JP2015122169A - Method of inspecting all-solid battery - Google Patents

Method of inspecting all-solid battery Download PDF

Info

Publication number
JP2015122169A
JP2015122169A JP2013264399A JP2013264399A JP2015122169A JP 2015122169 A JP2015122169 A JP 2015122169A JP 2013264399 A JP2013264399 A JP 2013264399A JP 2013264399 A JP2013264399 A JP 2013264399A JP 2015122169 A JP2015122169 A JP 2015122169A
Authority
JP
Japan
Prior art keywords
battery
reference value
predetermined
voltage drop
exceeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013264399A
Other languages
Japanese (ja)
Inventor
和仁 加藤
Kazuhito Kato
和仁 加藤
友陽 笹岡
Tomoaki Sasaoka
友陽 笹岡
徳洋 尾瀬
Tokuhiro Ose
徳洋 尾瀬
元 長谷川
Hajime Hasegawa
元 長谷川
健吾 芳賀
Kengo Haga
健吾 芳賀
大地 小坂
Daichi Kosaka
大地 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013264399A priority Critical patent/JP2015122169A/en
Publication of JP2015122169A publication Critical patent/JP2015122169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of improving the precision of determinations on whether there is a fine short circuit and whether there is a latent defect which may cause the fine short circuit for a method of inspecting an all-solid battery.SOLUTION: There is provided a method of inspecting an all-solid battery, the method including the steps of: (i) finding a voltage drop amount ΔV1 due to a self-discharge of the battery after charging the battery; (ii) determining whether the voltage drop amount ΔV1 exceeds a predetermined first reference value; (iii) charging the battery under pressure exceeding the restraint pressure in use of the battery, and then finding a voltage drop amount ΔV2 due to a self-discharge by letting the battery discharge itself when the voltage drop amount ΔV1 exceeds the predetermined first reference value; (iv) determining whether the voltage drop amount ΔV2 exceeds a predetermined second reference value; and (v) determining the battery as a defective when the voltage drop amount ΔV2 exceeds the predetermined second reference value.

Description

本発明は、全固体電池の検査方法に関し、より詳細には、微短絡の有無の判定精度を改善した全固体電池の検査方法に関する。   The present invention relates to an inspection method for an all-solid-state battery, and more particularly to an inspection method for an all-solid-state battery with improved accuracy in determining whether or not there is a fine short circuit.

従来、リチウムイオン二次電池やニッケル・水素蓄電池などの二次電池は、正極層及び負極層をセパレータを介して積層し、巻回してなる電極群を容器内に収納し、電解液を含浸させた後、初期充電、及びエージングなどの工程を得て製造されている。かかる二次電池の製造工程において、微短絡を起こしている可能性のある不良な二次電池(不良品)を判定するための検査方法として、特許文献1に、リチウム二次電池を所定環境温度下で所定時間放置後の電圧低下を求め、求めた電圧低下が予め設定された電圧低下基準より大きいときに導電性異物がリチウム二次電池中に存在すると判定することを特徴とする検査方法が提案されている。特許文献2には、一対の電極板の間に検査用電圧を印加しながら検査用電圧の印加に伴って流れる電流を測定し、予め設定した電流と比較して電極群の内部短絡につながる欠陥の判定をすることを特徴とする方法が提案されている特許文献3には、正極板と負極板をセパレータを介して積層して構成した極板群を電槽内に挿入して成る電池の短絡検査方法において、極板群を電槽に挿入する前に極板群を加圧しながら短絡不良を検査することが提案されている。特許文献4には、第1のSOCより低い第2のSOCまで放電し、所定の温度より低い環境温度下で二次電池の微短絡を検出する方法が提案されている。   Conventionally, secondary batteries such as lithium ion secondary batteries and nickel / hydrogen storage batteries have a positive electrode layer and a negative electrode layer laminated via a separator, and a wound electrode group is housed in a container and impregnated with an electrolyte. After that, it is manufactured by obtaining processes such as initial charging and aging. As an inspection method for determining a defective secondary battery (defective product) that may cause a fine short circuit in the manufacturing process of the secondary battery, Patent Document 1 discloses a lithium secondary battery at a predetermined environmental temperature. An inspection method characterized by determining a voltage drop after being left for a predetermined time under and determining that a conductive foreign matter is present in the lithium secondary battery when the obtained voltage drop is greater than a preset voltage drop reference Proposed. In Patent Document 2, a current flowing along with the application of an inspection voltage is measured while applying an inspection voltage between a pair of electrode plates, and a defect that leads to an internal short circuit of the electrode group is compared with a preset current. Patent Document 3, which proposes a method characterized by the following, is a short circuit inspection of a battery formed by inserting an electrode plate group formed by laminating a positive electrode plate and a negative electrode plate through a separator into a battery case. In the method, it is proposed to inspect the short-circuit failure while pressurizing the electrode plate group before inserting the electrode plate group into the battery case. Patent Document 4 proposes a method of discharging to a second SOC lower than the first SOC and detecting a short-circuit of the secondary battery under an environmental temperature lower than a predetermined temperature.

特開2005−158643号公報Japanese Patent Laid-Open No. 2005-158643 特開2010−32346号公報JP 2010-32346 A 特開2001−236985号公報JP 2001-236985 A 特開2011−69775号公報JP 2011-69775 A

上記従来技術は、電解質が電解液から成る電解液系二次電池において、金属異物などの導電性異物が電解液中で溶解して負極上に析出することに起因する微短絡を検出する方法である。一方、正極と負極の間に固体電解質層を有する全固体電池では、固体電解質層中に金属異物などの導電性異物が存在する場合に、金属異物は固体電解質に溶解しないため、従来の電解液系二次電池におけるように、金属異物が電解質に溶解して負極上に析出するという現象は起こらない。そのため、従来の電解液系二次電池のための短絡検出方法を全固体電池に適用することはできない。また、全固体電池では、電解質が固体であるため、固体電解質層中に金属異物などの異物が存在すると、異物の周りに応力が生じ、例えば、異物の存在する部位において、電池が外側に凸状に膨らむ。電池の使用中に、振動や電池の変位などによりかかる部位に荷重が加わった場合に、正極と負極の間を絶縁する役割を果たす固体電解質層中に微短絡の原因となるクラックなどの欠陥が発生するおそれがある。従って、製造された全固体電池が市場に流通する前(出荷前)に、全固体電池について、微短絡の有無や、微短絡の原因となる潜在的欠陥の有無を高い精度で判定する検査方法が求められている。   The above prior art is a method for detecting a micro short circuit caused by conductive foreign matters such as metallic foreign matters being dissolved in the electrolytic solution and deposited on the negative electrode in an electrolyte secondary battery in which the electrolyte is an electrolytic solution. is there. On the other hand, in an all solid state battery having a solid electrolyte layer between a positive electrode and a negative electrode, when a conductive foreign matter such as a metallic foreign matter is present in the solid electrolyte layer, the metallic foreign matter is not dissolved in the solid electrolyte. As in the secondary battery, the phenomenon that the metal foreign matter is dissolved in the electrolyte and deposited on the negative electrode does not occur. Therefore, the conventional short-circuit detection method for the electrolyte-based secondary battery cannot be applied to the all-solid battery. Further, in an all-solid battery, since the electrolyte is solid, if a foreign substance such as a metallic foreign substance is present in the solid electrolyte layer, stress is generated around the foreign substance. For example, the battery protrudes outward at a part where the foreign substance exists. Swell in a shape. When a load is applied to such a part due to vibration or battery displacement during use of the battery, there is a defect such as a crack that causes a micro short circuit in the solid electrolyte layer that plays a role in insulating between the positive electrode and the negative electrode. May occur. Therefore, before the manufactured all-solid-state battery is distributed to the market (before shipping), an inspection method for determining whether or not there is a fine short-circuit or a potential defect that may cause a fine short-circuit with high accuracy. Is required.

