KR102478877B1 - Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode - Google Patents

Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode Download PDF

Info

Publication number
KR102478877B1
KR102478877B1 KR1020170123190A KR20170123190A KR102478877B1 KR 102478877 B1 KR102478877 B1 KR 102478877B1 KR 1020170123190 A KR1020170123190 A KR 1020170123190A KR 20170123190 A KR20170123190 A KR 20170123190A KR 102478877 B1 KR102478877 B1 KR 102478877B1
Authority
KR
South Korea
Prior art keywords
composition
secondary battery
active material
cathode
material layer
Prior art date
Application number
KR1020170123190A
Other languages
Korean (ko)
Other versions
KR20190034769A (en
Inventor
민재윤
Original Assignee
에스케이온 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이온 주식회사 filed Critical 에스케이온 주식회사
Priority to KR1020170123190A priority Critical patent/KR102478877B1/en
Publication of KR20190034769A publication Critical patent/KR20190034769A/en
Application granted granted Critical
Publication of KR102478877B1 publication Critical patent/KR102478877B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 개선된 OCV 특성을 갖는 양극활물질층 형성용 조성물, 상기 조성물을 사용하여 제조된 양극 및 상기 양극을 포함하는 리튬이온이차전지에 관한 것으로서, 리튬복합산화물, 철을 함유하는 CNT 도전재, PVDF 바인더 및 타닌산을 포함하는 리튬이차전지 양극 활물질층 형성용 조성물, 상기 조성물로 제조된 양극 및 상기 양극을 포함하는 리튬이온 이차전지를 제공한다.The present invention relates to a composition for forming a positive electrode active material layer having improved OCV characteristics, a positive electrode prepared using the composition, and a lithium ion secondary battery including the positive electrode, comprising a lithium composite oxide, a CNT conductive material containing iron, A composition for forming a cathode active material layer for a lithium secondary battery including a PVDF binder and tannic acid, a cathode made of the composition, and a lithium ion secondary battery including the cathode are provided.

Figure R1020170123190
Figure R1020170123190

Description

OCV가 우수한 양극 활물질층 형성용 조성물, 상기 조성물로부터 제조된 양극 및 상기 양극을 포함하는 리튬이온이차전지{COMPOSITION FOR FORMING CATHODE ACTIVE MATERIAL LAYER, CATHODE PREPARED BY USING THE COMPOSITION, AND LITHIUM ION SECONDARY BATTERY COMPRISING THE CATHODE}A composition for forming a positive electrode active material layer having excellent OCV, a positive electrode prepared from the composition, and a lithium ion secondary battery including the positive electrode }

본 발명은 개선된 OCV 특성을 갖는 양극활물질층 형성용 조성물, 상기 조성물을 사용하여 제조된 양극 및 상기 양극을 포함하는 리튬이온이차전지에 관한 것이다.The present invention relates to a composition for forming a cathode active material layer having improved OCV characteristics, a cathode manufactured using the composition, and a lithium ion secondary battery including the cathode.

리튬이온 이차전지는, 일반적으로 양극 집전체 및 상기 양극 집전체의 양면에 형성된 양극활물질층이 형성된 양극, 음극 집전체 및 상기 음극 집전체의 양면에 음극활물질층이 형성된 음극, 세퍼레이터 및 전해액을 포함한다. A lithium ion secondary battery generally includes a positive electrode current collector and a positive electrode having a positive electrode active material layer formed on both sides of the positive electrode current collector, a negative electrode current collector and a negative electrode having negative electrode active material layers formed on both sides of the negative electrode current collector, a separator, and an electrolyte solution. do.

상기 양극활물질층의 형성을 위하여, Li-리치(rich)의 양극활물질과 도전재, 바인더를 포함하는데, 상기 바인더로는 일예로서 PVDF(폴리비닐리덴플루오라이드) 등을 사용하였다. 이때, 양극활물질층의 집전체에 대한 접착력 개선을 위해, 바인더인 PVDF의 분자량을 증가키거나, PVDF에 관능기를 추가로 도입하여 바인더로서 적용하는 시도가 있었다.In order to form the positive electrode active material layer, a Li-rich positive electrode active material, a conductive material, and a binder are included. For example, PVDF (polyvinylidene fluoride) is used as the binder. At this time, in order to improve the adhesion of the positive electrode active material layer to the current collector, an attempt was made to increase the molecular weight of PVDF as a binder or to apply it as a binder by additionally introducing a functional group into PVDF.

그러나, PVDF의 분자량 증가에는 한계가 있고, 또, 고분자화할수록 양극활물질층 형성을 위한 슬러리를 제조하는 과정에서 첨가제와의 혼합(Mixing)이 어려워 지고, 집전체 표면에 슬러리를 도포한 후 프레스하는 과정에도 부하로 작용하여 전극 밀도 증가가 어려워지는 문제가 있었다.However, there is a limit to the increase in the molecular weight of PVDF, and the more polymerized it is, the more difficult it is to mix with additives in the process of preparing the slurry for forming the positive electrode active material layer. In the process, there was a problem that it was difficult to increase the electrode density by acting as a load.

한편, 추가적인 관능기를 PVDF에 도입하는 경우에는 양극 슬러리가 겔화(Gelation)하는 문제가 또한 발생한다.On the other hand, when an additional functional group is introduced into PVDF, a problem of gelation of the positive electrode slurry also occurs.

