JP2019056595A - Secondary battery system - Google Patents

Secondary battery system Download PDF

Info

Publication number
JP2019056595A
JP2019056595A JP2017180241A JP2017180241A JP2019056595A JP 2019056595 A JP2019056595 A JP 2019056595A JP 2017180241 A JP2017180241 A JP 2017180241A JP 2017180241 A JP2017180241 A JP 2017180241A JP 2019056595 A JP2019056595 A JP 2019056595A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
differential curve
soh
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017180241A
Other languages
Japanese (ja)
Inventor
明洋 田力
Akihiro Tariki
明洋 田力
英司 遠藤
Eiji Endo
英司 遠藤
雅大 井上
Masahiro Inoue
雅大 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2017180241A priority Critical patent/JP2019056595A/en
Publication of JP2019056595A publication Critical patent/JP2019056595A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

To provide a secondary battery system capable of estimating deterioration index of a secondary battery with high precision.SOLUTION: The secondary battery system comprises: a differential curve calculation part 10 calculating differential curve V-dQ/dV indicative of the relation between cell voltage V of a battery pack 4 and a ratio dQ/dV of a variation amount dQ of the battery capacity Q to a variation amount dV of the cell voltage V of the battery pack 4; a feature point specification part 15 identifying, between a minimum point P1 and a maximum point P2 on a peak shape appearing in a range of a predetermined cell voltage in the differential curve V-dQ/dV, a feature point Ps in the differential curve V-dQ/dV in which variation amount of the differential value dQ/dV with respect to the cell voltage V is maximal; and an SOH estimation part 16 estimating, based on a variation amount maximum voltage value Vs as voltage value of the feature point Ps, an SOH as deterioration index of the battery pack 4.SELECTED DRAWING: Figure 1

Description

本発明は、二次電池システムに係り、詳しくは、二次電池の劣化度合いを表す劣化指標を推定する機能を備えた二次電池システムに関する。   The present invention relates to a secondary battery system, and more particularly, to a secondary battery system having a function of estimating a deterioration index representing the degree of deterioration of a secondary battery.

二次電池の劣化度合いを表す劣化指標として、新品時の満充電容量に対する現状の満充電容量の比率であるSOH(State of Health)が広く知られている。この劣化指標SOHは、例えば二次電池を電池残容量0の状態から満充電まで充電して、実際の満充電容量を測定して得られることができる。しかしながら、劣化指標を推定するために電池残容量0の状態から満充電まで充電しなければならず、推定に要する時間が大幅に長くなるといった問題点がある。   As a deterioration index representing the degree of deterioration of the secondary battery, SOH (State of Health), which is a ratio of the current full charge capacity to the full charge capacity at the time of a new battery, is widely known. The deterioration index SOH can be obtained, for example, by charging a secondary battery from a state where the remaining battery capacity is 0 to full charge and measuring the actual full charge capacity. However, in order to estimate the deterioration index, it is necessary to charge from the state where the remaining battery capacity is 0 to full charge, and there is a problem that the time required for the estimation becomes significantly longer.

そこで、二次電池の充放電時の電池容量及び電池電圧をパラメータとした微分特性を有する微分曲線が二次電池の劣化状態に応じて形状が異なることを利用して、微分曲線上に現れる特徴点の推移や変化量等に基づき二次電池の劣化指標を推定する種々の手法が提案されている。
例えば特許文献1に記載された二次電池システムでは、二次電池の充電時に電池容量Qを算出すると共に、電池電圧Vの変化量dVに対する電池容量Qの変化量dQの割合である微分値dQ/dVを求め、微分値dQ/dVと電池電圧Vとの関係から微分曲線V-dQ/dVを算出している。
Therefore, using the fact that the differential curve having the differential characteristics with the battery capacity and the battery voltage at the time of charging / discharging of the secondary battery as parameters is different depending on the deterioration state of the secondary battery, the feature that appears on the differential curve Various methods for estimating the degradation index of the secondary battery based on the transition of the points, the amount of change, and the like have been proposed.
For example, in the secondary battery system described in Patent Document 1, the battery capacity Q is calculated when the secondary battery is charged, and the differential value dQ which is the ratio of the change amount dQ of the battery capacity Q to the change amount dV of the battery voltage V. / dV is obtained, and the differential curve V-dQ / dV is calculated from the relationship between the differential value dQ / dV and the battery voltage V.

そして、所定の電池電圧Vの範囲内で微分曲線V-dQ/dVに現れる特徴点の電圧値、詳しくはピーク形状の頂点部分である極大点の電圧値から、二次電池の劣化指標である容量低下率を求めている。
一方、特許文献2に記載された二次電池システムでは、二次電池の放電時に微分値dQ/dVを求め、電圧値に対する微分値dQ/dVの変化量の最大値から二次電池の劣化指標を求めている。
Then, it is a deterioration index of the secondary battery from the voltage value of the characteristic point appearing in the differential curve V-dQ / dV within the range of the predetermined battery voltage V, specifically, the voltage value of the maximum point which is the peak portion of the peak shape. The rate of capacity reduction is being sought.
On the other hand, in the secondary battery system described in Patent Document 2, the differential value dQ / dV is obtained when the secondary battery is discharged, and the deterioration index of the secondary battery is determined from the maximum value of the change amount of the differential value dQ / dV with respect to the voltage value. Seeking.

特開2013−19709号公報JP 2013-19709 A 特開2016−9659号公報JP-A-2006-9659

しかしながら、特許文献1における二次電池システムにおいては、微分曲線V-dQ/dVの極大点の電圧値から二次電池の劣化指標を推定しているので、ノイズ等により極大点における電圧値に検出誤差が生じた場合に、劣化指標の推定誤差を招く虞があった。
また、特許文献2における二次電池システムにおいても、ノイズ等により、微分値dQ/dVの変化量に誤差が生じて、劣化指標の推定誤差を招く虞があった。
However, in the secondary battery system in Patent Document 1, since the degradation index of the secondary battery is estimated from the voltage value at the maximum point of the differential curve V-dQ / dV, the voltage value at the maximum point is detected by noise or the like. When an error occurs, there is a possibility that an estimation error of a deterioration index is caused.
Also in the secondary battery system in Patent Document 2, there is a possibility that an error occurs in the amount of change in the differential value dQ / dV due to noise or the like, leading to an estimation error of the degradation index.

このように、上記特許文献1及び2に記載された二次電池システムは、劣化指標の推定精度に関して十分に満足できるものではなかった。
特に、電気自動車に搭載した二次電池においては、当該二次電池の劣化状態は車両の航続距離に影響するものであるので、少しでも精度の高い劣化指標の推定を可能にすることが要求されている。
As described above, the secondary battery systems described in Patent Documents 1 and 2 are not sufficiently satisfactory with respect to the estimation accuracy of the deterioration index.
In particular, in a secondary battery mounted on an electric vehicle, since the deterioration state of the secondary battery affects the cruising range of the vehicle, it is required to enable estimation of a deterioration index with high accuracy even a little. ing.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、二次電池の劣化指標を高い精度で推定することができる二次電池システムを提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a secondary battery system capable of estimating a deterioration index of a secondary battery with high accuracy. .