従って、本発明は、微短絡の有無や、微短絡の原因となる潜在的欠陥の有無を高い精度で判定することができる全固体電池の検査方法を提供することを目的とする。   Therefore, an object of the present invention is to provide an inspection method for an all-solid-state battery that can determine with high accuracy the presence or absence of a micro short circuit and the presence or absence of a potential defect that causes a micro short circuit.

本発明は、一実施形態において、全固体電池の検査方法であって、
全固体電池の検査方法であって、
(i)電池を充電した後に、電池の自己放電による電圧降下量ΔV1を求める工程、
(ii)電圧降下量ΔV1が所定の第1の基準値を超えるか否かを判定する工程、
(iii)電圧降下量ΔV1が所定の第1の基準値を超えた場合に、電池の使用時の拘束圧を超える圧力下で電池を充電し、自己放電させて自己放電による電圧降下量ΔV2を求める工程、
(iv)電圧降下量ΔV2が所定の第2の基準値を超えるか否かを判定する工程、及び
(v)電圧降下量ΔV2が所定の第2の基準値を超えた場合に、電池を不良品と判定する工程、
を含む、全固体電池の検査方法を提供する。
In one embodiment, the present invention is an inspection method for an all-solid battery,
An inspection method for an all-solid battery,
(I) a step of obtaining a voltage drop ΔV1 due to self-discharge of the battery after charging the battery;
(Ii) a step of determining whether or not the voltage drop amount ΔV1 exceeds a predetermined first reference value;
(Iii) When the voltage drop amount ΔV1 exceeds a predetermined first reference value, the battery is charged under a pressure exceeding the binding pressure when the battery is used, and self-discharged to obtain a voltage drop amount ΔV2 due to self-discharge. The desired process,
(Iv) determining whether or not the voltage drop amount ΔV2 exceeds a predetermined second reference value; and (v) if the voltage drop amount ΔV2 exceeds a predetermined second reference value, A process for determining that the product is non-defective,
An inspection method for an all solid state battery is provided.

本発明は、第2の実施形態において、全固体電池の検査方法であって、
(i)電池を充電した後に、電池の自己放電による電圧降下量ΔV1を求める工程、
(ii)電圧降下量ΔV1が所定の第1の基準値を超えるか否かを判定する工程、
(iii)電圧降下量ΔV1が所定の第1の基準値を超えた場合に、電池に対して定電流定電圧で充放電容量測定を行い、クーロン効率、定電流容量低下量及び定電圧容量低下量を求める工程、
(iv)(a)工程(iii)で求められたクーロン効率が所定の基準値未満であるか否か、もしくは(b)工程(iii)で求められた定電流容量低下量が所定の第1の容量基準値を超えるか否か、又は、(c)工程(iii)で求められた定電圧容量低下量が所定の第2の容量基準値を超えるか否かを判定する工程、及び
(v)クーロン効率が所定の基準値未満である場合、もしくは、定電流容量低下量が所定の第1の容量基準値を超える場合、又は、定電圧容量低下量が所定の第2の容量基準値を超える場合に、電池を不良品と判定する工程、
を含む、全固体電池の検査方法を提供する。
In the second embodiment, the present invention is an inspection method for an all-solid-state battery,
(I) a step of obtaining a voltage drop ΔV1 due to self-discharge of the battery after charging the battery;
(Ii) a step of determining whether or not the voltage drop amount ΔV1 exceeds a predetermined first reference value;
(Iii) When the voltage drop amount ΔV1 exceeds a predetermined first reference value, the charge / discharge capacity measurement is performed on the battery at a constant current and constant voltage, and the coulomb efficiency, the constant current capacity decrease amount and the constant voltage capacity decrease are measured. The process of determining the quantity,
(Iv) (a) Whether the coulomb efficiency obtained in step (iii) is less than a predetermined reference value, or (b) the constant current capacity decrease amount obtained in step (iii) is a predetermined first (C) determining whether or not the constant voltage capacity reduction amount obtained in step (iii) exceeds a predetermined second capacity reference value; and (v) ) When the coulomb efficiency is less than a predetermined reference value, or when the constant current capacity decrease amount exceeds a predetermined first capacity reference value, or the constant voltage capacity decrease amount is equal to a predetermined second capacity reference value. A process of determining a battery as defective when exceeding
An inspection method for an all solid state battery is provided.

図1は、本発明の全固体電池の検査方法の一実施形態のフローチャートである。FIG. 1 is a flowchart of an embodiment of the all-solid-state battery inspection method of the present invention. 図2は、本発明の全固体電池の検査方法の第2の実施形態のフローチャートである。FIG. 2 is a flowchart of the second embodiment of the all-solid-state battery inspection method of the present invention. 図3は、電圧降下量ΔV1及びΔV2並びにそれらの基準値の時間依存性を模式的に示すグラフ図である。FIG. 3 is a graph schematically showing the time dependence of the voltage drop amounts ΔV1 and ΔV2 and their reference values. 図4(a)は、微短絡が発生していない正常な電池についての充電時及び放電時のSOCに対する電圧特性を模式的に示すグラフ図であり、図4(b)は、微短絡が発生した電池についての充電時及び放電時のSOCに対する電圧特性を模式的に示すグラフ図である。FIG. 4A is a graph schematically showing voltage characteristics with respect to SOC at the time of charging and discharging of a normal battery in which a fine short circuit does not occur, and FIG. It is a graph which shows typically the voltage characteristic with respect to SOC at the time of charge about the battery which carried out, and discharge.