나아가, CNT 제조과정 중에는 Fe를 시드(sedd) 물질로 사용하여 CNT를 제조한다. 따라서, 제조된 CNT 중에는 1-10중량% 정도의 Fe를 포함한다. 그러나, 이러한 Fe를 포함하는 CNT를 양극활물질층에 도전재로서 사용하는 경우, Fe가 양극에서 용출되어 OCV 불량의 야기하는 원인으로 작용하는 문제가 있다. Furthermore, CNTs are manufactured using Fe as a seed material during the CNT manufacturing process. Therefore, the produced CNTs contain about 1-10% by weight of Fe. However, when CNTs containing Fe are used as a conductive material in the positive electrode active material layer, there is a problem in that Fe is eluted from the positive electrode and acts as a cause of OCV defects.

본 발명은 고분자 PVDF 바인더를 적용한 양극활물질을 제조함에 있어서 분자량을 증가시키거나 또는 관능기의 추가 도입하지 않고도 접착성을 개선하면서 활물질 조성물의 혼합 과정에서 작업성을 개선하며, 이로 인해 슬러리의 안정성을 향상시키고, 나아가, 고밀도 활물질층을 제조하기 위한 압연과정을 원활하게 수행할 수 있는 양극활물질층 형성용 조성물을 제공하고자 한다.The present invention improves workability in the mixing process of the active material composition while improving adhesion without increasing the molecular weight or introducing additional functional groups in preparing a cathode active material using a polymeric PVDF binder, thereby improving the stability of the slurry And, furthermore, to provide a composition for forming a positive electrode active material layer capable of smoothly performing a rolling process for producing a high-density active material layer.

또한, 본 발명은 CNT를 전도제로 포함하더라도 CNT에 포함된 Fe의 용출에 의한 OCV 불량이 발생하는 문제를 개선하고자 한다.In addition, the present invention is intended to improve the problem of OCV defects due to elution of Fe contained in CNTs even when CNTs are included as a conductive agent.

본 발명은 리튬이온 이차전지의 양극 활물질층 형성용 조성물을 제공하고자 하는 것으로서, 본 발명의 일 구현예에 따르면, 리튬복합산화물, 철을 함유하는 CNT 도전재, PVDF 바인더 및 타닌산을 포함하는 리튬이온 이차전지 양극 활물질층 형성용 조성물을 제공한다. The present invention is to provide a composition for forming a cathode active material layer of a lithium ion secondary battery, and according to one embodiment of the present invention, lithium ion containing a lithium composite oxide, a CNT conductive material containing iron, a PVDF binder, and tannic acid. A composition for forming a secondary battery positive active material layer is provided.

전체 조성물 중량에 대하여 상기 철은 15ppm 이상이고, 상기 타닌산은 0.03 내지 0.5중량%인 리튬이차전지 양극 활물질층 형성용 조성물을 제공한다. Provided is a composition for forming a positive active material layer for a lithium secondary battery in which the iron is 15 ppm or more and the tannic acid is 0.03 to 0.5% by weight based on the total weight of the composition.

상기 철은 CNT 제조 공정 중에 사용된 촉매로부터 유래된 것일 수있다.The iron may be derived from catalysts used during the CNT manufacturing process.

상기 조성물은 PVDF는 1 내지 7중량%, CNT 도전재 0.2 내지 1.5중량% 및 잔부 리튬복합산화물인 리튬이차전지 양극 활물질층 형성용 조성물.The composition is a composition for forming a positive electrode active material layer for a lithium secondary battery, comprising 1 to 7% by weight of PVDF, 0.2 to 1.5% by weight of a CNT conductive material, and the balance of lithium composite oxide.

상기 양극활물질은 NMC, LCO, NCA, LFP, LMO으로 이루어진 그룹으로부터 선택되는 적어도 하나일 수 있다.The cathode active material may be at least one selected from the group consisting of NMC, LCO, NCA, LFP, and LMO.

본 발명은 리튬이온 이차전지용 양극을 제공하고자 하는 것으로서, 본 발명의 일 구현예에 따르면, 양극 집전체 및 상기 양극 집전체의 양면에 제1항 내지 제5항 중 어느 한 항의 조성물로 된 양극 활물질층을 포함하는 리튬이온 이차전지용 양극을 제공한다.The present invention is to provide a positive electrode for a lithium ion secondary battery, and according to one embodiment of the present invention, a positive electrode current collector and a positive electrode active material made of the composition of any one of claims 1 to 5 on both surfaces of the positive electrode current collector A positive electrode for a lithium ion secondary battery comprising a layer is provided.

상기 양극 집전체는 알루미늄 및 알루미늄합금으로 이루어진 그룹으로부터 선택되는 금속일 수 있다.The cathode current collector may be a metal selected from the group consisting of aluminum and aluminum alloys.

본 발명은 또한 리튬이온 이차전지를 제공하고자 하며, 본 발명의 일 구현예에 따르면, 음극 및 상기 양극이 세퍼레이터를 경계로 교대로 적층되고, 전해액을 포함하는 리튬이온 이차전지를 제공한다.The present invention is also intended to provide a lithium ion secondary battery, and according to one embodiment of the present invention, a negative electrode and the positive electrode are alternately stacked with a separator as a boundary, and a lithium ion secondary battery including an electrolyte solution is provided.

상기 리튬이온 이차전지는 식 (1)로 표시되는 OCV 불량율이 0%이다.The lithium ion secondary battery has an OCV defect rate represented by Formula (1) of 0%.

