JP2012221782A - Manufacturing method of nonaqueous electrolyte secondary battery - Google Patents

Manufacturing method of nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012221782A
JP2012221782A JP2011087155A JP2011087155A JP2012221782A JP 2012221782 A JP2012221782 A JP 2012221782A JP 2011087155 A JP2011087155 A JP 2011087155A JP 2011087155 A JP2011087155 A JP 2011087155A JP 2012221782 A JP2012221782 A JP 2012221782A
Authority
JP
Japan
Prior art keywords
battery
capacity
self
negative electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011087155A
Other languages
Japanese (ja)
Inventor
Hiroaki Ikeda
博昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011087155A priority Critical patent/JP2012221782A/en
Publication of JP2012221782A publication Critical patent/JP2012221782A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a nonaqueous electrolyte secondary battery capable of highly accurately detecting a battery in which an internal short-circuit occurred.SOLUTION: A manufacturing method of a nonaqueous electrolyte secondary battery comprises: an electrode body formation step of forming an electrode body having a positive electrode and a negative electrode; and a self-discharge step of self-discharging the nonaqueous electrolyte secondary battery including the electrode body and a battery case housing the electrode body by leaving the battery unattended for a prescribed period. In the electrode body formation step (step S1), there is formed an electrode body whose capacity ratio (B/A) of a capacity A of the positive electrode to a capacity B of the negative electrode is less than or equal to 1.4. In the self-discharge step (step S6), the battery unattended is left for the prescribed period under a temperature environment of 20°C or lower.

Description

本発明は、非水電解質二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a nonaqueous electrolyte secondary battery.

近年、ハイブリッド自動車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源として、リチウムイオン二次電池などの非水電解質二次電池が利用されている。   In recent years, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used as power sources for driving portable electronic devices such as hybrid cars, notebook computers, and video camcorders.

ところで、非水電解質二次電池を製造する過程(例えば、電極体形成工程や組み付け工程)において、電池内部(電極体内)に、金属粉などの導電性異物が誤って混入してしまうことがある。このような電池を使用した場合、導電性異物由来のデンドライトが発生し、内部短絡が生じてしまう(セパレータによって電気的に絶縁されている正極と負極とが、デンドライトを通じて電気的に接続する)ことがある。   By the way, in the process of producing a nonaqueous electrolyte secondary battery (for example, electrode body forming process or assembly process), conductive foreign matters such as metal powder may be mistakenly mixed in the battery (in the electrode body). . When such a battery is used, dendrites derived from conductive foreign matter are generated and an internal short circuit occurs (the positive electrode and the negative electrode electrically insulated by the separator are electrically connected through the dendrite). There is.

これに対し、特許文献1では、このような電池を出荷(市場に供給)しないようにするために、導電性異物が混入しているか否かを検査する方法を提案している。具体的には、電池を組み立てた後、初期充電等を行い、その後、当該電池を、45℃以上の温度環境下で所定時間放置する。そして、放置期間中の電圧低下量を測定する。すなわち、放置開始時の電池電圧値から放置終了時の電池電圧値を差し引いた電圧低下量を求める。そして、求めた電圧低下量が予め設定された基準値よりも大きいときは、導電性異物が電池内に混入していると判定する。   On the other hand, Patent Document 1 proposes a method for inspecting whether or not conductive foreign matters are mixed in order to prevent such a battery from being shipped (supplied to the market). Specifically, after the battery is assembled, initial charging or the like is performed, and then the battery is left in a temperature environment of 45 ° C. or higher for a predetermined time. Then, the amount of voltage drop during the standing period is measured. That is, a voltage drop amount obtained by subtracting the battery voltage value at the end of leaving from the battery voltage value at the start of leaving is obtained. And when the calculated voltage drop amount is larger than a preset reference value, it is determined that conductive foreign matter is mixed in the battery.

特許文献1には、上記方法は、以下の原理に基づいていると記載されている。正負極とセパレータとの間に導電性異物が存在している場合、リチウムイオン二次電池を45℃以上の環境温度下に所定時間放置すると、導電性異物から導電性結晶(デンドライト)の成長が進行する。このため、短時間で導電性異物がセパレータを貫通して内部短絡を引き起こすので、通常の電圧低下を超える電圧低下が発生する。従って、上記方法により、導電性異物が混入している電池(これによって内部短絡が発生した電池)を検出することができると記載されている。   Patent Document 1 describes that the above method is based on the following principle. When conductive foreign matter exists between the positive and negative electrodes and the separator, if a lithium ion secondary battery is left at an environmental temperature of 45 ° C. or higher for a predetermined time, conductive crystals (dendrites) grow from the conductive foreign matter. proceed. For this reason, since a conductive foreign material penetrates a separator in a short time and causes an internal short circuit, a voltage drop exceeding a normal voltage drop occurs. Therefore, it is described that a battery in which conductive foreign matter is mixed (a battery in which an internal short circuit has occurred) can be detected by the above method.

特開2005−158643号公報Japanese Patent Laid-Open No. 2005-158643

ところで、近年、正負極の容量比(B/A)を1.4以上とする非水電解質二次電池が開発されている。正負極の容量比(B/A)を1.4以上とすることで、電池の内部抵抗を低減することができ、また、充電時(特に、ハイレート充電時)に負極表面にLiが析出することを抑制することができる。   By the way, in recent years, nonaqueous electrolyte secondary batteries having a positive / negative electrode capacity ratio (B / A) of 1.4 or more have been developed. By setting the positive / negative electrode capacity ratio (B / A) to 1.4 or more, the internal resistance of the battery can be reduced, and Li is deposited on the negative electrode surface during charging (particularly during high-rate charging). This can be suppressed.

ところが、正負極の容量比(B/A)を1.4以上とした場合、特許文献1の方法では、電池電圧の変化量(低下量)のバラツキが大きくなり、導電性異物が混入している電池(これによって内部短絡が発生した電池)を精度良く検出することができない虞があった。具体的には、正常電池(導電性異物が混入しておらず、内部短絡が生じない電池をいう)同士の間で、電池電圧の変化量(低下量)のバラツキが非常に大きくなり、内部短絡が生じているか否かを精度良く検出することができない虞があった。詳細には、正常電池のうち放置期間中の電圧低下量が大きな電池では、内部短絡が生じている電池(このうち放置期間中の電圧低下量が小さな電池)と同程度の電圧低下量となり、これらの電池の間で電圧低下量(電池電圧差ΔVbc)に明確な違いが現れないことがあった。このため、内部短絡が生じている電池を精度良く検出することができない虞があった。   However, when the capacity ratio (B / A) of the positive and negative electrodes is 1.4 or more, the method of Patent Document 1 has a large variation in the amount of change (decrease) in battery voltage, and conductive foreign matter is mixed in. There is a possibility that the existing battery (the battery in which the internal short circuit occurs) cannot be accurately detected. Specifically, variation in the amount of battery voltage (amount of decrease) between normal batteries (which does not contain conductive foreign matter and does not cause internal short-circuiting) becomes extremely large. There is a possibility that it cannot be accurately detected whether or not a short circuit has occurred. Specifically, among the normal batteries, the battery with a large voltage drop during the leaving period has the same voltage drop as the battery in which an internal short circuit has occurred (a battery with a small voltage drop during the leaving period) In some cases, there was no clear difference in voltage drop (battery voltage difference ΔVbc) between these batteries. For this reason, there is a possibility that a battery in which an internal short circuit has occurred cannot be accurately detected.

本発明は、かかる問題点に鑑みてなされたものであって、内部短絡が生じている電池を精度良く検出することができる、非水電解質二次電池の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a method for manufacturing a nonaqueous electrolyte secondary battery that can accurately detect a battery in which an internal short circuit has occurred. .

本発明の一態様は、正極及び負極を有する電極体を形成する電極体形成工程と、上記電極体及び非水電解液を電池ケース内に収容した非水電解質二次電池を、所定期間放置することにより、上記電池を自己放電させる自己放電工程と、を備える非水電解質二次電池の製造方法において、上記電極体形成工程では、上記正極の容量Aと上記負極の容量Bとの容量比(B/A)を1.4以上とした電極体を形成し、上記自己放電工程では、20℃以下の温度環境下で、上記電池を上記所定期間放置する非水電解質二次電池の製造方法である。   According to one embodiment of the present invention, an electrode body forming step for forming an electrode body having a positive electrode and a negative electrode, and a nonaqueous electrolyte secondary battery in which the electrode body and the nonaqueous electrolyte are contained in a battery case are left for a predetermined period. Thus, in the method of manufacturing a non-aqueous electrolyte secondary battery comprising a self-discharge step of self-discharging the battery, in the electrode body forming step, a capacity ratio between the capacity A of the positive electrode and the capacity B of the negative electrode ( A method of manufacturing a non-aqueous electrolyte secondary battery in which an electrode body having a B / A) of 1.4 or more is formed and the battery is left in the self-discharge step at a temperature environment of 20 ° C. or lower for a predetermined period of time. is there.

上述の製造方法は、電極体及び非水電解液を電池ケース内に収容した非水電解質二次電池を、所定期間放置することにより、当該電池を自己放電させる自己放電工程を備える。この自己放電工程では、電池の放置を開始するときの電池電圧値である放置開始電圧値Vbから、所定期間の放置を終えたときの電池電圧値である放置終了電圧値Vcを差し引いた電池電圧差ΔVbcが、所定の閾値以上である場合、当該電池に内部短絡が生じていると判定する。内部短絡が生じていると判定された電池は、例えば、不良品として取り除かれる(例えば、廃棄される)。   The above-described manufacturing method includes a self-discharge process in which a non-aqueous electrolyte secondary battery in which an electrode body and a non-aqueous electrolyte are accommodated in a battery case is left for a predetermined period to self-discharge the battery. In this self-discharge step, the battery voltage obtained by subtracting the leaving end voltage value Vc, which is the battery voltage value when the battery is left for a predetermined period, from the leaving start voltage value Vb, which is the battery voltage value when starting to leave the battery, is determined. If the difference ΔVbc is greater than or equal to a predetermined threshold, it is determined that an internal short circuit has occurred in the battery. A battery determined to have an internal short circuit is removed, for example, as a defective product (for example, discarded).

また、上述の製造方法では、電極体形成工程において、正極の容量Aと負極の容量Bとの容量比(B/A)の値を1.4以上とした電極体を作製する。正負極の容量比(B/A)の値を1.4以上とすることで、電池の内部抵抗を低減することができ、また、充電時(特に、ハイレート充電時)に負極表面にLiが析出することを抑制することができる。   Further, in the above-described manufacturing method, in the electrode body forming step, an electrode body having a capacity ratio (B / A) between the positive electrode capacity A and the negative electrode capacity B of 1.4 or more is manufactured. By setting the capacity ratio (B / A) of the positive and negative electrodes to 1.4 or more, the internal resistance of the battery can be reduced, and Li can be formed on the negative electrode surface during charging (particularly during high rate charging). Precipitation can be suppressed.

ところで、従来(例えば特許文献1)の方法では、正負極の容量比(B/A)を1.4以上とした電極体を備える電池を自己放電させると、正常電池(内部短絡が生じていない電池)同士の間でも、電池電圧の変化量(低下量)のバラツキが大きくなり、内部短絡が生じているか否かを精度良く検出することができなかった。具体的には、正常電池のうち電池電圧変化量が大きな電池では、内部短絡が生じている電池(このうち電池電圧変化量が小さな電池)と同程度の電圧低下量となり、これらの電池の間で電圧低下量(電池電圧差ΔVbc)に明確な違いが現れないことがあった。このため、内部短絡が生じている電池を精度良く検出することができなかった。   By the way, in the conventional method (for example, Patent Document 1), when a battery including an electrode body having a positive / negative electrode capacity ratio (B / A) of 1.4 or more is self-discharged, a normal battery (internal short circuit does not occur). Even between the batteries, the variation in the amount of change (decrease amount) in the battery voltage increased, and it was not possible to accurately detect whether an internal short circuit occurred. Specifically, a battery with a large battery voltage change amount among normal batteries has a voltage drop amount similar to that of an internal short-circuited battery (a battery with a small battery voltage change amount). In some cases, there was no clear difference in the voltage drop (battery voltage difference ΔVbc). For this reason, a battery in which an internal short circuit has occurred cannot be detected with high accuracy.

なお、電池電圧の変化量(低下量)のバラツキが大きくなる理由は、次のように考えている。正負極の容量比(B/A)が1.4以上と大きくされた非水電解質二次電池では、自己放電期間中に、負極表面においてSEI(Solid Electrolyte Interface)生成反応が促進され易く、これに伴って、電池電圧の変化量(低下量)が大きくなる傾向にある。このため、電池同士の間で電池電圧の変化量(低下量)の差が大きくなる傾向にあり、その結果、電池電圧の変化量(低下量)のバラツキが大きくなると考えている。   The reason why the variation (the amount of decrease) in the battery voltage varies greatly is considered as follows. In a non-aqueous electrolyte secondary battery in which the capacity ratio (B / A) of the positive and negative electrodes is increased to 1.4 or more, SEI (Solid Electrolyte Interface) generation reaction is easily promoted on the negative electrode surface during the self-discharge period. As a result, the amount of change (decrease amount) in battery voltage tends to increase. For this reason, the difference in the amount of change (decrease amount) in the battery voltage between the batteries tends to increase, and as a result, the variation in the amount of change (decrease amount) in the battery voltage increases.

これに対し、上述の製造方法では、自己放電工程において、20℃以下の温度環境下で、電池を所定期間放置する。正負極の容量比(B/A)が1.4以上と大きくされた非水電解質二次電池を、20℃以下の温度環境下で放置して自己放電させることにより、正常電池同士の間で、電池電圧の変化量(低下量)のバラツキを小さくすることができる。これにより、正常電池と内部短絡電池との間で、電圧低下量(電池電圧差ΔVbc)に明確な差が現れるようになる。これにより、内部短絡が生じている電池を精度良く検出することができる。   On the other hand, in the above-described manufacturing method, the battery is left for a predetermined period in a temperature environment of 20 ° C. or lower in the self-discharge process. A non-aqueous electrolyte secondary battery having a positive / negative electrode capacity ratio (B / A) increased to 1.4 or more is allowed to stand in a temperature environment of 20 ° C. or less and self-discharge, thereby allowing normal batteries to The variation in the battery voltage change amount (decrease amount) can be reduced. As a result, a clear difference appears in the voltage drop amount (battery voltage difference ΔVbc) between the normal battery and the internal short-circuit battery. Thereby, the battery in which the internal short circuit has arisen can be detected accurately.