まず、本発明の検査方法の検査対象である全固体電池について説明する。
本発明の全固体電池は、正極層と、負極層と、正極層と負極層の間に配置された固体電解質層との積層体を1つ以上含む。当該積層体を1つ又は例えばセパレータを介して2つ以上互いに積層してケースに収容し、密封する。全固体電池の正極層、負極層及び固体電解質層は、それぞれ、正極、負極及び固体電解質としての機能を有する材料から製造されたものであれば特に限定されず、当該技術分野で知られているものを用いることができる。正極層は正極集電体とその上に形成された正極合剤層とを含み、負極層は負極集電体とその上に形成された負極合剤層を含む。正極合剤層は、少なくとも正極活物質を含み、負極合剤層は、少なくとも負極活物質を含む。正極活物質及び負極活物質としては、例えば、全固体リチウム二次電池において使用可能な電極活物質が挙げられる。リチウム二次電池に使用可能な電極活物質としては、例えば、コバルト酸リチウム(LiCoO);ニッケル酸リチウム(LiNiO);Li1+xNi1/3Mn1/3Co1/3(0≦x≦1);マンガン酸リチウム(LiMn);Li1+xMn2−x−y(MがAl、Mg、Co、Fe、Ni及びZnから選ばれる1種以上であり、0≦x≦0.06、0.03≦y≦0.15)で表される組成の異種元素置換Li−Mnスピネル;チタン酸リチウム(LiTiO、0.36≦x≦2、1.8≦y≦3);リン酸金属リチウム(LiMPO、MはFe、Mn、Co及びNiから選ばれる1種以上);酸化バナジウム(V)、酸化モリブデン(MoO)などの遷移金属酸化物;硫化チタン(TiS);グラファイト、ハードカーボンなどの炭素材料;リチウムコバルト窒化物(LiCoN);リチウムシリコン酸化物(LiSi、x+4y−2z=0);リチウム金属(Li);リチウム合金(LiM;MはSn、Si、Al、Ge,Sb、P等から選ばれる1種以上);リチウム貯蔵性金属間化合物(MgM;MはSn、Ge及びSbから選ばれる1種以上、又は、NSb;NはIn、Cu及びMnから選ばれる1種以上);これらの誘導体などが挙げられる。ここで、正極活物質及び負極活物質それぞれには、明確な区別はなく、2種類の化合物の充放電電位を比較し、貴な電位を示すものを正極活物質として、また、卑な電位を示すものを負極活物質として、組み合わせることで、任意の電圧の電池を構成することができる。
First, an all-solid battery that is an inspection target of the inspection method of the present invention will be described.
The all solid state battery of the present invention includes one or more laminates of a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. One or two or more of the laminated bodies are laminated together via a separator, for example, and accommodated in a case and sealed. The positive electrode layer, the negative electrode layer, and the solid electrolyte layer of the all-solid battery are not particularly limited as long as they are manufactured from materials having functions as the positive electrode, the negative electrode, and the solid electrolyte, respectively, and are known in the technical field. Things can be used. The positive electrode layer includes a positive electrode current collector and a positive electrode mixture layer formed thereon, and the negative electrode layer includes a negative electrode current collector and a negative electrode mixture layer formed thereon. The positive electrode mixture layer includes at least a positive electrode active material, and the negative electrode mixture layer includes at least a negative electrode active material. Examples of the positive electrode active material and the negative electrode active material include electrode active materials that can be used in all solid lithium secondary batteries. Examples of the electrode active material that can be used for the lithium secondary battery include lithium cobaltate (LiCoO 2 ); lithium nickelate (LiNiO 2 ); Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 (0 ≦ x ≦ 1); lithium manganate (LiMn 2 O 4 ); Li 1 + x Mn 2−xy M y O 4 (M is at least one selected from Al, Mg, Co, Fe, Ni and Zn) , 0 ≦ x ≦ 0.06, 0.03 ≦ y ≦ 0.15), a heteroelement-substituted Li—Mn spinel having a composition represented by: Lithium titanate (Li x TiO y , 0.36 ≦ x ≦ 2, 1.8 ≦ y ≦ 3); lithium metal phosphate (LiMPO 4 , M is one or more selected from Fe, Mn, Co and Ni); vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 3 ), etc. Transition money Oxides; titanium sulfide (TiS 2); graphite, carbon materials such as hard carbon; lithium cobalt nitride (LiCoN); lithium silicon oxide (Li x Si y O z, x + 4y-2z = 0); lithium metal (Li Lithium alloy (LiM; M is one or more selected from Sn, Si, Al, Ge, Sb, P, etc.); Lithium-storable intermetallic compound (Mg x M; M is selected from Sn, Ge, and Sb) 1 or more, or, N y Sb; N is an in, one or more selected from Cu and Mn); and derivatives thereof. Here, there is no clear distinction between each of the positive electrode active material and the negative electrode active material, and the charge / discharge potentials of the two types of compounds are compared. A battery having an arbitrary voltage can be formed by combining the illustrated materials as the negative electrode active material.

正極合剤層及び負極合材層は、それぞれ、正極活物質及び負極活物質の他に、電極層へのイオン伝導性付与、導電性付与、可撓性付与等を目的として、それぞれ、固体電解質、導電助剤、バインダー等を含有していてもよい。
固体電解質としては、正極合剤層にイオン伝導性を付与できるものであれば特に限定されず、例えば、固体電解質層を構成する固体電解質として、下記に例示するものが挙げられる。また、バインダーとしては、電極層に可撓性を付与できれば特に限定されず、例えば、固体電解質層を構成するバインダーとして、下記に例示するものが挙げられる。
導電助剤としては、電極層に電子伝導性を付与できれば、特に限定されず、例えば、リチウム二次電池において使用可能なものが挙げられる。具体的には、例えば、アセチレンブラック、ケッチェンブラック、VGCF(気相成長炭素繊維)、カーボンナノチューブなどの導電性炭素材料等が挙げられる。
In addition to the positive electrode active material and the negative electrode active material, the positive electrode mixture layer and the negative electrode mixture layer are respectively solid electrolytes for the purpose of imparting ion conductivity, imparting conductivity, imparting flexibility, etc. to the electrode layer. Further, it may contain a conductive aid, a binder and the like.
The solid electrolyte is not particularly limited as long as it can impart ion conductivity to the positive electrode mixture layer, and examples thereof include those exemplified below as the solid electrolyte constituting the solid electrolyte layer. The binder is not particularly limited as long as flexibility can be imparted to the electrode layer, and examples thereof include those exemplified below as the binder constituting the solid electrolyte layer.
The conductive auxiliary agent is not particularly limited as long as it can impart electronic conductivity to the electrode layer, and examples thereof include those that can be used in lithium secondary batteries. Specific examples include conductive carbon materials such as acetylene black, ketjen black, VGCF (vapor-grown carbon fiber), and carbon nanotube.

正極合剤層及び負極合剤層を構成する各成分の比率は特に限定されない。正極合剤層及び負極合剤層の厚さは特に限定されない。正極合剤層及び負極合剤層の厚さは、好ましくは0.1μm以上1000μm以下である。   The ratio of each component which comprises a positive mix layer and a negative mix layer is not specifically limited. The thickness of the positive electrode mixture layer and the negative electrode mixture layer is not particularly limited. The thickness of the positive electrode mixture layer and the negative electrode mixture layer is preferably 0.1 μm or more and 1000 μm or less.

固体電解質層は、少なくとも固体電解質を含む。固体電解質としては、例えば、リチウム二次電池に使用可能なものが挙げられる。リチウム二次電池の固体電解質として、具体的には、LiO−B−P、LiO−SiO、LiO−B、LiO−B−ZnOなどの酸化物系固体電解質、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiS−GeS、LiS−Al、LiS−P(例えばLiSとPを質量比50:50〜100:0、例えば70:30で含むLiSとPの混合物)などの硫化物系固体電解質などが挙げられる。 The solid electrolyte layer includes at least a solid electrolyte. As a solid electrolyte, what can be used for a lithium secondary battery is mentioned, for example. Specifically, as a solid electrolyte of a lithium secondary battery, Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—B 2 O 3 , Li 2 O—B 2 Oxide-based solid electrolytes such as O 3 —ZnO, Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3 PO 4 -Li 2 S- Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 2 S-GeS 2, Li 2 S-Al 2 S 3, Li 2 S-P 2 S 5 ( e.g., Li 2 S and P 2 S 5 mass ratio of 50: 50 to 100: Mixing Li 2 S and P 2 S 5 with 0, eg 70:30 And sulfide-based solid electrolytes.