Figure 112017093134518-pat00001
Figure 112017093134518-pat00001

본 발명에 따르면, PVDF를 바인더로 사용함에 있어서 바인더의 분자량을 증가시키거나 추가의 관능기를 도입하지 않고도 집전체에 대한 접착력을 향상시킬 수 있다. According to the present invention, when using PVDF as a binder, adhesion to a current collector can be improved without increasing the molecular weight of the binder or introducing additional functional groups.

따라서, PVDF 바인더의 사용량 감소를 도모할 수 있으며, 이를 통해 전극 믹싱 및 프레싱 공정의 특성을 개선할 수 있다.Therefore, it is possible to reduce the amount of the PVDF binder, and through this, the characteristics of the electrode mixing and pressing process can be improved.

나아가, 감소되는 바인더 사용량만큼 양극활물질 사용량을 증대시킬 수 있어, 전지의 용량을 증가시킬 수 있다.Furthermore, it is possible to increase the amount of the positive electrode active material as much as the reduced amount of the binder, thereby increasing the capacity of the battery.

도 1은 PVDF 바인더에 타닌산을 첨가함으로써 접착력을 개선하는 메커니즘을 개략적으로 나타낸 도면이다. 1 is a diagram schematically showing a mechanism for improving adhesion by adding tannic acid to a PVDF binder.

본 발명은 리튬이온 이차전지의 양극 활물질층을 형성하기 위한 조성물을 제공하고자 한다. 본 발명에 의해 제공되는 양극 활물질층 형성용 조성물은 리튬 복합산화물, CNT 도전재, 바인더를 포함한다.The present invention is to provide a composition for forming a positive electrode active material layer of a lithium ion secondary battery. The composition for forming a positive electrode active material layer provided by the present invention includes a lithium composite oxide, a CNT conductive material, and a binder.

상기 리튬 복합산화물은 리튬이차전지의 양극재에 통상적으로 사용되는 것이라면 본 발명에서도 적합하게 사용할 수 있다. 이에 한정하는 것은 아니지만, 예를 들면, 코발트산리튬(LiCoO2), 코발트산리튬의 변성체, 니켈산리튬(LiNiO2), 니켈산리튬의 변성체, 망간산리튬(LiMn204), 망간산리튬의 변성체, 이들 산화물의 Co, Mn 혹은 Ni의 일부를 다른 천이금속원소로 치환한 것 등일 수 있다. 상기 각 변성체는, 알루미늄, 마그네슘, 철 등의 원소를 포함할 수도 있다. 또, LiNiCoMnO2과 같이 코발트, 니켈 및 망간 중 적어도 2종을 포함하는 것도 있다. 예를 들면, NMC, LCO, NCA, LFP, LMO 등을 들 수 있다.The lithium composite oxide may be suitably used in the present invention as long as it is commonly used for a cathode material of a lithium secondary battery. Although not limited thereto, for example, lithium cobaltate (LiCoO 2 ), modified lithium cobaltate, lithium nickelate (LiNiO 2 ), modified lithium nickelate, lithium manganate (LiMn 2 0 4 ), It may be a modified product of lithium manganate, a product in which Co, Mn or Ni of these oxides is partially substituted with another transition metal element. Each of the above metamorphic substances may contain elements such as aluminum, magnesium, and iron. Moreover, there are also those containing at least 2 types of cobalt, nickel, and manganese like LiNiCoMnO2. Examples include NMC, LCO, NCA, LFP, and LMO.

본 발명은 양극 활물질 조성물은 바인더를 포함한다. 상기 바인더는 양극활물질 조성물을 서로 결착하며, 나아가 집전체에 양극활물질층을 결착하는 것으로서, 이러한 바인더로는 PVDF를 사용하는 것이 바람직하다. 통상 PVDF 바인더를 사용하는 경우에는 이차전지에서 요구되는 접착력을 확보하기 위해 분자량의 증가 또는 관능기의 추가 도입이 요구된다. 그러나, 본 발명에 따르면 타닌산(tannic acid)를 첨가함으로써 분자량의 증가나 관능기의 도입 없이도 이차전지에서 요구되는 접착력(약 0.5N)을 충분히 확보할 수 있다. 이에 대하여는 뒤에서 보다 자세히 설명한다.In the present invention, the cathode active material composition includes a binder. The binder binds the positive electrode active material composition to each other and further binds the positive electrode active material layer to the current collector, and it is preferable to use PVDF as such a binder. In general, when a PVDF binder is used, an increase in molecular weight or an additional introduction of a functional group is required to secure the adhesive strength required in a secondary battery. However, according to the present invention, by adding tannic acid, it is possible to sufficiently secure the adhesive strength (about 0.5 N) required for a secondary battery without increasing molecular weight or introducing a functional group. This will be explained in more detail later.

상기 PVDF 바인더는 양극 활물질 조성물의 전체 중량에 대하여 1 내지 7중량%의 함량으로 포함하는 것이 바람직하다. 1중량% 미만이면 집전체와 코팅층간의 접착력 부족으로 코팅층이 탈리되는 현상이 발생할 수 있으며, 7중량%를 초과하면 상대적으로 양극활물질 사용량이 줄어 이로 인한 전지 용량 감소를 초래하게 되며, 리튬이온의 이동에 저항으로 작용하여 셀 저항이 증가하는 문제가 있다.The PVDF binder is preferably included in an amount of 1 to 7% by weight based on the total weight of the positive electrode active material composition. If it is less than 1% by weight, the coating layer may be detached due to lack of adhesion between the current collector and the coating layer, and if it exceeds 7% by weight, the amount of positive electrode active material is relatively reduced, resulting in a decrease in battery capacity, and the movement of lithium ions There is a problem in that the cell resistance increases by acting as a resistance.