上記の目的を達成するため、本発明の二次電池システムは、二次電池の充放電を制御する充放電制御部と、二次電池の電池電圧Vと、前記電池電圧Vの変化量dVに対する前記二次電池の電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V-dQ/dVを算出する微分曲線算出部と、前記電池電圧Vの所定の領域において、前記微分曲線V-dQ/dVにおける前記電池電圧Vに対する微分値dQ/dVの変化量が最大となる特徴点を特定する特徴点特定部と、前記特徴点の電池電圧に基づいて、前記二次電池の劣化指標を推定する劣化指標推定手段と、を備えたことを特徴とする。   In order to achieve the above object, a secondary battery system of the present invention includes a charge / discharge control unit that controls charge / discharge of a secondary battery, a battery voltage V of the secondary battery, and a change amount dV of the battery voltage V. A differential curve calculation unit for calculating a differential curve V-dQ / dV indicating a relationship with dQ / dV which is a ratio of the change amount dQ of the battery capacity Q of the secondary battery, and a predetermined region of the battery voltage V, Based on the battery voltage at the feature point, the second order based on the feature point specifying unit that specifies the feature point at which the amount of change in the differential value dQ / dV with respect to the battery voltage V in the differential curve V-dQ / dV is maximum. And a degradation index estimating means for estimating a degradation index of the battery.

このように構成した二次電池システムによれば、二次電池の充電時や放電時に、微分曲線算出部により微分曲線V-dQ/dVが算出され、特徴点特定部により電池電圧Vの所定の領域において微分曲線V-dQ/dVにおける前記電池電圧Vに対する微分値dQ/dVの変化量が最大となる特徴点、即ち微分曲線V-dQ/dVの傾きが最大となる特徴点が特定される。そして、劣化指標推定手段により、この特徴点の電池電圧に基づいて、二次電池の劣化指標が推定される。   According to the secondary battery system configured as described above, the differential curve calculation unit calculates the differential curve V-dQ / dV when the secondary battery is charged or discharged, and the feature point specifying unit calculates the predetermined battery voltage V. In the region, a feature point at which the amount of change in the differential value dQ / dV with respect to the battery voltage V in the differential curve V-dQ / dV is maximized, that is, a feature point at which the slope of the differential curve V-dQ / dV is maximized is specified. . Then, the degradation index estimation means estimates the degradation index of the secondary battery based on the battery voltage at this feature point.

本発明は、微分曲線V-dQ/dVにおける電池電圧Vに対する微分値dQ/dVの変化量が最大となる特徴点を特定するので、ノイズ等により微分曲線V-dQ/dVのピークの電池電圧に検出誤差が発生しても、特徴点を精度良く特定することができ、二次電池の劣化指標の推定精度を向上させることができる。
その他の態様として、前記電池電圧の所定の領域は、前記充放電制御部によって前記二次電池を所定量以下の充電状態から充電を開始させて、前記微分曲線V-dQ/dV上に所定の順番に現れるピーク形状における極小点と極大点との間の領域であることが好ましい。
In the present invention, the characteristic point at which the amount of change of the differential value dQ / dV with respect to the battery voltage V in the differential curve V-dQ / dV is specified is maximum, so the battery voltage at the peak of the differential curve V-dQ / dV is determined by noise or the like. Even if a detection error occurs, the feature point can be specified with high accuracy, and the estimation accuracy of the degradation index of the secondary battery can be improved.
As another aspect, the predetermined region of the battery voltage may be set to a predetermined value on the differential curve V-dQ / dV by causing the charge / discharge control unit to start charging the secondary battery from a charging state of a predetermined amount or less. A region between the minimum point and the maximum point in the peak shape appearing in order is preferable.

この態様によれば、二次電池の極板に使用される活物質の種類によって微分曲線V-dQ/dV上に現れるピーク形状を特定し、このピーク形状において特徴点を特定するので、二次電池の劣化指標の推定精度を更に向上させることができる。
その他の態様としては、前記二次電池の温度を検出する温度検出部を備え、前記劣化指標推定手段は、前記特徴点における前記電池電圧Vと前記二次電池の温度とに基づいて、前記二次電池の劣化指標を推定することが好ましい。
According to this aspect, the peak shape appearing on the differential curve V-dQ / dV is specified according to the type of active material used for the electrode plate of the secondary battery, and the feature point is specified in this peak shape. The estimation accuracy of the battery deterioration index can be further improved.
As another aspect, a temperature detection unit that detects the temperature of the secondary battery is provided, and the deterioration index estimation unit is configured to determine the second battery based on the battery voltage V at the feature point and the temperature of the secondary battery. It is preferable to estimate the deterioration index of the secondary battery.

この態様によれば、広い温度範囲で二次電池の劣化指標の推定精度を向上させることができる。   According to this aspect, it is possible to improve the estimation accuracy of the deterioration index of the secondary battery over a wide temperature range.

本発明の二次電池システムによれば、二次電池の劣化指標を高い精度で推定することができる。   According to the secondary battery system of the present invention, the deterioration index of the secondary battery can be estimated with high accuracy.

本発明の実施形態の二次電池システムを示す概略構成図である。It is a schematic block diagram which shows the secondary battery system of embodiment of this invention. SOH100%における微分曲線V-dQ/dVの一例を示す特性図である。It is a characteristic view which shows an example of the differential curve V-dQ / dV in SOH100%. SOH86%における微分曲線V-dQ/dVの一例を示す特性図である。It is a characteristic view which shows an example of the differential curve V-dQ / dV in SOH86%. SOH73%における微分曲線V-dQ/dVの一例を示す特性図である。It is a characteristic view which shows an example of the differential curve V-dQ / dV in SOH73%. SOH62%における微分曲線V-dQ/dVの一例を示す特性図である。It is a characteristic view which shows an example of the differential curve V-dQ / dV in SOH62%. 微分曲線V-dQ/dVにおける傾きの最大値とSOHとの関係の一例を示す特性図である。It is a characteristic view which shows an example of the relationship between the maximum value of the gradient in differential curve V-dQ / dV, and SOH. 本実施形態における微分曲線の変化量最大電圧値とSOHとの関係を示す特性図である。It is a characteristic view which shows the relationship between the variation | change_quantity maximum voltage value of the differential curve in this embodiment, and SOH.

