, it is difficult to be affected by noise, and the accuracy is improved. SOH can be well estimated.

本実施形態の組電池4は、例えば正極電極板に活物質としてLiMn、及びLiMO(Mは、Co,Ni,Al,Mn,Feの内、少なくとも1つを含む遷移金属元素)が含まれているが、このうちLiMnにより現れると考えられる特徴が微分曲線V-dQ/dV上で所定の電圧範囲で明確なピーク形状として現れ、この明確なピーク形状のピーク部に内接する円の接点を特徴点Ptとして利用し、特徴点Ptの電圧値から精度の高い推定が可能となる。 In the assembled battery 4 of the present embodiment, for example, LiMn 2 O 4 and LiMO 2 (M is a transition metal element containing at least one of Co, Ni, Al, Mn, and Fe) are used as active materials in the positive electrode plate. Among them, the characteristic that is considered to appear due to LiMn 2 O 4 appears as a clear peak shape in a predetermined voltage range on the differential curve V-dQ/dV, and the peak part of this clear peak shape Using the points of contact of the inscribed circles as the feature points Pt, it is possible to perform highly accurate estimation from the voltage values of the feature points Pt.

また、本実施形態では、変化量最大電圧値Vsだけでなく、電池温度Tに基づいてSOHの推定を行うので、広い温度範囲でSOHの推定精度を向上させることができる。
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、微分曲線V-dQ/dVを算出する際に、組電池4を完全放電状態または完全放電に近い充電状態から充電を行うが、ピーク部Pが確実に表れる電圧Vの範囲で充電すればよい。例えば、図2~6に示すような微分曲線V-dQ/dVとなる本実施形態の組電池4では、3.8Vから4.1V付近の電圧Vの範囲で充電すれば、ピーク部Pが現れる。これにより、SOHを推定する際に完全放電する必要がなく、SOHの推定時間を短縮することができる。
Further, in the present embodiment, SOH is estimated based not only on the variation maximum voltage value Vs, but also on the battery temperature T, so the SOH estimation accuracy can be improved over a wide temperature range.
Although the description of the embodiment is finished above, the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, when calculating the differential curve V-dQ/dV, the assembled battery 4 is charged from a fully discharged state or a charged state close to a fully discharged state. should be charged with For example, in the assembled battery 4 of the present embodiment having a differential curve V-dQ/dV as shown in FIGS. appear. This eliminates the need for complete discharge when estimating the SOH, thereby shortening the SOH estimation time.

また、上記実施形態では、特徴点Ptを特定するために使用する直線Lを、ピーク部Pに内接する所定の半径Rの円Aの中心Cを結ぶ線としたが、これに限定するものではない。直線Lについては、図6に示すようにSOHが低下するに伴ってピーク部Pが右下に変化するに伴って、電池電圧Vが増加するに伴って微分値dQ/dVが減少するように右下がりに傾斜するような直線に適宜設定してもよい。 In the above embodiment, the straight line L used to specify the characteristic point Pt is a line connecting the center C of the circle A having a predetermined radius R inscribed in the peak portion P, but it is not limited to this. do not have. Regarding the straight line L, as shown in FIG. 6, as the SOH decreases, the peak portion P changes to the lower right, and as the battery voltage V increases, the differential value dQ/dV decreases. It may be appropriately set to a straight line that slopes downward to the right.

但し、上記実施形態のように直線Lを、ピーク部Pに内接する所定の半径Rの円Aの中心Cを結ぶ線にすることで、直線Lを容易に設定して特徴点Ptを容易に特定することができる。
また、本実施形態では、電気自動車に搭載された二次電池システム1として本発明を具体化したが、本発明は車両用に限定されるものではなく、例えば、工場や店舗等で利用される定置型の二次電池システムに具体化してもよい。
However, by making the straight line L a line connecting the center C of the circle A with a predetermined radius R inscribed in the peak portion P as in the above embodiment, the straight line L can be easily set and the feature point Pt can be easily found. can be specified.
In addition, in the present embodiment, the present invention is embodied as the secondary battery system 1 mounted on an electric vehicle, but the present invention is not limited to vehicles, and is used in factories, stores, etc., for example. It may be embodied in a stationary secondary battery system.