固体電解質層には、固体電解質層の可撓性などの観点から、バインダーが含まれることが好ましい。バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂、ブタジエンゴム(BR)などのゴム性状樹脂などが挙げられる。   The solid electrolyte layer preferably contains a binder from the viewpoint of flexibility of the solid electrolyte layer. Examples of the binder include a fluorine resin such as polyvinylidene fluoride (PVDF) and a rubbery resin such as butadiene rubber (BR).

固体電解質層において、固体電解質層を構成する各成分の比率は特に限定されない。固体電解質層の厚さは特に限定されない。固体電解質層は、例えば0.1μm以上1000μm以下、好ましくは0.1μm以上300μm以下の厚さを有する。   In the solid electrolyte layer, the ratio of each component constituting the solid electrolyte layer is not particularly limited. The thickness of the solid electrolyte layer is not particularly limited. The solid electrolyte layer has a thickness of, for example, 0.1 μm to 1000 μm, preferably 0.1 μm to 300 μm.

正極集電体及び負極集電体は、集電体として機能できるものとして一般的に知られているものであれば特に限定されない。正極集電体の例としては、例えば、ステンレス(SUS)、ニッケル(Ni)、クロム(Cr)、金(Au)、白金(Pt)、アルミニウム(Al)、鉄(Fe)、チタン(Ti)、亜鉛(Zn)などの材料から製造されたものが挙げられる。負極集電体の例としては、例えば、ステンレス(SUS)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、チタン(Ti)、コバルト(Co)、亜鉛(Zn)などの材料から製造されたものが挙げられる。正極集電体及び負極集電体の形状は、全固体電池の用途に応じて適宜選択することができ、例えば箔状およびメッシュ状などの形状であることができる。集電体の厚さは、それら集電体の構成材料や、意図する用途などに応じて変えることができ、特に限定されない。正極集電体及び負極集電体の厚さは、典型的には
6μm以上30μm以下である。
The positive electrode current collector and the negative electrode current collector are not particularly limited as long as they are generally known to function as current collectors. Examples of the positive electrode current collector include, for example, stainless steel (SUS), nickel (Ni), chromium (Cr), gold (Au), platinum (Pt), aluminum (Al), iron (Fe), and titanium (Ti). And those manufactured from materials such as zinc (Zn). Examples of the negative electrode current collector are manufactured from materials such as stainless steel (SUS), copper (Cu), nickel (Ni), iron (Fe), titanium (Ti), cobalt (Co), and zinc (Zn). The thing which was done is mentioned. The shape of the positive electrode current collector and the negative electrode current collector can be appropriately selected according to the use of the all-solid battery, and can be, for example, a foil shape or a mesh shape. The thickness of the current collector can be changed according to the constituent material of the current collector, the intended use, and the like, and is not particularly limited. The thickness of the positive electrode current collector and the negative electrode current collector is typically
It is 6 μm or more and 30 μm or less.

上記の全固体電池は、上述した部材の他に、セパレータ、正極集電体及び負極集電体に接続された正極端子及び負極端子などを有することができる。これらの部材の材質及び形状は、全固体電池の用途に応じて適宜選択することができる。   Said all-solid-state battery can have a positive electrode terminal, a negative electrode terminal, etc. which were connected to the separator, the positive electrode collector, and the negative electrode collector other than the member mentioned above. The material and shape of these members can be appropriately selected according to the use of the all solid state battery.

以下、図面を参照して本発明の全固体電池の検査方法を説明する。
図1は、本発明の全固体電池の検査方法の一実施形態のフローチャートである。本発明の検査方法は、全固体電池に対して実施する。
本発明の検査方法が開始されると、まず、全固体電池を初期充電する(ステップS11)。全固体電池が拘束せずに使用される場合には、拘束圧を加えずに全固体電池を初期充電する。全固体電池が所定の拘束圧が加えられた状態で使用される場合には、使用時の当該所定の拘束圧を加えた状態で全固体電池を初期充電する。
次に、ステップS12にて、全固体電池を自己放電させて、所定時間経過後の自己放電による電圧降下量ΔV1(すなわち自己放電前に測定された電圧Vと所定時間の自己放電後に測定された電圧V1との差V−V)を求める。
次に、ステップS13にて、ΔV1が第1の基準値を超えるか否かを判定する。
電圧降下量ΔV1が所定の第1の基準値を以下である場合には、微短絡が発生していない良品と判定し(ステップS14)、検査を終了する。
電圧降下量ΔV1が所定の第1の基準値を超えた場合には、全固体電池の使用時の拘束圧よりも高い拘束圧を全固体電池に加える(ステップS15)。
次に、全固体電池の使用時の拘束圧を超える圧力下で全固体電池を充電する(ステップS16)。
次に、全固体電池を自己放電させて、自己放電による電圧降下量ΔV2(すなわち自己放電前に測定された電圧Vと所定時間の自己放電後に測定された電圧V1との差V−V)を求める(ステップS17)。
次に、ステップS18にて、電圧降下量ΔV2が第2の基準値を超えるか否かを判定する。電圧降下量ΔV2が所定の第2の基準値を以下である場合には、微短絡が発生していない良品と判定し(ステップS14)、検査を終了する。
電圧降下量ΔV2が所定の第2の基準値を超えた場合には、微短絡が発生した不良品であると判定し(ステップS19)、検査を終了する。
本発明の上記の第1の実施形態によれば、検査した全固体電池について、ステップS13にて自己放電による電圧降下量ΔV1が第1の基準値を超えた場合であっても、ステップS18にて、電圧降下量ΔV2と第2の基準値とを比較することにより微短絡が発生していないと判定された場合には、検査した全固体電池を良品と判定する。本発明の検査方法の第1の実施形態は、上記のように、電圧降下量ΔV1が所定の第1の基準値を超えるか否かを判定する工程と、電圧降下量ΔV2が所定の第2の基準値を超えるか否かを判定する工程を含むことによって、微短絡をより高い精度で検出することができる。
Hereinafter, an inspection method for an all solid state battery of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart of an embodiment of the all-solid-state battery inspection method of the present invention. The inspection method of the present invention is performed on an all-solid battery.
When the inspection method of the present invention is started, first, the all solid state battery is initially charged (step S11). When the all solid state battery is used without being restrained, the all solid state battery is initially charged without applying restraining pressure. When the all solid state battery is used in a state where a predetermined restraining pressure is applied, the all solid state battery is initially charged with the predetermined restraining pressure applied during use.
Next, in step S12, the all solid state battery is self-discharged, and the voltage drop amount ΔV1 due to self-discharge after the predetermined time has elapsed (that is, the voltage V 0 measured before the self-discharge and the self-discharge after the predetermined time are measured). Difference V 0 -V 1 ) with respect to the voltage V1.
Next, in step S13, it is determined whether or not ΔV1 exceeds the first reference value.
When the voltage drop amount ΔV1 is equal to or less than the predetermined first reference value, it is determined that the fine short circuit has not occurred (step S14), and the inspection is terminated.
When the voltage drop amount ΔV1 exceeds the predetermined first reference value, a restraint pressure higher than the restraint pressure during use of the all solid state battery is applied to the all solid state battery (step S15).
Next, the all solid state battery is charged under a pressure exceeding the restraining pressure when using the all solid state battery (step S16).
Next, the all solid state battery is self-discharged, and the voltage drop amount ΔV2 due to self-discharge (that is, the difference V 0 −V between the voltage V 0 measured before the self-discharge and the voltage V1 measured after the self-discharge for a predetermined time). 2 ) is obtained (step S17).
Next, in step S18, it is determined whether or not the voltage drop amount ΔV2 exceeds the second reference value. When the voltage drop amount ΔV2 is equal to or less than the predetermined second reference value, it is determined that the fine short circuit has not occurred (step S14), and the inspection is terminated.
If the voltage drop amount ΔV2 exceeds the predetermined second reference value, it is determined that the product is a defective product in which a fine short circuit has occurred (step S19), and the inspection is terminated.
According to the above-described first embodiment of the present invention, even if the voltage drop amount ΔV1 due to self-discharge exceeds the first reference value in step S13 for the inspected all-solid-state battery, the process proceeds to step S18. If it is determined that a fine short circuit has not occurred by comparing the voltage drop amount ΔV2 with the second reference value, the inspected all solid state battery is determined to be a non-defective product. In the first embodiment of the inspection method of the present invention, as described above, the step of determining whether or not the voltage drop amount ΔV1 exceeds a predetermined first reference value, and the voltage drop amount ΔV2 is a predetermined second value. By including the step of determining whether or not the reference value is exceeded, a fine short circuit can be detected with higher accuracy.