以下、本発明を具体化した二次電池システムの一実施形態を説明する。
図1は本実施形態の二次電池システムを示す概略構成図である。
本実施形態の二次電池システム1は電気自動車に搭載されており、走行用動力源である走行モータに電力を供給している。全体として二次電池システム1は、その全体を統合制御するメインコントローラ2、及びメインコントローラ2に並列に接続された複数の二次電池モジュール3から構成されている。
Hereinafter, an embodiment of a secondary battery system embodying the present invention will be described.
FIG. 1 is a schematic configuration diagram showing a secondary battery system of the present embodiment.
The secondary battery system 1 of the present embodiment is mounted on an electric vehicle and supplies power to a travel motor that is a power source for travel. The secondary battery system 1 as a whole is composed of a main controller 2 that integrally controls the whole and a plurality of secondary battery modules 3 connected in parallel to the main controller 2.

二次電池モジュール3は、組電池4(二次電池)、サブコントローラ5及び充放電制御部6から構成されている。
組電池4は、所期の電池容量及び出力電圧を達成するために複数の単電池を組み合わせて構成されている。本実施形態の組電池4は、その正極電極板にLiMn及びLiMO(Mは、Co,Ni,Al,Mn,Feの内、少なくとも1つを含む遷移金属元素)が含まれている。
The secondary battery module 3 includes an assembled battery 4 (secondary battery), a sub-controller 5 and a charge / discharge control unit 6.
The assembled battery 4 is configured by combining a plurality of single cells in order to achieve a desired battery capacity and output voltage. The assembled battery 4 of the present embodiment includes LiMn 2 O 4 and LiMO 2 (M is a transition metal element including at least one of Co, Ni, Al, Mn, and Fe) in the positive electrode plate. Yes.

組電池4には電圧センサ7、電流センサ8及び温度センサ9(温度検出部)が接続されている。電圧センサ7により組電池4の電池電圧Vが検出され、電流センサ8により組電池4の入出力電流Iが検出され、温度センサ9により組電池4の温度Tが検出され、それらの検出情報はサブコントローラ5に入力される。
サブコントローラ5は、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等から構成されている。サブコントローラ5は充放電制御部6を駆動して組電池4の充放電を制御する機能を奏し、充放電制御の際には、組電池4の劣化指標に応じて最大許容電流や最大許容電圧を調整する。なお、本実施形態においては、組電池4の劣化指標として、新品時の満充電容量に対する現状の満充電容量の比率であるSOH(State of Health)を使用する。
A voltage sensor 7, a current sensor 8, and a temperature sensor 9 (temperature detection unit) are connected to the assembled battery 4. The battery voltage V of the assembled battery 4 is detected by the voltage sensor 7, the input / output current I of the assembled battery 4 is detected by the current sensor 8, the temperature T of the assembled battery 4 is detected by the temperature sensor 9, and the detected information is Input to the sub-controller 5.
The sub-controller 5 includes an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storing control programs and control maps, a central processing unit (CPU), a timer counter, and the like. The sub-controller 5 has a function of controlling the charge / discharge of the battery pack 4 by driving the charge / discharge control unit 6. During charge / discharge control, the maximum allowable current and the maximum allowable voltage are determined according to the deterioration index of the battery pack 4. Adjust. In this embodiment, SOH (State of Health) that is a ratio of the current full charge capacity to the full charge capacity at the time of a new article is used as a deterioration index of the assembled battery 4.

また、サブコントローラ5は、組電池4のSOHを推定するために必要な微分曲線を算出する微分曲線算出部10を備えている。本実施形態では微分曲線としてV-dQ/dVを用いている。微分曲線V-dQ/dVとは、組電池4の電池電圧Vと、組電池4の電池電圧Vの変化量dVに対する電池容量Qの変化量dQの割合である微分値dQ/dVとの関係を示すものである。   The sub-controller 5 includes a differential curve calculation unit 10 that calculates a differential curve necessary for estimating the SOH of the assembled battery 4. In this embodiment, V-dQ / dV is used as the differential curve. The differential curve V-dQ / dV is the relationship between the battery voltage V of the assembled battery 4 and the differential value dQ / dV that is the ratio of the change amount dQ of the battery capacity Q to the change amount dV of the battery voltage V of the assembled battery 4. Is shown.

微分曲線算出部10は、組電池4の充電時または放電時に所定時間毎に組電池4の電池容量Qを逐次算出すると共に、これに同期して電池電圧Vを取得し、組電池4の電池電圧Vの変化量dVに対する電池容量Qの変化量dQの割合である微分値dQ/dVを算出する。そして、得られた微分値dQ/dVと電池電圧Vとの関係を示す曲線として微分曲線V-dQ/dVを算出する。   The differential curve calculation unit 10 sequentially calculates the battery capacity Q of the assembled battery 4 at predetermined time intervals when the assembled battery 4 is charged or discharged, acquires the battery voltage V in synchronization with this, and acquires the battery voltage of the assembled battery 4. A differential value dQ / dV that is a ratio of the change amount dQ of the battery capacity Q to the change amount dV of the voltage V is calculated. Then, a differential curve V-dQ / dV is calculated as a curve indicating the relationship between the obtained differential value dQ / dV and the battery voltage V.

図2は微分曲線V-dQ/dVの一例を示す特性図である。図2では、微分値dQ/dVを縦軸とし、電池電圧Vを横軸として微分曲線V-dQ/dVが表されている。組電池4の充電または放電に伴って組電池4の充電率(SOC:State of Charge)と共に電池電圧Vが増加または低下し、それに応じて微分値dQ/dVが変化することにより、例えば図2〜5に示すように微分曲線V-dQ/dV上には変曲点(例えば後述するP1,P2)が現れる。   FIG. 2 is a characteristic diagram showing an example of the differential curve V-dQ / dV. In FIG. 2, a differential curve V-dQ / dV is represented with the differential value dQ / dV as the vertical axis and the battery voltage V as the horizontal axis. As the assembled battery 4 is charged or discharged, the battery voltage V increases or decreases with the state of charge (SOC) of the assembled battery 4, and the differential value dQ / dV changes accordingly. As shown in -5, inflection points (for example, P1 and P2 described later) appear on the differential curve V-dQ / dV.

微分曲線算出部10は、算出した微分曲線V-dQ/dV及び温度センサ9により検出された温度T(以下、これらを実測データと称する)をメインコントローラ2に出力する。SOHの推定に微分曲線V-dQ/dV上の何れの特徴点を特定し、どのように推定するのかは本発明の特徴部分であるため、その手法については後に詳述する。
なおサブコントローラ5は、組電池4の充放電に伴う入出力電流Iを所定時間毎に積算して組電池4のSOCを算出し、その情報もメインコントローラ2に出力する。
The differential curve calculation unit 10 outputs the calculated differential curve V-dQ / dV and the temperature T detected by the temperature sensor 9 (hereinafter referred to as actual measurement data) to the main controller 2. Which feature point on the differential curve V-dQ / dV is specified for the estimation of SOH and how it is estimated is a feature of the present invention, and its method will be described in detail later.
The sub-controller 5 calculates the SOC of the assembled battery 4 by accumulating the input / output current I accompanying charging / discharging of the assembled battery 4 every predetermined time, and outputs the information to the main controller 2.