4 組電池(二次電池)
6 充放電制御部
9 温度センサ(温度検出部)
10 微分曲線算出部
15 特徴点特定部
16 SOH推定部(劣化指標推定部)
4 assembled battery (secondary battery)
6 charge/discharge control unit 9 temperature sensor (temperature detection unit)
10 differential curve calculator 15 feature point identifier 16 SOH estimator (degradation index estimator)

Claims (5)

二次電池の充放電を制御する充放電制御部と、
二次電池の電池電圧Vと、前記電池電圧Vの変化量dVに対する前記二次電池の電池容量Qの変化量dQの割合である微分値dQ/dVとの関係を示す微分曲線V-dQ/dVを算出する微分曲線算出部と、
前記電池電圧Vの所定の領域において現れる前記微分曲線V-dQ/dVのピーク部と、前記電池電圧Vが増加するに伴って前記微分値dQ/dVが減少するように傾斜する所定の直線との交点を特徴点として特定する特徴点特定部と
前記特徴点の電池電圧に基づいて、前記二次電池の劣化指標を推定する劣化指標推定部と、
を備えたことを特徴とする二次電池システム。
a charge/discharge control unit that controls charge/discharge of the secondary battery;
A differential curve V-dQ/ showing the relationship between the battery voltage V of the secondary battery and the differential value dQ/dV, which is the ratio of the variation dQ of the battery capacity Q of the secondary battery to the variation dV of the battery voltage V. a differential curve calculator that calculates dV;
A peak portion of the differential curve V-dQ/dV that appears in a predetermined region of the battery voltage V, and a predetermined straight line that slopes so that the differential value dQ/dV decreases as the battery voltage V increases. a feature point identifying unit that identifies the intersection of as a feature point ;
a deterioration index estimation unit that estimates a deterioration index of the secondary battery based on the battery voltage at the feature point;
A secondary battery system comprising:
前記特徴点特定部は、前記微分曲線V-dQ/dVの前記ピーク部に内接する所定の半径の円の接点を前記特徴点として特定することを特徴とする請求項1に記載の二次電池システム。 2. The secondary battery according to claim 1, wherein the feature point specifying unit specifies, as the feature point, a point of contact of a circle with a predetermined radius inscribed in the peak portion of the differential curve V-dQ/dV. system. 前記特徴点特定部は、前記ピーク部と前記所定の半径の円との2つの接点のうち、低電圧側の接点を前記特徴点として特定することを特徴とする請求項2に記載の二次電池システム。 3. The secondary according to claim 2, wherein the characteristic point identifying unit identifies, as the characteristic point, the point of contact on the low voltage side of two points of contact between the peak portion and the circle of the predetermined radius. battery system. 前記微分曲線算出部は、前記所定の領域より低い電池電圧から前記二次電池を充電して前記微分曲線V-dQ/dVを算出することを特徴とする請求項3に記載の二次電池システム。 4. The secondary battery system according to claim 3, wherein the differential curve calculation unit charges the secondary battery from a battery voltage lower than the predetermined region and calculates the differential curve V-dQ/dV . . 前記二次電池の温度を検出する温度検出部を備え、
前記劣化指標推定部は、前記特徴点の電池電圧と前記二次電池の温度とに基づいて、前記二次電池の劣化指標を推定することを特徴とする請求項1から4のいずれか1項に記載の二次電池システム。
A temperature detection unit that detects the temperature of the secondary battery,
5. The deterioration index estimator estimates the deterioration index of the secondary battery based on the battery voltage at the feature point and the temperature of the secondary battery. The secondary battery system described in .
JP2018045644A 2018-03-13 2018-03-13 Secondary battery system Active JP7141012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045644A JP7141012B2 (en) 2018-03-13 2018-03-13 Secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045644A JP7141012B2 (en) 2018-03-13 2018-03-13 Secondary battery system

Publications (2)

Publication Number Publication Date
JP2019158597A JP2019158597A (en) 2019-09-19
JP7141012B2 true JP7141012B2 (en) 2022-09-22

Family

ID=67996178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045644A Active JP7141012B2 (en) 2018-03-13 2018-03-13 Secondary battery system

Country Status (1)