ステップS11における初期充電及びステップS16における充電は、所定の電圧になるまで行う。ステップS11及びステップS16において、例えば、正極活物質がコバルト酸リチウムで構成され、負極活物質が天然黒鉛で構成される全固体電池の場合、電圧が4Vになるまで充電を行う。ステップS11における充電電圧及びステップS16における充電電圧は、微短絡を検出するために、同じ電圧であることが好ましい。全固体電池を拘束せずに使用する場合には、拘束圧を加えずに全固体電池を初期充電する。全固体電池が所定の拘束圧が加えられた状態で使用される場合には、使用時の当該所定の拘束圧を加えた状態で全固体電池を初期充電する。ステップS11における拘束圧は、好ましくは0MPa〜15MPaであり、ステップS15における拘束圧は、好ましくは10MPa〜200MPaである。全固体電池の場合、固体電解質層中や正極層及び負極層の表面などに導電性異物が存在すると、高い拘束圧を加えることによって、微短絡が顕著になり、自己放電量が増加する。   The initial charging in step S11 and the charging in step S16 are performed until a predetermined voltage is reached. In step S11 and step S16, for example, in the case of an all-solid battery in which the positive electrode active material is made of lithium cobalt oxide and the negative electrode active material is made of natural graphite, charging is performed until the voltage reaches 4V. The charging voltage in step S11 and the charging voltage in step S16 are preferably the same voltage in order to detect a slight short circuit. When the all solid state battery is used without being restrained, the all solid state battery is initially charged without applying restraining pressure. When the all solid state battery is used in a state where a predetermined restraining pressure is applied, the all solid state battery is initially charged with the predetermined restraining pressure applied during use. The constraint pressure in step S11 is preferably 0 MPa to 15 MPa, and the constraint pressure in step S15 is preferably 10 MPa to 200 MPa. In the case of an all-solid-state battery, if a conductive foreign substance is present in the solid electrolyte layer or on the surfaces of the positive electrode layer and the negative electrode layer, a fine short circuit becomes noticeable and a self-discharge amount increases by applying a high restraint pressure.

上記の全固体電池の積層体に対して拘束圧を加える方法としては、例えば、機械的に生成させた圧力を利用して加圧を行う機械加圧法、及びガス圧を利用して加圧を行うガス加圧法が挙げられるが、これらに限定されない。機械加圧法としては、例えば、モーターを駆動し、ボールネジを介して積層体の積層方向に加圧する方法や、モーターを駆動して油圧を介して積層体の積層方向に加圧する方法が挙げられる。所定の圧力まで加圧した後、メカニカルストッパーで稼働部を固定することによりモーターの駆動に伴うエネルギー消費を必要最低限に抑制することができる。ガス加圧法としては、例えば、ガスボンベから加圧ガスを介して積層体を加圧する方法が挙げられる。拘束圧は、微短絡検査ができる程度の圧力にとどめることが好ましい。   Examples of the method for applying the restraining pressure to the laminate of the all solid state battery include a mechanical pressurization method in which pressurization is performed using a mechanically generated pressure, and a pressurization is performed using a gas pressure. Although the gas pressurization method to perform is mentioned, it is not limited to these. Examples of the mechanical pressurizing method include a method of driving a motor and pressurizing in the stacking direction of the laminate through a ball screw, and a method of driving the motor and pressurizing in the stacking direction of the stack through hydraulic pressure. After pressurizing to a predetermined pressure, the energy consumption accompanying the drive of a motor can be suppressed to the minimum necessary by fixing an operation part with a mechanical stopper. Examples of the gas pressurizing method include a method of pressurizing the laminate from a gas cylinder through a pressurized gas. It is preferable that the restraining pressure is limited to a pressure that allows a fine short circuit inspection.

ステップS12及びS16における自己放電は、全固体電池を、所定の温度で、所定の時間放置することにより行う。ステップS12及びS16における自己放電は、同じ周囲環境条件(例えば温度、湿度など)で行うことが好ましい。ステップS12及びS16における自己放電は、例えば、全固体電池を、25℃の温度で30時間放置することにより行うことができる。   The self-discharge in steps S12 and S16 is performed by leaving the all solid state battery at a predetermined temperature for a predetermined time. The self-discharge in steps S12 and S16 is preferably performed under the same ambient environmental conditions (for example, temperature, humidity, etc.). The self-discharge in steps S12 and S16 can be performed, for example, by leaving the all solid state battery at a temperature of 25 ° C. for 30 hours.