본 발명의 양극 활물질층 형성용 조성물(고형분 기준. 달리 특별히 기재하지 않은 한 동일하다)은 도전재로서 CNT를 포함한다. 상기 도전재로서 CNT 이외에도 카본블랙 등의 다른 탄소물질을 사용할 수 있으나, 본 발명은 CNT를 도전재로 사용하는 경우에 나타나는 문제점을 해결하고자 하는 것이다.The composition for forming a positive electrode active material layer of the present invention (based on solid content, the same unless otherwise specified) includes CNT as a conductive material. As the conductive material, other carbon materials such as carbon black may be used in addition to CNT. However, the present invention is intended to solve the problem of using CNT as a conductive material.

상기 CNT는 그 제조과정 중에서 Fe를 시드(seed)로 사용하여 CNT를 제조한다. 따라서, 제조된 CNT에는 Fe를 포함하고 있으며, 대략 0.1 내지 10중량%의 범위 내에서 존재한다. 이러한 Fe를 포함하는 CNT를 양극의 도전재로 사용하는 경우에는 이차전지의 충방전 반응 중에 Fe가 양극에서 용출되며, 이러한 Fe는 OCV(Open-circuit voltage) 불량을 야기하는 원인으로 된다.The CNT is manufactured by using Fe as a seed during the manufacturing process. Therefore, the prepared CNTs contain Fe, which is present in the range of approximately 0.1 to 10% by weight. When CNTs containing Fe are used as the conductive material of the positive electrode, Fe is eluted from the positive electrode during the charging and discharging reaction of the secondary battery, and such Fe causes an open-circuit voltage (OCV) defect.

본 발명은 이러한 Fe를 포함하는 CNT를 도전재로 사용하는 경우에 Fe의 용출로 인한 OCV 불량 발생을 타닌산의 첨가에 의해 억제할 수 있다. 이에 대한 보다 자세한 설명은 후술한다.In the present invention, when CNTs containing Fe are used as a conductive material, the occurrence of OCV defects due to the elution of Fe can be suppressed by the addition of tannic acid. A more detailed description of this will be given later.

상기 CNT는 양극 활물질 조성물의 전체 중량에 대하여 0.2 내지 1.5중량%의 함량으로 포함하는 것이 바람직하다. 0.2중량% 미만이면 셀의 상온출력밀도가 현저히 떨어지게 되는 문제가 있으며, 1.5중량%를 초과하면 접착력이 현저히 떨어지는 문제가 있다. The CNT is preferably included in an amount of 0.2 to 1.5% by weight based on the total weight of the cathode active material composition. If it is less than 0.2% by weight, there is a problem that the power density of the cell at room temperature is significantly lowered, and if it exceeds 1.5% by weight, there is a problem that the adhesive strength is significantly lowered.

이때, 상기 CNT에 포함된 Fe는 전체 조성물 중량에 대하여 15ppm 이상 포함되는 경우에 본 발명이 보다 효과적으로 작용할 수 있다. Fe 함량이 15ppm 미만인 경우에는 철의 용출로 인한 OCV 불량 문제가 거의 발생하지 않는다. 따라서, 15ppm 이상의 철 함량을 갖는 경우에 본 발명을 적용하는 것이 보다 바람직하다. 특별히 한정하는 것은 아니지만, 상기 Fe는 500ppm 이하일 수 있다.At this time, the present invention can work more effectively when Fe contained in the CNT is included in an amount of 15 ppm or more based on the total weight of the composition. When the Fe content is less than 15 ppm, OCV defects due to iron elution hardly occur. Therefore, it is more preferable to apply the present invention to the case with an iron content of 15 ppm or more. Although not particularly limited, the Fe may be 500 ppm or less.

본 발명은 첨가제로서 타닌산을 포함한다. 상기 타닌산은 다음과 같은 구조를 갖는 것으로서, 도 1에 나타낸 바와 같이, PVDF의 F와 타닌산의 OH기 사이에 수소결합을 형성하여 PVDF 분자 간에 다수의 물리적 가교결합을 가능하게 하며, 이로 인해 이차전지에서 요구되는 접착력을 제공할 수 있다.The present invention includes tannic acid as an additive. The tannic acid has the following structure, and as shown in FIG. 1, a hydrogen bond is formed between the F of PVDF and the OH group of tannic acid to enable multiple physical cross-links between PVDF molecules, thereby enabling a secondary battery It can provide the adhesive strength required in