なお、電池電圧の変化量(低下量)のバラツキを小さくできる理由は、次のように考えている。電池を放置する環境温度を20℃以下にすることで、自己放電期間中のSEI生成反応を抑制することができ、これによって、電池電圧の変化量(低下量)を小さくできると考えている。その結果、電池電圧の変化量(低下量)のバラツキを小さくできると考えている。   The reason why the variation in the battery voltage change amount (decrease amount) can be reduced is considered as follows. By setting the environmental temperature at which the battery is left to be 20 ° C. or less, it is considered that the SEI generation reaction during the self-discharge period can be suppressed, and thereby the change amount (decrease amount) of the battery voltage can be reduced. As a result, it is considered that the variation in the battery voltage change amount (decrease amount) can be reduced.

さらに、上記の非水電解質二次電池の製造方法であって、前記自己放電工程を終えた前記電池について電池容量の一部または全部を測定する容量測定工程、を備え、上記自己放電工程では、10〜20℃の範囲内の温度環境下で、前記電池を前記所定期間放置する非水電解質二次電池の製造方法とすると良い。   Furthermore, the method for manufacturing a non-aqueous electrolyte secondary battery includes a capacity measuring step for measuring part or all of the battery capacity for the battery that has finished the self-discharge step, and in the self-discharge step, A non-aqueous electrolyte secondary battery manufacturing method in which the battery is allowed to stand for the predetermined period in a temperature environment within a range of 10 to 20 ° C is preferable.

上述の製造方法は、自己放電工程を終えた電池について電池容量の一部または全部を測定する容量測定工程を備えている。この容量測定工程は、正極合材層及び負極合材層の塗工量が適切であるか否かを確認するための工程である。具体的には、電極合材層(正極合材層及び負極合材層)の塗工量が基準値から大きく外れている(過剰または過少である)場合、電池容量が基準値から大きく外れる(許容範囲から外れる)ことになる。従って、容量測定工程では、電池容量の一部または全部の測定値が、許容範囲内であるか否かを判定し、測定値が許容範囲外である場合、当該電池は電極合材層の塗工不良であると判定する。塗工不良と判定された電池は、例えば、不良品として取り除かれる(例えば、廃棄される)。   The manufacturing method described above includes a capacity measuring step of measuring part or all of the battery capacity of the battery that has finished the self-discharge process. This capacity | capacitance measurement process is a process for confirming whether the coating amount of a positive mix layer and a negative mix layer is appropriate. Specifically, when the coating amount of the electrode mixture layer (the positive electrode mixture layer and the negative electrode mixture layer) is greatly deviated from the reference value (excess or excessive), the battery capacity deviates greatly from the reference value ( Will be out of tolerance). Therefore, in the capacity measurement step, it is determined whether a part or all of the measured values of the battery capacity are within the allowable range. If the measured value is outside the allowable range, the battery is coated with the electrode mixture layer. It is determined that the work is defective. A battery determined to be defective in coating is removed, for example, as a defective product (for example, discarded).

ところが、正負極の容量比(B/A)を1.4以上とした電極体を備える電池の場合、自己放電工程において自己放電させた後、容量測定工程において電池容量を測定すると、正常電池(電極合材層の塗工量が適量である電池)同士の間でも、電池容量のバラツキが大きくなり、塗工不良電池を精度良く検出することができないことがあった。すなわち、自己放電工程中(放置期間中)に電池容量が大きく変動(低下)することがあり、その結果、電池容量に大きなバラツキが生じてしまうことがあった。   However, in the case of a battery including an electrode body with a positive / negative electrode capacity ratio (B / A) of 1.4 or more, after self-discharge in the self-discharge process, when the battery capacity is measured in the capacity measurement process, a normal battery ( Even between batteries in which the coating amount of the electrode mixture layer is an appropriate amount), the battery capacity varies greatly, and it is sometimes impossible to accurately detect a coating defective battery. That is, the battery capacity may fluctuate (decrease) greatly during the self-discharge process (during the standing period), and as a result, the battery capacity may vary greatly.

本発明者が検討したところ、自己放電工程において20℃よりも高い温度環境下で電池を放置した場合、特に、電池容量に大きなバラツキが生じることが判明した。また、自己放電工程において10℃よりも低い温度環境下で電池を放置した場合にも、電池容量に大きなバラツキが生じることが判明した。   As a result of studies by the present inventor, it has been found that when the battery is left under a temperature environment higher than 20 ° C. in the self-discharge process, particularly, the battery capacity varies greatly. In addition, it has been found that when the battery is left in a temperature environment lower than 10 ° C. in the self-discharge process, the battery capacity varies greatly.

これに対し、上述の製造方法では、自己放電工程において、10〜20℃の範囲内の温度環境下で、電池を所定期間放置する。正負極の容量比(B/A)を1.4以上と大きくした非水電解質二次電池について、自己放電工程における電池の放置温度(環境温度)を、10〜20℃の範囲内とすることにより、自己放電期間中(放置期間中)に電池容量のバラツキが大きくなるのを抑制することができる。これにより、自己放電工程後の容量測定工程において、塗工不良電池を精度良く検出することができる。   On the other hand, in the manufacturing method described above, the battery is left for a predetermined period in a temperature environment within a range of 10 to 20 ° C. in the self-discharge process. For non-aqueous electrolyte secondary batteries having a positive / negative electrode capacity ratio (B / A) as large as 1.4 or more, the battery standing temperature (environmental temperature) in the self-discharge process should be within the range of 10 to 20 ° C. As a result, it is possible to suppress the variation in battery capacity during the self-discharge period (during the leaving period). Thereby, in the capacity | capacitance measurement process after a self-discharge process, a coating defect battery can be detected accurately.

なお、自己放電工程において20℃よりも高い温度環境下で電池を放置した場合に、電池容量のバラツキが大きくなる理由は、次のように考えている。正負極の容量比(B/A)が1.4以上と大きくされた非水電解質二次電池では、自己放電工程中(放置期間中)に、負極表面においてSEI生成反応が促進され易く(従って、Liが消費され易く)、これに伴って、電池容量が大きく低下することがあると考えている。その結果、電池容量のバラツキが大きくなる傾向があると考えている。   The reason why the variation in battery capacity increases when the battery is left in a temperature environment higher than 20 ° C. in the self-discharge process is considered as follows. In a non-aqueous electrolyte secondary battery in which the capacity ratio (B / A) of the positive and negative electrodes is increased to 1.4 or more, the SEI formation reaction is easily promoted on the surface of the negative electrode during the self-discharge process (during the standing period) (accordingly) , Li is likely to be consumed), and along with this, the battery capacity may be greatly reduced. As a result, it is considered that the variation in battery capacity tends to increase.

さらに、上記いずれかの非水電解質二次電池の製造方法であって、前記電極体形成工程では、前記容量比(B/A)を1.7以上とした電極体を作製する非水電解質二次電池の製造方法とすると良い。   Furthermore, in any one of the above non-aqueous electrolyte secondary battery manufacturing methods, in the electrode body forming step, the non-aqueous electrolyte secondary battery for producing an electrode body having the capacity ratio (B / A) of 1.7 or more is prepared. A secondary battery manufacturing method is preferable.

上述の製造方法では、電極体形成工程において、正極の容量Aと負極の容量Bとの容量比(B/A)の値を1.7以上とした電極体を作製する。正負極の容量比(B/A)の値を1.7以上とすることで、電池の内部抵抗を小さくすることができ、また、充電時(特に、ハイレート充電時)に負極表面にLiが析出するのを効果的に抑制することができる。
ところが、従来(例えば特許文献1)の方法を用いた場合、正負極の容量比(B/A)を1.7以上と大きくした非水電解質二次電池において、特に、電池電圧の変化量(低下量)のバラツキが大きくなる傾向にあった。
In the above-described manufacturing method, in the electrode body forming step, an electrode body is produced in which the capacity ratio (B / A) between the positive electrode capacity A and the negative electrode capacity B is 1.7 or more. By setting the capacity ratio (B / A) of the positive and negative electrodes to 1.7 or more, the internal resistance of the battery can be reduced, and Li can be formed on the negative electrode surface during charging (particularly during high rate charging). Precipitation can be effectively suppressed.
However, when a conventional method (for example, Patent Document 1) is used, in a non-aqueous electrolyte secondary battery in which the capacity ratio (B / A) of positive and negative electrodes is increased to 1.7 or more, in particular, the amount of change in battery voltage ( There was a tendency for the variation in the amount of decrease to increase.

これに対し、上述の製造方法では、前述のように、自己放電工程において、20℃以下の温度環境下で、電池を所定期間放置する。これにより、正常電池同士の間で、自己放電期間中(放置期間中)における電池電圧の変化量(低下量)のバラツキを小さくすることができる。これにより、正常電池と内部短絡電池との間で、電圧低下量(電池電圧差ΔVbc)に明確な差が現れるようになる。これにより、正負極の容量比(B/A)を1.7以上と大きくした非水電解質二次電池についても、内部短絡が生じている電池を精度良く検出することができる。   On the other hand, in the manufacturing method described above, as described above, the battery is left for a predetermined period in a temperature environment of 20 ° C. or lower in the self-discharge process. Thereby, it is possible to reduce the variation in the change amount (decrease amount) of the battery voltage during the self-discharge period (during the leaving period) between the normal batteries. As a result, a clear difference appears in the voltage drop amount (battery voltage difference ΔVbc) between the normal battery and the internal short-circuit battery. As a result, even for a non-aqueous electrolyte secondary battery in which the capacity ratio (B / A) of the positive and negative electrodes is increased to 1.7 or more, it is possible to accurately detect a battery in which an internal short circuit occurs.

なお、正負極の容量比(B/A)の値は、1.9以下とするのが好ましい。正負極の容量比(B/A)の値を1.9より大きくすると、SEI生成反応によって消費されるLi量が多くなり、電池容量が低下するからである。   Note that the positive / negative electrode capacity ratio (B / A) is preferably 1.9 or less. This is because when the capacity ratio (B / A) of the positive and negative electrodes is larger than 1.9, the amount of Li consumed by the SEI generation reaction increases, and the battery capacity decreases.

さらに、上記いずれかの非水電解質二次電池の製造方法であって、前記自己放電工程より前に、前記非水電解質二次電池を初期充放電する初期充放電工程と、上記初期充放電工程を終えた上記電池を、所定の温度で一定時間安置してエージングするエージング工程と、を備える非水電解質二次電池の製造方法とすると良い。   Furthermore, in any one of the above non-aqueous electrolyte secondary battery manufacturing methods, an initial charge / discharge step of initially charging / discharging the non-aqueous electrolyte secondary battery before the self-discharge step, and the initial charge / discharge step It is preferable to provide a method for producing a non-aqueous electrolyte secondary battery comprising: an aging process in which the battery that has finished is aged at a predetermined temperature for a predetermined time.

非水電解質二次電池について、自己放電工程に先立って、初期充放電工程とエージング工程を行うことで、非水電解質二次電池を活性化させることができる。従って、自己放電工程において、活性化した非水電解質二次電池を自己放電させて、内部短絡が生じている電池を検出することができる。   About a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery can be activated by performing an initial charging / discharging process and an aging process prior to a self-discharge process. Therefore, in the self-discharge step, the activated nonaqueous electrolyte secondary battery can be self-discharged to detect a battery in which an internal short circuit has occurred.

ところで、非水電解質二次電池を製造する過程(例えば、電極体形成工程や組み付け工程)において、電池内部(電極体内)に、金属粉などの導電性異物が誤って混入してしまうことがある。このような電池では、エージング工程において、金属粉などの導電性異物由来のデンドライトが発生し、内部短絡が生じる(セパレータによって電気的に絶縁されている正極板と負極板とが、デンドライトを通じて電気的に接続する)ことがある。   By the way, in the process of producing a nonaqueous electrolyte secondary battery (for example, electrode body forming process or assembly process), conductive foreign matters such as metal powder may be mistakenly mixed in the battery (in the electrode body). . In such a battery, dendrite derived from conductive foreign matters such as metal powder is generated in the aging process, and an internal short circuit occurs (the positive electrode plate and the negative electrode plate electrically insulated by the separator are electrically connected through the dendrite. Connected).

これに対し、上述の非水電解質二次電池の製造方法では、エージング工程の後に、自己放電工程を備えている。しかも、自己放電工程では、前述のように、内部短絡が生じている電池を精度良く検出することができる。従って、上述の製造方法では、エージング工程において内部短絡が発生した電池を、適切に検出することができる。   On the other hand, in the manufacturing method of the above-mentioned nonaqueous electrolyte secondary battery, the self-discharge process is provided after the aging process. In addition, in the self-discharge process, as described above, it is possible to accurately detect a battery in which an internal short circuit has occurred. Therefore, in the above manufacturing method, a battery in which an internal short circuit has occurred in the aging process can be appropriately detected.

実施形態にかかる非水電解質二次電池の斜視図である。It is a perspective view of the nonaqueous electrolyte secondary battery concerning an embodiment. 同非水電解質二次電池の正極の斜視図である。It is a perspective view of the positive electrode of the nonaqueous electrolyte secondary battery. 同非水電解質二次電池の負極の斜視図である。It is a perspective view of the negative electrode of the nonaqueous electrolyte secondary battery. 同負極の拡大断面図であり、図3のA−A断面図に相当する。It is an expanded sectional view of the same negative electrode, and corresponds to the AA sectional view of FIG. 実施形態にかかる非水電解質二次電池の製造方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing method of the nonaqueous electrolyte secondary battery concerning embodiment. 組み付け工程を終えた電池を押圧治具で挟んで拘束状態にした状態を示す斜視図である。It is a perspective view which shows the state which pinched | interposed the battery which finished the assembly | attachment process with the pressing jig, and was made into the restraint state. 正負極容量比(B/A)の値を1.8とした電池について、放置温度(自己放電工程の環境温度)と電池電圧差ΔVbcの最大差(バラツキの大きさ)との関係を示すグラフである。The graph which shows the relationship between the leaving temperature (environment temperature of a self-discharge process) and the maximum difference (size of variation) of battery voltage difference ΔVbc for a battery having a positive / negative electrode capacity ratio (B / A) value of 1.8. It is. 正負極容量比(B/A)の値が異なる電池について、放置温度(自己放電工程の環境温度)と電池電圧差ΔVbcの最大差(バラツキの大きさ)との関係を示すグラフである。It is a graph which shows the relationship between leaving temperature (environment temperature of a self-discharge process) and the maximum difference (size of variation) of battery voltage difference (DELTA) Vbc about the battery from which the value of positive / negative electrode capacity ratio (B / A) differs. 正負極容量比(B/A)の値を1.8とした電池について、放置温度(自己放電工程の環境温度)と電池容量バラツキとの関係を示すグラフである。It is a graph which shows the relationship between a leaving temperature (environment temperature of a self-discharge process) and battery capacity variation about the battery which made the value of positive / negative electrode capacity ratio (B / A) 1.8. 正負極容量比(B/A)の値が異なる電池について、放置温度(自己放電工程の環境温度)と電池容量バラツキとの関係を示すグラフである。It is a graph which shows the relationship between standing temperature (environment temperature of a self-discharge process) and battery capacity variation about the battery from which the value of positive / negative electrode capacity ratio (B / A) differs. 正負極容量比(B/A)の値と平均電池容量の比率(正負極容量比1.2の電池に対する比率)との関係を示すグラフである。It is a graph which shows the relationship between the value of positive / negative electrode capacity ratio (B / A) and the ratio of average battery capacity (ratio with respect to the battery of positive / negative electrode capacity ratio 1.2).