次に、図2を参照して、本発明の全固体電池の検査方法の別の実施形態(以下、「第2の実施形態」という)を説明する。
検査方法が開始されると、まず、全固体電池を初期充電する(ステップS21)。全固体電池は、使用時の所定の拘束圧を加えた状態で初期充電する。
次に、ステップS22にて、全固体電池を自己放電させて、自己放電による電圧降下量ΔV1(すなわち自己放電前に測定された電圧Vと所定時間の自己放電後に測定された電圧V1との差V−V)を求める。
次に、ステップS23にて、ΔV1が第1の基準値を超えるか否かを判定する。
電圧降下量ΔV1が所定の第1の基準値を以下である場合には、微短絡が発生していない良品と判定し(ステップS24)、検査を終了する。
電圧降下量ΔV1が所定の第1の基準値を超えた場合には、次に、定電流−定電圧(cccv:constant current-constant voltage)で充放電容量測定を行い、クーロン効率ECD(すなわち定電圧(cv)放電容量/定電圧(cv)充電容量)、定電流(cc)容量低下量ΔC1(すなわち定電流(cc)放電容量−初期定電流(cc)放電容量)及び定電圧(cv)容量低下量ΔC2(すなわち定電圧(cv)放電容量−初期定電圧(cv)放電容量)を求める(ステップS25)。
次に、ステップS25で求められた、クーロン効率(ECD)、定電流(cc)容量低下量(ΔC1)及び定電圧(cv)容量低下量(ΔC2)について、ECDが所定の基準値未満であるか否か、もしくは、ΔC1が所定の第1の容量基準値を超えるか否か、又はΔC2が所定の第2の容量基準値を超えるか否かを判定する。ECDが所定の基準値未満である場合、もしくは、ΔC1が所定の第1の容量基準値を超える場合、又はΔC2が所定の第2の容量基準値を超える場合には、電池を不良品と判定し(S27)、検査を終了する。上記以外の場合には、電池を良品と判定し(ステップS24)、検査を終了する。
Next, with reference to FIG. 2, another embodiment (hereinafter referred to as “second embodiment”) of the all-solid-state battery inspection method of the present invention will be described.
When the inspection method is started, first, the all solid state battery is initially charged (step S21). The all solid state battery is initially charged with a predetermined restraint pressure applied during use.
Next, in step S22, the all-solid battery by self-discharge, the voltage drop [Delta] V1 (i.e. the voltage V1 measured after self-discharge of the self-discharge voltage V 0 is measured before a predetermined time due to self-discharge The difference V 0 -V 1 ) is determined.
Next, in step S23, it is determined whether or not ΔV1 exceeds the first reference value.
When the voltage drop amount ΔV1 is equal to or less than the predetermined first reference value, it is determined that the fine short circuit has not occurred (step S24), and the inspection is terminated.
When the voltage drop amount ΔV1 exceeds a predetermined first reference value, next, charge / discharge capacity measurement is performed with a constant current-constant voltage (cccv: constant current-constant voltage), and the Coulomb efficiency E CD (that is, Constant voltage (cv) discharge capacity / constant voltage (cv) charge capacity), constant current (cc) capacity drop amount ΔC1 (ie, constant current (cc) discharge capacity−initial constant current (cc) discharge capacity) and constant voltage (cv ) Capacity reduction amount ΔC2 (that is, constant voltage (cv) discharge capacity−initial constant voltage (cv) discharge capacity) is obtained (step S25).
Next, for the coulomb efficiency (E CD ), constant current (cc) capacity reduction amount (ΔC1), and constant voltage (cv) capacity reduction amount (ΔC2) obtained in step S25, E CD is less than a predetermined reference value. It is determined whether or not ΔC1 exceeds a predetermined first capacity reference value, or ΔC2 exceeds a predetermined second capacity reference value. If E CD is less than the predetermined reference value, or if ΔC1 exceed the first capacitance criterion value of a predetermined, or the ΔC2 exceeds the second capacity reference value predetermined in the battery and defective products A determination is made (S27), and the inspection is terminated. In cases other than the above, the battery is determined to be non-defective (step S24), and the inspection ends.

ここで、ステップS25における充放電容量測定は、まず、充電状態(SOC:State of Charge)0%の電圧まで定電流−定電圧放電する。次に、SOC100%の電圧まで定電流定電圧充電し、再度SOC0%まで定電流−定電圧放電する。充放電容量の値からクーロン効率ECD、定電流容量低下量ΔC1及び定電圧容量低下量ΔC2を算出する。なお、充放電容量測定は、SOC0〜100%の範囲での測定に限らず、測定結果からクーロン効率ECD、定電流容量低下量ΔC1及び定電圧容量低下量ΔC2を算出することができれば、SOC10%〜90%の範囲や、その他の範囲でも実施できる。 Here, in the charge / discharge capacity measurement in step S25, first, constant current-constant voltage discharge is performed to a voltage of 0% charge state (SOC: State of Charge). Next, constant current / constant voltage charging is performed to a voltage of SOC 100%, and constant current-constant voltage discharging is performed again to SOC 0%. Coulomb efficiency E CD , constant current capacity decrease amount ΔC1 and constant voltage capacity decrease amount ΔC2 are calculated from the value of the charge / discharge capacity. Note that the charge / discharge capacity measurement is not limited to the measurement in the range of SOC 0 to 100%. If the Coulomb efficiency E CD , the constant current capacity decrease amount ΔC1 and the constant voltage capacity decrease amount ΔC2 can be calculated from the measurement results, the SOC 10 It can also be implemented in the range of% to 90% and other ranges.

ここで、上記の本発明の検査方法の第1及び第2の実施形態におけるΔV1についての「所定の第1の基準値」並びに第2の実施形態におけるΔV2についての「所定の第2の基準値」は、それぞれ、ΔV1及びΔV2を測定した所定時間に対応して、全固体電池に微短絡が発生していると判断される程度の電圧降下量として予め設定された値である。   Here, “predetermined first reference value” for ΔV1 in the first and second embodiments of the inspection method of the present invention and “predetermined second reference value” for ΔV2 in the second embodiment. "Is a value set in advance as the amount of voltage drop to the extent that it is determined that a slight short circuit has occurred in the all-solid-state battery, corresponding to the predetermined times when ΔV1 and ΔV2 are measured.

さらに、上記の本発明の検査方法の第2の実施形態において、ECDについての「所定の基準値」は、電池内部での微短絡による漏れ電流の許容値として予め設定された値である。ΔC1についての「所定の第1の容量基準値」は電池の内部抵抗増加の許容値として予め設定された値である。ΔC2についての「所定の第2の容量基準値」は、Liイオン喪失の許容値として予め設定された値である。ΔC1が第1の容量基準値を超える原因としては、例えば、固体電解質の劣化が挙げられる。ΔC2が第2の容量基準値を超える原因としては、例えば、水分とのLiCの反応が挙げられる。本発明の検査方法の第2の実施形態は、上記のように、電圧降下量ΔV1が所定の第1の基準値を超えるか否かを判定する工程と、電圧降下量ΔV2が所定の第2の基準値を超えるか否かを判定する工程を含むことによって、微短絡をより高い精度で検出することができる。微短絡や、それ以外の原因、例えば固体電解質の劣化、水分とのLiCの反応などの原因による電池の欠陥の有無を高い精度で判定することができる。 Further, in the second embodiment of the inspection method of the present invention, the "predetermined reference value" for E CD, which is a preset value as the allowable value of the leakage current due to the fine short circuit in the battery. The “predetermined first capacity reference value” for ΔC1 is a value set in advance as an allowable value for an increase in the internal resistance of the battery. The “predetermined second capacity reference value” for ΔC2 is a value set in advance as an allowable value for loss of Li ions. As a cause of ΔC1 exceeding the first capacity reference value, for example, deterioration of the solid electrolyte may be mentioned. As a cause of ΔC2 exceeding the second capacity reference value, for example, a reaction of LiC 6 with moisture is cited. In the second embodiment of the inspection method of the present invention, as described above, the step of determining whether or not the voltage drop amount ΔV1 exceeds a predetermined first reference value, and the voltage drop amount ΔV2 is a predetermined second value. By including the step of determining whether or not the reference value is exceeded, a fine short circuit can be detected with higher accuracy. It is possible to determine with high accuracy whether there is a defect in the battery due to a micro short circuit or other causes such as deterioration of the solid electrolyte, reaction of LiC 6 with moisture, and the like.