一方、メインコントローラ2はサブコントローラ5と同様に、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等から構成されている。
メインコントローラ2は、入出力部12、データ保存部13、特徴点特定部15、SOH推定部16(劣化指標推定部)及び充放電指令部17から構成されている。
On the other hand, the main controller 2, like the sub-controller 5, is an input / output device (not shown), a storage device (ROM, RAM, etc.) for storing control programs and control maps, a central processing unit (CPU), a timer counter, etc. It is composed of
The main controller 2 includes an input / output unit 12, a data storage unit 13, a feature point specification unit 15, an SOH estimation unit 16 (degradation index estimation unit), and a charge / discharge command unit 17.

データ保存部13は、入出力部12を介して各二次電池モジュール3のサブコントローラ5から入力された実測データを記憶する。またデータ保存部13には、予め微分曲線V-dQ/dV上の特定の特徴点と組電池4のSOHとの相関関係を示すデータ(以下、基準データと称する)が温度域毎に記憶されている。
基準データの作成処理は、以下の通りである。
The data storage unit 13 stores actual measurement data input from the sub-controller 5 of each secondary battery module 3 via the input / output unit 12. The data storage unit 13 stores in advance data indicating the correlation between specific feature points on the differential curve V-dQ / dV and the SOH of the assembled battery 4 (hereinafter referred to as reference data) for each temperature range. ing.
The reference data creation process is as follows.

まず、本実施形態の組電池4と同一規格の組電池4の劣化試験を実施し、未使用の組電池4の充放電を繰り返して寿命限界まで段階的に劣化させる。劣化過程の各SOHにおいて、異なる複数の温度域の下で組電池4を充放電させる。
そして、上記した微分曲線算出部10の処理と同じく、充放電により得られた電池電圧V及び電池容量Qに基づき微分値dQ/dVを算出し、電池電圧Vと微分値dQ/dVとの関係を示す微分曲線V-dQ/dVを算出した上で、微分曲線V-dQ/dV上に出現した特定の特徴点の位置(V,dQ/dV)を求める。結果として特定の特徴点と組電池4のSOHとの相関関係が温度域毎に定められ、各二次電池モジュール3の共通の基準データとして予めデータ保存部13に記憶される。
First, a deterioration test of the assembled battery 4 having the same standard as the assembled battery 4 of the present embodiment is performed, and charging / discharging of the unused assembled battery 4 is repeated to gradually deteriorate the life limit. In each SOH in the deterioration process, the assembled battery 4 is charged and discharged under a plurality of different temperature ranges.
Then, similarly to the processing of the differential curve calculation unit 10 described above, the differential value dQ / dV is calculated based on the battery voltage V and the battery capacity Q obtained by charging / discharging, and the relationship between the battery voltage V and the differential value dQ / dV. Is calculated, and then the position (V, dQ / dV) of a specific feature point appearing on the differential curve V-dQ / dV is obtained. As a result, the correlation between the specific feature point and the SOH of the assembled battery 4 is determined for each temperature range, and is stored in advance in the data storage unit 13 as common reference data for each secondary battery module 3.

SOH推定部16は、データ保存部13に記憶された各二次電池モジュール3の基準データを読み出して逐次実測データと比較して、それぞれの二次電池モジュール3について現在の組電池4のSOHを推定する。詳しくは、実測データの電池温度Tに基づき温度域を特定し、その温度域に対応する各SOHの基準データの中から、実測データの特定の特徴点の位置に対して一致または最も近い特徴点を有する基準データを選択し、その基準データのSOHを推定値と見なす。本実施形態における特徴点の比較は、後述するように、2つのピーク値(極小点P1及び極大点P2)の間の領域における微分曲線の傾きの最も大きい点を指標とする。   The SOH estimation unit 16 reads the reference data of each secondary battery module 3 stored in the data storage unit 13 and sequentially compares it with the actually measured data, and determines the SOH of the current assembled battery 4 for each secondary battery module 3. presume. Specifically, the temperature range is specified based on the battery temperature T of the actual measurement data, and the feature point that is the closest or closest to the position of the specific feature point of the actual measurement data from the reference data of each SOH corresponding to the temperature range Is selected, and the SOH of the reference data is regarded as an estimated value. As will be described later, the comparison of the feature points in the present embodiment uses the point having the largest slope of the differential curve in the region between the two peak values (minimum point P1 and maximum point P2) as an index.

このときの実測データは微分曲線V-dQ/dVの全領域が算出されている必要はなく、上記ピーク値(P1、P2)の間の領域を含むものであれば特徴点の特定、延いてはSOHの推定が可能である。本発明の劣化指標推定手段は、このような部分的な微分曲線V-dQ/dVを算出する場合も含むものとする。
なお、各SOH間及び各温度域間は基準データを特定できないため、補間処理により基準データを算出してもよい。
The actual measurement data at this time does not need to calculate the entire region of the differential curve V-dQ / dV. If the region includes the region between the peak values (P1, P2), the feature point is specified and extended. Can estimate SOH. The deterioration index estimation means of the present invention includes a case where such a partial differential curve V-dQ / dV is calculated.
In addition, since reference data cannot be specified between each SOH and between temperature ranges, the reference data may be calculated by interpolation processing.

充放電指令部17は、SOH推定部16により推定されたSOH等に基づき、各二次電池モジュール3のサブコントローラ5に入出力部12を介して充放電制御の指令を出力する。例えば所定値未満のSOHが推定された二次電池モジュール3に対しては、充放電時の最大許容電流や最大許容電圧を制限する指令を出力する。この指令に基づくサブコントローラ5による充放電制御により、劣化の進行した組電池4の保護が図られる。   The charge / discharge command unit 17 outputs a charge / discharge control command to the sub-controller 5 of each secondary battery module 3 via the input / output unit 12 based on the SOH estimated by the SOH estimation unit 16. For example, a command for limiting the maximum allowable current and the maximum allowable voltage at the time of charging / discharging is output to the secondary battery module 3 in which SOH less than a predetermined value is estimated. By the charge / discharge control by the sub-controller 5 based on this command, the assembled battery 4 having deteriorated can be protected.