まず、本実施形態の製造方法によって製造される非水電解質二次電池100について説明する。
非水電解質二次電池100は、図1に示すように、電極体110と、これを収容する電池ケース180とを備える、リチウムイオン二次電池である。電極体110は、正極130、負極120、及びセパレータ150を備えている。セパレータ150は、ポリエチレンからなり、正極130と負極120との間に介在して、これらを離間させている。このセパレータ150には、リチウムイオンを有する非水電解液160を含浸させている。
First, the nonaqueous electrolyte secondary battery 100 manufactured by the manufacturing method of this embodiment will be described.
As shown in FIG. 1, the nonaqueous electrolyte secondary battery 100 is a lithium ion secondary battery that includes an electrode body 110 and a battery case 180 that houses the electrode body 110. The electrode body 110 includes a positive electrode 130, a negative electrode 120, and a separator 150. The separator 150 is made of polyethylene, and is interposed between the positive electrode 130 and the negative electrode 120 to separate them. The separator 150 is impregnated with a non-aqueous electrolyte 160 having lithium ions.

電池ケース180は、アルミニウムからなり、直方体形状をなしている。この電池ケース180は、電池ケース本体181と封口蓋182を有する。このうち、電池ケース本体181は、有底矩形箱形状をなしている。なお、電池ケース本体181と電極体110との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)を介在させている。この電池ケース180は、互いに背向する一対の幅広側面180b,180cを有している。幅広側面180bは、図1において正面側を向く面であり、幅広側面180cは、図1において裏側を向く面(幅広側面180bの裏側に位置する面)である。   The battery case 180 is made of aluminum and has a rectangular parallelepiped shape. The battery case 180 has a battery case main body 181 and a sealing lid 182. Among these, the battery case main body 181 has a bottomed rectangular box shape. Note that an insulating film (not shown) made of resin and bent in a box shape is interposed between the battery case main body 181 and the electrode body 110. The battery case 180 has a pair of wide side surfaces 180b and 180c facing away from each other. The wide side surface 180b is a surface facing the front side in FIG. 1, and the wide side surface 180c is a surface facing the back side in FIG. 1 (a surface located on the back side of the wide side surface 180b).

また、封口蓋182は、矩形板状であり、電池ケース本体181の開口を閉塞して、この電池ケース本体181に溶接されている。この封口蓋182には、矩形板状の安全弁197が封着されている。   The sealing lid 182 has a rectangular plate shape, closes the opening of the battery case body 181, and is welded to the battery case body 181. A rectangular plate-shaped safety valve 197 is sealed on the sealing lid 182.

また、電極体110の正極130には、クランク状に屈曲した板状の正極集電部材191が溶接されている(図1参照)。さらに、負極120には、クランク状に屈曲した板状の負極集電部材192が溶接されている。正極集電部材191及び負極集電部材192のうち、それぞれの先端に位置する正極端子部191A及び負極端子部192Aは、封口蓋182を貫通して蓋表面182Aから突出している。なお、正極端子部191Aと封口蓋182との間、及び、負極端子部192Aと封口蓋182との間には、それぞれ、電気絶縁性の樹脂からなる絶縁部材195を介在させている。   In addition, a plate-like positive electrode current collecting member 191 bent in a crank shape is welded to the positive electrode 130 of the electrode body 110 (see FIG. 1). Further, the negative electrode 120 is welded with a plate-shaped negative electrode current collecting member 192 bent in a crank shape. Of the positive electrode current collecting member 191 and the negative electrode current collecting member 192, the positive electrode terminal portion 191A and the negative electrode terminal portion 192A located at the respective tips penetrate the sealing lid 182 and protrude from the lid surface 182A. Insulating members 195 made of electrically insulating resin are interposed between the positive electrode terminal portion 191A and the sealing lid 182 and between the negative electrode terminal portion 192A and the sealing lid 182, respectively.

また、非水電解液160は、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とジメチルカーボネート(DMC)とを、体積比で3:4:3に調整した混合有機溶媒に、溶質としてLiPF6を添加した非水電解液である。なお、非水電解液160中のLiPF6の濃度は、1mol/Lとしている。 In addition, the non-aqueous electrolyte 160 is composed of LiPF 6 as a solute in a mixed organic solvent in which ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) are adjusted to a volume ratio of 3: 4: 3. Is a non-aqueous electrolyte to which is added. The concentration of LiPF 6 in the non-aqueous electrolyte 160 is 1 mol / L.

電極体110は、帯状の正極130及び負極120が、帯状のセパレータ150を介して扁平形状に捲回されてなる捲回型電極体である(図1参照)。詳細には、長手方向DAに延びる帯状の正極130、負極120、及びセパレータ150を、長手方向DAに捲回して、捲回型の電極体110を形成している(図1〜図4参照)。なお、この電極体110では、セパレータ150を介して、正極130の正極合材層131と負極120の負極合材層121とが対向している(図4参照)。   The electrode body 110 is a wound electrode body in which a strip-shaped positive electrode 130 and a negative electrode 120 are wound in a flat shape via a strip-shaped separator 150 (see FIG. 1). Specifically, the strip-shaped positive electrode 130, the negative electrode 120, and the separator 150 extending in the longitudinal direction DA are wound in the longitudinal direction DA to form a wound electrode body 110 (see FIGS. 1 to 4). . In this electrode body 110, the positive electrode mixture layer 131 of the positive electrode 130 and the negative electrode mixture layer 121 of the negative electrode 120 are opposed to each other with the separator 150 interposed therebetween (see FIG. 4).

正極130は、図2に示すように、長手方向DAに延びる帯状で、アルミニウム箔からなる正極集電板138と、この正極集電板138の両主面上に、それぞれ長手方向DAに延びる帯状に配置された2つの正極合材層131,131とを有している。正極合材層131は、正極活物質137と、アセチレンブラックからなる導電材と、PVdF(結着剤)とを、重量比88:10:2の割合で含んでいる。なお、正極活物質137として、LiNi1/3Mn1/3Co1/32を用いている。 As shown in FIG. 2, the positive electrode 130 has a strip shape extending in the longitudinal direction DA. The positive electrode current collector plate 138 made of aluminum foil and strips extending in the longitudinal direction DA on both main surfaces of the positive electrode current collector plate 138. And two positive electrode mixture layers 131, 131 disposed on the surface. The positive electrode mixture layer 131 includes a positive electrode active material 137, a conductive material made of acetylene black, and PVdF (binder) in a weight ratio of 88: 10: 2. Note that LiNi 1/3 Mn 1/3 Co 1/3 O 2 is used as the positive electrode active material 137.

また、負極120は、図3に示すように、長手方向DAに延びる帯状で銅箔からなる負極集電板128と、この負極集電板128の両主面128F,128F上に、それぞれ長手方向DAに延びる帯状に配置された2つの負極合材層121,121とを有している。負極合材層121は、負極活物質127とSBR(スチレンブタジエンゴム)とCMCと(カルボキシメチルセルロース)を、重量比98:1:1の割合で含んでいる。   Further, as shown in FIG. 3, the negative electrode 120 includes a negative electrode current collector plate 128 made of a copper foil in a strip shape extending in the longitudinal direction DA, and both main surfaces 128F and 128F of the negative electrode current collector plate 128 in the longitudinal direction. It has two negative electrode mixture layers 121 and 121 arranged in a strip shape extending to DA. The negative electrode mixture layer 121 includes a negative electrode active material 127, SBR (styrene butadiene rubber), CMC, and (carboxymethylcellulose) in a weight ratio of 98: 1: 1.

なお、負極活物質127として、負極活物質の粒子が黒鉛と非晶質炭素とからなるもの(例えば、黒鉛の表面を非晶質炭素で被覆したもの)を用いている。また、負極合材層121の表面には、金属酸化物絶縁層129が設けられている。金属酸化物絶縁層129は、酸化アルミニウム(アルミナ)とポリフッ化ビニリデンとを重量比95:5の割合で含んでいる。   In addition, as the negative electrode active material 127, a material in which particles of the negative electrode active material are composed of graphite and amorphous carbon (for example, a surface of graphite covered with amorphous carbon) is used. A metal oxide insulating layer 129 is provided on the surface of the negative electrode mixture layer 121. The metal oxide insulating layer 129 contains aluminum oxide (alumina) and polyvinylidene fluoride in a weight ratio of 95: 5.

負極合材層121は、図3及び図4(図3のA−A断面図)に示すように、セパレータ150を介して正極合材層131と対向する対向部122と、セパレータ150を介して対向する正極合材層131が存在しない非対向部123とからなる。具体的には、負極合材層121は、正極合材層131に比べて大きな面積を有しており、非対向部123が対向部122の周囲に位置する形態となっている。なお、負極合材層121における非対向部123と対向部122との境界の位置は、負極120、セパレータ150及び正極130を捲回して電極体110を形成したときに決まる。また、図4では、参考として、電極体110を形成したときの正極130及びセパレータ150の位置を、二点鎖線で示している。   As shown in FIGS. 3 and 4 (AA cross-sectional view of FIG. 3), the negative electrode mixture layer 121 includes a facing portion 122 that faces the positive electrode mixture layer 131 through the separator 150, and a separator 150. It consists of the non-facing part 123 in which the opposing positive mix layer 131 does not exist. Specifically, the negative electrode mixture layer 121 has a larger area than the positive electrode mixture layer 131, and the non-opposing portion 123 is positioned around the opposed portion 122. Note that the position of the boundary between the non-facing portion 123 and the facing portion 122 in the negative electrode mixture layer 121 is determined when the electrode body 110 is formed by winding the negative electrode 120, the separator 150, and the positive electrode 130. Further, in FIG. 4, for reference, the positions of the positive electrode 130 and the separator 150 when the electrode body 110 is formed are indicated by a two-dot chain line.

また、本実施形態では、正極130の容量Aと負極120の容量Bとの容量比(負極容量B/正極容量A)を、1.4以上としている。正負極の容量比(B/A)を1.4以上とすることで、電池の内部抵抗を低減することができ、また、充電時(特に、ハイレート充電時)に負極表面にLiが析出することを抑制することができる。なお、正極容量Aと負極容量Bとの容量比(B/A)は、正極合材層131と負極合材層121の対向部122との容量比である。この容量比は、負極合材層121(対向部122)の厚み(すなわち、後述する負極スラリの塗布量)の増減により調整している。   In the present embodiment, the capacity ratio of the capacity A of the positive electrode 130 and the capacity B of the negative electrode 120 (negative electrode capacity B / positive electrode capacity A) is 1.4 or more. By setting the positive / negative electrode capacity ratio (B / A) to 1.4 or more, the internal resistance of the battery can be reduced, and Li is deposited on the negative electrode surface during charging (particularly during high-rate charging). This can be suppressed. The capacity ratio (B / A) between the positive electrode capacity A and the negative electrode capacity B is the capacity ratio between the positive electrode mixture layer 131 and the facing portion 122 of the negative electrode mixture layer 121. This capacity ratio is adjusted by increasing or decreasing the thickness of the negative electrode mixture layer 121 (opposing portion 122) (that is, the amount of negative slurry applied later).

次に、本実施形態にかかる非水電解質二次電池の製造方法について説明する。図5は、本実施形態にかかる非水電解質二次電池の製造方法の流れを示すフローチャートである。
まず、ステップS1(電極体形成工程)において、正極130及び負極120を有する電極体110を形成する。具体的には、まず、正極活物質137とアセチレンブラックとPVdF(結着剤)とを、重量比88:10:2の割合で混合し、これにNMP(溶媒)を混合して、正極スラリを作製した。次いで、この正極スラリを、アルミニウム箔からなる正極集電板138の表面に塗工し、乾燥させた後、プレス加工を施した。これにより、正極130を得た。
Next, the manufacturing method of the nonaqueous electrolyte secondary battery according to the present embodiment will be described. FIG. 5 is a flowchart showing a flow of a manufacturing method of the nonaqueous electrolyte secondary battery according to the present embodiment.
First, in step S1 (electrode body forming step), the electrode body 110 having the positive electrode 130 and the negative electrode 120 is formed. Specifically, first, the positive electrode active material 137, acetylene black, and PVdF (binder) are mixed at a weight ratio of 88: 10: 2, and NMP (solvent) is mixed therewith to form a positive electrode slurry. Was made. Next, this positive electrode slurry was applied to the surface of a positive electrode current collector plate 138 made of aluminum foil, dried, and then pressed. Thereby, the positive electrode 130 was obtained.

また、負極活物質127とSBR(スチレンブタジエンゴム)とCMCと(カルボキシメチルセルロース)とを、98:1:1(重量比)の割合で水中で混合して、負極スラリを作製した。次いで、この負極スラリを、銅箔からなる負極集電板128の両主面128F上に塗工し、乾燥させた後、プレス加工を施した。これにより、負極120を得た。   Moreover, the negative electrode active material 127, SBR (styrene butadiene rubber), CMC, and (carboxymethylcellulose) were mixed in water in the ratio of 98: 1: 1 (weight ratio), and the negative electrode slurry was produced. Next, this negative electrode slurry was coated on both main surfaces 128F of the negative electrode current collector plate 128 made of copper foil, dried, and then pressed. Thereby, the negative electrode 120 was obtained.