図3は、自己放電による電圧降下量ΔV1について予め設定された第1の基準値及び電圧降下量ΔV2について予め設定された第2の基準値の例を、ΔV1及びΔV2と関連して示す。この例は、第1の基準値及び第2の基準値が時間依存性を有する場合の例であり、第1の基準値R1(t)及び第2の基準値R2(t)は、それぞれ、時間の関数として曲線(A)及び(D)で示されている。検査対象の電池が、ΔV1(t)≦R1(t)の放電曲線(B)を示す場合、当該電池は微短絡が発生していない良品であると判定され、ΔV1(t)>R1(t)の放電曲線(C)を示す場合、当該電池は微短絡が発生した不良品であると判定される。検査対象の電池が、ΔV2(t)≦R2(t)の放電曲線(E)を示す場合、当該電池は微短絡が発生していない良品であると判定され、ΔV2(t)>R2(t)の放電曲線(F)を示す場合、当該電池は微短絡が発生した不良品であると判定される。なお、第1の基準値R1(t)及び第2の基準値R2(t)は、予め求めた充電状態SOCと時間と電池容量と電圧の関係から決定することができる。第1の基準値R1(t)及び第2の基準値R2(t)は、正極材料及び負極材料の種類や正極と負極の容量比などの要因で変化するため、第1の基準値R1(t)及び第2の基準値R2(t)の曲線の形状は図3に示されているものに限定されない。ただし、第2の基準値R2(t)>第1の基準値R1(t)の関係を満たす。これは、第2の基準値R2(t)を基準にして上記判定を行う際の固体電解質層の厚みは、電池の拘束圧の増加のために、第1の基準値R1(t)を基準にする場合よりも薄いため、第2の基準値R2(t)を基準にして上記判定を行う際の漏れ電流が第1の基準値R1(t)を基準にする場合よりも増加するからである。   FIG. 3 shows an example of a first reference value preset for the voltage drop amount ΔV1 due to self-discharge and a second reference value preset for the voltage drop amount ΔV2, in relation to ΔV1 and ΔV2. In this example, the first reference value and the second reference value are time-dependent, and the first reference value R1 (t) and the second reference value R2 (t) are respectively Curves (A) and (D) are shown as a function of time. When the battery to be inspected shows a discharge curve (B) of ΔV1 (t) ≦ R1 (t), it is determined that the battery is a non-defective product in which a fine short circuit has not occurred, and ΔV1 (t)> R1 (t ) In the discharge curve (C), it is determined that the battery is a defective product in which a fine short circuit has occurred. When the battery to be inspected shows a discharge curve (E) of ΔV2 (t) ≦ R2 (t), it is determined that the battery is a non-defective product with no slight short circuit, and ΔV2 (t)> R2 (t ) Of the discharge curve (F), it is determined that the battery is a defective product in which a fine short circuit has occurred. In addition, 1st reference value R1 (t) and 2nd reference value R2 (t) can be determined from the relationship of charge condition SOC previously calculated | required, time, battery capacity, and voltage. Since the first reference value R1 (t) and the second reference value R2 (t) change depending on factors such as the type of the positive electrode material and the negative electrode material and the capacity ratio between the positive electrode and the negative electrode, the first reference value R1 ( The shape of the curve of t) and the second reference value R2 (t) is not limited to that shown in FIG. However, the relationship of the second reference value R2 (t)> the first reference value R1 (t) is satisfied. This is because the thickness of the solid electrolyte layer when the above determination is made based on the second reference value R2 (t) is based on the first reference value R1 (t) due to an increase in the binding pressure of the battery. This is because the leakage current at the time of making the above determination based on the second reference value R2 (t) is larger than that based on the first reference value R1 (t). is there.

図4(a)は、微短絡が発生していない正常な電池についての充電時及び放電時のSOCに対する電圧特性を模式的に示すグラフ図であり、図4(b)は、微短絡が発生した電池についての充電時及び放電時のSOCに対する電圧特性を模式的に示すグラフ図である。図4(b)に示されているように、微短絡が発生した場合には、微短絡している部位から漏れ電流が流れ、充電した電荷が失われてしまうことで、充放電効率が低下することが判る。   FIG. 4A is a graph schematically showing voltage characteristics with respect to SOC at the time of charging and discharging of a normal battery in which a fine short circuit does not occur, and FIG. It is a graph which shows typically the voltage characteristic with respect to SOC at the time of charge about the battery which carried out, and discharge. As shown in FIG. 4 (b), when a slight short circuit occurs, a leakage current flows from the part of the short circuit, and the charged charge is lost, resulting in a decrease in charge / discharge efficiency. I know that

本発明の検査方法により検査された全固体電池は、高い信頼性を有し、ハイブリッド自動車、電気自動車などの車両に搭載されるモーター用の電源として有用である。   The all-solid-state battery inspected by the inspection method of the present invention has high reliability and is useful as a power source for a motor mounted on a vehicle such as a hybrid vehicle or an electric vehicle.

Claims (2)

全固体電池の検査方法であって、
(i)前記電池を充電した後に、前記電池の自己放電による電圧降下量ΔV1を求める工程、
(ii)電圧降下量ΔV1が所定の第1の基準値を超えるか否かを判定する工程、
(iii)電圧降下量ΔV1が所定の第1の基準値を超えた場合に、前記電池の使用時の拘束圧を超える圧力下で前記電池を充電し、自己放電させて自己放電による電圧降下量ΔV2を求める工程、
(iv)電圧降下量ΔV2が所定の第2の基準値を超えるか否かを判定する工程、及び
(v)電圧降下量ΔV2が所定の第2の基準値を超えた場合に、前記電池を不良品と判定する工程、
を含む、全固体電池の検査方法。
An inspection method for an all-solid battery,
(I) after charging the battery, obtaining a voltage drop ΔV1 due to self-discharge of the battery;
(Ii) a step of determining whether or not the voltage drop amount ΔV1 exceeds a predetermined first reference value;
(Iii) When the voltage drop amount ΔV1 exceeds a predetermined first reference value, the battery is charged under a pressure exceeding the binding pressure during use of the battery, and self-discharged to cause a voltage drop amount due to self-discharge. Obtaining ΔV2;
(Iv) determining whether or not the voltage drop amount ΔV2 exceeds a predetermined second reference value; and (v) when the voltage drop amount ΔV2 exceeds a predetermined second reference value, A process for determining a defective product,
A method for inspecting all solid state batteries.
全固体電池の検査方法であって、
(i)前記電池を充電した後に、前記電池の自己放電による電圧降下量ΔV1を求める工程、
(ii)電圧降下量ΔV1が所定の第1の基準値を超えるか否かを判定する工程、
(iii)電圧降下量ΔV1が所定の第1の基準値を超えた場合に、前記電池に対して定電流定電圧で充放電容量測定を行い、クーロン効率、定電流容量低下量及び定電圧容量低下量を求める工程、
(iv)(a)工程(iii)で求められたクーロン効率が所定の基準値未満であるか否か、もしくは(b)工程(iii)で求められた定電流容量低下量が所定の第1の容量基準値を超えるか否か、又は、(c)工程(iii)で求められた定電圧容量低下量が所定の第2の容量基準値を超えるか否かを判定する工程、及び
(v)クーロン効率が所定の基準値未満である場合、もしくは、定電流容量低下量が所定の第1の容量基準値を超える場合、又は、定電圧容量低下量が所定の第2の容量基準値を超える場合に、前記電池を不良品と判定する工程、
を含む、全固体電池の検査方法。
An inspection method for an all-solid battery,
(I) after charging the battery, obtaining a voltage drop ΔV1 due to self-discharge of the battery;
(Ii) a step of determining whether or not the voltage drop amount ΔV1 exceeds a predetermined first reference value;
(Iii) When the voltage drop amount ΔV1 exceeds a predetermined first reference value, charge / discharge capacity measurement is performed with respect to the battery at a constant current and constant voltage, and the coulomb efficiency, the constant current capacity decrease amount and the constant voltage capacity are measured. A process for determining the amount of decrease,
(Iv) (a) Whether the coulomb efficiency obtained in step (iii) is less than a predetermined reference value, or (b) the constant current capacity decrease amount obtained in step (iii) is a predetermined first (C) determining whether or not the constant voltage capacity reduction amount obtained in step (iii) exceeds a predetermined second capacity reference value; and (v) ) When the coulomb efficiency is less than a predetermined reference value, or when the constant current capacity decrease amount exceeds a predetermined first capacity reference value, or the constant voltage capacity decrease amount is equal to a predetermined second capacity reference value. A process of determining the battery as a defective product when exceeding,
A method for inspecting all solid state batteries.
JP2013264399A 2013-12-20 2013-12-20 Method of inspecting all-solid battery Pending JP2015122169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264399A JP2015122169A (en) 2013-12-20 2013-12-20 Method of inspecting all-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264399A JP2015122169A (en) 2013-12-20 2013-12-20 Method of inspecting all-solid battery