また充放電指令部17は、何れかの二次電池モジュール3で寿命限界を下回るSOHが推定された場合等には、運転席に設けられた表示部18に車両点検を促すメッセージを表示する。これにより販社等で車両点検が実施されて、必要に応じて組電池4が交換される。
なお、以上の説明では、各二次電池モジュール3の組電池4全体を対象として、電池電圧V、入出力電流I及び温度Tの検出処理、微分曲線V-dQ/dVの算出処理、SOHの推定処理を実施したが、これに限るものではない。例えば、組電池4を構成する単電池毎に各処理を実施したり、或いは複数の単電池からなる単電池群毎に各処理を実施したりしてもよい。また、微分曲線算出部10、データ保存部13、特徴点特定部15、SOH推定部16は必ずしもメインコントローラ2やサブコントローラ5に存在する必要は無く、外部PCのソフトウェアなどでこれらの処理を行ってもよい。
The charge / discharge command unit 17 displays a message for prompting vehicle inspection on the display unit 18 provided in the driver's seat when, for example, SOH below the life limit is estimated in any of the secondary battery modules 3. As a result, vehicle inspection is performed at a sales company or the like, and the assembled battery 4 is replaced as necessary.
In the above description, for the entire assembled battery 4 of each secondary battery module 3, the battery voltage V, the input / output current I and the temperature T are detected, the differential curve V-dQ / dV is calculated, the SOH is calculated. Although the estimation process is performed, the present invention is not limited to this. For example, each process may be performed for each unit cell constituting the assembled battery 4 or each process may be performed for each unit cell group including a plurality of unit cells. Further, the differential curve calculation unit 10, the data storage unit 13, the feature point identification unit 15, and the SOH estimation unit 16 do not necessarily exist in the main controller 2 or the sub controller 5, and these processes are performed by software of an external PC or the like. May be.

本実施形態の組電池4は、例えばSOH100%、電池温度25℃において図2に示す微分曲線V-dQ/dVが得られており、微分曲線V-dQ/dV上に出現している複数の特徴点の中から、SOHの推定に好適な特徴点として、2つのピーク値(極小点P1及び極大点P2)の間の領域における、微分曲線V-dQ/dVの傾きの最も大きい特徴点Psを選択した。   In the assembled battery 4 of the present embodiment, for example, the differential curve V-dQ / dV shown in FIG. 2 is obtained when the SOH is 100% and the battery temperature is 25 ° C., and a plurality of appearing on the differential curve V-dQ / dV. Among the feature points, a feature point Ps having the largest slope of the differential curve V-dQ / dV in a region between two peak values (minimum point P1 and maximum point P2) as a feature point suitable for estimation of SOH. Selected.

図2〜5は、電池温度25℃で各SOHにおいて、完全放電状態から充電した際の実測値に基づいたV-dQ/dVの例である。図2はSOH100%、図3はSOH86%、図4はSOH73%、図5はSOH62%である。
本実施形態において選択した特徴点Psは、完全放電状態から充電を開始して微分曲線V-dQ/dVにおいて2番目に現れる上向きのピーク形状における裾野部分の変曲点である極小点P1と極大点P2との間の領域、即ち2番目に現れる上向きのピーク形状の立ち上がりの領域から選択される。そして、この領域において、微分曲線の傾きが最大となるところ、即ち電池電圧Vに対する微分値dQ/dVの変化量が最大となるところを特徴点Psとした。
2 to 5 are examples of V-dQ / dV based on actual measurement values when charging is performed from a completely discharged state in each SOH at a battery temperature of 25 ° C. 2 shows SOH 100%, FIG. 3 shows SOH 86%, FIG. 4 shows SOH 73%, and FIG. 5 shows SOH 62%.
The feature point Ps selected in the present embodiment is the minimum point P1 that is the inflection point of the base portion in the upward peak shape that appears second in the differential curve V-dQ / dV after starting charging from the fully discharged state and the maximum point. It is selected from the region between the points P2, that is, the rising region of the upward peak shape that appears second. In this region, the point where the slope of the differential curve is maximum, that is, the point where the change amount of the differential value dQ / dV with respect to the battery voltage V is maximum is defined as the feature point Ps.

なお、微分曲線V-dQ/dVにおける極小点P1や極大点P2等のピークは、図2〜5に示すように、劣化の進行に伴って高電圧側に移行することが確認された。これは、二次電池の劣化に伴い、内部抵抗が増加することや正極及び負極の劣化が原因と考えられる。
ここで、発明者は、組電池4について、微分曲線V-dQ/dVと実際のSOHとを複数個計測した。図6は、電池電圧Vに対する微分値dQ/dVの変化量の最大値、即ち微分曲線V-dQ/dVの傾きの最大値と実際のSOHとの関係を示すグラフである。図6中の□は、極小点P1及び極大点P2との間の領域、◇は充電全体、詳しくは完全放電状態から完全充電状態までの領域である。
It has been confirmed that peaks such as the minimum point P1 and the maximum point P2 in the differential curve V-dQ / dV shift to the high voltage side as the deterioration progresses, as shown in FIGS. This is considered to be caused by the increase in internal resistance and the deterioration of the positive electrode and the negative electrode accompanying the deterioration of the secondary battery.
Here, the inventor measured a plurality of differential curves V-dQ / dV and actual SOH for the assembled battery 4. FIG. 6 is a graph showing the relationship between the maximum value of the change amount of the differential value dQ / dV with respect to the battery voltage V, that is, the maximum value of the slope of the differential curve V-dQ / dV and the actual SOH. In FIG. 6, □ is the region between the minimum point P1 and the maximum point P2, and ◇ is the entire charge, specifically the region from the fully discharged state to the fully charged state.

図6に示すように、微分曲線V-dQ/dVの傾きの最大値とSOHとの相関関係は、極小点P1及び極大点P2との間の領域において見られず、充電全体においても見られなかった。したがって、電池電圧Vに対する微分値dQ/dVの変化量の最大値から、SOHを精度よく推定することは困難である。
そこで、本実施形態においては、極小点P1及び極大点P2との間の領域において、微分曲線V-dQ/dVの傾きが最大となる特徴点Psの電圧値に基づいて、言い換えれば微分曲線V-dQ/dVにおける電池電圧Vに対する微分値dQ/dVの変化量が最大となる特徴点Psの電圧値である変化量最大電圧値Vsに基づいてSOHを推定することとした。
As shown in FIG. 6, the correlation between the maximum value of the slope of the differential curve V-dQ / dV and SOH is not observed in the region between the minimum point P1 and the maximum point P2, and is also observed in the entire charging. There wasn't. Therefore, it is difficult to accurately estimate SOH from the maximum value of the change amount of the differential value dQ / dV with respect to the battery voltage V.
Therefore, in the present embodiment, in the region between the minimum point P1 and the maximum point P2, based on the voltage value of the feature point Ps at which the slope of the differential curve V-dQ / dV is maximum, in other words, the differential curve V The SOH is estimated based on the maximum change amount voltage value Vs that is the voltage value of the feature point Ps at which the change amount of the differential value dQ / dV with respect to the battery voltage V at −dQ / dV is maximum.