なお、負極活物質127は、例えば、次のようにして作製することができる。球状に成形した黒鉛とピッチ(石油ピッチ)とを混合し、これを焼成する。この焼成により、ピッチ(石油ピッチ)が非晶質炭素となる。その後、この焼成体を粉砕することで、負極活物質127(黒鉛の表面を非晶質炭素で被覆したもの)を得ることができる。   The negative electrode active material 127 can be produced, for example, as follows. Spherical shaped graphite and pitch (petroleum pitch) are mixed and fired. By this firing, the pitch (petroleum pitch) becomes amorphous carbon. Thereafter, the fired body is pulverized, whereby the negative electrode active material 127 (graphite surface coated with amorphous carbon) can be obtained.

なお、負極活物質127として、非晶質炭素の割合(非晶質炭素含有率)が、2.5〜7.1wt%の範囲内である負極活物質を用いるのが好ましい。また、負極活物質127として、負極活物質粒子のBET比表面積が、2.8〜5.2m2/gの範囲内である負極活物質を用いるのが好ましい。本実施形態では、BET比表面積の値として、公知のBET法(詳細には、N2ガス吸着法)により求められた比表面積の値を採用している。 Note that as the negative electrode active material 127, it is preferable to use a negative electrode active material in which the ratio of amorphous carbon (amorphous carbon content) is in the range of 2.5 to 7.1 wt%. As the negative electrode active material 127, it is preferable to use a negative electrode active material in which the BET specific surface area of the negative electrode active material particles is in the range of 2.8 to 5.2 m 2 / g. In the present embodiment, the value of the specific surface area obtained by a known BET method (specifically, the N 2 gas adsorption method) is adopted as the value of the BET specific surface area.

また、負極合材層121の表面には、金属酸化物絶縁層129を形成している。具体的には、酸化アルミニウム(アルミナ)とポリフッ化ビニリデンとを重量比95:5の割合で混合し、これに溶媒を混合してペーストにする。このペーストを負極合材層121の表面に塗布し、乾燥させることで、金属酸化物絶縁層129を形成することができる。なお、金属酸化物絶縁層129の厚みは、2〜8μmとするのが好ましい。   A metal oxide insulating layer 129 is formed on the surface of the negative electrode mixture layer 121. Specifically, aluminum oxide (alumina) and polyvinylidene fluoride are mixed at a weight ratio of 95: 5, and a solvent is mixed with this to obtain a paste. The metal oxide insulating layer 129 can be formed by applying this paste to the surface of the negative electrode mixture layer 121 and drying it. Note that the thickness of the metal oxide insulating layer 129 is preferably 2 to 8 μm.

また、本実施形態では、正極容量Aと負極容量Bとの容量比(負極容量B/正極容量A)の値を、1.4以上としている。なお、正極容量Aと負極容量Bとの容量比(B/A)の値は、正極合材層131と負極合材層121の対向部122との容量比である。この容量比は、負極合材層121(対向部122)の厚み(すなわち、負極スラリの塗工量)の増減により調整する。   In this embodiment, the capacity ratio (negative electrode capacity B / positive electrode capacity A) of the positive electrode capacity A and the negative electrode capacity B is 1.4 or more. Note that the value of the capacity ratio (B / A) between the positive electrode capacity A and the negative electrode capacity B is the capacity ratio between the positive electrode mixture layer 131 and the facing portion 122 of the negative electrode mixture layer 121. This capacity ratio is adjusted by increasing or decreasing the thickness of the negative electrode mixture layer 121 (opposing portion 122) (that is, the coating amount of the negative electrode slurry).

その後、負極120と正極130との間に、セパレータ150を介在させて捲回し、電極体110を形成する。なお、負極120の負極合材層121における対向部122に、セパレータ150を介して正極130の正極合材層131が対向するように、セパレータ150、負極120、セパレータ150、正極130の順に重ねて捲回する(図4参照)。このようにして、捲回型の電極体110を形成した。   Thereafter, the electrode body 110 is formed by winding the separator 150 between the negative electrode 120 and the positive electrode 130. The separator 150, the negative electrode 120, the separator 150, and the positive electrode 130 are stacked in this order so that the positive electrode mixture layer 131 of the positive electrode 130 faces the facing portion 122 of the negative electrode mixture layer 121 of the negative electrode 120 through the separator 150. Wind (see FIG. 4). In this way, a wound electrode body 110 was formed.

次いで、ステップS2(組み付け工程)に進み、電池ケース180内に電極体110と非水電解液160と収容した電池を作製する。
具体的には、負極120(負極集電板128)に負極集電部材192を溶接し、正極130(正極集電板138)に正極集電部材191を溶接する。次いで、負極集電部材192及び正極集電部材191を溶接した電極体110を、電池ケース本体181内に挿入した後、非水電解液160を注入する。その後、封口蓋182で電池ケース本体181の開口を閉塞した状態で、封口蓋182と電池ケース本体181とを溶接し、非水電解質二次電池の組み付けを完了する。
Next, the process proceeds to step S2 (assembly process), and a battery in which the electrode body 110 and the non-aqueous electrolyte 160 are housed in the battery case 180 is manufactured.
Specifically, the negative electrode current collecting member 192 is welded to the negative electrode 120 (negative electrode current collecting plate 128), and the positive electrode current collecting member 191 is welded to the positive electrode 130 (positive electrode current collecting plate 138). Next, after the electrode body 110 welded to the negative electrode current collecting member 192 and the positive electrode current collecting member 191 is inserted into the battery case main body 181, the nonaqueous electrolyte solution 160 is injected. Thereafter, the sealing lid 182 and the battery case main body 181 are welded in a state where the opening of the battery case main body 181 is closed with the sealing lid 182 to complete the assembly of the nonaqueous electrolyte secondary battery.

次いで、ステップS3(電池拘束工程)に進み(図5参照)、上述の組み付け工程(ステップS2)において作製された非水電解質二次電池を、押圧治具30,40で挟んで拘束状態にする(図6参照)。具体的には、図6に示すように、電池ケース180の幅広側面180b,180cを押圧治具30,40で押圧するように、押圧治具30,40で非水電解質二次電池100を挟んで、非水電解質二次電池100を拘束状態にする。詳細には、電池ケース180の幅広側面180b側に配置した押圧治具30と、幅広側面180c側に配置した押圧治具40とを、円柱状のロッド51とナット53とを用いて締結することで、押圧治具30,40で非水電解質二次電池100を挟み、電池ケース180の幅広側面180b,180cを押圧治具30,40で押圧する。これにより、電池ケース180に対し、所定の荷重(例えば、400〜800kgf)をかけた状態にする。   Next, the process proceeds to step S3 (battery restraint process) (see FIG. 5), and the nonaqueous electrolyte secondary battery produced in the above assembly process (step S2) is sandwiched between the pressing jigs 30 and 40 to be in a restraint state. (See FIG. 6). Specifically, as shown in FIG. 6, the nonaqueous electrolyte secondary battery 100 is sandwiched between the pressing jigs 30 and 40 so that the wide side surfaces 180 b and 180 c of the battery case 180 are pressed by the pressing jigs 30 and 40. Thus, the nonaqueous electrolyte secondary battery 100 is brought into a restrained state. Specifically, the pressing jig 30 disposed on the wide side surface 180 b side of the battery case 180 and the pressing jig 40 disposed on the wide side surface 180 c side are fastened using the cylindrical rod 51 and the nut 53. Thus, the non-aqueous electrolyte secondary battery 100 is sandwiched between the pressing jigs 30 and 40, and the wide side surfaces 180 b and 180 c of the battery case 180 are pressed with the pressing jigs 30 and 40. Thus, a predetermined load (for example, 400 to 800 kgf) is applied to the battery case 180.

次に、ステップS4(初期充放電工程)に進み(図5参照)、押圧治具30,40で拘束した状態(図6に示す状態)の非水電解質二次電池100について、充放電を行う。詳細には、1C(5A)の定電流で、電池電圧値が4.1Vに至るまで充電し、その後、電池電圧値を4.1Vに保持しつつ充電を行い、充電電流値が0.1Aに低下した時点で充電を終了する。次いで、1Cの定電流で電池電圧値が3.92Vに至るまで放電する。次に、1Cの定電流で、電池電圧値が3.97Vに至るまで充電し、その後、電池電圧値を3.97Vに保持しつつ充電を行い、充電電流値が0.1Aに低下した時点で充電を終了する。   Next, it progresses to step S4 (initial charging / discharging process) (refer FIG. 5), and charge / discharge is performed about the nonaqueous electrolyte secondary battery 100 of the state (state shown in FIG. 6) restrained by the pressing jigs 30 and 40. . Specifically, charging is performed at a constant current of 1 C (5 A) until the battery voltage value reaches 4.1 V, and then charging is performed while the battery voltage value is maintained at 4.1 V. The charging current value is 0.1 A. When it drops to, charging ends. Next, the battery is discharged at a constant current of 1 C until the battery voltage reaches 3.92V. Next, the battery is charged with a constant current of 1 C until the battery voltage value reaches 3.97 V, and then charged while holding the battery voltage value at 3.97 V. When the charging current value decreases to 0.1 A To finish charging.

なお、1Cは、定格容量値(公称容量値)の容量を有する電池を定電流放電して、1時間で放電終了となる電流値である。非水電解質二次電池100の定格容量(公称容量)は5.0Ahであるので、1C=5.0Aとなる。   Note that 1C is a current value at which discharge is completed in 1 hour after a battery having a rated capacity value (nominal capacity value) is discharged at a constant current. Since the rated capacity (nominal capacity) of the nonaqueous electrolyte secondary battery 100 is 5.0 Ah, 1C = 5.0 A.

次いで、ステップS5(エージング工程)に進み、初期充放電(ステップS4の処理)を終えた拘束状態(図6に示す状態)の非水電解質二次電池100を、所定の温度(例えば、60℃)で、一定時間(例えば、20時間)安置してエージングする。   Next, the process proceeds to step S5 (aging process), and the nonaqueous electrolyte secondary battery 100 in the restraint state (state shown in FIG. 6) after the initial charge / discharge (the process of step S4) is set to a predetermined temperature (for example, 60 ° C.). ) And aged for a certain time (for example, 20 hours).

ところで、ステップS1(電極体形成工程)や組み付け工程(ステップS2)において、電極体110内に金属粉(Cu粉など)などが誤って混入してしまうことがある。このような電池では、エージング工程において、金属粉由来のデンドライトが発生し、内部短絡が生じる(セパレータ150によって電気的に絶縁されている正極130と負極120とが、デンドライトを通じて電気的に接続する)ことがある。このため、後述するステップS6(自己放電工程)において、内部短絡が生じた電池を検出し、出荷しないようにしている(不良品として取り除く)。   By the way, in step S1 (electrode body forming process) and assembly process (step S2), metal powder (such as Cu powder) may be mixed in the electrode body 110 by mistake. In such a battery, in the aging process, dendrites derived from metal powder are generated and an internal short circuit occurs (the positive electrode 130 and the negative electrode 120 that are electrically insulated by the separator 150 are electrically connected through the dendrite). Sometimes. For this reason, in step S6 (self-discharge process) described later, a battery in which an internal short circuit has occurred is detected so as not to be shipped (removed as a defective product).

次に、ステップS6(自己放電工程)に進み、エージング(ステップS5の処理)を終えた拘束状態(図6に示す状態)の非水電解質二次電池100を、所定期間(例えば、10日間)放置することにより自己放電させる。   Next, the process proceeds to step S6 (self-discharge process), and the nonaqueous electrolyte secondary battery 100 in the restraint state (state shown in FIG. 6) after aging (the process of step S5) is completed for a predetermined period (for example, 10 days). Let it self-discharge by leaving it alone.

ステップS6(自己放電工程)では、非水電解質二次電池100の放置を開始するときの電池電圧値(放置開始電圧値Vb)と、所定期間の放置を終えたときの電池電圧値(放置終了電圧値Vc)とを測定する。さらに、ステップS6(自己放電工程)では、放置開始電圧値Vbから放置終了電圧値Vcを差し引いた電池電圧差ΔVbc(=Vb−Vc)を算出し、電池電圧差ΔVbcが、所定の閾値Tbc以上であるか否かを判定する。電池電圧差ΔVbcが閾値Tbc以上である場合、当該電池100には内部短絡が生じていると判定する。   In step S6 (self-discharge process), the battery voltage value when the non-aqueous electrolyte secondary battery 100 is left standing (left standing voltage value Vb) and the battery voltage value when the predetermined period is left standing (leaving end) Voltage value Vc). Further, in step S6 (self-discharge process), a battery voltage difference ΔVbc (= Vb−Vc) obtained by subtracting the leaving end voltage value Vc from the leaving start voltage value Vb is calculated, and the battery voltage difference ΔVbc is equal to or greater than a predetermined threshold Tbc. It is determined whether or not. When the battery voltage difference ΔVbc is equal to or greater than the threshold value Tbc, it is determined that an internal short circuit has occurred in the battery 100.

内部短絡が生じている電池では、内部短絡が生じていない電池(正常な電池)に比べて、放置による自己放電量が大きくなるので、電池電圧値が小さくなり、放置前後の電池電圧差ΔVbcも大きくなる。従って、放置前後の電池電圧差ΔVbcに基づいて、電池に内部短絡が生じているか否かを判断することできる。そこで、ステップS6(自己放電工程)では、電池電圧差ΔVbcが所定の閾値Tbc以上であるか否かによって、非水電解質二次電池100に内部短絡が生じているか否かを判定する。内部短絡が生じていると判定された電池は、不良品として取り除かれる(例えば、廃棄される)。   In a battery in which an internal short circuit has occurred, since the amount of self-discharge due to neglect is larger than a battery in which an internal short circuit has not occurred (normal battery), the battery voltage value becomes smaller, and the battery voltage difference ΔVbc before and after the neglect is also growing. Therefore, based on the battery voltage difference ΔVbc before and after being left, it can be determined whether or not an internal short circuit has occurred in the battery. Therefore, in step S6 (self-discharge process), it is determined whether or not an internal short circuit has occurred in the nonaqueous electrolyte secondary battery 100 depending on whether or not the battery voltage difference ΔVbc is equal to or greater than a predetermined threshold value Tbc. A battery determined to have an internal short circuit is removed as a defective product (for example, discarded).