Figure 112017093134518-pat00002
Figure 112017093134518-pat00002

따라서, 바인더의 사용량을 절감할 수 있으며, 그 만큼 양극활물질의 사용량을 증대시킬 수 있어, 동일한 활물질층 부착량에 있어서 전지의 용량을 증대시킬 수 있다. 나아가, 접착력 증대를 위하여 별도의 PVDF의 분자량 증가를 위한 공정이 요구되지 않아 조성물의 혼합을 위한 공정을 보다 원활하게 수행할 수 있으며, 조성물 슬러리의 안정화를 도모할 수 있다. 또한, PVDF에 별도의 관능기를 도입할 필요성이 없으며, 이로 인해 조성물의 겔화를 억제할 수 있다. 종래에는 겔화를 억제하고자 중화를 위해 말레산과 같은 첨가제를 또한 첨가하였으나, 본 발명에 따른 타닌산은 그 자체로 산성을 띄고 있으므로, 이와 같은 말레산의 사용하지 않고도 겔화를 억제할 수 있다.Therefore, it is possible to reduce the amount of the binder and increase the amount of the positive electrode active material accordingly, so that the capacity of the battery can be increased with the same amount of active material layer attached. Furthermore, since a separate process for increasing the molecular weight of PVDF is not required to increase adhesion, the process for mixing the composition can be performed more smoothly, and the composition slurry can be stabilized. In addition, there is no need to introduce a separate functional group into PVDF, and thus gelation of the composition can be suppressed. Conventionally, an additive such as maleic acid was also added for neutralization to suppress gelation, but since the tannic acid according to the present invention is acidic in itself, gelation can be suppressed without using such maleic acid.

나아가, 본 발명에서 첨가되는 타닌산은 Fe 이온에 대한 스캐빈저로서의 역할을 수행한다. 타닌산의 말단기의 갈릭산(환원제) 부분이 일부 분해되어 떨어져 나가면서, Fe2 +, Fe3 +를 환원시키면서 복합체(Complex)를 형성한다. 이를 통해, Fe 이온이 전위가 낮은 음극 표면에 Fe 금속으로 석출되어 내부단락을 일으켜, OCV 불량이 발생하는 것을 억제할 수 있다. 따라서, 도전재로서 Fe를 포함하는 CNT를 사용하는 경우에 타닌산이 CNT에 포함된 철을 포집(scavenging)함으로써 이차전지에서의 Fe의 용출을 방지할 수 있으며, 따라서, OCV 불량 문제를 현저히 개선할 수 있다. Furthermore, tannic acid added in the present invention serves as a scavenger for Fe ions. As the gallic acid (reducing agent) portion of the terminal group of tannic acid is partially decomposed and falls off, a complex is formed while reducing Fe 2+ and Fe 3+ . Through this, Fe ions are precipitated as Fe metal on the surface of the negative electrode having a low potential to cause an internal short circuit, thereby suppressing the occurrence of OCV defects. Therefore, in the case of using CNTs containing Fe as a conductive material, the elution of Fe in the secondary battery can be prevented by scavenging iron contained in the CNTs by tannic acid, and thus, the OCV defect problem can be significantly improved. can

본 발명에 있어서, 상기 타닌산은 조성물 전체 중량의 0.03 내지 0.5중량%의 함량으로 포함하는 것이 바람직하다. 0.03중량% 미만으로 포함하는 경우에는 Fe 이온을 포집하는 효과가 낮아서 OCV불량 발생 확률이 높아지며, 0.5중량%를 초과하는 경우에는 셀의 출력이 감소하는 문제가 있다.In the present invention, the tannic acid is preferably included in an amount of 0.03 to 0.5% by weight of the total weight of the composition. If it contains less than 0.03% by weight, the effect of collecting Fe ions is low, so the probability of occurrence of OCV defects increases, and if it exceeds 0.5% by weight, there is a problem in that the output of the cell decreases.

본 발명의 양극 활물질 형성용 조성물은 용매를 포함한다. 상기 용매는 특별히 한정하지 않으나, 예를 들어, NMP, DMSO 등을 들 수 있다. The composition for forming a positive electrode active material of the present invention includes a solvent. The solvent is not particularly limited, but examples thereof include NMP and DMSO.

상기 용매는 고형분과 용매의 중량비가 2~8:8~2의 범위로 사용할 수 있다. 양극활물질의 혼합 및 집전체에의 코팅 공정에서는 점도가 1000cps 내지 15000cps 정도를 확보하는 것이 바람직하므로, 상기 범위로 용매를 포함하는 것이 바람직하다. 보다 바람직하게는 고형분과 용매의 중량비는 3~7:7~3일 수 있다. The solvent may be used in the range of 2 to 8:8 to 2 in the weight ratio of the solid content to the solvent. In the process of mixing the cathode active material and coating the current collector, it is preferable to secure a viscosity of 1000 cps to 15000 cps, so it is preferable to include the solvent within the above range. More preferably, the weight ratio of the solid content to the solvent may be 3 to 7:7 to 3.

상기와 같이 본 발명에서 제공되는 리튬이온 이차전지의 양극 활질용 조성물을 양극 집전체 표면에 도포하고 건조함으로써 리튬이온 이차전지용 양극을 제조할 수 있다. As described above, a positive electrode for a lithium ion secondary battery may be prepared by applying the composition for active use of a positive electrode of a lithium ion secondary battery provided in the present invention on the surface of a positive electrode current collector and drying the composition.

상기 양극 집전체는 특별히 한정하지 않으며, 통상적으로 사용되는 것이라면 본 발명에서도 적합하게 사용할 수 있다. 예를 들면, 알루미늄 또는 알루미늄 합금의 포일을 들 수 있다.The positive electrode current collector is not particularly limited, and if it is commonly used, it can be suitably used in the present invention. For example, a foil of aluminum or an aluminum alloy may be mentioned.