詳しくは、充放電指令部17は、組電池4が完全放電状態または完全放電に近い所定量以下の充電状態から、充放電制御部6を介して組電池4を充電させる。そして、微分曲線算出部10において微分曲線V-dQ/dVを算出する。なお、微分曲線V-dQ/dVを算出する際にフィルタを用いてもよい。
特徴点特定部15は、まず上記の極小点P1と極大点P2を特定する。なお、極小点P1と極大点P2を特定する際には、上記のように充電を開始して微分曲線V-dQ/dVにおいて2番目に現れる上向きのピーク形状における極小点P1と極大点P2とすればよい。次に、極小点P1と極大点P2との間の領域において、即ち充電開始から2番目のピーク形状における上昇開始点である極小点P1と上昇終了点である極大点P2との領域において、微分曲線V-dQ/dVの傾きの最も大きい点、即ち電池電圧Vに対する微分値dQ/dVの変化量の最も大きい点を特徴点Psとして特定する。
Specifically, the charge / discharge command unit 17 charges the assembled battery 4 via the charge / discharge control unit 6 from a fully discharged state or a charged state equal to or less than a predetermined amount close to complete discharge. Then, the differential curve calculation unit 10 calculates the differential curve V-dQ / dV. A filter may be used when calculating the differential curve V-dQ / dV.
The feature point specifying unit 15 first specifies the minimum point P1 and the maximum point P2. When specifying the minimum point P1 and the maximum point P2, charging is started as described above, and the minimum point P1 and the maximum point P2 in the upward peak shape that appears second in the differential curve V-dQ / dV are as follows. do it. Next, in the region between the minimum point P1 and the maximum point P2, that is, in the region between the minimum point P1 that is the rising start point and the maximum point P2 that is the rising end point in the second peak shape from the start of charging, the differentiation is performed. A point having the largest slope of the curve V-dQ / dV, that is, a point having the largest change amount of the differential value dQ / dV with respect to the battery voltage V is specified as the feature point Ps.

SOH推定部16は、データ保存部13にあらかじめ記憶しておいた基準データから、温度センサ9から入力した電池温度に基づく基準データを読み出し、当該基準データを用いて、特徴点Psの電圧値である変化量最大電圧値Vsに基づいてSOHを推定する。なお、この電池温度は、充電中に変化することが予想されるので、充電中において電池電圧Vの検出とともに電池温度を検出して記憶しておき、変化量最大電圧値Vsにおける電池温度を用いればよい。   The SOH estimating unit 16 reads out reference data based on the battery temperature input from the temperature sensor 9 from the reference data stored in advance in the data storage unit 13, and uses the reference data as a voltage value of the feature point Ps. SOH is estimated on the basis of a certain change amount maximum voltage value Vs. Since this battery temperature is expected to change during charging, the battery temperature is detected and stored together with the detection of the battery voltage V during charging, and the battery temperature at the maximum variation voltage value Vs is used. That's fine.

図7は、本実施形態における変化量最大電圧値VsとSOHとの関係について、複数個計測した結果を示す特性図である。なお、図7中における□点は、電池温度0℃の場合であり、◇点は、電池温度25℃の場合である。
図7に示すように、変化量最大電圧値VsとSOHとの相関関係が強く表われている。したがって、変化量最大電圧値Vsから精度良くSOHを推定することができる。なお、本実施形態においては、特に電池温度0℃においてSOH85%〜59%といった比較的広い範囲で相関関係が強く表われ、この範囲で精度のよいSOHの推定が可能となっている。
FIG. 7 is a characteristic diagram showing a result of measuring a plurality of relations between the maximum variation voltage value Vs and SOH in the present embodiment. In FIG. 7, □ points are when the battery temperature is 0 ° C., and ◇ points are when the battery temperature is 25 ° C.
As shown in FIG. 7, the correlation between the maximum change amount voltage value Vs and the SOH is strongly expressed. Therefore, the SOH can be accurately estimated from the change maximum voltage value Vs. In the present embodiment, the correlation strongly appears in a relatively wide range such as SOH 85% to 59% especially at a battery temperature of 0 ° C., and accurate estimation of SOH is possible within this range.

また、電池温度0℃と25℃では、変化量最大電圧値VsとSOHとの相関関係の差が少ない。したがって、例えば0℃から25℃の間の温度領域では、基準データをまとめることができ、データ保存部13におけるメモリ容量を抑えることができるとともに、SOH推定部16においてSOHを推定する際の演算負荷を抑制することができる。
本実施形態では、電圧値からSOHを推定するので、SOHと強い相関性のある電圧値との関係を利用してSOHを精度良く推定することができる。
Further, when the battery temperature is 0 ° C. and 25 ° C., the difference in the correlation between the change maximum voltage value Vs and the SOH is small. Therefore, for example, in the temperature range between 0 ° C. and 25 ° C., the reference data can be collected, the memory capacity in the data storage unit 13 can be reduced, and the calculation load when the SOH estimation unit 16 estimates the SOH. Can be suppressed.
In this embodiment, since SOH is estimated from a voltage value, SOH can be estimated with high accuracy using the relationship between a voltage value having a strong correlation with SOH.

特に、本実施形態では、特許文献1のように微分値dQ/dVのピーク値(最大値)に基づいてSOHを推定するのではなく、微分値dQ/dVの変化量が最大値となる電圧値(変化量最大電圧値Vs)に基づいてSOHを推定する。例えば図5に示すように、微分曲線V-dQ/dVにおいて微分値dQ/dVのピークにノイズが生じることで、微分値dQ/dVのピーク値が変動する可能性がある。したがって、微分値dQ/dVのピーク値における電圧値に基づいてSOHを推定すると、精度が低下する虞がある。これに対し、ピーク形状の中腹となる微分値dQ/dVの変化量が最大となるポイントは、ノイズの影響を受けにくい。したがって、本実施形態のように、微分値dQ/dVの変化量が最大値となるポイント、即ちノイズの影響を受け難いピーク形状の中腹となるポイントを特徴点として、その電圧値(変化量最大電圧値Vs)に基づいてSOHを推定することで、精度よくSOHを推定することができる。   In particular, in the present embodiment, the SOH is not estimated based on the peak value (maximum value) of the differential value dQ / dV as in Patent Document 1, but the voltage at which the change amount of the differential value dQ / dV becomes the maximum value. SOH is estimated based on the value (variation maximum voltage value Vs). For example, as shown in FIG. 5, when noise is generated at the peak of the differential value dQ / dV in the differential curve V-dQ / dV, the peak value of the differential value dQ / dV may vary. Therefore, if the SOH is estimated based on the voltage value at the peak value of the differential value dQ / dV, the accuracy may decrease. On the other hand, the point at which the amount of change in the differential value dQ / dV that is the middle of the peak shape is maximum is not easily affected by noise. Therefore, as in the present embodiment, the point where the amount of change in the differential value dQ / dV becomes the maximum value, that is, the point that is the middle of the peak shape that is hardly affected by noise, is used as a feature point, and the voltage value (maximum change amount) By estimating the SOH based on the voltage value Vs), the SOH can be estimated with high accuracy.