なお、閾値Tbcは、例えば、予め、内部短絡が生じている電池と生じていない電池とについて、それぞれの電池電圧差ΔVbcを調査しておき、両電池の電池電圧差ΔVbcの間の値とすれば良い。   Note that the threshold Tbc is, for example, a value between the battery voltage difference ΔVbc of both batteries obtained by examining the battery voltage difference ΔVbc of a battery in which an internal short circuit has occurred and a battery in which no internal short circuit has occurred. It ’s fine.

ところで、従来(例えば特許文献1)の方法では、正負極の容量比(B/A)を1.4以上とした電極体を備える電池を自己放電させると、正常電池(内部短絡が生じていない電池)同士の間でも、電池電圧の変化量(低下量)のバラツキが大きくなり、内部短絡が生じている電池を精度良く検出することができなかった。具体的には、正常電池のうち電池電圧変化量が大きな電池では、内部短絡が生じている電池(このうち電池電圧変化量が小さな電池)と同程度の電圧低下量となり、これらの電池の間で電圧低下量(電池電圧差ΔVbc)に明確な違いが現れないことがあった。このため、内部短絡が生じている電池を精度良く検出することができなかった。   By the way, in the conventional method (for example, Patent Document 1), when a battery including an electrode body having a positive / negative electrode capacity ratio (B / A) of 1.4 or more is self-discharged, a normal battery (internal short circuit does not occur). Even among the batteries, the variation in the battery voltage change amount (decrease amount) became large, and the battery in which an internal short circuit occurred could not be detected with high accuracy. Specifically, a battery with a large battery voltage change amount among normal batteries has a voltage drop amount similar to that of an internal short-circuited battery (a battery with a small battery voltage change amount). In some cases, there was no clear difference in the voltage drop (battery voltage difference ΔVbc). For this reason, a battery in which an internal short circuit has occurred cannot be detected with high accuracy.

これに対し、本実施形態の自己放電工程(ステップS6)では、20℃以下の温度環境下で、電池100を所定期間放置する。正負極の容量比(B/A)の値が1.4以上と大きくされた非水電解質二次電池100を、20℃以下の温度環境下で放置して自己放電させることにより、正常電池同士の間で、電池電圧の変化量(低下量)のバラツキを小さくすることができる。これにより、正常電池と内部短絡電池との間で、電圧低下量(電池電圧差ΔVbc)に明確な差が現れるようになる。これにより、内部短絡が生じている電池を精度良く検出することができる。   In contrast, in the self-discharge process (step S6) of the present embodiment, the battery 100 is left for a predetermined period in a temperature environment of 20 ° C. or lower. By allowing the non-aqueous electrolyte secondary battery 100 having a positive / negative electrode capacity ratio (B / A) value of 1.4 or more to stand in a temperature environment of 20 ° C. or less and self-discharge, The variation in the battery voltage change amount (decrease amount) can be reduced. As a result, a clear difference appears in the voltage drop amount (battery voltage difference ΔVbc) between the normal battery and the internal short-circuit battery. Thereby, the battery in which the internal short circuit has arisen can be detected accurately.

なお、電池電圧の変化量(低下量)のバラツキを小さくできる理由は、次のように考えている。電池100を放置する環境温度を20℃以下にすることで、自己放電期間中(放置期間中)のSEI生成反応を抑制することができ、これによって、電池電圧の変化量(低下量)を小さくできると考えている。その結果、電池電圧の変化量(低下量)のバラツキを小さくできると考えている。   The reason why the variation in the battery voltage change amount (decrease amount) can be reduced is considered as follows. By setting the environmental temperature at which the battery 100 is left to 20 ° C. or less, it is possible to suppress the SEI generation reaction during the self-discharge period (during the stand-by period), thereby reducing the battery voltage change amount (reduction amount). I think I can do it. As a result, it is considered that the variation in the battery voltage change amount (decrease amount) can be reduced.

次に、ステップS7(容量測定工程)に進み、ステップS6において内部短絡が生じていない(正常である)と判定された非水電解質二次電池100について、25℃の温度環境下で電池容量を測定する。   Next, the process proceeds to step S7 (capacity measurement step), and the battery capacity of the non-aqueous electrolyte secondary battery 100 determined in step S6 that no internal short-circuit has occurred (normal) in a temperature environment of 25 ° C. taking measurement.

この容量測定工程(ステップS7)は、ステップS2(組み付け工程)における正極合材層131及び負極合材層121の塗工量が適切であるか否かを確認するための工程である。具体的には、電極合材層(正極合材層131及び負極合材層121)の塗工量が基準値から大きく外れている(過剰または過少である)場合、電池容量が基準値から大きく外れる(許容範囲から外れる)ことになる。従って、容量測定工程(ステップS7)では、電池容量の測定値が、許容範囲内であるか否かを判定し、測定値が許容範囲外である場合、当該電池は電極合材層(正極合材層131及び負極合材層121)の塗工不良(塗工量が不適切)であると判定する。   This capacity measurement process (step S7) is a process for confirming whether or not the coating amounts of the positive electrode mixture layer 131 and the negative electrode mixture layer 121 in step S2 (assembly process) are appropriate. Specifically, when the coating amount of the electrode mixture layer (the positive electrode mixture layer 131 and the negative electrode mixture layer 121) is greatly deviated from the reference value (excessive or too small), the battery capacity is greatly increased from the reference value. It will deviate (out of the allowable range). Therefore, in the capacity measurement step (step S7), it is determined whether or not the measured value of the battery capacity is within the allowable range. If the measured value is outside the allowable range, the battery is in contact with the electrode mixture layer (positive electrode composite). It is determined that the material layer 131 and the negative electrode mixture layer 121) are poorly coated (the amount of coating is inappropriate).

具体的には、まず、電池100について、1C(5A)の定電流で、電池電圧値が4.1V(SOC100%)に至るまで充電し、その後、電池電圧値を4.1Vに保持しつつ充電を行い、充電電流値が0.1Aに低下した時点で充電を終了する。次いで、電池100について、1Cの定電流で電池電圧値が3.0V(SOC0%)に至るまで放電する。このときの放電電気量Q1を、電池容量として測定する。放電電気量Q1(電池容量)が許容範囲から外れている電池は、塗工不良と判定され、不良品として取り除かれる(例えば、廃棄される)。   Specifically, first, the battery 100 is charged with a constant current of 1 C (5 A) until the battery voltage value reaches 4.1 V (SOC 100%), and then the battery voltage value is maintained at 4.1 V. Charging is performed, and charging is terminated when the charging current value decreases to 0.1 A. Next, the battery 100 is discharged at a constant current of 1 C until the battery voltage value reaches 3.0 V (SOC 0%). The amount of electricity discharged Q1 at this time is measured as the battery capacity. A battery whose discharge electricity quantity Q1 (battery capacity) is out of the allowable range is determined as a coating failure and is removed as a defective product (for example, discarded).

なお、ステップS7(容量測定工程)でも、非水電解質二次電池100は、押圧治具30,40で拘束した状態(図7に示す状態)のままである。
また、SOCは、State Of Charge(充電状態、充電率)の略である。
In step S7 (capacity measurement step), the nonaqueous electrolyte secondary battery 100 remains in a state of being restrained by the pressing jigs 30 and 40 (the state shown in FIG. 7).
Also, SOC is an abbreviation for State Of Charge.

次いで、ステップS8(内部抵抗測定工程)に進み、容量測定工程(ステップS7)を終えた拘束状態(図6に示す状態)の非水電解質二次電池100について、その内部抵抗(IV抵抗)を測定する。具体的には、非水電解質二次電池100を充電して、その電池電圧値を3.6V(SOC40%)にする。その後、この非水電解質二次電池100を、20Aの定電流で4秒間だけ放電させ、放電終了時(終了した瞬間)の電池電圧値Vgを測定する。次いで、放電により変化した電池電圧変化量ΔV(=3.6−Vg)を電流値20Aで除した値(=ΔV/20)を、IV抵抗値(内部抵抗値)として取得する。IV抵抗値が許容範囲から外れている電池は、不良品として取り除かれる(例えば、廃棄される)。   Next, the process proceeds to step S8 (internal resistance measurement process), and the internal resistance (IV resistance) of the nonaqueous electrolyte secondary battery 100 in the restraint state (state shown in FIG. 6) after the capacity measurement process (step S7) is completed. taking measurement. Specifically, the non-aqueous electrolyte secondary battery 100 is charged, and the battery voltage value is set to 3.6 V (SOC 40%). Thereafter, the non-aqueous electrolyte secondary battery 100 is discharged at a constant current of 20 A for 4 seconds, and the battery voltage value Vg at the end of discharge (moment of completion) is measured. Next, a value (= ΔV / 20) obtained by dividing the battery voltage change amount ΔV (= 3.6-Vg) changed by the discharge by the current value 20A is acquired as an IV resistance value (internal resistance value). A battery whose IV resistance value is out of the allowable range is removed as a defective product (for example, discarded).

その後、ステップS9(拘束解除工程)に進み、内部抵抗測定工程(ステップS8)を終えた非水電解質二次電池100の拘束状態を解除する。具体的には、非水電解質二次電池100を挟んで押圧していた押圧治具30,40を取り外す。このようにして、非水電解質二次電池100が完成する。
なお、本実施形態の非水電解質二次電池100は、例えば、ハイブリッド自動車や電気自動車の駆動用電源として使用される。
Then, it progresses to step S9 (restraint cancellation | release process), and the restraint state of the nonaqueous electrolyte secondary battery 100 which finished the internal resistance measurement process (step S8) is cancelled | released. Specifically, the pressing jigs 30 and 40 that have been pressed with the nonaqueous electrolyte secondary battery 100 interposed therebetween are removed. In this way, the nonaqueous electrolyte secondary battery 100 is completed.
In addition, the nonaqueous electrolyte secondary battery 100 of this embodiment is used as a drive power source for a hybrid vehicle or an electric vehicle, for example.

(実施例1)
実施例1では、ステップS1(電極体形成工程)において、正極容量Aと負極容量Bとの容量比(負極容量B/正極容量A)を、1.7以上(具体的には、1.8)とした電極体110を作製した。正負極の容量比(B/A)の値を1.7以上とすることで、電池の内部抵抗を小さくすることができ、また、充電時(特に、ハイレート充電時)に負極表面にLiが析出するのを効果的に抑制することができる。
また、自己放電工程(ステップS6)において、電池100を放置する環境温度を、10〜20℃の範囲内の温度(具体的には20℃)とした。
Example 1
In Example 1, in step S1 (electrode body forming step), the capacity ratio (negative electrode capacity B / positive electrode capacity A) of the positive electrode capacity A and the negative electrode capacity B is 1.7 or more (specifically, 1.8 An electrode body 110 was prepared. By setting the capacity ratio (B / A) of the positive and negative electrodes to 1.7 or more, the internal resistance of the battery can be reduced, and Li can be formed on the negative electrode surface during charging (particularly during high rate charging). Precipitation can be effectively suppressed.
In the self-discharge process (step S6), the environmental temperature in which the battery 100 is left is set to a temperature within the range of 10 to 20 ° C. (specifically, 20 ° C.).

(自己放電試験)
次に、自己放電試験について説明する。この自己放電試験は、放置温度(自己放電工程の環境温度)と自己放電期間中(放置期間中)における電池電圧の変化量(低下量)のバラツキとの関係を調査するために行った。
(Self-discharge test)
Next, the self-discharge test will be described. This self-discharge test was conducted in order to investigate the relationship between the standing temperature (environment temperature of the self-discharge process) and the variation in the amount of change (decrease amount) in the battery voltage during the self-discharge period (during the standing period).

具体的には、まず、前述のステップS1〜S5の処理を行った電池を、140個用意する。なお、ステップS1では、実施例1と同様に、正極容量Aと負極容量Bとの容量比(負極容量B/正極容量A)を1.8としている。これらの電池を、20個ずつの7つのグループに分け、グループごとに放置温度(自己放電工程の環境温度)を異ならせて、10日間放置することで自己放電を行った。   Specifically, first, 140 batteries that have undergone the above-described steps S1 to S5 are prepared. In step S1, the capacity ratio of the positive electrode capacity A and the negative electrode capacity B (negative electrode capacity B / positive electrode capacity A) is set to 1.8 as in the first embodiment. These batteries were divided into seven groups of 20 pieces, and the self-discharge was performed by leaving the batteries to stand for 10 days with different stand temperatures (environmental temperatures in the self-discharge process) for each group.

詳細には、第1グループの20個の電池は、5℃の温度環境下(放置温度)で、10日間の放置をすることで自己放電を行った。第2グループの20個の電池は、10℃の温度環境下で、10日間の放置をすることで自己放電を行った。第3グループの20個の電池は、15℃の温度環境下で、10日間の放置をすることで自己放電を行った。第4グループの20個の電池は、20℃の温度環境下で、10日間の放置をすることで自己放電を行った。第5グループの20個の電池は、22℃の温度環境下で、10日間の放置をすることで自己放電を行った。第6グループの20個の電池は、25℃の温度環境下で、10日間の放置をすることで自己放電を行った。第7グループの20個の電池は、30℃の温度環境下で、10日間の放置をすることで自己放電を行った。   Specifically, the 20 batteries of the first group were self-discharged by being left for 10 days in a temperature environment of 5 ° C. (standing temperature). The 20 batteries of the second group self-discharged by being left for 10 days in a temperature environment of 10 ° C. The 20 batteries of the third group self-discharged by being left for 10 days in a temperature environment of 15 ° C. The 20 batteries of the fourth group were self-discharged by being left for 10 days in a temperature environment of 20 ° C. The 20 batteries of the fifth group self-discharged by being left for 10 days in a temperature environment of 22 ° C. Sixth group of 20 batteries were self-discharged by being left for 10 days in a temperature environment of 25 ° C. The 20 batteries of the seventh group self-discharged by being left for 10 days in a temperature environment of 30 ° C.