Publications (1)

Publication Number Publication Date
JP2015122169A true JP2015122169A (en) 2015-07-02

Family

ID=53533637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264399A Pending JP2015122169A (en) 2013-12-20 2013-12-20 Method of inspecting all-solid battery

Country Status (1)

Country Link
JP (1) JP2015122169A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054761A (en) * 2015-09-11 2017-03-16 日本碍子株式会社 Method for inspecting all-solid lithium battery, and method for manufacturing all-solid lithium battery
CN106908727A (en) * 2015-12-22 2017-06-30 郑州比克电池有限公司 The method for precisely detecting lithium ion battery self discharge
JP2017224536A (en) * 2016-06-16 2017-12-21 富士通株式会社 All-solid type secondary battery, power supply device, and method for monitoring all-solid type secondary battery
JP2019192580A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Method for inspecting all-solid battery, method for manufacturing all-solid battery, and method for manufacturing battery pack
JP2020013776A (en) * 2018-07-06 2020-01-23 トヨタ自動車株式会社 Short circuit inspection method for all-solid-state battery assembly, restraint jig used therefor, kit for short circuit inspection, and method for manufacturing all-solid-state battery
CN111679208A (en) * 2020-06-09 2020-09-18 捷威动力工业嘉兴有限公司 Standing method for self-discharge detection of lithium ion battery
JP2020205169A (en) * 2019-06-17 2020-12-24 トヨタ自動車株式会社 Manufacturing method of all-solid battery
CN112462277A (en) * 2020-11-13 2021-03-09 珠海冠宇电池股份有限公司 Method for detecting self-discharge performance of lithium ion battery
JP2021136145A (en) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 Manufacturing method of all-solid battery
US11777421B2 (en) 2021-02-26 2023-10-03 Prime Planet Energy & Solutions, Inc. Method for adjusting device voltage of power storage device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054761A (en) * 2015-09-11 2017-03-16 日本碍子株式会社 Method for inspecting all-solid lithium battery, and method for manufacturing all-solid lithium battery
CN106908727A (en) * 2015-12-22 2017-06-30 郑州比克电池有限公司 The method for precisely detecting lithium ion battery self discharge
JP2017224536A (en) * 2016-06-16 2017-12-21 富士通株式会社 All-solid type secondary battery, power supply device, and method for monitoring all-solid type secondary battery
CN110412482B (en) * 2018-04-27 2021-08-24 丰田自动车株式会社 Method for inspecting all-solid-state battery, method for manufacturing all-solid-state battery, and method for manufacturing battery pack
JP2019192580A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Method for inspecting all-solid battery, method for manufacturing all-solid battery, and method for manufacturing battery pack
CN110412482A (en) * 2018-04-27 2019-11-05 丰田自动车株式会社 The manufacturing method of the inspection method of all-solid-state battery, the manufacturing method of all-solid-state battery and battery pack
JP7000976B2 (en) 2018-04-27 2022-01-19 トヨタ自動車株式会社 Inspection method of all-solid-state battery, manufacturing method of all-solid-state battery and manufacturing method of assembled battery
JP2020013776A (en) * 2018-07-06 2020-01-23 トヨタ自動車株式会社 Short circuit inspection method for all-solid-state battery assembly, restraint jig used therefor, kit for short circuit inspection, and method for manufacturing all-solid-state battery
JP7133132B2 (en) 2018-07-06 2022-09-08 トヨタ自動車株式会社 Short-circuit inspection method for all-solid-state battery assembly, restraint jig used therein, short-circuit inspection kit, and method for manufacturing all-solid-state battery
JP7124793B2 (en) 2019-06-17 2022-08-24 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery
JP2020205169A (en) * 2019-06-17 2020-12-24 トヨタ自動車株式会社 Manufacturing method of all-solid battery
JP2021136145A (en) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 Manufacturing method of all-solid battery
JP7290126B2 (en) 2020-02-27 2023-06-13 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery
CN111679208A (en) * 2020-06-09 2020-09-18 捷威动力工业嘉兴有限公司 Standing method for self-discharge detection of lithium ion battery
CN112462277A (en) * 2020-11-13 2021-03-09 珠海冠宇电池股份有限公司 Method for detecting self-discharge performance of lithium ion battery
US11777421B2 (en) 2021-02-26 2023-10-03 Prime Planet Energy & Solutions, Inc. Method for adjusting device voltage of power storage device

Similar Documents

Publication Publication Date Title
JP2015122169A (en) Method of inspecting all-solid battery
JP5464119B2 (en) Method for producing lithium ion secondary battery
JP2014222603A (en) Inspection method for battery
JP6245228B2 (en) Inspection method for all-solid-state secondary battery and method for manufacturing all-solid-state secondary battery using the inspection method
JP5464118B2 (en) Method for producing lithium ion secondary battery
JP2012084322A (en) Method for producing lithium ion secondary battery
JP2009145137A (en) Inspection method of secondary battery
CN107799837B (en) Recovery method and reuse method for secondary battery
US20140077818A1 (en) Methods for testing lithium ion battery and evaluating safety of lithium ion battery
JP5464117B2 (en) Method for producing lithium ion secondary battery
WO2013157128A1 (en) Apparatus and method for inspecting all-solid battery
KR102408132B1 (en) Method for testing pressure short defect by jig pressing
JP5985280B2 (en) Inspection method for lithium ion secondary battery
JP2012252839A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5716979B2 (en) Secondary battery inspection method
KR102478877B1 (en) Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode
JP2005251538A (en) Inspection method and device of secondary cell
JP7290126B2 (en) Method for manufacturing all-solid-state battery
JP2003036887A (en) Inspection method for lithium secondary battery
CN110231569B (en) Method for inspecting all-solid-state battery, method for manufacturing all-solid-state battery, and method for manufacturing battery pack
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP7011782B2 (en) Secondary battery inspection method
JP2018067498A (en) Method of manufacturing battery
CN110412482B (en) Method for inspecting all-solid-state battery, method for manufacturing all-solid-state battery, and method for manufacturing battery pack
WO2023136353A1 (en) Battery inspection method