また、本実施形態では、完全放電状態または所定量以下の充電状態から充電を開始して微分曲線V-dQ/dVに2番目に現れるピーク形状での極小点P1と極大点P2との間の領域で特徴点Psを特定するが、これは、図2から6に示すような各SOHにおいて現れる複数のピーク形状のうち明確に現れるピーク形状を用いて特徴点を特定している。
本実施形態の組電池4は、例えば正極電極板に活物質としてLiMn、及びLiMO(Mは、Co,Ni,Al,Mn,Feの内、少なくとも1つを含む遷移金属元素)が含まれているが、このうちLiMnにより現れると考えられる特徴が微分曲線V-dQ/dV上で充電開始から2番目に明確なピーク形状として現れ、この明確なピーク形状における中腹のポイントを指標として利用することで、精度の高い推定が可能となる。
Further, in the present embodiment, charging is started from a fully discharged state or a charged state equal to or less than a predetermined amount, and between the minimum point P1 and the maximum point P2 in the peak shape that appears second in the differential curve V-dQ / dV. The feature point Ps is specified in the region, and this specifies the feature point using a peak shape that clearly appears among a plurality of peak shapes appearing in each SOH as shown in FIGS.
The assembled battery 4 of this embodiment includes, for example, LiMn 2 O 4 and LiMO 2 (M is a transition metal element containing at least one of Co, Ni, Al, Mn, and Fe) as an active material on a positive electrode plate. Among them, the characteristic that is considered to appear due to LiMn 2 O 4 appears as the second clear peak shape from the start of charging on the differential curve V-dQ / dV, and the characteristics of the middle in this clear peak shape By using the points as indices, it is possible to estimate with high accuracy.

なお、完全放電状態または所定量以下の充電状態から充電を開始して微分曲線V-dQ/dVに2番目に現れるピーク形状での極小点P1と極大点P2との間の領域で特徴点Psを特定する代わりに、微分曲線V-dQ/dVにおいてピーク形状が現れる電圧値の範囲をあらかじめ確認しておき、当該電圧値の範囲において極小点P1と極大点P2とを特定し、その間の領域で変化量最大電圧値Vsを特定してもよい。   It should be noted that the characteristic point Ps in the region between the minimum point P1 and the maximum point P2 in the peak shape that appears second in the differential curve V-dQ / dV after starting from the fully discharged state or the charged state below the predetermined amount. Instead, the voltage value range in which the peak shape appears in the differential curve V-dQ / dV is confirmed in advance, the minimum point P1 and the maximum point P2 are specified in the voltage value range, and the region between them The maximum variation voltage value Vs may be specified by

また、本実施形態では、変化量最大電圧値Vsだけでなく、電池温度に基づいてSOHの推定を行うので、広い温度範囲でSOHの推定精度を向上させることができる。
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、電気自動車に搭載された二次電池システム1として具体化したが、本発明は車両用に限定されるものではなく、例えば、工場や店舗等で利用される定置型の二次電池システムに具体化してもよい。
In the present embodiment, since the SOH is estimated based on not only the maximum change voltage value Vs but also the battery temperature, the SOH estimation accuracy can be improved over a wide temperature range.
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above-described embodiment, the secondary battery system 1 mounted on an electric vehicle is embodied, but the present invention is not limited to a vehicle. For example, the stationary battery system 1 used in a factory or a store is used. A secondary battery system may be embodied.

4 組電池(二次電池)
9 温度センサ(温度検出部)
10 微分曲線算出部
13 データ保存部
15 特徴点特定部
16 SOH推定部(劣化指標推定部)
17 充放電指令部
4 Battery pack (secondary battery)
9 Temperature sensor (temperature detector)
DESCRIPTION OF SYMBOLS 10 Differential curve calculation part 13 Data storage part 15 Feature point specific | specification part 16 SOH estimation part (degradation parameter | index estimation part)
17 Charge / Discharge command section

Claims (3)

二次電池の充放電を制御する充放電制御部と、
二次電池の電池電圧Vと、前記電池電圧Vの変化量dVに対する前記二次電池の電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V-dQ/dVを算出する微分曲線算出部と、
前記電池電圧Vの所定の領域において、前記微分曲線V-dQ/dVにおける前記電池電圧Vに対する微分値dQ/dVの変化量が最大となる特徴点を特定する特徴点特定部と、
前記特徴点の電池電圧に基づいて、前記二次電池の劣化指標を推定する劣化指標推定手段と、
を備えたことを特徴とする二次電池システム。
A charge / discharge control unit for controlling charge / discharge of the secondary battery;
A differential curve V-dQ / dV indicating the relationship between the battery voltage V of the secondary battery and dQ / dV, which is the ratio of the change amount dQ of the battery capacity Q of the secondary battery to the change amount dV of the battery voltage V, A differential curve calculation unit for calculating,
A feature point specifying unit for specifying a feature point at which a change amount of the differential value dQ / dV with respect to the battery voltage V in the differential curve V-dQ / dV is maximum in a predetermined region of the battery voltage V;
A deterioration index estimating means for estimating a deterioration index of the secondary battery based on the battery voltage of the feature point;
A secondary battery system comprising:
前記電池電圧Vの所定の領域は、前記充放電制御部によって前記二次電池を所定量以下の充電状態から充電を開始させて、前記微分曲線V-dQ/dV上に所定の順番に現れるピーク形状における極小点と極大点との間の領域であることを特徴とする請求項1に記載の二次電池システム。   The predetermined region of the battery voltage V is a peak that appears in a predetermined order on the differential curve V-dQ / dV when the charge / discharge control unit starts charging the secondary battery from a charging state of a predetermined amount or less. The secondary battery system according to claim 1, wherein the secondary battery system is a region between a minimum point and a maximum point in the shape. 前記二次電池の温度を検出する温度検出部を備え、
前記劣化指標推定手段は、前記特徴点の電池電圧と前記二次電池の温度とに基づいて、前記二次電池の劣化指標を推定することを特徴とする請求項1または2に記載の二次電池システム。
A temperature detection unit for detecting the temperature of the secondary battery;
3. The secondary battery according to claim 1, wherein the deterioration index estimating unit estimates a deterioration index of the secondary battery based on a battery voltage at the feature point and a temperature of the secondary battery. Battery system.
JP2017180241A 2017-09-20 2017-09-20 Secondary battery system Pending JP2019056595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180241A JP2019056595A (en) 2017-09-20 2017-09-20 Secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180241A JP2019056595A (en) 2017-09-20 2017-09-20 Secondary battery system

Publications (1)

Publication Number Publication Date
JP2019056595A true JP2019056595A (en) 2019-04-11

Family

ID=66107484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180241A Pending JP2019056595A (en) 2017-09-20 2017-09-20 Secondary battery system

Country Status (1)