この自己放電試験では、各グループ(従って、それぞれの放置温度)において、それぞれの電池について、放置を開始するときの電池電圧値(放置開始電圧値Vb)と、10日間の放置を終えたときの電池電圧値(放置終了電圧値Vc)とを測定した。さらに、放置開始電圧値Vbから放置終了電圧値Vcを差し引いた電池電圧差ΔVbc(=Vb−Vc)を算出した。そして、各グループ(各放置温度)において、電池電圧差ΔVbcが最も大きくなった電池の電池電圧差ΔVbcの値から、電池電圧差ΔVbcが最も小さくなった電池の電池電圧差ΔVbcの値を差し引いた値(この値を、電池電圧差ΔVbcの最大差という)を算出した。これらの結果を、図7のグラフに示す。
なお、自己放電試験を行った140個の電池は、いずれも、内部短絡が生じていない正常電池であることを確認している。
In this self-discharge test, in each group (thus, each leaving temperature), for each battery, the battery voltage value at the time of starting to stand (leaving start voltage value Vb) and when the standing for 10 days is finished. The battery voltage value (standby end voltage value Vc) was measured. Further, a battery voltage difference ΔVbc (= Vb−Vc) obtained by subtracting the leaving end voltage value Vc from the leaving start voltage value Vb was calculated. In each group (each standing temperature), the value of the battery voltage difference ΔVbc of the battery having the smallest battery voltage difference ΔVbc is subtracted from the value of the battery voltage difference ΔVbc of the battery having the largest battery voltage difference ΔVbc. A value (this value is referred to as the maximum difference of the battery voltage difference ΔVbc) was calculated. These results are shown in the graph of FIG.
In addition, it has confirmed that all the 140 batteries which performed the self-discharge test are normal batteries in which the internal short circuit has not arisen.

図7は、正負極容量比(B/A)の値を1.8とした電池について、放置温度(自己放電工程の環境温度)と電池電圧差ΔVbcの最大差(バラツキの大きさ)との関係を示すグラフである。電池電圧差ΔVbcの最大差が大きいほど、自己放電期間中(放置期間中)における電池電圧の変化量(低下量)のバラツキが大きいといえる。   FIG. 7 shows the difference between the standing temperature (environment temperature of the self-discharge process) and the maximum difference (size of variation) of the battery voltage difference ΔVbc for a battery having a positive / negative electrode capacity ratio (B / A) value of 1.8. It is a graph which shows a relationship. It can be said that the greater the maximum difference of the battery voltage difference ΔVbc, the greater the variation in the battery voltage change amount (decrease amount) during the self-discharge period (during the standing period).

そこで、図7に示す結果を検討すると、20℃以下の温度環境下で放置して自己放電させた場合は、自己放電期間中(放置期間中)における電池電圧の変化量(電池電圧差ΔVbc)の最大差が極めて小さいことがわかる。すなわち、放置温度を20℃以下とした場合、正常電池同士の間において、電池電圧変化量(電池電圧差ΔVbc)のバラツキは小さくなる。   Accordingly, when the results shown in FIG. 7 are examined, when the battery is left to self-discharge in a temperature environment of 20 ° C. or lower, the amount of change in battery voltage (battery voltage difference ΔVbc) during the self-discharge period (during the leave period). It can be seen that the maximum difference is extremely small. That is, when the leaving temperature is set to 20 ° C. or less, the variation in the battery voltage change amount (battery voltage difference ΔVbc) is reduced between normal batteries.

一方、20℃よりも高い温度環境下で放置して自己放電させた場合は、自己放電期間中(放置期間中)における電池電圧の変化量(電池電圧差ΔVbc)の最大差が大きくなることがわかる。すなわち、放置温度を20℃よりも高くした場合、正常電池同士であっても、電池電圧変化量(電池電圧差ΔVbc)のバラツキは大きくなる。   On the other hand, when the battery is left to self-discharge in a temperature environment higher than 20 ° C., the maximum difference in the amount of change in battery voltage (battery voltage difference ΔVbc) during the self-discharge period (during the storage period) may increase. Recognize. That is, when the leaving temperature is higher than 20 ° C., the variation in the battery voltage change amount (battery voltage difference ΔVbc) increases even between normal batteries.

以上の結果より、正負極の容量比(B/A)が1.8と大きくされた非水電解質二次電池を、20℃以下の温度環境下で放置して自己放電させることにより、電池電圧の変化量(低下量)のバラツキを小さくすることができるといえる。   From the above results, the non-aqueous electrolyte secondary battery in which the capacity ratio (B / A) of the positive and negative electrodes is increased to 1.8 is left to stand in a temperature environment of 20 ° C. or lower to be self-discharged. It can be said that variation in the amount of change (decrease amount) can be reduced.

また、上記の試験電池(B/Aの値を1.8とした電池)と比較して、正負極の容量比(B/A)の値のみを異ならせた電池を、140個ずつ用意した。具体的には、正負極の容量比(B/A)の値を、1.2、1.3、1.4、1.6、1.7、1.9、2.0とした電池を、それぞれ140個ずつ用意した。そして、各容量比(B/A)の電池について、20個ずつの7つのグループに分け、グループごとに放置温度(自己放電工程の環境温度)を異ならせて、10日間放置することで自己放電を行った。放置温度は、前述の通り、5℃、10℃、15℃、20℃、22℃、25℃、30℃と異ならせている。   In addition, in comparison with the above test battery (battery with B / A value of 1.8), 140 batteries each having different positive / negative electrode capacity ratio (B / A) values were prepared. . Specifically, a battery having positive and negative electrode capacity ratios (B / A) of 1.2, 1.3, 1.4, 1.6, 1.7, 1.9, and 2.0 is used. 140 pieces were prepared for each. The batteries of each capacity ratio (B / A) are divided into 7 groups of 20 pieces, and the self-discharge is performed by leaving the storage temperature (environment temperature of the self-discharge process) for each group for 10 days. Went. The standing temperature is different from 5 ° C., 10 ° C., 15 ° C., 20 ° C., 22 ° C., 25 ° C., and 30 ° C. as described above.

この自己放電試験でも、各グループ(従って、それぞれの放置温度)において、それぞれの電池について、放置開始電圧値Vbと放置終了電圧値Vcとを測定した。さらに、放置開始電圧値Vbから放置終了電圧値Vcを差し引いた電池電圧差ΔVbc(=Vb−Vc)を算出した。そして、各グループ(各放置温度)において、電池電圧差ΔVbcが最も大きくなった電池の電池電圧差ΔVbcの値から、電池電圧差ΔVbcが最も小さくなった電池の電池電圧差ΔVbcの値を差し引いた値(電池電圧差ΔVbcの最大差)を算出した。これらの結果を、図8のグラフに示す。なお、図8には、正負極容量比(B/A)を1.8とした電池の試験結果も併せて記載している。
また、自己放電試験を行った電池は、いずれも、内部短絡が生じていない正常電池であることを確認している。
Also in this self-discharge test, the stand-by start voltage value Vb and the stand-by end voltage value Vc were measured for each battery in each group (thus, each stand temperature). Further, a battery voltage difference ΔVbc (= Vb−Vc) obtained by subtracting the leaving end voltage value Vc from the leaving start voltage value Vb was calculated. In each group (each standing temperature), the value of the battery voltage difference ΔVbc of the battery having the smallest battery voltage difference ΔVbc is subtracted from the value of the battery voltage difference ΔVbc of the battery having the largest battery voltage difference ΔVbc. The value (maximum difference in battery voltage difference ΔVbc) was calculated. These results are shown in the graph of FIG. FIG. 8 also shows the test results of the battery with a positive / negative electrode capacity ratio (B / A) of 1.8.
Moreover, it has confirmed that all the batteries which performed the self-discharge test are normal batteries in which the internal short circuit has not arisen.

図8は、正負極容量比(B/A)の値が異なる電池について、放置温度(自己放電工程の環境温度)と電池電圧差ΔVbcの最大差(バラツキの大きさ)との関係を示すグラフである。電池電圧差ΔVbcの最大差が大きいほど、自己放電期間中(放置期間中)における電池電圧の変化量(低下量)のバラツキが大きいといえる。
なお、図8では、正負極容量比(B/A)の値を1.2とした電池のデータを□、1.3とした電池のデータを◆、1.4とした電池のデータを●、1.6とした電池のデータを◇、1.7とした電池のデータを△、1.8とした電池のデータを○、1.9とした電池のデータを×、2.0とした電池のデータを◎で示している。
FIG. 8 is a graph showing the relationship between the standing temperature (environment temperature of the self-discharge process) and the maximum difference (size of variation) of the battery voltage difference ΔVbc for batteries having different positive / negative electrode capacity ratios (B / A). It is. It can be said that the greater the maximum difference of the battery voltage difference ΔVbc, the greater the variation in the battery voltage change amount (decrease amount) during the self-discharge period (during the standing period).
In FIG. 8, battery data with positive / negative electrode capacity ratio (B / A) value of 1.2 is □, battery data with 1.3 is ◆, and battery data with 1.4 is ●. Battery data with 1.6, ◇ Battery data with 1.7, △, Battery data with 1.8, ◯, Battery data with 1.9, ×, 2.0 Battery data is indicated by ◎.

ここで、図8に示す結果を検討する。
まず、正負極容量比(B/A)の値を1.4未満とした電池(具体的には、B/Aの値を1.2、1.3とした電池)の結果について検討する。これらの電池では、放置温度に拘わらず、自己放電期間中(放置期間中)における電池電圧の変化量(電池電圧差ΔVbc)の最大差が小さくなることがわかる。すなわち、放置温度に拘わらず、正常電池同士の間において、電池電圧変化量(電池電圧差ΔVbc)のバラツキは小さくなる。従って、正負極容量比(B/A)の値を1.4未満とした場合は、放置温度の影響を受けることなく、内部短絡が生じている電池を適切に検出することが可能であることがわかる。
Here, the result shown in FIG. 8 is examined.
First, the results of a battery having a positive / negative electrode capacity ratio (B / A) value of less than 1.4 (specifically, a battery having B / A values of 1.2 and 1.3) will be examined. It can be seen that in these batteries, the maximum difference in the amount of change in battery voltage (battery voltage difference ΔVbc) during the self-discharge period (during the standing period) is small regardless of the standing temperature. That is, the variation in the battery voltage change amount (battery voltage difference ΔVbc) is small between normal batteries regardless of the leaving temperature. Therefore, when the value of the positive / negative electrode capacity ratio (B / A) is less than 1.4, it is possible to appropriately detect a battery in which an internal short circuit has occurred without being affected by the standing temperature. I understand.

次に、正負極容量比(B/A)の値を1.4以上とした電池(具体的には、B/Aの値を1.4、1.6、1.7、1.8、1.9、2.0とした電池)の結果について検討する。これらの電池では、20℃よりも高い温度環境下で放置して自己放電させたときには、自己放電期間中(放置期間中)における電池電圧の変化量(電池電圧差ΔVbc)の最大差が大きくなることがわかる。すなわち、正負極容量比(B/A)の値を1.4以上とした場合には、放置温度を20℃よりも高くすると、正常電池同士であっても、電池電圧変化量(電池電圧差ΔVbc)に大きなバラツキが生じてしまう。   Next, a battery having a positive / negative electrode capacity ratio (B / A) value of 1.4 or more (specifically, B / A values of 1.4, 1.6, 1.7, 1.8, 1.9 and 2.0) are examined. In these batteries, when left to stand and self-discharge in a temperature environment higher than 20 ° C., the maximum difference in the amount of change in battery voltage (battery voltage difference ΔVbc) during the self-discharge period (during the leave period) increases. I understand that. That is, when the value of the positive / negative electrode capacity ratio (B / A) is 1.4 or more, if the standing temperature is higher than 20 ° C., the amount of change in battery voltage (battery voltage difference) A large variation occurs in ΔVbc).

一方、20℃以下の温度環境下で放置して自己放電させた場合には、自己放電期間中(放置期間中)における電池電圧の変化量(電池電圧差ΔVbc)の最大差が小さくなることがわかる。すなわち、放置温度を20℃以下としたときには、正負極容量比(B/A)の値を1.4以上とした場合であっても、正常電池同士の間において、電池電圧変化量(電池電圧差ΔVbc)のバラツキは小さくなる。図8からわかるように、特に、正負極容量比(B/A)の値を1.7以上とした電池において、放置温度を20℃以下にすることによる電池電圧変化量(電池電圧差ΔVbc)のバラツキの抑制効果は絶大である。   On the other hand, when the battery is left to self-discharge in a temperature environment of 20 ° C. or lower, the maximum difference in the amount of change in battery voltage (battery voltage difference ΔVbc) during the self-discharge period (during the leaving period) is reduced. Recognize. That is, when the standing temperature is 20 ° C. or less, even if the value of the positive / negative electrode capacity ratio (B / A) is 1.4 or more, the amount of change in battery voltage (battery voltage) between normal batteries The variation of the difference ΔVbc) is reduced. As can be seen from FIG. 8, in particular, the battery voltage change amount (battery voltage difference ΔVbc) when the standing temperature is 20 ° C. or lower in a battery having a positive / negative electrode capacity ratio (B / A) value of 1.7 or more. The effect of suppressing the variation of is great.

以上の結果より、正負極の容量比(B/A)の値を1.4以上とした電池の場合(特に、1.7以上とした電池の場合)は、放置により自己放電させるときの環境温度(放置温度)を20℃以下にすることで、正常電池同士の間において、自己放電期間中(放置期間中)における電池電圧の変化量(電池電圧差ΔVbc)のバラツキを小さくすることができるといえる。これにより、正常電池と内部短絡電池との間で、電圧変化量(電池電圧差ΔVbc)に明確な差が現れるようになる。これにより、内部短絡が生じている電池を精度良く検出することができる。   From the above results, in the case of a battery having a positive / negative electrode capacity ratio (B / A) value of 1.4 or more (particularly in the case of a battery having a capacity of 1.7 or more), the environment in which the battery is self-discharged by being left standing. By setting the temperature (standing temperature) to 20 ° C. or less, it is possible to reduce the variation in the amount of change in battery voltage (battery voltage difference ΔVbc) during normal discharge between the normal batteries. It can be said. Thereby, a clear difference appears in the voltage change amount (battery voltage difference ΔVbc) between the normal battery and the internal short circuit battery. Thereby, the battery in which the internal short circuit has arisen can be detected accurately.

なお、電池電圧の変化量(低下量)のバラツキを小さくできる理由は、次のように考えている。電池を放置する環境温度を20℃以下にすることで、自己放電期間中(放置期間中)のSEI生成反応を抑制することができ、これによって、電池電圧の変化量(低下量)を小さくできると考えている。その結果、正常電池同士の間において、電池電圧の変化量(低下量)のバラツキを小さくできると考えている。   The reason why the variation in the battery voltage change amount (decrease amount) can be reduced is considered as follows. By setting the environmental temperature at which the battery is left to 20 ° C. or less, it is possible to suppress the SEI generation reaction during the self-discharge period (during the stand-by period), thereby reducing the battery voltage change amount (reduction amount). I believe. As a result, it is considered that the variation in the change amount (decrease amount) in battery voltage can be reduced between normal batteries.