Country Link
JP (1) JP7141012B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323719A (en) * 2020-03-18 2020-06-23 北京理工大学 Method and system for online determination of health state of power battery pack of electric automobile
CN111497685B (en) * 2020-03-26 2021-05-14 明创佳联(浙江)新能源科技有限公司 Automobile lithium battery charging management method and system
CN111693882B (en) * 2020-06-30 2022-09-06 厦门金龙联合汽车工业有限公司 Method for evaluating health state of battery replacement battery
KR20220009918A (en) * 2020-07-16 2022-01-25 주식회사 엘지에너지솔루션 Apparatus and method for managing battery
KR20220010961A (en) * 2020-07-20 2022-01-27 주식회사 엘지에너지솔루션 Battery management system, battery management method, battery pack, and electric vehicle
JP7384330B2 (en) 2020-08-13 2023-11-21 エルジー エナジー ソリューション リミテッド Battery management system, battery management method, battery pack and electric vehicle
KR20220080620A (en) * 2020-12-07 2022-06-14 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing battery
KR20220118828A (en) * 2021-02-19 2022-08-26 주식회사 엘지에너지솔루션 Apparatus and method for battery state
JP2022144569A (en) * 2021-03-19 2022-10-03 いすゞ自動車株式会社 battery control system
JP2023073549A (en) * 2021-11-16 2023-05-26 株式会社日立製作所 Battery management device, battery management method, and battery management program
JP7436445B2 (en) * 2021-12-01 2024-02-21 横河電機株式会社 Estimation method, estimation system and estimation program
KR20230161075A (en) * 2022-05-18 2023-11-27 주식회사 엘지에너지솔루션 Battery status managing apparatus and operating method of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272365A (en) 2009-05-21 2010-12-02 Gs Yuasa Corp Method of diagnosing deterioration in secondary battery and device for diagnosing deterioration in secondary battery
US20120105069A1 (en) 2010-11-01 2012-05-03 Gm Global Technology Operations, Inc. Method and apparatus for assessing battery state of health
JP2013019709A (en) 2011-07-08 2013-01-31 Toyota Motor Corp Secondary battery system and vehicle
JP2014139897A (en) 2013-01-21 2014-07-31 Toyota Industries Corp Secondary battery system
JP2016126887A (en) 2014-12-26 2016-07-11 株式会社リコー Power storage device deterioration estimating device, power storage device deterioration estimating method and mobile
WO2016135913A1 (en) 2015-02-26 2016-09-01 株式会社 東芝 Storage battery, storage battery monitoring method, and monitor controller
JP2017133870A (en) 2016-01-26 2017-08-03 トヨタ自動車株式会社 Device for detecting abnormal degradation of lithium ion secondary battery and method for detecting abnormal degradation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272365A (en) 2009-05-21 2010-12-02 Gs Yuasa Corp Method of diagnosing deterioration in secondary battery and device for diagnosing deterioration in secondary battery
US20120105069A1 (en) 2010-11-01 2012-05-03 Gm Global Technology Operations, Inc. Method and apparatus for assessing battery state of health
JP2013019709A (en) 2011-07-08 2013-01-31 Toyota Motor Corp Secondary battery system and vehicle
JP2014139897A (en) 2013-01-21 2014-07-31 Toyota Industries Corp Secondary battery system
JP2016126887A (en) 2014-12-26 2016-07-11 株式会社リコー Power storage device deterioration estimating device, power storage device deterioration estimating method and mobile
WO2016135913A1 (en) 2015-02-26 2016-09-01 株式会社 東芝 Storage battery, storage battery monitoring method, and monitor controller
JP2017133870A (en) 2016-01-26 2017-08-03 トヨタ自動車株式会社 Device for detecting abnormal degradation of lithium ion secondary battery and method for detecting abnormal degradation

Also Published As

Publication number Publication date
JP2019158597A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP7141012B2 (en) Secondary battery system
CN110988690B (en) Battery state of health correction method, device, management system and storage medium
JP4884404B2 (en) Method and apparatus for detecting internal information of secondary battery
CN105938181B (en) Storage element management device, management method, module, recording medium, and moving object
US8531158B2 (en) Method and apparatus for assessing battery state of health
KR102435037B1 (en) A method for calibrating a battery, a method for estimating the state of health of a battery, and a system for performing theses methods
US8680815B2 (en) Method and apparatus for assessing battery state of health
JP2019056595A (en) Secondary battery system
US10209317B2 (en) Battery control device for calculating battery deterioration based on internal resistance increase rate
CN103454501B (en) Internal resistance estimating device and internal resistance presumption method
US9263773B2 (en) Secondary battery state of charge determination apparatus, and method of determining state of charge of secondary battery
CN104698385B (en) Battery state calculating device and battery state calculating method
US9588185B2 (en) Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
EP3064952B1 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
US10310025B2 (en) Control device and control method for electric vehicle
JP2019045351A (en) Secondary battery system
JP6509725B2 (en) Estimating the state of charge of the battery
JP2019070621A (en) Secondary battery system
JP2018205138A (en) Secondary battery system
US20180246174A1 (en) Deterioration degree estimation device and deterioration degree estimation method
EP2053414B1 (en) Method and apparatus for detecting internal information of secondary battery
JP7392305B2 (en) SOC estimation device
JP2019061741A (en) Secondary battery system
JP2020079723A (en) Secondary battery system
JP2015511309A (en) Method and apparatus for determining state of charge of electrical energy storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220823

R151 Written notification of patent or utility model registration

Ref document number: 7141012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151