나아가, 상기 양극을 사용하여 이차전지를 얻을 수 있다. 상기 이차전지는 상기와 같이 본 발명에서 제공되는 양극 및 통상적으로 사용되는 음극이 세퍼레이터를 경계로 교대로 적층되고, 전해액을 포함하는 것일 수 있는 것으로서, 통상적인 이차전지의 구조를 가질 수 있다.Furthermore, a secondary battery can be obtained using the positive electrode. As described above, the secondary battery may have a conventional secondary battery structure in which the positive electrode provided in the present invention and the negative electrode commonly used are alternately stacked with a separator as a boundary and may include an electrolyte solution.

본 발명의 리튬이온 이차전지는 본 발명에서 제공되는 양극을 포함함으로써 다음의 식 (1)로 표시되는 OCV 불량율이 1% 이하를 가질 수 있다. 상기 불량율은 환경온도 60℃에서 셀을 최대충전(CC-CV 방식, 1C-4.2V, 0.02C cut-off 충전)한 직후의 OCV 값과 92시간 휴지 후의 OCV 값의 차이로 판별하여, 그 차이가 50mV 이상인 경우를 OCV 불량으로 판정한다. 이를 식으로 나타내면 다음 식 (1)과 같다.The lithium ion secondary battery of the present invention may have an OCV defect rate of 1% or less represented by the following formula (1) by including the positive electrode provided in the present invention. The defect rate is determined by the difference between the OCV value immediately after maximum charging (CC-CV method, 1C-4.2V, 0.02C cut-off charging) of the cell at an environmental temperature of 60 ° C. and the OCV value after resting for 92 hours. The difference If is 50 mV or more, the OCV is determined to be defective. Expressing this as an equation, the following equation (1) is obtained.

Figure 112017093134518-pat00003
Figure 112017093134518-pat00003

이하, 본 발명을 실시예를 들어 보다 구체적으로 설명한다. 그러나, 이하의 실시예는 본 발명을 한정하고자 하는 것이 아니며, 본 발명의 일 실시태양을 나타내는 것에 불과하다.Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, but merely represent one embodiment of the present invention.

실시예Example

아래 표 1과 같은 조성으로 양극활물질 조성물을 사용하여 알루미늄 금속판 양면에 도포하고 건조하여 양극을 제조하였다. 표 1의 함량은 중량기준이다.A positive electrode active material composition with the composition shown in Table 1 below was applied to both sides of an aluminum metal plate and dried to prepare a positive electrode. The contents in Table 1 are by weight.

실시예 No.Example No. 1One 22 33 44 55 66 77 88
sheep
pole
양극활물질
(NCM622)
cathode active material
(NCM622)
96.80%96.80% 96.50%96.50% 96.00%96.00% 95.50%95.50% 95.47%95.47% 95.35%95.35% 94.60%94.60% 94.00%94.00%
도전재
(CNT)
conductive material
(CNT)
0.2%0.2% 0.5%0.5% 1.0%1.0% 1.5%1.5% 1.5%1.5% 1.5%1.5% 1.5%1.5% 1.5%1.5%
도전재 내
Fe함량
in conductive material
Fe content
0.3%0.3% 0.3%0.3% 0.3%0.3% 0.3%0.3% 0.3%0.3% 0.3%0.3% 0.3%0.3% 0.3%0.3%
총 Fe(ppm)Total Fe (ppm) 66 1515 3030 4545 4545 4545 4545 4545 바인더
(PVDF)
bookbinder
(PVDF)
3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3%
타닌산tannin 0%0% 0%0% 0%0% 0%0% 0.03%0.03% 0.15%0.15% 0.90%0.90% 1.50%1.50% 전해액electrolyte 1M LiPF6, EC/EMC/DEC/PC1M LiPF6, EC/EMC/DEC/PC 분리막separator PE 분리막 20umPE Separator 20um 음극cathode 흑연 97%, SBR 1.5%, CMC 1.5%Graphite 97%, SBR 1.5%, CMC 1.5%

나아가, 표 1에 나타낸 바와 같은 조건으로 음극, 분리막을 제조하였다.Furthermore, negative electrodes and separators were manufactured under the conditions shown in Table 1.

상기 양극, 음극 및 분리막 및 전해액을 사용하여 리튬이온 이차전지를 제조하였다.A lithium ion secondary battery was manufactured using the positive electrode, the negative electrode, the separator, and the electrolyte solution.

얻어진 리튬이온 이차전지에 대하여 셀 공칭용량, 전극 접착력, 상온출력밀도 및 OCV 불량율을 각각 측정하고, 그 결과를 표 2에 나타내었다.For the obtained lithium ion secondary battery, the cell nominal capacity, electrode adhesive strength, power density at room temperature, and OCV defect rate were respectively measured, and the results are shown in Table 2.

상기 각 물성의 평가 방법은 다음과 같다.The evaluation method of each physical property is as follows.

-셀 공칭용량--Cell Nominal Capacity-

충방전기 및 항온챔버를 이용하여, 하기의 방법으로 셀 용량 측정한다.Cell capacity is measured by the following method using a charge/discharger and a constant temperature chamber.

온도 25±1 및 습도 65±20%의 환경 조건 하에서, 1/3C, 2.5V cut-off 방전하고, 30분의 휴지기간 후에 1/3C, 4.2V / 0.02C cut-off 충전하고, 30분의 휴지기간 후에 1/3C, 2.5V cut-off 방전함.Under the environmental conditions of temperature 25±1 and humidity 65±20%, 1/3C, 2.5V cut-off discharge, and after a 30-minute rest period, 1/3C, 4.2V / 0.02C cut-off charge, 30 minutes After a rest period of 1/3C, 2.5V cut-off discharge.