(電池容量バラツキの調査)
従来(例えば、特許文献1)の方法では、正負極の容量比(B/A)を1.4以上とした場合、自己放電工程において自己放電させた後、容量測定工程において電池容量を測定すると、正常電池(電極合材層の塗工量が適量である電池)同士の間でも、電池容量のバラツキが大きくなり、塗工不良電池を精度良く検出することができないことがあった。すなわち、自己放電工程中(放置期間中)に電池容量が大きく変動(低下)することがあり、その結果、電池容量に大きなバラツキが生じてしまうことがあった。
(Investigation of battery capacity variation)
In the conventional method (for example, Patent Document 1), when the capacity ratio (B / A) of positive and negative electrodes is 1.4 or more, after self-discharge in the self-discharge process, the battery capacity is measured in the capacity measurement process. Further, even between normal batteries (batteries in which the coating amount of the electrode mixture layer is an appropriate amount), the battery capacity varies greatly, and it is sometimes impossible to accurately detect defective coating batteries. That is, the battery capacity may fluctuate (decrease) greatly during the self-discharge process (during the standing period), and as a result, the battery capacity may vary greatly.

ここで、電池容量バラツキを調査するために行った試験について説明する。この自己放電試験は、自己放電工程における環境温度(放置温度)が、電池容量のバラツキに与える影響を調査したものである。具体的には、自己放電工程における放置温度(自己放電工程の環境温度)と、その後の容量測定工程において測定された電池容量のバラツキとの関係を調査した。   Here, a test performed to investigate the battery capacity variation will be described. This self-discharge test is an investigation of the influence of environmental temperature (stand temperature) in the self-discharge process on variations in battery capacity. Specifically, the relationship between the standing temperature in the self-discharge process (environment temperature of the self-discharge process) and the variation in battery capacity measured in the subsequent capacity measurement process was investigated.

より具体的には、まず、前述のステップS1〜S5の処理を行った電池を、140個用意する。なお、ステップS1では、実施例1と同様に、正極容量Aと負極容量Bとの容量比(負極容量B/正極容量A)を1.8としている。これらの電池を、20個ずつの7つのグループに分け、前述の自己放電試験と同様に、グループごとに放置温度(自己放電工程の環境温度)を異ならせて、10日間放置することで自己放電を行った。放置温度は、前述の通り、グループごとに、5℃、10℃、15℃、20℃、22℃、25℃、30℃と異ならせている。なお、自己放電試験を行った140個の電池は、いずれも、内部短絡が生じていない正常電池であることを確認している。   More specifically, first, 140 batteries that have undergone the above-described steps S1 to S5 are prepared. In step S1, the capacity ratio of the positive electrode capacity A and the negative electrode capacity B (negative electrode capacity B / positive electrode capacity A) is set to 1.8 as in the first embodiment. These batteries are divided into 7 groups of 20 pieces each, and, as in the self-discharge test described above, the self-discharge is performed by leaving them to stand for 10 days with different stand-by temperatures (environmental temperatures in the self-discharge process) for each group. Went. As described above, the standing temperature is different for each group from 5 ° C., 10 ° C., 15 ° C., 20 ° C., 22 ° C., 25 ° C., and 30 ° C. In addition, it has confirmed that all the 140 batteries which performed the self-discharge test are normal batteries in which the internal short circuit has not arisen.

その後、ステップS7(容量測定工程)と同様に、これらの電池について、25℃の温度環境下で電池容量を測定する。具体的には、まず、各々の電池について、1C(5A)の定電流で、電池電圧値が4.1V(SOC100%)に至るまで充電し、その後、電池電圧値を4.1Vに保持しつつ充電を行い、充電電流値が0.1Aに低下した時点で充電を終了する。次いで、電池100について、1Cの定電流で電池電圧値が3.0V(SOC0%)に至るまで放電する。このときの放電電気量Q1を、電池容量として測定する。   Then, similarly to step S7 (capacity measurement process), the battery capacity of these batteries is measured under a temperature environment of 25 ° C. Specifically, first, each battery is charged with a constant current of 1 C (5 A) until the battery voltage value reaches 4.1 V (SOC 100%), and then the battery voltage value is maintained at 4.1 V. Then, charging is performed, and the charging is terminated when the charging current value is reduced to 0.1A. Next, the battery 100 is discharged at a constant current of 1 C until the battery voltage value reaches 3.0 V (SOC 0%). The amount of electricity discharged Q1 at this time is measured as the battery capacity.

そして、各グループごと(各放置温度ごと)に、放電電気量Q1(電池容量)が最も大きくなった電池の電池容量の値から、放電電気量Q1(電池容量)が最も小さくなった電池の電池容量の値を差し引いた値(この値を、容量最大差という)を算出した。さらに、各グループごと(各放置温度ごと)に、放電電気量Q1(電池容量)の平均値(この値を平均電池容量という)を算出し、下記式(1)に示すように、平均電池容量に対する容量最大差の比率(%)を、電池容量バラツキを表す指標として算出した。
電池容量バラツキ=(容量最大差/平均電池容量)×100(%)・・・(1)
Then, for each group (each standing temperature), the battery of the battery having the smallest discharge electricity amount Q1 (battery capacity) from the value of the battery capacity of the battery having the largest discharge electricity amount Q1 (battery capacity). A value obtained by subtracting the capacity value (this value is referred to as a maximum capacity difference) was calculated. Furthermore, for each group (each standing temperature), an average value of discharge electricity quantity Q1 (battery capacity) (this value is called average battery capacity) is calculated, and the average battery capacity is calculated as shown in the following formula (1). The ratio (%) of the maximum capacity difference with respect to was calculated as an index representing the battery capacity variation.
Battery capacity variation = (maximum capacity difference / average battery capacity) × 100 (%) (1)

これらの結果を、放置温度(自己放電工程の環境温度)と電池容量バラツキとの関係を表すグラフとして、図9に示す。なお、前述のように、測定対象の電池は、いずれも、正負極容量比(B/A)の値を1.8とした電池である。なお、これらの電池は、いずれも、塗工不良でない電池(電極合材層が適量塗工された電池)であることを確認している。   These results are shown in FIG. 9 as a graph showing the relationship between the standing temperature (environment temperature of the self-discharge process) and the battery capacity variation. As described above, all the batteries to be measured are batteries having a positive / negative electrode capacity ratio (B / A) value of 1.8. It has been confirmed that all of these batteries are batteries that are not defective in coating (batteries in which an appropriate amount of the electrode mixture layer is applied).

図9より、自己放電工程において20℃よりも高い温度環境下で電池を放置した場合、特に、電池容量のバラツキが大きくなることがわかる。また、自己放電工程において10℃よりも低い温度環境下で電池を放置した場合にも、電池容量のバラツキが大きくなることがわかる。   From FIG. 9, it can be seen that when the battery is left in a temperature environment higher than 20 ° C. in the self-discharge process, the variation in battery capacity is particularly large. It can also be seen that the battery capacity varies greatly even when the battery is left in a temperature environment lower than 10 ° C. in the self-discharge process.

これに対し、自己放電工程において、10〜20℃の範囲内の温度環境下で電池を放置した場合には、電池容量のバラツキを小さくできることがわかる。詳細には、図9に示すように、自己放電工程を行う前に電池容量を測定した場合と、同等の電池容量バラツキを維持することができる。すなわち、10〜20℃の範囲内の温度環境下で電池を放置した場合には、自己放電期間中(放置期間中)に電池容量のバラツキの程度がほとんど変化しない。   On the other hand, in the self-discharge process, when the battery is left in a temperature environment within the range of 10 to 20 ° C., it can be seen that the variation in battery capacity can be reduced. Specifically, as shown in FIG. 9, the same battery capacity variation can be maintained as when the battery capacity is measured before the self-discharge process. That is, when the battery is left in a temperature environment within the range of 10 to 20 ° C., the degree of variation in battery capacity hardly changes during the self-discharge period (during the leaving period).

以上の結果より、正負極の容量比(B/A)を1.8と大きくした非水電解質二次電池について、自己放電工程における電池の放置温度(環境温度)を、10〜20℃の範囲内とすることにより、電池容量のバラツキが大きくなるのを抑制することができるといえる。   From the above results, regarding the non-aqueous electrolyte secondary battery in which the capacity ratio (B / A) of the positive and negative electrodes is increased to 1.8, the battery standing temperature (environment temperature) in the self-discharge process is in the range of 10 to 20 ° C. It can be said that the increase in the battery capacity variation can be suppressed by setting the inside.

また、上記の試験電池(B/Aの値を1.8とした電池)と比較して、正負極の容量比(B/A)の値のみを異ならせた電池を、140個ずつ用意した。具体的には、前述の自己放電試験と同様に、正負極の容量比(B/A)の値を、1.2、1.3、1.4、1.6、1.7、1.9、2.0とした電池を、それぞれ140個ずつ用意した。そして、各容量比(B/A)の電池について、20個ずつの7つのグループに分け、グループごとに放置温度(自己放電工程の環境温度)を異ならせて、10日間放置することで自己放電を行った。放置温度は、前述の通り、5℃、10℃、15℃、20℃、22℃、25℃、30℃と異ならせている。   In addition, in comparison with the above test battery (battery with B / A value of 1.8), 140 batteries each having different positive / negative electrode capacity ratio (B / A) values were prepared. . Specifically, as in the above self-discharge test, the capacity ratio (B / A) of the positive and negative electrodes is set to 1.2, 1.3, 1.4, 1.6, 1.7, 1. 140 batteries each having 9 and 2.0 were prepared. The batteries of each capacity ratio (B / A) are divided into 7 groups of 20 pieces, and the self-discharge is performed by leaving the storage temperature (environment temperature of the self-discharge process) for each group for 10 days. Went. The standing temperature is different from 5 ° C., 10 ° C., 15 ° C., 20 ° C., 22 ° C., 25 ° C., and 30 ° C. as described above.

その後、ステップS7(容量測定工程)と同様に、これらの電池について、25℃の温度環境下で電池容量(放電電気量Q1)を測定した。そして、各グループごと(各放置温度ごと)に、前述の演算式(1)に基づいて、電池容量バラツキの値を算出した。これらの結果を、放置温度(自己放電工程の環境温度)と電池容量バラツキとの関係を表すグラフとして、図10に示す。なお、図10には、正負極容量比(B/A)を1.8とした電池の試験結果も併せて記載している。また、試験を行った電池は、いずれも、塗工不良でない電池(電極合材層が適量塗工された電池)であることを確認している。   Then, similarly to step S7 (capacity measurement process), the battery capacity (discharged electric quantity Q1) of these batteries was measured under a temperature environment of 25 ° C. And the value of the battery capacity variation was calculated for each group (each standing temperature) based on the above-described arithmetic expression (1). These results are shown in FIG. 10 as a graph showing the relationship between the standing temperature (environment temperature of the self-discharge process) and the battery capacity variation. FIG. 10 also shows the test results of the battery with a positive / negative electrode capacity ratio (B / A) of 1.8. In addition, it was confirmed that all the batteries tested were batteries with no coating defects (batteries with an appropriate amount of electrode mixture layer applied).

図10は、正負極容量比(B/A)の値が異なる電池について、放置温度(自己放電工程の環境温度)と電池容量バラツキとの関係を示すグラフである。なお、図10では、正負極容量比(B/A)の値を1.2とした電池のデータを□、1.3とした電池のデータを◆、1.4とした電池のデータを●、1.6とした電池のデータを◇、1.7とした電池のデータを△、1.8とした電池のデータを○、1.9とした電池のデータを×、2.0とした電池のデータを◎で示している。   FIG. 10 is a graph showing the relationship between the standing temperature (environment temperature in the self-discharge process) and the battery capacity variation for batteries having different positive / negative electrode capacity ratio (B / A) values. In FIG. 10, battery data with positive / negative electrode capacity ratio (B / A) value of 1.2 is □, battery data with 1.3 is ◆, and battery data with 1.4 is ●. Battery data with 1.6, ◇ Battery data with 1.7, △, Battery data with 1.8, ◯, Battery data with 1.9, ×, 2.0 Battery data is indicated by ◎.

ここで、図10に示す結果を検討する。
まず、正負極容量比(B/A)の値を1.4未満とした電池(具体的には、B/Aの値を1.2、1.3とした電池)の結果について検討する。これらの電池では、放置温度を10℃以上とした場合に、自己放電期間中(放置期間中)に生じる電池容量のバラツキ(変動)が小さいことがわかる。一方、放置温度を10℃未満とした場合には、自己放電期間中(放置期間中)に生じる電池容量のバラツキ(変動)が大きくなることがわかる。以上の結果より、正負極容量比(B/A)の値を1.4未満とした場合は、自己放電工程における放置温度を10℃以上とすることで、自己放電期間中(放置期間中)に電池容量のバラツキが大きくなるのを抑制でき、その結果、その後の容量測定工程において、塗工不良電池を適切に検出することが可能となることがわかる。
Here, the result shown in FIG. 10 is examined.
First, the results of a battery having a positive / negative electrode capacity ratio (B / A) value of less than 1.4 (specifically, a battery having B / A values of 1.2 and 1.3) will be examined. It can be seen that in these batteries, when the leaving temperature is 10 ° C. or higher, the battery capacity variation (variation) occurring during the self-discharge period (during the leaving period) is small. On the other hand, when the standing temperature is less than 10 ° C., it can be seen that the battery capacity variation (variation) generated during the self-discharge period (during the standing period) increases. From the above results, when the positive / negative electrode capacity ratio (B / A) is less than 1.4, the standing temperature in the self-discharging process is set to 10 ° C. or more, so that the self-discharging period (during the standing period) It can be seen that the variation in battery capacity can be suppressed, and as a result, it is possible to appropriately detect a defective coating battery in the subsequent capacity measurement step.

次に、正負極容量比(B/A)の値を1.4以上とした電池(具体的には、B/Aの値を1.4、1.6、1.7、1.8、1.9、2.0とした電池)の結果について検討する。これらの電池では、自己放電工程において20℃よりも高い温度環境下で電池を放置した場合、特に、電池容量のバラツキが大きくなることがわかる。特に、正負極容量比(B/A)の値を1.7以上とした電池において、放置温度を20℃よりも高くした場合に、電池容量のバラツキが著しく大きくなることがわかる。また、自己放電工程において10℃よりも低い温度環境下で電池を放置した場合にも、電池容量のバラツキが大きくなることがわかる。   Next, a battery having a positive / negative electrode capacity ratio (B / A) value of 1.4 or more (specifically, B / A values of 1.4, 1.6, 1.7, 1.8, 1.9 and 2.0) are examined. In these batteries, it can be seen that, when the battery is left in a temperature environment higher than 20 ° C. in the self-discharge process, the variation in battery capacity is particularly large. In particular, it can be seen that, in a battery having a positive / negative electrode capacity ratio (B / A) value of 1.7 or more, when the standing temperature is higher than 20 ° C., the variation in battery capacity becomes remarkably large. It can also be seen that the battery capacity varies greatly even when the battery is left in a temperature environment lower than 10 ° C. in the self-discharge process.