Country Link
JP (1) JP2019056595A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040306A1 (en) * 2019-08-23 2021-03-04 주식회사 엘지화학 Method for predicting soh of battery and battery pack employing same
CN112639499A (en) * 2019-04-22 2021-04-09 株式会社Lg化学 Apparatus and method for determining differential voltage curve of battery and battery pack including the same
CN112840221A (en) * 2019-05-14 2021-05-25 株式会社Lg化学 Apparatus and method for determining degree of degradation of battery and battery pack including the same
WO2021181674A1 (en) * 2020-03-13 2021-09-16 Tdk株式会社 Control device for secondary battery, battery pack, and control method for secondary battery
WO2021181650A1 (en) * 2020-03-13 2021-09-16 Tdk株式会社 Control device for secondary battery, battery pack, and method for controlling secondary battery
WO2021191939A1 (en) * 2020-03-23 2021-09-30 Tdk株式会社 Secondary battery control device, battery pack, and secondary battery control method
WO2021205602A1 (en) * 2020-04-09 2021-10-14 Tdk株式会社 Secondary battery control device, secondary battery control system, battery pack, and secondary battery control method
WO2021205642A1 (en) * 2020-04-10 2021-10-14 Tdk株式会社 Secondary battery control device, secondary battery control system, battery pack, and secondary battery control method
WO2021224990A1 (en) * 2020-05-08 2021-11-11 Tdk株式会社 Secondary battery control system, battery pack, and secondary battery control method
WO2022019595A1 (en) * 2020-07-20 2022-01-27 주식회사 엘지에너지솔루션 Battery management system, battery management method, battery pack, and electric vehicle
DE112021006998T5 (en) 2021-02-02 2023-11-30 Mitsubishi Electric Corporation BATTERY DEGRADATION DIAGNOSTIC DEVICE AND BATTERY DEGRADATION DIAGNOSTIC METHOD

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639499B (en) * 2019-04-22 2023-08-29 株式会社Lg新能源 Device and method for determining differential voltage profile of battery and battery pack including the device
CN112639499A (en) * 2019-04-22 2021-04-09 株式会社Lg化学 Apparatus and method for determining differential voltage curve of battery and battery pack including the same
JP2022510075A (en) * 2019-05-14 2022-01-26 エルジー エナジー ソリューション リミテッド A device and method for determining the degree of battery degeneration, and a battery pack containing the device.
US11852688B2 (en) 2019-05-14 2023-12-26 Lg Energy Solution, Ltd. Apparatus and method for determining degradation degree of battery and battery pack comprising the apparatus
CN112840221B (en) * 2019-05-14 2023-09-01 株式会社Lg新能源 Apparatus and method for determining degree of degradation of battery and battery pack including the same
CN112840221A (en) * 2019-05-14 2021-05-25 株式会社Lg化学 Apparatus and method for determining degree of degradation of battery and battery pack including the same
EP3913385A4 (en) * 2019-05-14 2022-03-30 LG Energy Solution, Ltd. Device and method for determining degree of degradation of battery, and battery pack comprising device
JP7151044B2 (en) 2019-05-14 2022-10-12 エルジー エナジー ソリューション リミテッド Apparatus and method for determining the degree of deterioration of a battery, and battery pack containing the apparatus
WO2021040306A1 (en) * 2019-08-23 2021-03-04 주식회사 엘지화학 Method for predicting soh of battery and battery pack employing same
JP7341322B2 (en) 2019-08-23 2023-09-08 エルジー エナジー ソリューション リミテッド Battery SOH prediction method and battery pack using this method
JP2022544857A (en) * 2019-08-23 2022-10-21 エルジー エナジー ソリューション リミテッド BATTERY SOH PREDICTION METHOD AND BATTERY PACK USING THIS
EP4006564A1 (en) * 2019-08-23 2022-06-01 Lg Energy Solution, Ltd. Method for predicting soh of battery and battery pack employing same
EP4006564A4 (en) * 2019-08-23 2022-09-21 Lg Energy Solution, Ltd. Method for predicting soh of battery and battery pack employing same
WO2021181674A1 (en) * 2020-03-13 2021-09-16 Tdk株式会社 Control device for secondary battery, battery pack, and control method for secondary battery
WO2021181650A1 (en) * 2020-03-13 2021-09-16 Tdk株式会社 Control device for secondary battery, battery pack, and method for controlling secondary battery
WO2021191939A1 (en) * 2020-03-23 2021-09-30 Tdk株式会社 Secondary battery control device, battery pack, and secondary battery control method
WO2021205602A1 (en) * 2020-04-09 2021-10-14 Tdk株式会社 Secondary battery control device, secondary battery control system, battery pack, and secondary battery control method
WO2021205642A1 (en) * 2020-04-10 2021-10-14 Tdk株式会社 Secondary battery control device, secondary battery control system, battery pack, and secondary battery control method
WO2021224990A1 (en) * 2020-05-08 2021-11-11 Tdk株式会社 Secondary battery control system, battery pack, and secondary battery control method
JP2023503080A (en) * 2020-07-20 2023-01-26 エルジー エナジー ソリューション リミテッド Battery management system, battery management method, battery pack and electric vehicle
JP7331327B2 (en) 2020-07-20 2023-08-23 エルジー エナジー ソリューション リミテッド Battery management system, battery management method, battery pack and electric vehicle
WO2022019595A1 (en) * 2020-07-20 2022-01-27 주식회사 엘지에너지솔루션 Battery management system, battery management method, battery pack, and electric vehicle
DE112021006998T5 (en) 2021-02-02 2023-11-30 Mitsubishi Electric Corporation BATTERY DEGRADATION DIAGNOSTIC DEVICE AND BATTERY DEGRADATION DIAGNOSTIC METHOD

Similar Documents

Publication Publication Date Title
JP2019056595A (en) Secondary battery system
JP7141012B2 (en) Secondary battery system
JP2019045351A (en) Secondary battery system
KR102435037B1 (en) A method for calibrating a battery, a method for estimating the state of health of a battery, and a system for performing theses methods
JP4884404B2 (en) Method and apparatus for detecting internal information of secondary battery
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
US9476947B2 (en) Method for ascertaining operating parameters of a battery, battery management system, and battery
CN104698385B (en) Battery state calculating device and battery state calculating method
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
EP2700966B1 (en) Apparatus and method for estimating battery state
JP5798067B2 (en) Secondary battery state estimation device
KR102080632B1 (en) Battery management system and its operating method
US11163010B2 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
JP2019070621A (en) Secondary battery system
EP2728368B1 (en) Condition estimation device and method for battery
KR101809838B1 (en) Deterioration degree calculating method, control method, and control device for lithium ion secondary battery
JPWO2011090020A1 (en) Secondary battery charge state measuring device and secondary battery charge state measuring method
US11143710B2 (en) Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell
EP2664938B1 (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
JP2011220900A (en) Battery deterioration estimation method, battery capacity estimation method, battery capacity equalization method and battery deterioration estimation device
JP2019061741A (en) Secondary battery system
JP2018205138A (en) Secondary battery system
JP2018205139A (en) Secondary battery system
JP2020079723A (en) Secondary battery system
JP2018206612A (en) Secondary batter system