-전극 접착력--Electrode Adhesion-

폭 18mm의 3M사제 접착 테이프를 사용하여 전극에 붙인 후, 인장강도 시험기를 이용하여 집전체와 코팅층 간의 접착력을 측정한다.After sticking to the electrode using an adhesive tape manufactured by 3M with a width of 18 mm, the adhesive strength between the current collector and the coating layer is measured using a tensile strength tester.

-상온출력밀도 --room temperature power density-

HPPC 출력 측정법((FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles, DOE/ID-11069, Octoberr 2003 참조))을 이용하여 측정하고, 출력을 계산한다. 이때, 온도는 25℃에서 측정하며, 60A의 전류, 하한전압 2.5V, SOC 50% 기준의 HPPC 출력이다.Measure using the HPPC power measurement method (see FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles, DOE/ID-11069, Octoberr 2003), and calculate the power. At this time, the temperature is measured at 25°C, and the HPPC output is based on a current of 60A, a lower limit voltage of 2.5V, and an SOC of 50%.

-OCV 불량율--OCV defect rate-

총 100개의 셀을 제작한 후, 환경온도를 60℃로 맞추고, Cell을 최대 충전(CC-CV방식, 1C-4.2V, 0.02C cut-off충전)한 직후 OCV값을 측정하고, 92시간 휴지 후의 OCV값을 측정한 후, OCV 값의 차이가 50mV 이상이 경우, OCV 불량으로 판정한다. After manufacturing a total of 100 cells, set the environment temperature to 60 ℃, measure the OCV value immediately after maximum charging of the cells (CC-CV method, 1C-4.2V, 0.02C cut-off charging), and rest for 92 hours After measuring the subsequent OCV values, if the difference between the OCV values is 50 mV or more, it is determined that the OCV is defective.

실시예 No.Example No. 1One 22 33 44 55 66 77 88 셀 공칭용량cell nominal capacity 60Ah60Ah 전극 접착력(N/18mm)Electrode Adhesion (N/18mm) 1.11.1 0.80.8 0.50.5 0.30.3 0.50.5 1.01.0 1.11.1 1.31.3 상온 출력밀도(W/kg)Room temperature power density (W/kg) 15321532 21842184 23212321 24742474 24232423 22132213 21052105 20122012 OCV 불량률(%)OCV defect rate (%) 00 33 55 1010 1One 00 00 00 비고note 참고예reference example 비교예comparative example 비교예comparative example 비교예comparative example 발명예example of invention 발명예example of invention 발명예example of invention 발명예example of invention

상기 표 2로부터 알 수 있는 바와 같이, 타닌산의 함량이 0.03%로 본 발명의 범위를 벗어나는 경우에는 양극활물질 내에 포함된 Fe의 용출로 인해 OCV 불량율이 3% 이상으로 높은 불량율의 결과를 나타내었다. As can be seen from Table 2, when the content of tannic acid is 0.03%, which is out of the range of the present invention, the OCV defect rate is 3% or more due to the elution of Fe contained in the cathode active material, resulting in a high defect rate.

그러나, 본 발명에 따라 타닌산을 0.03% 포함하는 실시예 5의 경우에는 OCV 불량율이 1%에 불과하여 양호한 수준을 나타내었으며, 보다 많은 함량으로 타닌산을 포함하는 실시예 6 내지 8의 경우에는 OCV 불량율이 0%의 매우 우수한 결과를 나타내었다. However, in the case of Example 5 containing 0.03% of tannic acid according to the present invention, the OCV defect rate was only 1%, indicating a good level, and in the case of Examples 6 to 8 containing a higher amount of tannic acid, the OCV defect rate This 0% showed very good results.

한편, 철 함량이 실시예 1과 같이 6ppm으로 소량 포함하는 경우에는 Fe 용출로 인한 OCV 불량 발생에 영향을 끼치지 않음을 알 수 있었다.On the other hand, when the iron content is included in a small amount of 6ppm as in Example 1, it was found that the occurrence of OCV defects due to Fe elution was not affected.

Claims (8)