これに対し、自己放電工程において、10〜20℃の範囲内の温度環境下で電池を放置した場合には、電池容量のバラツキを小さくできることがわかる。詳細には、10〜20℃の範囲内の温度環境下で電池を放置した場合には、自己放電期間中(放置期間中)に電池容量のバラツキの程度がほとんど変化しない。特に、正負極容量比(B/A)の値を1.7以上とした電池において、放置温度を10〜20℃の範囲内にすることによる電池容量のバラツキの抑制効果は絶大である。   On the other hand, in the self-discharge process, when the battery is left in a temperature environment within the range of 10 to 20 ° C., it can be seen that the variation in battery capacity can be reduced. Specifically, when the battery is left in a temperature environment within the range of 10 to 20 ° C., the degree of variation in battery capacity hardly changes during the self-discharge period (during the leaving period). In particular, in a battery having a positive / negative electrode capacity ratio (B / A) value of 1.7 or more, the effect of suppressing variation in battery capacity by setting the standing temperature in the range of 10 to 20 ° C. is tremendous.

以上の結果より、正負極容量比(B/A)の値を1.4以上とした場合(特に、1.7以上とした場合)は、自己放電工程における放置温度を10〜20℃の範囲内とすることで、正常電池(電極合材層の塗工量が適量である電池)同士の間において、自己放電期間中(放置期間中)に電池容量のバラツキが大きくなるのを抑制できるといえる。その結果、正常電池と塗工不良電池との間で、容量測定工程において測定される電池容量(放電電気量Q1)に明確な差が現れるようになり、塗工不良電池を適切に検出することができる。   From the above results, when the positive / negative electrode capacity ratio (B / A) value is 1.4 or more (particularly 1.7 or more), the standing temperature in the self-discharge process is in the range of 10 to 20 ° C. By limiting the battery capacity variation between normal batteries (batteries with an appropriate amount of electrode mixture layer coating) between self-discharge periods (during standing periods), I can say that. As a result, a clear difference appears in the battery capacity (discharged electric quantity Q1) measured in the capacity measurement process between the normal battery and the poorly applied battery, and the defectively applied battery is appropriately detected. Can do.

なお、自己放電工程において20℃よりも高い温度環境下で電池を放置した場合に、電池容量のバラツキが大きくなる理由は、次のように考えている。正負極の容量比(B/A)の値が1.4以上と大きくされた非水電解質二次電池では、自己放電工程中(放置期間中)に、負極表面でのSEI生成反応が促進され易く(従って、Liが消費され易く)、これに伴って、電池容量が大きく低下することがあると考えている。その結果、電池容量のバラツキが大きくなる傾向があると考えている。   The reason why the variation in battery capacity increases when the battery is left in a temperature environment higher than 20 ° C. in the self-discharge process is considered as follows. In the nonaqueous electrolyte secondary battery in which the capacity ratio (B / A) of the positive and negative electrodes is increased to 1.4 or more, the SEI generation reaction on the negative electrode surface is promoted during the self-discharge process (during the standing period). It is easy to be consumed (and therefore Li is easily consumed), and it is considered that the battery capacity may be greatly reduced. As a result, it is considered that the variation in battery capacity tends to increase.

また、正負極容量比B/Aと電池容量との関係について調査した。具体的には、前述のようにして試験を行った電池のうち、放置温度を20℃として自己放電工程を行った各グループの電池について、各グループごと(正負極容量比B/Aの値ごと)に算出された平均電池容量を取得する。そして、正負極容量比B/Aの値を1.2とした電池グループの平均電池容量の値を基準(100%)として、正負極容量比B/Aの値が異なる各グループについて、この基準値に対する平均電池容量の比率(%)を算出した。その結果を図11に示す。   Further, the relationship between the positive / negative electrode capacity ratio B / A and the battery capacity was investigated. Specifically, among the batteries tested as described above, for each group of batteries subjected to the self-discharge process at a standing temperature of 20 ° C. (for each value of positive / negative electrode capacity ratio B / A) ) Is obtained. Then, with reference to the average battery capacity value of the battery group having a positive / negative electrode capacity ratio B / A value of 1.2 as a reference (100%), this reference is made for each group having a different positive / negative electrode capacity ratio B / A value. The ratio (%) of the average battery capacity to the value was calculated. The result is shown in FIG.

図11は、正負極容量比(B/A)の値と平均電池容量の比率(正負極容量比B/Aの値を1.2とした電池を基準)との関係を示している。図11より、正負極の容量比(B/A)の値が1.2〜1.9の範囲では、電池容量に大きな差が生じないことがわかる。ところが、正負極の容量比(B/A)を1.9より大きくすると、電池容量が急激に小さくなることがわかる。正負極の容量比(B/A)を1.9より大きくすると、SEI生成反応によって消費されるLi量が多くなり、その結果、電池容量が小さくなると考えている。この結果より、電池容量の低下を抑制するためには、正負極の容量比(B/A)は、1.9以下とするのが好ましいといえる。   FIG. 11 shows the relationship between the value of the positive / negative electrode capacity ratio (B / A) and the ratio of the average battery capacity (based on a battery in which the value of the positive / negative electrode capacity ratio B / A is 1.2). From FIG. 11, it can be seen that when the capacity ratio (B / A) of the positive and negative electrodes is in the range of 1.2 to 1.9, there is no significant difference in battery capacity. However, it can be seen that when the capacity ratio (B / A) of the positive and negative electrodes is larger than 1.9, the battery capacity decreases rapidly. It is considered that when the capacity ratio (B / A) of the positive and negative electrodes is larger than 1.9, the amount of Li consumed by the SEI generation reaction increases, and as a result, the battery capacity decreases. From this result, it can be said that the positive / negative electrode capacity ratio (B / A) is preferably 1.9 or less in order to suppress the decrease in battery capacity.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.

例えば、実施形態では、ステップS3(電池拘束工程)及びステップS9(拘束解除工程)を設けたが、これらの工程を設けることなく、非水電解質二次電池を製造するようにしても良い。すなわち、組み付け工程(ステップS2)において作製された非水電解質二次電池100を押圧治具30,40で挟んで拘束状態にすることなく、ステップS4〜S8の処理を行うようにしても良い。   For example, although step S3 (battery restraint process) and step S9 (restraint release process) are provided in the embodiment, a nonaqueous electrolyte secondary battery may be manufactured without providing these processes. That is, the processing of steps S4 to S8 may be performed without sandwiching the nonaqueous electrolyte secondary battery 100 produced in the assembly process (step S2) between the pressing jigs 30 and 40 and placing them in a restrained state.

100 非水電解質二次電池
110 電極体
120 負極
121 負極合材層
127 負極活物質
128 負極集電板
130 正極
131 正極合材層
137 正極活物質
138 正極集電板
150 セパレータ
160 非水電解液
180 電池ケース
DESCRIPTION OF SYMBOLS 100 Nonaqueous electrolyte secondary battery 110 Electrode body 120 Negative electrode 121 Negative electrode composite material layer 127 Negative electrode active material 128 Negative electrode current collecting plate 130 Positive electrode 131 Positive electrode composite material layer 137 Positive electrode active material 138 Positive electrode current collecting plate 150 Separator 160 Nonaqueous electrolyte solution 180 Battery case

Claims (4)

正極及び負極を有する電極体を形成する電極体形成工程と、
上記電極体及び非水電解液を電池ケース内に収容した非水電解質二次電池を、所定期間放置することにより、上記電池を自己放電させる自己放電工程と、を備える
非水電解質二次電池の製造方法において、
上記電極体形成工程では、上記正極の容量Aと上記負極の容量Bとの容量比(B/A)を1.4以上とした電極体を形成し、
上記自己放電工程では、20℃以下の温度環境下で、上記電池を上記所定期間放置する
非水電解質二次電池の製造方法。
An electrode body forming step of forming an electrode body having a positive electrode and a negative electrode;
A non-aqueous electrolyte secondary battery comprising: a non-aqueous electrolyte secondary battery in which the electrode body and the non-aqueous electrolyte are contained in a battery case; In the manufacturing method,
In the electrode body forming step, an electrode body having a capacity ratio (B / A) of the capacity A of the positive electrode and the capacity B of the negative electrode of 1.4 or more is formed,
In the self-discharge step, a non-aqueous electrolyte secondary battery manufacturing method in which the battery is left for the predetermined period in a temperature environment of 20 ° C. or lower.
請求項1に記載の非水電解質二次電池の製造方法であって、
前記自己放電工程を終えた前記電池について電池容量の一部または全部を測定する容量測定工程、を備え、
上記自己放電工程では、10〜20℃の範囲内の温度環境下で、前記電池を前記所定期間放置する
非水電解質二次電池の製造方法。
It is a manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1,
A capacity measuring step of measuring part or all of the battery capacity of the battery that has finished the self-discharge step,
In the self-discharge step, the non-aqueous electrolyte secondary battery manufacturing method in which the battery is left for the predetermined period in a temperature environment within a range of 10 to 20 ° C.
請求項1または請求項2に記載の非水電解質二次電池の製造方法であって、
前記電極体形成工程では、前記容量比(B/A)を1.7以上とした電極体を作製する
非水電解質二次電池の製造方法。
It is a manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1 or 2,
In the electrode body forming step, a non-aqueous electrolyte secondary battery manufacturing method for manufacturing an electrode body having the capacity ratio (B / A) of 1.7 or more.
請求項1〜請求項3のいずれか一項に記載の非水電解質二次電池の製造方法であって、
前記自己放電工程より前に、
前記非水電解質二次電池を初期充放電する初期充放電工程と、
上記初期充放電工程を終えた上記電池を、所定の温度で一定時間安置してエージングするエージング工程と、を備える
非水電解質二次電池の製造方法。
It is a manufacturing method of the nonaqueous electrolyte secondary battery according to any one of claims 1 to 3,
Before the self-discharge process,
An initial charge / discharge step of initially charging / discharging the non-aqueous electrolyte secondary battery;
An aging process in which the battery that has undergone the initial charge / discharge process is aged at a predetermined temperature for a predetermined time, and a non-aqueous electrolyte secondary battery manufacturing method.
JP2011087155A 2011-04-11 2011-04-11 Manufacturing method of nonaqueous electrolyte secondary battery Pending JP2012221782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087155A JP2012221782A (en) 2011-04-11 2011-04-11 Manufacturing method of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087155A JP2012221782A (en) 2011-04-11 2011-04-11 Manufacturing method of nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2012221782A true JP2012221782A (en) 2012-11-12

Family

ID=47273061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087155A Pending JP2012221782A (en) 2011-04-11 2011-04-11 Manufacturing method of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2012221782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192015A (en) * 2013-03-27 2014-10-06 Toyota Motor Corp Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2016194998A (en) * 2015-03-31 2016-11-17 株式会社Gsユアサ Power storage element inspection method, power storage device inspection method, power storage element manufacturing method and power storage device manufacturing method
WO2018181129A1 (en) * 2017-03-31 2018-10-04 株式会社Gsユアサ Power storage element management apparatus and power storage element management method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260472A (en) * 1999-03-11 2000-09-22 Toyota Central Res & Dev Lab Inc Non-aqueous electrolyte secondary battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2005150038A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery
JP2005158643A (en) * 2003-11-28 2005-06-16 Shin Kobe Electric Mach Co Ltd Inspection method for lithium secondary battery
JP2008097857A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
JP2010147030A (en) * 2006-03-30 2010-07-01 Toshiba Corp Battery pack, charging type cleaner, and battery-assisted bicycle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260472A (en) * 1999-03-11 2000-09-22 Toyota Central Res & Dev Lab Inc Non-aqueous electrolyte secondary battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2005150038A (en) * 2003-11-19 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery
JP2005158643A (en) * 2003-11-28 2005-06-16 Shin Kobe Electric Mach Co Ltd Inspection method for lithium secondary battery
JP2010147030A (en) * 2006-03-30 2010-07-01 Toshiba Corp Battery pack, charging type cleaner, and battery-assisted bicycle
JP2008097857A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192015A (en) * 2013-03-27 2014-10-06 Toyota Motor Corp Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2016194998A (en) * 2015-03-31 2016-11-17 株式会社Gsユアサ Power storage element inspection method, power storage device inspection method, power storage element manufacturing method and power storage device manufacturing method
WO2018181129A1 (en) * 2017-03-31 2018-10-04 株式会社Gsユアサ Power storage element management apparatus and power storage element management method
JPWO2018181129A1 (en) * 2017-03-31 2020-05-21 株式会社Gsユアサ Electric storage element management device and electric storage element management method
JP7067549B2 (en) 2017-03-31 2022-05-16 株式会社Gsユアサ Power storage element management device and power storage element management method

Similar Documents

Publication Publication Date Title
JP5464116B2 (en) Method for producing lithium ion secondary battery
JP5464119B2 (en) Method for producing lithium ion secondary battery
US9960452B2 (en) Method of producing nonaqueous secondary battery
JP5464118B2 (en) Method for producing lithium ion secondary battery
JP5583480B2 (en) Inspection method for lithium ion secondary battery
WO2015155584A1 (en) Inspection method and manufacturing method of secondary battery
JP5464117B2 (en) Method for producing lithium ion secondary battery
WO2015068013A1 (en) Manufacturing method for non-aqueous secondary battery
JP2009145137A (en) Inspection method of secondary battery
CN107799837B (en) Recovery method and reuse method for secondary battery
JP2015122169A (en) Method of inspecting all-solid battery
KR101674289B1 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP4179528B2 (en) Secondary battery inspection method
JP2015095332A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2008097857A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2012252839A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2015008106A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2014238961A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP6478112B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2005158643A (en) Inspection method for lithium secondary battery
EP4287313A1 (en) Charging method for non-aqueous electrolyte secondary battery, charging/discharging method, and charging system for non-aqueous electrolyte secondary battery
JP7011782B2 (en) Secondary battery inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930