리튬복합산화물, 철을 함유하는 CNT 도전재, PVDF 바인더 및 타닌산을 포함하고,
전체 조성물 중량에 대하여 상기 철은 15ppm 이상이고, 상기 타닌산은 0.03 내지 0.5중량%인, 리튬이차전지 양극 활물질층 형성용 조성물.
Including lithium composite oxide, CNT conductive material containing iron, PVDF binder and tannic acid,
Based on the total weight of the composition, the iron is 15 ppm or more, and the tannic acid is 0.03 to 0.5% by weight, a composition for forming a cathode active material layer for a lithium secondary battery.
삭제delete 제1항에 있어서, 상기 철은 CNT 제조 공정 중의 촉매로 사용된 것인 리튬이차전지 양극 활물질층 형성용 조성물.The composition for forming a cathode active material layer of a lithium secondary battery according to claim 1, wherein the iron is used as a catalyst during the CNT manufacturing process. 제1항에 있어서, PVDF 바인더는 1 내지 7중량%, CNT 도전재 0.2 내지 1.5중량% 및 잔부 리튬복합산화물인 리튬이차전지 양극 활물질층 형성용 조성물.The composition for forming a positive active material layer for a lithium secondary battery according to claim 1, wherein the PVDF binder is 1 to 7% by weight, the CNT conductive material is 0.2 to 1.5% by weight, and the balance is a lithium composite oxide. 제1항에 있어서, 상기 리튬복합산화물은 NMC, LCO, NCA, LFP 및 LMO으로 이루어진 그룹으로부터 선택되는 적어도 하나인 리튬이차전지 양극 활물질층 형성용 조성물.The composition for forming a cathode active material layer of a lithium secondary battery according to claim 1, wherein the lithium composite oxide is at least one selected from the group consisting of NMC, LCO, NCA, LFP and LMO. 양극 집전체; 및
상기 양극 집전체의 양면에 제1항 및 제3항 내지 제5항 중 어느 한 항의 조성물로 된 양극 활물질층
을 포함하는 양극.
positive current collector; and
A cathode active material layer made of the composition of any one of claims 1 and 3 to 5 on both sides of the cathode current collector.
Anode comprising a.
음극 및 제6항의 양극이 세퍼레이터를 경계로 교대로 적층되고, 전해액을 포함하는 이차전지.A secondary battery comprising an electrolyte solution in which the negative electrode and the positive electrode of claim 6 are alternately laminated with a separator as a boundary. 제7항에 있어서, 식 (1)로 표시되는 OCV 불량율이 0%인 이차전지.
Figure 112017093134518-pat00004

The secondary battery according to claim 7, wherein the OCV defect rate represented by Formula (1) is 0%.
Figure 112017093134518-pat00004

KR1020170123190A 2017-09-25 2017-09-25 Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode KR102478877B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170123190A KR102478877B1 (en) 2017-09-25 2017-09-25 Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170123190A KR102478877B1 (en) 2017-09-25 2017-09-25 Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode

Publications (2)

Publication Number Publication Date
KR20190034769A KR20190034769A (en) 2019-04-03
KR102478877B1 true KR102478877B1 (en) 2022-12-19

Family

ID=66165439

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170123190A KR102478877B1 (en) 2017-09-25 2017-09-25 Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode

Country Status (1)

Country Link
KR (1) KR102478877B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114204024B (en) * 2021-11-22 2023-12-26 大连理工大学 Flexible intercalation film material of lithium-sulfur battery and preparation method thereof
KR20230174598A (en) 2022-06-21 2023-12-28 현대자동차주식회사 Positive electrode material for lithium secondary battery and Lithium secondary batteries comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195130A (en) 2014-03-31 2015-11-05 古河電気工業株式会社 Cathode active material, secondary battery cathode, secondary battery and cathode active material production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643631B1 (en) * 2004-12-23 2006-11-10 제일모직주식회사 Cathod for Lithium secondary batteries having improved cathode coating nature And Lithium secondary batteries using the same
KR101754611B1 (en) * 2012-11-05 2017-07-06 삼성에스디아이 주식회사 Composition for positive electrode of rechargable lithium battery and rechargable lithium battery using the same
CN105190954A (en) * 2013-07-29 2015-12-23 株式会社Lg化学 Electrode for secondary battery and lithium secondary battery comprising same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195130A (en) 2014-03-31 2015-11-05 古河電気工業株式会社 Cathode active material, secondary battery cathode, secondary battery and cathode active material production method

Also Published As

Publication number Publication date
KR20190034769A (en) 2019-04-03

Similar Documents

Publication Publication Date Title
EP3614462A1 (en) Negative electrode plate and secondary battery
US10741829B2 (en) Composition for forming positive electrode of secondary battery, positive electrode for secondary battery and secondary battery manufactured using the same
EP3573149A1 (en) Battery and testing method of active specific surface area of electrode plate
EP3654419B1 (en) Positive electrode plate and electrochemical device
TW201322527A (en) Lithium-ion battery and method for fabricating the same
EP3783727A1 (en) Method for activating secondary battery
EP3719892A1 (en) Conductive material paste for electrochemical elements, slurry composition for electrochemical element positive electrodes and method for producing same, positive electrode for electrochemical elements, and electrochemical element
EP3654427A1 (en) Positive electrode plate and electrochemical device
JP2015122169A (en) Method of inspecting all-solid battery
KR20150135434A (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
KR20220032117A (en) Binder for nonaqueous secondary battery electrodes, slurry for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
EP2490287B1 (en) Nonaqueous electrolyte lithium ion secondary battery
EP3654425A1 (en) A battery
EP2639867A2 (en) Negative electrode active material, and secondary battery using same
KR102478877B1 (en) Composition for forming cathode active material layer, cathode prepared by using the composition, and lithium ion secondary battery comprising the cathode
WO2013018684A1 (en) Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
EP3641026A1 (en) Secondary battery
JP6904982B2 (en) Positive electrode plate, its manufacturing method and lithium ion battery
CN108461816A (en) Nonaqueous electrolytic solution and use its battery with nonaqueous electrolyte
US11967719B2 (en) Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery electrode mixed material layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, and all-solid-state secondary battery
EP3471194A1 (en) All-solid battery
KR102477645B1 (en) Coating composition for negative electrode active material, negative electrode active material for lithium secondary battery and negative electrode comprising the same
KR20200073531A (en) Electrolyte for lithium secondary battery and lithium secondary battery containing same
JP7223279B2 (en) All-solid battery
EP4113662A1 (en) Method for charging nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant