JP2012221648A - Manufacturing method of nonaqueous electrolyte secondary battery - Google Patents

Manufacturing method of nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012221648A
JP2012221648A JP2011084311A JP2011084311A JP2012221648A JP 2012221648 A JP2012221648 A JP 2012221648A JP 2011084311 A JP2011084311 A JP 2011084311A JP 2011084311 A JP2011084311 A JP 2011084311A JP 2012221648 A JP2012221648 A JP 2012221648A
Authority
JP
Japan
Prior art keywords
battery
voltage value
hours
internal short
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011084311A
Other languages
Japanese (ja)
Inventor
Hiroaki Ikeda
博昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011084311A priority Critical patent/JP2012221648A/en
Publication of JP2012221648A publication Critical patent/JP2012221648A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a nonaqueous electrolyte secondary battery capable of highly accurately detecting a battery in which an internal short-circuit occurred.SOLUTION: In a self-discharge step (step S5), a first voltage value Vb is detected which is a battery voltage value of a battery 100 when a first prescribed time elapses after the battery was left unattended and further a second voltage value Vc is detected which is a battery voltage value of the battery when a second prescribed time elapses after the first voltage value Vb was detected. When a battery voltage difference ΔVbc obtained by subtracting the second voltage value Vc from the first voltage value Vb is greater than or equal to a prescribed threshold value, it is determined that an internal short-circuit occurred in the battery. In particular, the first prescribed time is defined to be from 5 hours to 72 hours and the second prescribed time is defined to be 48 hours or longer, and the first voltage value Vb and the second voltage value Vc are detected.

Description

本発明は、非水電解質二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a nonaqueous electrolyte secondary battery.

近年、ハイブリッド自動車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源として、リチウムイオン二次電池などの非水電解質二次電池が利用されている。   In recent years, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used as power sources for driving portable electronic devices such as hybrid cars, notebook computers, and video camcorders.

ところで、非水電解質二次電池を製造する過程(例えば、組み付け工程)において、電池内部(電極体内)に、金属粉などの導電性異物が誤って混入してしまうことがある。このような電池を使用した場合、導電性異物由来のデンドライトが発生し、内部短絡が生じてしまう(セパレータによって電気的に絶縁されている正極板と負極板とが、デンドライトを通じて電気的に接続する)ことがある。   By the way, in the process of manufacturing a nonaqueous electrolyte secondary battery (for example, an assembly process), conductive foreign matters such as metal powder may be erroneously mixed into the battery (inside the electrode). When such a battery is used, dendrites derived from conductive foreign matter are generated and an internal short circuit occurs (the positive electrode plate and the negative electrode plate electrically insulated by the separator are electrically connected through the dendrite. )Sometimes.

これに対し、特許文献1では、このような電池を出荷(市場に供給)しないようにするために、導電性異物が混入しているか否かを検査する方法を提案している。具体的には、電池を組み立てた後、初期充電等を行い、その後、当該電池を、45℃以上の温度環境下で所定時間放置する。そして、放置期間中の電圧低下量を測定する。すなわち、放置開始時の電池電圧値から放置終了時の電池電圧値を差し引いた電圧低下量を求める。そして、求めた電圧低下量が予め設定された基準値よりも大きいときは、導電性異物が電池内に混入していると判定する。   On the other hand, Patent Document 1 proposes a method for inspecting whether or not conductive foreign matters are mixed in order to prevent such a battery from being shipped (supplied to the market). Specifically, after the battery is assembled, initial charging or the like is performed, and then the battery is left in a temperature environment of 45 ° C. or higher for a predetermined time. Then, the amount of voltage drop during the standing period is measured. That is, a voltage drop amount obtained by subtracting the battery voltage value at the end of leaving from the battery voltage value at the start of leaving is obtained. And when the calculated voltage drop amount is larger than a preset reference value, it is determined that conductive foreign matter is mixed in the battery.

特許文献1には、上記方法は、以下の原理に基づいていると記載されている。正負極とセパレータとの間に導電性異物が存在している場合、リチウムイオン二次電池を45℃以上の環境温度下に所定時間放置すると、導電性異物から導電性結晶(デンドライト)の成長が進行する。このため、短時間で導電性異物がセパレータを貫通して内部短絡を引き起こすので、通常の電圧低下を超える電圧低下が発生する。従って、上記方法により、導電性異物が混入している電池(これによって内部短絡が発生した電池)を検出することができると記載されている。   Patent Document 1 describes that the above method is based on the following principle. When conductive foreign matter exists between the positive and negative electrodes and the separator, if a lithium ion secondary battery is left at an environmental temperature of 45 ° C. or higher for a predetermined time, conductive crystals (dendrites) grow from the conductive foreign matter. proceed. For this reason, since a conductive foreign material penetrates a separator in a short time and causes an internal short circuit, a voltage drop exceeding a normal voltage drop occurs. Therefore, it is described that a battery in which conductive foreign matter is mixed (a battery in which an internal short circuit has occurred) can be detected by the above method.

特開2005−158643号公報Japanese Patent Laid-Open No. 2005-158643

ところが、非水電解質二次電池を放置したとき、放置初期(例えば、放置開始から5時間以内の期間)において、電池電圧値が大きく低下し、しかも、電圧低下量のバラツキが大きいことが判明した。このため、特許文献1のように、放置開始時の電池電圧値を基準とし、放置開始時の電池電圧値から放置終了時の電池電圧値を差し引いた電圧低下量が所定の閾値より大きいか否かによって、当該電池に内部短絡が生じているか否かを判定する手法では、内部短絡が生じている電池を精度良く検出することができない。   However, when the non-aqueous electrolyte secondary battery is left as it is, it has been found that the battery voltage value greatly decreases and the variation in the amount of voltage decrease is large at the initial stage of the storage (for example, within a period of 5 hours from the start of the storage). . For this reason, as in Patent Document 1, whether or not the voltage drop amount obtained by subtracting the battery voltage value at the end of leaving from the battery voltage value at the start of leaving is larger than a predetermined threshold with reference to the battery voltage value at the start of leaving. Therefore, the method for determining whether or not an internal short circuit has occurred in the battery cannot accurately detect the battery in which the internal short circuit has occurred.

詳細に説明すると、多くの場合、内部短絡が生じている電池では、内部短絡が生じていない電池(正常な電池)に比べて、放置による自己放電量が大きくなるので、放置前後の電池電圧差も大きくなる。しかしながら、放置初期(特に、放置開始から5時間以内の期間)は、電池電圧値が大きく低下し、しかも、電圧低下量のバラツキも大きいため、内部短絡が生じていない電池(正常な電池)の一部において、放置期間全体の電圧低下量が、内部短絡が生じている電池と同程度になることがあった。従って、短絡判定基準である電圧低下量の測定期間に、放置初期(特に、放置開始から5時間以内)の期間を含めてしまうと、内部短絡が生じていない電池(正常な電池)の一部において、内部短絡が生じている電池との間で電圧低下量に明確な違いが現れないことがあった。このため、内部短絡が生じている電池を精度良く検出することができなくなる。   In more detail, in many cases, the battery with internal short circuit has a larger self-discharge amount due to neglect than the battery without normal short circuit (normal battery). Also grows. However, since the battery voltage value greatly decreases at the initial stage of standing (especially within a period of 5 hours from the start of standing) and the variation in the voltage drop is large, the battery (normal battery) in which no internal short circuit has occurred. In some cases, the amount of voltage drop during the entire leaving period may be the same as that of a battery in which an internal short circuit occurs. Therefore, if the period of the initial stage of standing (in particular, within 5 hours from the start of standing) is included in the measurement period of the voltage drop, which is a short-circuit judgment criterion, a part of the battery (normal battery) in which no internal short-circuiting occurs However, there was a case where a clear difference in voltage drop amount did not appear between the batteries in which an internal short circuit occurred. For this reason, it becomes impossible to accurately detect a battery in which an internal short circuit has occurred.

本発明は、かかる問題点に鑑みてなされたものであって、内部短絡が生じている電池を精度良く検出することができる、非水電解質二次電池の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a method for manufacturing a nonaqueous electrolyte secondary battery that can accurately detect a battery in which an internal short circuit has occurred. .

本発明の一態様は、電極体及び非水電解液を電池ケース内に収容した非水電解質二次電池を、所定期間放置することにより、上記電池を自己放電させる自己放電工程、を備える非水電解質二次電池の製造方法において、上記自己放電工程は、上記電池の放置を開始してから第1所定時間が経過したときの当該電池の電池電圧値である第1電圧値Vbを検知し、さらに、第1電圧値Vbを検知したときから第2所定時間が経過したときの当該電池の電池電圧値である第2電圧値Vcを検知して、上記第1電圧値Vbから上記第2電圧値Vcを差し引いた電池電圧差ΔVbcが、所定の閾値以上である場合、当該電池に内部短絡が生じていると判定する工程であり、上記第1所定時間を5〜72時間の範囲内に定め、上記第2所定時間を48時間以上に定めて、上記第1電圧値Vb及び上記第2電圧値Vcを検知する非水電解質二次電池の製造方法である。   One aspect of the present invention is a non-aqueous process comprising a self-discharge step of self-discharging the battery by leaving the non-aqueous electrolyte secondary battery containing the electrode body and the non-aqueous electrolyte in a battery case for a predetermined period of time. In the method for manufacturing an electrolyte secondary battery, the self-discharge step detects a first voltage value Vb that is a battery voltage value of the battery when a first predetermined time has elapsed since the start of the leaving of the battery. Furthermore, the second voltage value Vc, which is the battery voltage value of the battery when the second predetermined time has elapsed since the first voltage value Vb was detected, is detected, and the second voltage value is determined from the first voltage value Vb. When the battery voltage difference ΔVbc obtained by subtracting the value Vc is equal to or greater than a predetermined threshold, it is a step of determining that an internal short circuit has occurred in the battery, and the first predetermined time is set within a range of 5 to 72 hours. The second predetermined time is 48 hours Determined above is a manufacturing method of the nonaqueous electrolyte secondary battery to detect the first voltage value Vb and the second voltage value Vc.

上述の非水電解質二次電池の製造方法では、自己放電工程において、第1所定時間を5〜72時間の範囲内に定めて第1電圧値Vbを検知し、第2所定時間を48時間以上に定めて第2電圧値Vcを検知する。すなわち、電池の放置を開始してから、5〜72時間(第1所定時間)が経過したときに、当該電池の電池電圧値である第1電圧値Vbを検知する。さらに、第1電圧値Vbを検知したときから48時間以上(第2所定時間)が経過したときに、当該電池の電池電圧値である第2電圧値Vcを検知する。その後、このように検知した第1電圧値Vbから第2電圧値Vcを差し引いた電池電圧差ΔVbcが、所定の閾値以上であるか否かを判断し、所定の閾値以上である場合には、当該電池に内部短絡が生じていると判定する。このような方法によれば、内部短絡が生じている電池を精度良く検出することができる。   In the non-aqueous electrolyte secondary battery manufacturing method described above, in the self-discharge process, the first predetermined time is set within a range of 5 to 72 hours, the first voltage value Vb is detected, and the second predetermined time is 48 hours or more. And the second voltage value Vc is detected. That is, the first voltage value Vb, which is the battery voltage value of the battery, is detected when 5 to 72 hours (first predetermined time) have elapsed since the start of the leaving of the battery. Furthermore, when 48 hours or more (second predetermined time) has elapsed since the first voltage value Vb was detected, the second voltage value Vc that is the battery voltage value of the battery is detected. Thereafter, it is determined whether or not the battery voltage difference ΔVbc obtained by subtracting the second voltage value Vc from the first voltage value Vb thus detected is equal to or greater than a predetermined threshold value. It is determined that an internal short circuit has occurred in the battery. According to such a method, a battery in which an internal short circuit has occurred can be detected with high accuracy.

具体的には、電池の放置を開始してから5時間以内は、特に、電池電圧値が大きく低下し、しかも、電圧低下量のバラツキも大きい。このため、前述のように、放置開始時の電池電圧値を基準とし、放置開始時の電池電圧値から放置終了時の電池電圧値を差し引いた電池電圧差が所定の閾値以上であるか否かによって、当該電池に内部短絡が生じているか否かを判定する手法では、内部短絡が生じている電池を精度良く検出することができなかった。   Specifically, within 5 hours after the start of leaving the battery, the battery voltage value is particularly greatly reduced, and the variation in the voltage drop amount is also large. For this reason, as described above, whether or not the battery voltage difference obtained by subtracting the battery voltage value at the end of leaving from the battery voltage value at the start of leaving is equal to or greater than a predetermined threshold, based on the battery voltage value at the start of leaving. Thus, in the method for determining whether or not an internal short circuit has occurred in the battery, the battery in which the internal short circuit has occurred cannot be accurately detected.

これに対し、上述の自己放電工程では、電池の放置を開始してから、5〜72時間(第1所定時間)が経過したときに、当該電池の電池電圧値である第1電圧値Vbを検知する。放置開始から5時間以上経過したときに、第1電圧値Vbを検知するようにすることで、「特に、電池電圧値が大きく低下し、しかも、電圧低下量のバラツキが大きくなる期間(放置開始から5時間以内の期間)」を、短絡判定基準である電池電圧差ΔVbcの測定期間から排除することができる。これにより、前述のような問題点を解消することができる。   On the other hand, in the above self-discharge process, when 5 to 72 hours (first predetermined time) have elapsed since the start of leaving the battery, the first voltage value Vb, which is the battery voltage value of the battery, is set. Detect. By detecting the first voltage value Vb when more than 5 hours have passed since the start of the standing, “particularly the period during which the battery voltage value is greatly reduced and the variation in the amount of voltage drop is large (beginning of leaving) Can be excluded from the measurement period of the battery voltage difference ΔVbc, which is a short-circuit determination criterion. Thereby, the above-mentioned problems can be solved.

また、電池の製造期間はできる限り短くすることが求められているので、放置期間もできる限り短くすることが要求される。これに対し、第1所定時間を72時間以内とすることで、短い放置期間(例えば、7日以内)で、内部短絡が生じている電池を精度良く検出することが可能となる。   In addition, since the battery manufacturing period is required to be as short as possible, it is necessary to shorten the period for which the battery is left as much as possible. On the other hand, by setting the first predetermined time within 72 hours, it is possible to accurately detect a battery in which an internal short circuit has occurred in a short leaving period (for example, within 7 days).

さらに、上述の自己放電工程では、第1電圧値Vbを検知したときから48時間以上(第2所定時間)が経過したときに、当該電池の電池電圧値である第2電圧値Vcを検知して、電池電圧差ΔVbcを測定する。このように、48時間以上の期間における電池電圧差ΔVbc(=第1電圧値Vb−第2電圧値Vc)を測定することで、内部短絡が生じていない電池(正常な電池)と内部短絡が生じている電池との間で、電池電圧差ΔVbcに明確な違いが現れるようになる。このため、内部短絡が生じている電池を精度良く検出することができる。   Further, in the above self-discharge process, when 48 hours or more (second predetermined time) has elapsed since the first voltage value Vb was detected, the second voltage value Vc that is the battery voltage value of the battery is detected. Then, the battery voltage difference ΔVbc is measured. In this way, by measuring the battery voltage difference ΔVbc (= first voltage value Vb−second voltage value Vc) over a period of 48 hours or longer, a battery (normal battery) in which an internal short circuit has not occurred and an internal short circuit are detected. A clear difference appears in the battery voltage difference ΔVbc from the generated battery. For this reason, the battery in which the internal short circuit has arisen can be detected accurately.

なお、上述の自己放電工程では、第2電圧値Vcを検知した後、非水電解質二次電池の放置を終える。すなわち、第2電圧値Vcを検知した後、電池を放置する所定期間が満了する。   In the above-described self-discharge process, after the second voltage value Vc is detected, the nonaqueous electrolyte secondary battery is left unattended. That is, after detecting the second voltage value Vc, the predetermined period for leaving the battery expires.

さらに、上記の非水電解質二次電池の製造方法であって、前記自己放電工程では、前記第1所定時間を24〜60時間の範囲内に定め、前記第2所定時間を60時間以上に定めて、前記第1電圧値Vb及び前記第2電圧値Vcを検知する非水電解質二次電池の製造方法とすると良い。   Furthermore, in the method for manufacturing the nonaqueous electrolyte secondary battery, in the self-discharge step, the first predetermined time is set within a range of 24 to 60 hours, and the second predetermined time is set to 60 hours or more. Thus, a non-aqueous electrolyte secondary battery manufacturing method that detects the first voltage value Vb and the second voltage value Vc is preferable.

前述のように、放置開始から5時間以内の期間は、特に、電池電圧値が大きく低下し、電圧低下量のバラツキも大きいが、その後しばらくの間も、比較的、電池電圧値が大きく低下し、電圧低下量のバラツキも大きくなる傾向にある。具体的には、放置開始から24時間以内の期間は、比較的、電池電圧値が大きく低下し、電圧低下量のバラツキも大きくなる傾向にある。   As described above, in the period within 5 hours from the start of standing, especially, the battery voltage value greatly decreases and the variation in the voltage decrease amount is large, but the battery voltage value decreases relatively for a while after that. The variation in the voltage drop tends to increase. Specifically, during a period of 24 hours from the start of leaving, the battery voltage value tends to decrease relatively and the variation in voltage decrease tends to increase.

これに対し、上述の製造方法では、自己放電工程において、第1所定時間を24〜60時間の範囲内に定め、第2所定時間を60時間以上に定めて、第1電圧値Vb及び第2電圧値Vcを検知する。すなわち、電池の放置を開始してから、24〜60時間(第1所定時間)が経過したときに、当該電池の電池電圧値である第1電圧値Vbを検知する。さらに、第1電圧値Vbを検知したときから60時間以上(第2所定時間)が経過したときに、当該電池の電池電圧値である第2電圧値Vcを検知する。   On the other hand, in the above-described manufacturing method, in the self-discharge process, the first predetermined time is set within a range of 24 to 60 hours, the second predetermined time is set to 60 hours or more, and the first voltage value Vb and the second voltage are set. The voltage value Vc is detected. That is, the first voltage value Vb that is the battery voltage value of the battery is detected when 24 to 60 hours (first predetermined time) have elapsed since the start of the leaving of the battery. Furthermore, when 60 hours or more (second predetermined time) has passed since the first voltage value Vb was detected, the second voltage value Vc, which is the battery voltage value of the battery, is detected.

このように、放置開始から24時間以上経過したときに、第1電圧値Vbを検知するようにすることで、「比較的、電池電圧値が大きく低下し、電圧低下量のバラツキも大きくなる期間(放置開始から24時間以内の期間)」を、短絡判定基準である電池電圧差ΔVbcの測定期間から排除することができる。また、第1所定時間を60時間以内とすることで、短い放置期間(例えば、7日以内)で、内部短絡が生じている電池を精度良く検出することが可能となる。   As described above, when the first voltage value Vb is detected when 24 hours or more have elapsed since the start of being left, the “period in which the battery voltage value is significantly decreased and the variation in the voltage decrease amount is also increased. (Period within 24 hours from start of standing) ”can be excluded from the measurement period of the battery voltage difference ΔVbc, which is a short-circuit determination criterion. In addition, by setting the first predetermined time within 60 hours, it is possible to accurately detect a battery in which an internal short circuit has occurred in a short standing period (for example, within 7 days).

さらに、上述の自己放電工程では、第1電圧値Vbを検知したときから60時間以上(第2所定時間)が経過したときに、当該電池の電池電圧値である第2電圧値Vcを検知して、電池電圧差ΔVbcを測定する。このように、60時間以上の期間における電池電圧差ΔVbc(=第1電圧値Vb−第2電圧値Vc)を測定することで、内部短絡が生じていない電池(正常な電池)と内部短絡が生じている電池との間で、より一層、電池電圧差ΔVbcに明確な違いが現れるようになる。このため、内部短絡が生じている電池を、より一層精度良く検出することができる。   Further, in the above self-discharge process, when 60 hours or more (second predetermined time) has elapsed since the first voltage value Vb was detected, the second voltage value Vc, which is the battery voltage value of the battery, is detected. Then, the battery voltage difference ΔVbc is measured. In this way, by measuring the battery voltage difference ΔVbc (= first voltage value Vb−second voltage value Vc) over a period of 60 hours or more, a battery (normal battery) in which no internal short circuit has occurred and an internal short circuit are detected. A clear difference appears in the battery voltage difference ΔVbc from the generated battery. For this reason, the battery in which the internal short circuit has arisen can be detected still more accurately.

さらに、上記いずれかの非水電解質二次電池の製造方法であって、前記自己放電工程では、前記電池を放置する前記所定期間を7日間以内とする非水電解質二次電池の製造方法とすると良い。   Further, any one of the above non-aqueous electrolyte secondary battery manufacturing methods, wherein, in the self-discharge step, the predetermined period of leaving the battery is left within 7 days. good.

電池を放置する「所定期間」を7日間以内と短くすることで、自己放電工程の期間を短くすることができ、ひいては、電池の生産効率を良好とすることができる。なお、上述の自己放電工程では、前述のように、放置期間を7日以内と短くしても、内部短絡が生じている電池を精度良く検出することができる。従って、上述の製造方法によれば、電池の生産効率を良好としつつ、内部短絡電池の検出精度も向上させることができる。
なお、電池を放置する「所定期間」を7日間以内とするということは、電池の放置を開始してから7日以内に、第2電圧値Vcの検知を終えることになる。
By shortening the “predetermined period” in which the battery is left to within 7 days, the period of the self-discharge process can be shortened, and as a result, the production efficiency of the battery can be improved. In the above-described self-discharge process, as described above, even if the leaving period is shortened to within 7 days, it is possible to accurately detect a battery in which an internal short circuit has occurred. Therefore, according to the manufacturing method described above, it is possible to improve the detection accuracy of the internal short circuit battery while improving the battery production efficiency.
Note that setting the “predetermined period” for leaving the battery to be within 7 days means that the detection of the second voltage value Vc is completed within 7 days after the start of the battery leaving.

実施形態にかかる非水電解質二次電池の斜視図である。It is a perspective view of the nonaqueous electrolyte secondary battery concerning an embodiment. 同非水電解質二次電池の正極板の斜視図である。It is a perspective view of the positive electrode plate of the same nonaqueous electrolyte secondary battery. 同非水電解質二次電池の負極板の斜視図である。It is a perspective view of the negative electrode plate of the same nonaqueous electrolyte secondary battery. 同負極板の拡大断面図であり、図3のA−A断面図に相当する。It is an expanded sectional view of the same negative electrode plate, and corresponds to the AA sectional view of FIG. 実施形態にかかる非水電解質二次電池の製造方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing method of the nonaqueous electrolyte secondary battery concerning embodiment. 組み付け工程を終えた電池を押圧治具で挟んで拘束状態にした状態を示す斜視図である。It is a perspective view which shows the state which pinched | interposed the battery which finished the assembly | attachment process with the pressing jig, and was made into the restraint state. 放置期間と電池電圧変化量との関係を示すグラフであって、放置開始時からの電圧変化量(第1所定時間を0時間としたときの電圧変化量)を示すグラフである。It is a graph which shows the relationship between a leaving period and a battery voltage variation | change_quantity, Comprising: It is a graph which shows the voltage variation | change_quantity from the time of a leaving start (voltage variation when a 1st predetermined time is set to 0 hours). 放置期間と電池電圧変化量との関係を示すグラフであって、放置開始から36時間経過したときからの電圧変化量(第1所定時間を36時間としたときの電圧変化量)を示すグラフである。It is a graph which shows the relationship between a leaving period and a battery voltage variation | change_quantity, Comprising: It is a graph which shows the voltage variation | change_quantity (voltage variation | change_quantity when the 1st predetermined time is set to 36 hours) after 36 hours have passed since the leaving start. is there. 第1所定時間と電池電圧差ΔVbcの最小差ΔVmin(ΔVbcが最大となった内部短絡電池とΔVbcが最小となった正常電池とのΔVbcの差)を示すグラフである。It is a graph which shows the minimum difference (DELTA) Vmin (The difference of (DELTA) Vbc of the internal short circuit battery in which (DELTA) Vbc became the maximum, and the normal battery in which (DELTA) Vbc became the minimum) of 1st predetermined time and battery voltage difference (DELTA) Vbc.

まず、本実施形態の製造方法によって製造される非水電解質二次電池100について説明する。
非水電解質二次電池100は、図1に示すように、電極体110と、これを収容する電池ケース180とを備える、リチウムイオン二次電池である。電極体110は、正極板130、負極板120、及びセパレータ150を備えている。セパレータ150は、ポリエチレンからなり、正極板130と負極板120との間に介在して、これらを離間させている。このセパレータ150には、リチウムイオンを有する非水電解液160を含浸させている。
First, the nonaqueous electrolyte secondary battery 100 manufactured by the manufacturing method of this embodiment will be described.
As shown in FIG. 1, the nonaqueous electrolyte secondary battery 100 is a lithium ion secondary battery that includes an electrode body 110 and a battery case 180 that houses the electrode body 110. The electrode body 110 includes a positive electrode plate 130, a negative electrode plate 120, and a separator 150. The separator 150 is made of polyethylene, and is interposed between the positive electrode plate 130 and the negative electrode plate 120 to separate them. The separator 150 is impregnated with a non-aqueous electrolyte 160 having lithium ions.

電池ケース180は、アルミニウムからなり、直方体形状をなしている。この電池ケース180は、電池ケース本体181と封口蓋182を有する。このうち、電池ケース本体181は、有底矩形箱形状をなしている。なお、電池ケース本体181と電極体110との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。この電池ケース180は、互いに背向する一対の幅広側面180b,180cを有している。幅広側面180bは、図1において正面側を向く面であり、幅広側面180cは、図1において裏側を向く面(幅広側面180bの裏側に位置する面)である。   The battery case 180 is made of aluminum and has a rectangular parallelepiped shape. The battery case 180 has a battery case main body 181 and a sealing lid 182. Among these, the battery case main body 181 has a bottomed rectangular box shape. Note that an insulating film (not shown) made of a resin and bent in a box shape is interposed between the battery case main body 181 and the electrode body 110. The battery case 180 has a pair of wide side surfaces 180b and 180c facing away from each other. The wide side surface 180b is a surface facing the front side in FIG. 1, and the wide side surface 180c is a surface facing the back side in FIG. 1 (a surface located on the back side of the wide side surface 180b).

また、封口蓋182は、矩形板状であり、電池ケース本体181の開口を閉塞して、この電池ケース本体181に溶接されている。この封口蓋182には、矩形板状の安全弁197が封着されている。   The sealing lid 182 has a rectangular plate shape, closes the opening of the battery case body 181, and is welded to the battery case body 181. A rectangular plate-shaped safety valve 197 is sealed on the sealing lid 182.

また、電極体110の正極板130には、クランク状に屈曲した板状の正極集電部材191が溶接されている(図1参照)。さらに、負極板120には、クランク状に屈曲した板状の負極集電部材192が溶接されている。正極集電部材191及び負極集電部材192のうち、それぞれの先端に位置する正極端子部191A及び負極端子部192Aは、封口蓋182を貫通して蓋表面182Aから突出している。なお、正極端子部191Aと封口蓋182との間、及び、負極端子部192Aと封口蓋182との間には、それぞれ、電気絶縁性の樹脂からなる絶縁部材195を介在させている。   Further, a plate-like positive electrode current collecting member 191 bent in a crank shape is welded to the positive electrode plate 130 of the electrode body 110 (see FIG. 1). Further, a plate-like negative electrode current collecting member 192 bent in a crank shape is welded to the negative electrode plate 120. Of the positive electrode current collecting member 191 and the negative electrode current collecting member 192, the positive electrode terminal portion 191A and the negative electrode terminal portion 192A located at the respective tips penetrate the sealing lid 182 and protrude from the lid surface 182A. Insulating members 195 made of electrically insulating resin are interposed between the positive electrode terminal portion 191A and the sealing lid 182 and between the negative electrode terminal portion 192A and the sealing lid 182, respectively.

また、非水電解液160は、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とジメチルカーボネート(DMC)とを、体積比で3:4:3に調整した混合有機溶媒に、溶質としてLiPF6を添加した非水電解液である。なお、非水電解液160中のLiPF6の濃度は、1mol/Lとしている。 In addition, the non-aqueous electrolyte 160 is composed of LiPF 6 as a solute in a mixed organic solvent in which ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) are adjusted to a volume ratio of 3: 4: 3. Is a non-aqueous electrolyte to which is added. The concentration of LiPF 6 in the non-aqueous electrolyte 160 is 1 mol / L.

電極体110は、帯状の正極板130及び負極板120が、帯状のセパレータ150を介して扁平形状に捲回されてなる捲回型電極体である(図1参照)。詳細には、長手方向DAに延びる帯状の正極板130、負極板120、及びセパレータ150を、長手方向DAに捲回して、捲回型の電極体110を形成している(図1〜図4参照)。なお、この電極体110では、セパレータ150を介して、正極板130の正極活物質層131と負極板120の負極活物質層121とが対向している(図4参照)。   The electrode body 110 is a wound electrode body in which a belt-like positive electrode plate 130 and a negative electrode plate 120 are wound into a flat shape via a belt-like separator 150 (see FIG. 1). Specifically, the strip-shaped positive electrode plate 130, the negative electrode plate 120, and the separator 150 extending in the longitudinal direction DA are wound in the longitudinal direction DA to form a wound electrode body 110 (FIGS. 1 to 4). reference). In the electrode body 110, the positive electrode active material layer 131 of the positive electrode plate 130 and the negative electrode active material layer 121 of the negative electrode plate 120 face each other with the separator 150 interposed therebetween (see FIG. 4).

正極板130は、図2に示すように、長手方向DAに延びる帯状で、アルミニウム箔からなる正極集電板138と、この正極集電板138の両主面上に、それぞれ長手方向DAに延びる帯状に配置された2つの正極活物質層131,131とを有している。正極活物質層131は、正極活物質137と、アセチレンブラックからなる導電材と、PEO(ポリエチレンオキサイド)と、CMC(カルボキシメチルセルロース)とを、重量比88:10:1:1の割合で含んでいる。   As shown in FIG. 2, the positive electrode plate 130 has a belt-like shape extending in the longitudinal direction DA. The positive electrode current collector plate 138 made of aluminum foil and both main surfaces of the positive electrode current collector plate 138 extend in the longitudinal direction DA. It has two positive electrode active material layers 131 and 131 arranged in a strip shape. The positive electrode active material layer 131 includes a positive electrode active material 137, a conductive material made of acetylene black, PEO (polyethylene oxide), and CMC (carboxymethylcellulose) in a weight ratio of 88: 10: 1: 1. Yes.

なお、正極活物質137として、LiXMO2(Mは、Niである、または、主成分であるNiの他にAl,Ti,V,Cr,Mn,Fe,Co,Cu,Zn,Mg,Ga,Zr,Siの少なくともいずれかを含むものである、1.04≦X≦1.15)を用いている。また、正極集電板138をなすアルミニウム箔の両面には、炭素層139が設けられている。炭素層139は、アセチレンブラックとポリフッ化ビニリデンとを重量比3:7の割合で含んでいる。 Note that as the positive electrode active material 137, Li x MO 2 (M is Ni, or in addition to Ni as a main component, Al, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Mg, 1.04 ≦ X ≦ 1.15) containing at least one of Ga, Zr, and Si is used. In addition, carbon layers 139 are provided on both surfaces of the aluminum foil forming the positive electrode current collector plate 138. The carbon layer 139 contains acetylene black and polyvinylidene fluoride in a weight ratio of 3: 7.

また、負極板120は、図3に示すように、長手方向DAに延びる帯状で銅箔からなる負極集電板128と、この負極集電板128の両主面128F,128F上に、それぞれ長手方向DAに延びる帯状に配置された2つの負極活物質層121,121とを有している。負極活物質層121は、負極活物質127とSBR(スチレンブタジエンゴム)とCMCと(カルボキシメチルセルロース)を、重量比98:1:1の割合で含んでいる。   Further, as shown in FIG. 3, the negative electrode plate 120 is formed on a negative electrode current collector plate 128 made of a copper foil in a strip shape extending in the longitudinal direction DA, and on both main surfaces 128 F and 128 F of the negative electrode current collector plate 128. It has two negative electrode active material layers 121 and 121 arranged in a strip shape extending in the direction DA. The negative electrode active material layer 121 includes the negative electrode active material 127, SBR (styrene butadiene rubber), CMC, and (carboxymethyl cellulose) in a weight ratio of 98: 1: 1.

なお、負極活物質127として、負極活物質の粒子が黒鉛と非晶質炭素とからなるもの(例えば、黒鉛の表面を非晶質炭素で被覆したもの)を用いている。また、負極活物質層121の表面には、金属酸化物絶縁層129が設けられている。金属酸化物絶縁層129は、酸化アルミニウム(アルミナ)とポリフッ化ビニリデンとを重量比95:5の割合で含んでいる。   In addition, as the negative electrode active material 127, a material in which particles of the negative electrode active material are composed of graphite and amorphous carbon (for example, a surface of graphite covered with amorphous carbon) is used. A metal oxide insulating layer 129 is provided on the surface of the negative electrode active material layer 121. The metal oxide insulating layer 129 contains aluminum oxide (alumina) and polyvinylidene fluoride in a weight ratio of 95: 5.

負極活物質層121は、図3及び図4(図3のA−A断面図)に示すように、セパレータ150を介して正極活物質層131と対向する対向部122と、セパレータ150を介して対向する正極活物質層131が存在しない非対向部123とからなる。具体的には、負極活物質層121は、正極活物質層131に比べて大きな面積を有しており、非対向部123が対向部122の周囲に位置する形態となっている。なお、負極活物質層121における非対向部123と対向部122との境界の位置は、負極板120、セパレータ150及び正極板130を捲回して電極体110を形成したときに決まる。また、図4では、参考として、電極体110を形成したときの正極板130及びセパレータ150の位置を、二点鎖線で示している。   As shown in FIGS. 3 and 4 (AA cross-sectional view of FIG. 3), the negative electrode active material layer 121 includes a facing portion 122 that faces the positive electrode active material layer 131 through the separator 150, and a separator 150. It consists of a non-facing portion 123 where the facing positive electrode active material layer 131 does not exist. Specifically, the negative electrode active material layer 121 has a larger area than the positive electrode active material layer 131, and the non-opposing portion 123 is positioned around the opposing portion 122. Note that the position of the boundary between the non-facing portion 123 and the facing portion 122 in the negative electrode active material layer 121 is determined when the electrode body 110 is formed by winding the negative electrode plate 120, the separator 150, and the positive electrode plate 130. In FIG. 4, for reference, the positions of the positive electrode plate 130 and the separator 150 when the electrode body 110 is formed are indicated by a two-dot chain line.

次に、本実施形態にかかる非水電解質二次電池の製造方法について説明する。図5は、本実施形態にかかる非水電解質二次電池の製造方法の流れを示すフローチャートである。
まず、ステップS1(組み付け工程)において、電池ケース180内に電極体110と非水電解液160と収容した電池を作製する。具体的には、まず、正極活物質137とアセチレンブラックとPEO(ポリエチレンオキサイド)とCMC(カルボキシメチルセルロース)とを、重量比88:10:1:1の割合で混合し、これに水(溶媒)を混合して、正極スラリを作製した。次いで、この正極スラリを、アルミニウム箔からなる正極集電板138(表面に炭素層139を備えている)の表面に塗布し、乾燥させた後、プレス加工を施した。これにより、正極板130を得た。
Next, the manufacturing method of the nonaqueous electrolyte secondary battery according to the present embodiment will be described. FIG. 5 is a flowchart showing a flow of a manufacturing method of the nonaqueous electrolyte secondary battery according to the present embodiment.
First, in step S <b> 1 (assembly process), a battery in which the electrode body 110 and the nonaqueous electrolyte solution 160 are housed in the battery case 180 is manufactured. Specifically, first, the positive electrode active material 137, acetylene black, PEO (polyethylene oxide), and CMC (carboxymethylcellulose) are mixed at a weight ratio of 88: 10: 1: 1, and water (solvent) is mixed therewith. Were mixed to prepare a positive electrode slurry. Next, this positive electrode slurry was applied to the surface of a positive electrode current collector plate 138 made of aluminum foil (having a carbon layer 139 on the surface), dried, and then pressed. Thereby, the positive electrode plate 130 was obtained.

なお、正極集電板138をなすアルミニウム箔の表面には、予め、炭素層139を形成している。この炭素層139は、アセチレンブラックとポリフッ化ビニリデンとを重量比3:7の割合で含んでいる。アルミニウム箔の表面に炭素層139を設けておくことで、正極スラリを塗布したとき、正極スラリ(アルカリ性となる)と正極集電板138を構成するアルミニウム箔との接触を防止することができる。これにより、正極集電板138を構成するアルミニウム箔の腐食を防止することができる。なお、炭素層139の厚みは、1〜5μmとするのが好ましい。   A carbon layer 139 is formed in advance on the surface of the aluminum foil that forms the positive electrode current collector plate 138. The carbon layer 139 contains acetylene black and polyvinylidene fluoride in a weight ratio of 3: 7. By providing the carbon layer 139 on the surface of the aluminum foil, when the positive electrode slurry is applied, contact between the positive electrode slurry (being alkaline) and the aluminum foil constituting the positive electrode current collector plate 138 can be prevented. Thereby, corrosion of the aluminum foil which comprises the positive electrode current collecting plate 138 can be prevented. The thickness of the carbon layer 139 is preferably 1 to 5 μm.

また、負極活物質127とSBR(スチレンブタジエンゴム)とCMCと(カルボキシメチルセルロース)とを、98:1:1(重量比)の割合で水中で混合して、負極スラリを作製した。次いで、この負極スラリを、銅箔からなる負極集電板128の両主面128F上に塗布し、乾燥させた後、プレス加工を施した。これにより、負極板120を得た。   Moreover, the negative electrode active material 127, SBR (styrene butadiene rubber), CMC, and (carboxymethylcellulose) were mixed in water in the ratio of 98: 1: 1 (weight ratio), and the negative electrode slurry was produced. Next, this negative electrode slurry was applied on both main surfaces 128F of the negative electrode current collector plate 128 made of copper foil, dried, and then pressed. Thereby, the negative electrode plate 120 was obtained.

なお、負極活物質127は、例えば、次のようにして作製することができる。球状に成形した黒鉛とピッチ(石油ピッチ)とを混合し、これを焼成する。この焼成により、ピッチ(石油ピッチ)が非晶質炭素となる。その後、この焼成体を粉砕することで、負極活物質127(黒鉛の表面を非晶質炭素で被覆したもの)を得ることができる。   The negative electrode active material 127 can be produced, for example, as follows. Spherical shaped graphite and pitch (petroleum pitch) are mixed and fired. By this firing, the pitch (petroleum pitch) becomes amorphous carbon. Thereafter, the fired body is pulverized, whereby the negative electrode active material 127 (graphite surface coated with amorphous carbon) can be obtained.

なお、負極活物質127として、非晶質炭素の割合(非晶質炭素含有率)が、2.5〜7.1wt%の範囲内である負極活物質を用いるのが好ましい。また、負極活物質127として、負極活物質粒子のBET比表面積が、2.8〜5.2m2/gの範囲内である負極活物質を用いるのが好ましい。本実施形態では、BET比表面積の値として、公知のBET法(詳細には、N2ガス吸着法)により求められた比表面積の値を採用している。 Note that as the negative electrode active material 127, it is preferable to use a negative electrode active material in which the ratio of amorphous carbon (amorphous carbon content) is in the range of 2.5 to 7.1 wt%. As the negative electrode active material 127, it is preferable to use a negative electrode active material in which the BET specific surface area of the negative electrode active material particles is in the range of 2.8 to 5.2 m 2 / g. In the present embodiment, the value of the specific surface area obtained by a known BET method (specifically, the N 2 gas adsorption method) is adopted as the value of the BET specific surface area.

また、負極活物質層121の表面には、金属酸化物絶縁層129を形成している。具体的には、酸化アルミニウム(アルミナ)とポリフッ化ビニリデンとを重量比95:5の割合で混合し、これに溶媒を混合してペーストにする。このペーストを負極活物質層121の表面に塗布し、乾燥させることで、金属酸化物絶縁層129を形成することができる。なお、金属酸化物絶縁層129の厚みは、2〜8μmとするのが好ましい。   A metal oxide insulating layer 129 is formed on the surface of the negative electrode active material layer 121. Specifically, aluminum oxide (alumina) and polyvinylidene fluoride are mixed at a weight ratio of 95: 5, and a solvent is mixed with this to obtain a paste. The paste is applied to the surface of the negative electrode active material layer 121 and dried, whereby the metal oxide insulating layer 129 can be formed. Note that the thickness of the metal oxide insulating layer 129 is preferably 2 to 8 μm.

また、本実施形態では、正極容量と負極容量との容量比(負極容量/正極容量)を、1.4としている。なお、正極容量と負極容量との容量比(正極容量に対する負極容量の割合)は、正極活物質層131と負極活物質層121の対向部122との容量比である。この容量比は、負極活物質層121(対向部122)の厚み(すなわち、負極スラリの塗布量)の増減により調整することができる。   In the present embodiment, the capacity ratio between the positive electrode capacity and the negative electrode capacity (negative electrode capacity / positive electrode capacity) is 1.4. Note that the capacity ratio between the positive electrode capacity and the negative electrode capacity (the ratio of the negative electrode capacity to the positive electrode capacity) is the capacity ratio between the positive electrode active material layer 131 and the facing portion 122 of the negative electrode active material layer 121. This capacity ratio can be adjusted by increasing or decreasing the thickness of the negative electrode active material layer 121 (opposing portion 122) (that is, the coating amount of the negative electrode slurry).

その後、負極板120と正極板130との間に、セパレータ150を介在させて捲回し、電極体110を形成する。なお、負極板120の負極活物質層121における対向部122に、セパレータ150を介して正極板130の正極活物質層131が対向するように、セパレータ150、負極板120、セパレータ150、正極板130の順に重ねて捲回する(図4参照)。   Thereafter, the electrode body 110 is formed by winding the separator 150 between the negative electrode plate 120 and the positive electrode plate 130. Note that the separator 150, the negative electrode plate 120, the separator 150, and the positive electrode plate 130 are disposed so that the positive electrode active material layer 131 of the positive electrode plate 130 faces the facing portion 122 of the negative electrode active material layer 121 of the negative electrode plate 120 through the separator 150. The layers are wound in the order of (see FIG. 4).

その後、負極板120(負極集電板128)に負極集電部材192を溶接し、正極板130(正極集電板138)に正極集電部材191を溶接する。次いで、負極集電部材192及び正極集電部材191を溶接した電極体110を、電池ケース本体181内に挿入した後、非水電解液160を注入する。その後、封口蓋182で電池ケース本体181の開口を閉塞した状態で、封口蓋182と電池ケース本体181とを溶接し、非水電解質二次電池の組み付けを完了する。   Thereafter, the negative electrode current collecting member 192 is welded to the negative electrode plate 120 (negative electrode current collecting plate 128), and the positive electrode current collecting member 191 is welded to the positive electrode plate 130 (positive electrode current collecting plate 138). Next, after the electrode body 110 welded to the negative electrode current collecting member 192 and the positive electrode current collecting member 191 is inserted into the battery case main body 181, the nonaqueous electrolyte solution 160 is injected. Thereafter, the sealing lid 182 and the battery case main body 181 are welded in a state where the opening of the battery case main body 181 is closed with the sealing lid 182 to complete the assembly of the nonaqueous electrolyte secondary battery.

次いで、ステップS2(電池拘束工程)に進み(図5参照)、上述の組み付け工程(ステップS1)において作製された非水電解質二次電池を、押圧治具30,40で挟んで拘束状態にする(図6参照)。具体的には、図6に示すように、電池ケース180の幅広側面180b,180cを押圧治具30,40で押圧するように、押圧治具30,40で非水電解質二次電池100を挟んで、非水電解質二次電池100を拘束状態にする。詳細には、電池ケース180の幅広側面180b側に配置した押圧治具30と、幅広側面180c側に配置した押圧治具40とを、円柱状のロッド51とナット53とを用いて締結することで、押圧治具30,40で非水電解質二次電池100を挟み、電池ケース180の幅広側面180b,180cを押圧治具30,40で押圧する。これにより、電池ケース180に対し、所定の荷重(例えば、400〜800kgf)をかけた状態にする。   Next, the process proceeds to step S2 (battery restraint step) (see FIG. 5), and the nonaqueous electrolyte secondary battery produced in the above assembly step (step S1) is sandwiched between the pressing jigs 30 and 40 to be in a restraint state. (See FIG. 6). Specifically, as shown in FIG. 6, the nonaqueous electrolyte secondary battery 100 is sandwiched between the pressing jigs 30 and 40 so that the wide side surfaces 180 b and 180 c of the battery case 180 are pressed by the pressing jigs 30 and 40. Thus, the nonaqueous electrolyte secondary battery 100 is brought into a restrained state. Specifically, the pressing jig 30 disposed on the wide side surface 180 b side of the battery case 180 and the pressing jig 40 disposed on the wide side surface 180 c side are fastened using the cylindrical rod 51 and the nut 53. Thus, the non-aqueous electrolyte secondary battery 100 is sandwiched between the pressing jigs 30 and 40, and the wide side surfaces 180 b and 180 c of the battery case 180 are pressed with the pressing jigs 30 and 40. Thus, a predetermined load (for example, 400 to 800 kgf) is applied to the battery case 180.

次に、ステップS3(初期充電工程)に進み(図5参照)、押圧治具30,40で拘束した状態(図6に示す状態)の非水電解質二次電池100を初期充電する。詳細には、1C(5A)の定電流で、電池電圧値が所定の充電終止電圧値Vaに至るまで充電し、その後、電池電圧値をVaに保持しつつ充電を行い、充電電流値が0.1Aに低下した時点で初期充電を終了する。この初期充電により、非水電解質二次電池100を活性化させることができる。また、負極活物質127の表面にSEI(被膜)を形成することができる。   Next, it progresses to step S3 (initial charge process) (refer FIG. 5), and the nonaqueous electrolyte secondary battery 100 of the state (state shown in FIG. 6) restrained with the pressing jigs 30 and 40 is initially charged. Specifically, charging is performed with a constant current of 1 C (5 A) until the battery voltage value reaches a predetermined charging end voltage value Va, and then charging is performed while the battery voltage value is maintained at Va. When the voltage drops to 1A, the initial charging is terminated. By this initial charging, the nonaqueous electrolyte secondary battery 100 can be activated. In addition, an SEI (film) can be formed on the surface of the negative electrode active material 127.

なお、充電終止電圧値Vaは、例えば、4.1V(SOC100%のときの電池電圧値に相当する)に設定する。ここで、SOCは、State Of Charge(充電状態、充電率)の略である。
また、1Cは、定格容量値(公称容量値)の容量を有する電池を定電流放電して、1時間で放電終了となる電流値である。非水電解質二次電池100の定格容量(公称容量)は5.0Ahであるので、1C=5.0Aとなる。
The charge end voltage value Va is set to, for example, 4.1 V (corresponding to the battery voltage value when SOC is 100%). Here, SOC is an abbreviation for State Of Charge.
Further, 1C is a current value at which the discharge having a rated capacity value (nominal capacity value) is constant-current discharged and discharge is completed in one hour. Since the rated capacity (nominal capacity) of the nonaqueous electrolyte secondary battery 100 is 5.0 Ah, 1C = 5.0 A.

次いで、ステップS4(エージング工程)に進み、初期充電(ステップS3の処理)を終えた拘束状態(図6に示す状態)の非水電解質二次電池100(電池電圧値はVaになっている)を、所定の温度(例えば、50℃)で、一定時間(例えば、15時間)安置してエージングする。   Next, the process proceeds to step S4 (aging process), and the non-aqueous electrolyte secondary battery 100 in the restraint state (the state shown in FIG. 6) after the initial charge (the process of step S3) (the battery voltage value is Va). Is aged at a predetermined temperature (for example, 50 ° C.) for a certain period of time (for example, 15 hours).

ところで、組み付け工程(ステップS1)において、電極体110内に金属粉(Cu粉など)などが誤って混入してしまうことがある。このような電池では、エージング工程において、金属粉由来のデンドライトが発生し、内部短絡が生じる(セパレータ150によって電気的に絶縁されている正極板130と負極板120とが、デンドライトを通じて電気的に接続する)ことがある。このため、後述するステップS5(自己放電工程)において、内部短絡が生じた電池を検出し、出荷しないようにしている(不良品として取り除く)。   By the way, in the assembly process (step S1), metal powder (such as Cu powder) may be mixed in the electrode body 110 by mistake. In such a battery, dendrite derived from metal powder is generated in the aging process, and an internal short circuit occurs (the positive electrode plate 130 and the negative electrode plate 120 that are electrically insulated by the separator 150 are electrically connected through the dendrite. Sometimes). For this reason, in step S5 (self-discharge process) to be described later, a battery in which an internal short circuit has occurred is detected so as not to be shipped (removed as a defective product).

次に、ステップS5(自己放電工程)に進み、エージング(ステップS4の処理)を終えた拘束状態(図6に示す状態)の非水電解質二次電池100を、25℃の温度環境下で、所定期間(例えば、5日間)放置することにより自己放電させる。   Next, the process proceeds to step S5 (self-discharge process), and the nonaqueous electrolyte secondary battery 100 in the restraint state (state shown in FIG. 6) after aging (the process of step S4) is completed in a temperature environment of 25 ° C. It is self-discharged by leaving it for a predetermined period (for example, 5 days).

なお、ステップS5(自己放電工程)では、非水電解質二次電池100の放置を開始してから第1所定時間が経過したときの当該電池の電池電圧値(第1電圧値Vb)を検知(測定)する。さらに、第1電圧値Vbを検知したときから第2所定時間が経過したときの当該電池の電池電圧値(第2電圧値Vc)を検知(測定)する。そして、第2電圧値Vcを検知した後、非水電解質二次電池100の放置を終える。すなわち、第2電圧値Vcを検知した後、電池を放置する所定期間が満了する。   In step S5 (self-discharge process), the battery voltage value (first voltage value Vb) of the battery when the first predetermined time has elapsed since the non-aqueous electrolyte secondary battery 100 is left unattended is detected ( taking measurement. Furthermore, the battery voltage value (second voltage value Vc) of the battery when the second predetermined time has elapsed from when the first voltage value Vb is detected is detected (measured). Then, after detecting the second voltage value Vc, the non-aqueous electrolyte secondary battery 100 is left unattended. That is, after detecting the second voltage value Vc, the predetermined period for leaving the battery expires.

さらに、ステップS5(自己放電工程)では、第1電圧値Vbから第2電圧値Vcを差し引いた電池電圧差ΔVbc(=Vb−Vc)を算出し、電池電圧差ΔVbcが、所定の閾値Tbc以上であるか否かを判定する。電池電圧差ΔVbcが閾値Tbc以上である場合、当該電池100には内部短絡が生じていると判定する。内部短絡が生じていると判定された電池は、不良品として取り除かれる(例えば、廃棄される)。   Further, in step S5 (self-discharge process), a battery voltage difference ΔVbc (= Vb−Vc) obtained by subtracting the second voltage value Vc from the first voltage value Vb is calculated, and the battery voltage difference ΔVbc is equal to or greater than a predetermined threshold value Tbc. It is determined whether or not. When the battery voltage difference ΔVbc is equal to or greater than the threshold value Tbc, it is determined that an internal short circuit has occurred in the battery 100. A battery determined to have an internal short circuit is removed as a defective product (for example, discarded).

内部短絡が生じている電池では、内部短絡が生じていない電池(正常な電池)に比べて、放置による自己放電量が大きくなるので、電池電圧値が小さくなり、電池電圧差ΔVbcも大きくなる。従って、上述のように、電池電圧差ΔVbcに基づいて、電池に内部短絡が生じているか否かを判断することできる。   In a battery in which an internal short circuit has occurred, the amount of self-discharge due to neglect is increased compared to a battery in which an internal short circuit has not occurred (a normal battery), so that the battery voltage value decreases and the battery voltage difference ΔVbc also increases. Therefore, as described above, it is possible to determine whether or not an internal short circuit has occurred in the battery based on the battery voltage difference ΔVbc.

ところで、電池の放置を開始してから5時間以内は、特に、電池電圧値が大きく低下し、しかも、電圧低下量のバラツキも大きい。このため、従来(例えば、特許文献1)のように、放置開始時の電池電圧値を基準とし、放置開始時の電池電圧値から放置終了時の電池電圧値を差し引いた電池電圧差が所定の閾値以上であるか否かによって、当該電池に内部短絡が生じているか否かを判定する手法では、内部短絡が生じている電池を精度良く検出することができなかった。   By the way, within 5 hours after starting to leave the battery, the battery voltage value is particularly greatly reduced, and the variation in the voltage drop amount is also large. For this reason, as in the prior art (for example, Patent Document 1), the battery voltage difference obtained by subtracting the battery voltage value at the end of leaving from the battery voltage value at the start of leaving is set to a predetermined value based on the battery voltage value at the start of leaving. According to the method for determining whether or not an internal short circuit has occurred in the battery depending on whether or not it is greater than or equal to the threshold value, the battery in which the internal short circuit has occurred cannot be accurately detected.

これに対し、本実施形態の自己放電工程(ステップS5)では、第1所定時間を5〜72時間の範囲内に定めて、第1電圧値Vbを検知する。すなわち、電池100の放置を開始してから、5〜72時間(第1所定時間)が経過したときに、当該電池の電池電圧値である第1電圧値Vbを検知する。放置開始から5時間以上経過したときに、第1電圧値Vbを検知するようにすることで、「特に、電池電圧値が大きく低下し、しかも、電圧低下量のバラツキが大きくなる期間(放置開始から5時間以内の期間)」を、短絡判定基準である電池電圧差ΔVbcの測定期間から排除することができる。これにより、前述の問題点を解消して、内部短絡が生じている電池を精度良く検出することが可能となる。   In contrast, in the self-discharge process (step S5) of the present embodiment, the first predetermined time is set within a range of 5 to 72 hours, and the first voltage value Vb is detected. That is, the first voltage value Vb, which is the battery voltage value of the battery, is detected when 5 to 72 hours (first predetermined time) have elapsed since the battery 100 is left unattended. By detecting the first voltage value Vb when more than 5 hours have passed since the start of the standing, “particularly the period during which the battery voltage value is greatly reduced and the variation in the amount of voltage drop is large (beginning of leaving) Can be excluded from the measurement period of the battery voltage difference ΔVbc, which is a short-circuit determination criterion. As a result, the above-described problems can be solved and a battery in which an internal short circuit has occurred can be detected with high accuracy.

また、電池の製造期間はできる限り短くすることが求められているので、放置期間もできる限り短くすることが要求される。これに対し、第1所定時間を72時間以内とすることで、短い放置期間(例えば、7日以内)で、内部短絡が生じている電池を精度良く検出することが可能となる。   In addition, since the battery manufacturing period is required to be as short as possible, it is necessary to shorten the period for which the battery is left as much as possible. On the other hand, by setting the first predetermined time within 72 hours, it is possible to accurately detect a battery in which an internal short circuit has occurred in a short leaving period (for example, within 7 days).

なお、本実施形態の自己放電工程(ステップS5)では、電池を放置する「所定期間」を、7日以内(例えば5日間)とする。電池を放置する「所定期間」を7日間以内と短くすることで、自己放電工程の期間を短くすることができ、ひいては、電池の生産効率を良好とすることができる。   In the self-discharge process (step S5) of the present embodiment, the “predetermined period” in which the battery is left is within 7 days (for example, 5 days). By shortening the “predetermined period” in which the battery is left to within 7 days, the period of the self-discharge process can be shortened, and as a result, the production efficiency of the battery can be improved.

本実施形態では、後述するように、放置期間を7日以内と短くしても、内部短絡が生じている電池を精度良く検出することができる。従って、電池の生産効率を良好としつつ、内部短絡電池の検出精度も向上させることができる。
なお、電池を放置する「所定期間」を7日間以内とするということは、電池の放置を開始してから7日以内に、第2電圧値Vcの検知を終えることになる。
In this embodiment, as will be described later, even if the leaving period is shortened to within 7 days, a battery in which an internal short circuit has occurred can be accurately detected. Accordingly, it is possible to improve the detection accuracy of the internal short-circuit battery while improving the battery production efficiency.
Note that setting the “predetermined period” for leaving the battery to be within 7 days means that the detection of the second voltage value Vc is completed within 7 days after the start of the battery leaving.

さらに、本実施形態の自己放電工程(ステップS5)では、第2所定時間を48時間以上に定めて、第2電圧値Vcを検知する。すなわち、第1電圧値Vbを検知したときから48時間以上(第2所定時間)が経過したときに、当該電池の電池電圧値である第2電圧値Vcを検知して、電池電圧差ΔVbcを測定する。このように、48時間以上の期間における電池電圧差ΔVbc(=第1電圧値Vb−第2電圧値Vc)を測定することで、内部短絡が生じていない電池(正常な電池)と内部短絡が生じている電池との間で、電池電圧差ΔVbcに明確な違いが現れるようになる。このため、内部短絡が生じている電池を精度良く検出することができる。   Further, in the self-discharge process (step S5) of the present embodiment, the second predetermined time is set to 48 hours or more, and the second voltage value Vc is detected. That is, when 48 hours or more (second predetermined time) has elapsed since the first voltage value Vb was detected, the second voltage value Vc that is the battery voltage value of the battery is detected, and the battery voltage difference ΔVbc is determined. taking measurement. In this way, by measuring the battery voltage difference ΔVbc (= first voltage value Vb−second voltage value Vc) over a period of 48 hours or longer, a battery (normal battery) in which an internal short circuit has not occurred and an internal short circuit are detected. A clear difference appears in the battery voltage difference ΔVbc from the generated battery. For this reason, the battery in which the internal short circuit has arisen can be detected accurately.

また、後述するように、自己放電工程(ステップS5)において、第1所定時間を24〜60時間の範囲内に定めて第1電圧値Vbを検知し、さらに、第2所定時間を60時間以上に定めて第2電圧値Vcを検知するようにすることで、内部短絡電池をより一層精度良く検出することができる。   Further, as will be described later, in the self-discharge process (step S5), the first predetermined time is set within a range of 24 to 60 hours to detect the first voltage value Vb, and the second predetermined time is set to 60 hours or more. And the second voltage value Vc is detected to detect the internal short circuit battery with higher accuracy.

なお、閾値Tbcは、例えば、予め、内部短絡が生じている電池と生じていない電池とについて、それぞれの電池電圧差ΔVbcを調査しておき、両電池の電池電圧差ΔVbcの間の値とすれば良い。   Note that the threshold Tbc is, for example, a value between the battery voltage difference ΔVbc of both batteries obtained by examining the battery voltage difference ΔVbc of a battery in which an internal short circuit has occurred and a battery in which no internal short circuit has occurred. It ’s fine.

次に、ステップS6(放電量測定工程)に進み、ステップS5において内部短絡が生じていない(正常である)と判定された非水電解質二次電池100について、その電池電圧値が所定の放電終止電圧値Veに至るまで強制的に放電させる。例えば、公知の充放電装置を用いて、1C(5A)の定電流で、電池100の電池電圧値が放電終止電圧値Veに至るまで、電池100を放電させる。さらに、その放電期間中に、電池電圧値が所定の測定開始電圧値Vdから放電終止電圧値Veに至るまでの間の電池100の放電電気量Qdeを測定する。その後、放電電気量Qdeが所定の閾値Tdeより小さいか否かを判定し、放電電気量Qdeが閾値Tdeより小さい電池は、不良品として取り除かれる(例えば、廃棄される)。   Next, the process proceeds to step S6 (discharge amount measurement step), and the battery voltage value of the nonaqueous electrolyte secondary battery 100 determined that the internal short circuit has not occurred (is normal) in step S5 is a predetermined discharge end. The battery is forcibly discharged until the voltage value Ve is reached. For example, using a known charging / discharging device, the battery 100 is discharged at a constant current of 1 C (5 A) until the battery voltage value of the battery 100 reaches the end-of-discharge voltage value Ve. Further, during the discharge period, the discharge electric quantity Qde of the battery 100 during the period from the battery voltage value to the discharge end voltage value Ve from the predetermined measurement start voltage value Vd is measured. Thereafter, it is determined whether or not the discharge electricity amount Qde is smaller than a predetermined threshold value Tde, and the battery having the discharge electricity amount Qde smaller than the threshold value Tde is removed as a defective product (for example, discarded).

なお、ステップS6(放電量測定工程)では、測定開始電圧値Vdを、自己放電工程における放置終了電圧値Vc以下の値に設定している。さらに、放電終止電圧値Veを、測定開始電圧値Vdよりも小さい値に設定している。また、本実施形態では、放電終止電圧値Veを3.55V(SOC30%のときの電池電圧値に相当する)に設定している。但し、放電終止電圧値Veの値は、3.55Vに限定されるものではない。
また、ステップS6(放電量測定工程)でも、非水電解質二次電池100は、押圧治具30,40で拘束した状態(図6に示す状態)のままである。
In step S6 (discharge amount measuring step), the measurement start voltage value Vd is set to a value equal to or lower than the leaving end voltage value Vc in the self-discharge step. Further, the discharge end voltage value Ve is set to a value smaller than the measurement start voltage value Vd. In the present embodiment, the discharge end voltage value Ve is set to 3.55 V (corresponding to the battery voltage value when the SOC is 30%). However, the value of the discharge end voltage value Ve is not limited to 3.55V.
In step S6 (discharge amount measuring step), the nonaqueous electrolyte secondary battery 100 remains in the state of being restrained by the pressing jigs 30 and 40 (the state shown in FIG. 6).

次いで、ステップS7(内部抵抗測定工程)に進み、放電量測定工程(ステップS6)を終えた拘束状態(図6に示す状態)の非水電解質二次電池100について、その内部抵抗(IV抵抗)を測定する。具体的には、非水電解質二次電池100を充電して、その電池電圧値を3.6V(SOC40%)にする。その後、この非水電解質二次電池100を、20Aの定電流で4秒間だけ放電させ、放電終了時(終了した瞬間)の電池電圧値Vgを測定する。次いで、放電により変化した電池電圧変化量ΔV(=3.6−Vg)を電流値20Aで除した値(=ΔV/20)を、IV抵抗値(内部抵抗値)として取得する。IV抵抗値が許容範囲から外れている電池は、不良品として取り除かれる(例えば、廃棄される)。   Next, the process proceeds to step S7 (internal resistance measurement process), and the internal resistance (IV resistance) of the nonaqueous electrolyte secondary battery 100 in the restraint state (state shown in FIG. 6) after the discharge amount measurement process (step S6) is completed. Measure. Specifically, the non-aqueous electrolyte secondary battery 100 is charged, and the battery voltage value is set to 3.6 V (SOC 40%). Thereafter, the non-aqueous electrolyte secondary battery 100 is discharged at a constant current of 20 A for 4 seconds, and the battery voltage value Vg at the end of discharge (moment of completion) is measured. Next, a value (= ΔV / 20) obtained by dividing the battery voltage change amount ΔV (= 3.6-Vg) changed by the discharge by the current value 20A is acquired as an IV resistance value (internal resistance value). A battery whose IV resistance value is out of the allowable range is removed as a defective product (for example, discarded).

その後、ステップS8(拘束解除工程)に進み、内部抵抗測定工程(ステップS7)を終えた非水電解質二次電池100の拘束状態を解除する。具体的には、非水電解質二次電池100を挟んで押圧していた押圧治具30,40を取り外す。このようにして、非水電解質二次電池100が完成する。
なお、本実施形態の非水電解質二次電池100は、例えば、ハイブリッド自動車や電気自動車の駆動用電源として使用される。
Then, it progresses to step S8 (restraint cancellation | release process), and the restraint state of the nonaqueous electrolyte secondary battery 100 which finished the internal resistance measurement process (step S7) is cancelled | released. Specifically, the pressing jigs 30 and 40 that have been pressed with the nonaqueous electrolyte secondary battery 100 interposed therebetween are removed. In this way, the nonaqueous electrolyte secondary battery 100 is completed.
In addition, the nonaqueous electrolyte secondary battery 100 of this embodiment is used as a drive power source for a hybrid vehicle or an electric vehicle, for example.

(放置試験)
次に、ステップS5(自己放電工程)において内部短絡が生じている電池を精度良く検出するための条件(第1所定時間、第2所定時間など)を調査するために行った放置試験について説明する。
(Leave test)
Next, a description will be given of a standing test performed in order to investigate the conditions (first predetermined time, second predetermined time, etc.) for accurately detecting a battery in which an internal short circuit has occurred in step S5 (self-discharge process). .

具体的には、まず、電池100(内部短絡の生じていない正常な電池)を、40個用意する。このうち、20個の電池100について、正極端子部191Aと負極端子部192Aとの間に200kΩの抵抗素子を接続することで、内部短絡を模擬した電池(以下、内部短絡電池という)を製作した。その後、ステップS5(自己放電工程)と同一の放置条件で、内部短絡の生じていない20個の電池100(以下、正常電池という)及び20個の内部短絡電池を放置し、放置開始からの電圧変化量を測定した。この結果を図7に示す。   Specifically, first, 40 batteries 100 (normal batteries in which no internal short circuit occurs) are prepared. Among these, about 20 batteries 100, a battery simulating an internal short circuit (hereinafter referred to as an internal short circuit battery) was manufactured by connecting a resistance element of 200 kΩ between the positive terminal part 191A and the negative terminal part 192A. . Thereafter, under the same leaving conditions as in step S5 (self-discharge process), 20 batteries 100 (hereinafter referred to as normal batteries) and 20 internal short-circuited batteries without internal short-circuiting are left to stand, and the voltage from the start of leaving is left. The amount of change was measured. The result is shown in FIG.

なお、図7では、20個の正常電池のうち最も電圧変化量(低下量)が小さくなった電池の値を、●(黒丸)で表している。また、正常電池のうち最も電圧変化量(低下量)が大きくなった電池の値を、○(白丸)で表している。また、また、内部短絡電池のうち、最も電圧変化量(低下量)が小さくなった電池の値を、◇(白菱形)で表している。また、内部短絡電池のうち最も電圧変化量(低下量)が大きくなった電池の値を、◆(黒菱形)で表している。   In FIG. 7, the value of the battery having the smallest voltage change amount (reduction amount) among the 20 normal batteries is represented by ● (black circle). In addition, the value of the battery having the largest voltage change amount (decrease amount) among normal batteries is represented by ◯ (white circle). Further, among the internal short-circuit batteries, the value of the battery having the smallest voltage change amount (decrease amount) is represented by ◇ (white rhombus). In addition, the value of the battery with the largest voltage change amount (decrease amount) among the internal short-circuit batteries is represented by ◆ (black rhombus).

図7より、電池100の放置を開始してから5時間以内は、特に、電池電圧値が大きく低下し、しかも、電圧低下量のバラツキも大きいことがわかる。このため、放置期間(所定期間)を7日以内、例えば5日に設定し、放置開始時の電池電圧値を基準として、放置開始時の電池電圧値から放置終了時の電池電圧値を差し引いた電池電圧差が所定の閾値以上であるか否かによって、当該電池に内部短絡が生じているか否かを判定する手法では、内部短絡が生じている電池を精度良く検出することができない。   From FIG. 7, it can be seen that, within 5 hours after the battery 100 is left untreated, the battery voltage value particularly decreases greatly and the variation in the voltage decrease amount is also large. For this reason, the leaving period (predetermined period) is set to within 7 days, for example, 5 days, and the battery voltage value at the start of leaving is subtracted from the battery voltage value at the start of leaving with reference to the battery voltage value at the start of leaving. According to the method of determining whether or not an internal short circuit has occurred in the battery depending on whether or not the battery voltage difference is equal to or greater than a predetermined threshold, it is not possible to accurately detect the battery in which the internal short circuit has occurred.

詳細に説明すると、図7に示すように、放置開始から120時間(5日間)経過したとき、正常電池のうち最も電圧変化量(低下量)が大きい電池(図7において○で示す)と、内部短絡電池のうち最も電圧変化量(低下量)が小さい電池(図7において◇で示す)とでは、放置開始からの電圧低下量が同程度になる。従って、放置期間(所定期間)を120時間(5日間)に設定し、放置開始からの電圧低下量(すなわち、放置開始時の電池電圧値から放置終了時の電池電圧値を差し引いた電池電圧差)が所定の閾値以上であるか否かによって、内部短絡の有無を判定する手法では、正常電池のうち最も電圧変化量(低下量)が大きい電池と、内部短絡電池のうち最も電圧変化量(低下量)が小さい電池との区別をすることが困難となる。   More specifically, as shown in FIG. 7, when 120 hours (5 days) have passed since the start of standing, a battery having the largest voltage change amount (decrease amount) among normal batteries (indicated by a circle in FIG. 7), Among the internal short-circuit batteries, the battery with the smallest voltage change amount (decrease amount) (indicated by に お い て in FIG. 7) has the same amount of voltage decrease from the start of standing. Therefore, the neglected period (predetermined period) is set to 120 hours (5 days), and the voltage drop from the start of neglect (that is, the battery voltage difference obtained by subtracting the battery voltage value at the end of neglect from the battery voltage value at the start of neglect. ) Is greater than or equal to a predetermined threshold value, the method of determining the presence or absence of an internal short circuit has the largest voltage change amount (decrease amount) among normal batteries and the most voltage change amount among internal short circuit batteries ( It becomes difficult to distinguish from a battery having a small amount of decrease.

このように、短絡判定基準である電圧低下量の測定期間に、放置初期(特に、放置開始から5時間以内)の期間を含めてしまうと、一部の正常電池(電圧低下量が大きいもの)において、電圧低下量が、内部短絡電池の電圧低下量と明確な違いが現れなくなり、その結果、内部短絡電池を精度良く検出することができなくなる。例えば、一部の正常電池(電圧低下量が大きいもの)を、内部短絡電池であると誤判定する虞がある。   In this way, if the period of initial voltage drop (especially, within 5 hours from the start of leaving) is included in the voltage drop measurement period, which is a short-circuit determination criterion, some normal batteries (those with a large voltage drop) However, the voltage drop amount does not show a clear difference from the voltage drop amount of the internal short circuit battery, and as a result, the internal short circuit battery cannot be accurately detected. For example, some normal batteries (those with a large voltage drop) may be erroneously determined as internal short-circuit batteries.

これに対し、第1所定時間を5〜72時間の範囲内に定めて、第1電圧値Vbを検知する(すなわち、電池100の放置を開始してから、5〜72時間(第1所定時間)が経過したときに、当該電池の電池電圧値である第1電圧値Vbを検知する)ことで、「特に、電池電圧値が大きく低下し、しかも、電圧低下量のバラツキが大きくなる期間(放置開始から5時間以内の期間)」を、短絡判定基準である電池電圧差ΔVbcの測定期間から排除することができる。これにより、前述の問題点を解消して、内部短絡が生じている電池を精度良く検出することが可能となる。   On the other hand, the first predetermined time is set within a range of 5 to 72 hours, and the first voltage value Vb is detected (that is, 5 to 72 hours (first predetermined time after the start of leaving the battery 100). ), The first voltage value Vb that is the battery voltage value of the battery is detected), so that “in particular, the battery voltage value is greatly reduced and the variation in the voltage drop amount is large ( The period within 5 hours from the start of standing) can be excluded from the measurement period of the battery voltage difference ΔVbc, which is a short-circuit determination criterion. As a result, the above-described problems can be solved and a battery in which an internal short circuit has occurred can be detected with high accuracy.

ここで、第1所定時間を、5〜72時間の範囲内から例えば36時間に定めて、第1電圧値Vbを検知(すなわち、電池100の放置を開始してから36時間が経過したときに、当該電池の電池電圧値である第1電圧値Vbを検知)した場合について説明する。このときの電池電圧変化量のグラフを、図8に示す。   Here, the first predetermined time is set to, for example, 36 hours from the range of 5 to 72 hours, and the first voltage value Vb is detected (that is, when 36 hours have passed since the battery 100 is left unattended). The case where the first voltage value Vb which is the battery voltage value of the battery is detected) will be described. The graph of the battery voltage change amount at this time is shown in FIG.

なお、図8では、図7と同様に、20個の正常電池のうち最も電圧変化量(低下量)が小さくなった電池の値を、●(黒丸)で表している。また、正常電池のうち最も電圧変化量(低下量)が大きくなった電池の値を、○(白丸)で表している。また、内部短絡電池のうち、最も電圧変化量(低下量)が小さくなった電池の値を、◇(白菱形)で表している。また、内部短絡電池のうち最も電圧変化量(低下量)が大きくなった電池の値を、◆(黒菱形)で表している。   In FIG. 8, as in FIG. 7, the value of the battery having the smallest voltage change amount (reduction amount) among the 20 normal batteries is represented by ● (black circle). In addition, the value of the battery having the largest voltage change amount (decrease amount) among normal batteries is represented by ◯ (white circle). In addition, among the internal short-circuit batteries, the value of the battery having the smallest voltage change amount (decrease amount) is represented by ◇ (white rhombus). In addition, the value of the battery with the largest voltage change amount (decrease amount) among the internal short-circuit batteries is represented by ◆ (black rhombus).

図7と図8を比較するとわかるように、図8では、正常電池と内部短絡電池の両者において、電圧低下量のバラツキが小さくなり、両者の電圧低下量の差が明確に現れる。
また、第1所定時間を5〜72時間の範囲内に定めて第1電圧値Vbを検知(すなわち、電池100の放置を開始してから5〜72時間が経過したときに、当該電池の電池電圧値である第1電圧値Vbを検知)した場合には、いずれも、図8のように、正常電池と内部短絡電池の両者において、電圧低下量のバラツキが小さくなり、両者の電圧低下量の差が明確に現れるようになる。このため、第1所定時間を5〜72時間の範囲内に定めて第1電圧値Vbを検知することで、内部短絡が生じている電池を精度良く検出することが可能となる。
As can be seen from a comparison between FIG. 7 and FIG. 8, in FIG. 8, the variation in the voltage drop amount is small in both the normal battery and the internal short-circuit battery, and the difference between the voltage drop amounts clearly appears.
Further, the first predetermined time is set within a range of 5 to 72 hours, and the first voltage value Vb is detected (that is, when 5 to 72 hours have elapsed since the start of leaving the battery 100), When the first voltage value Vb, which is a voltage value, is detected), as shown in FIG. 8, both the normal battery and the internal short-circuit battery have less variation in voltage drop, and the voltage drop between both The difference becomes clear. For this reason, it is possible to accurately detect a battery in which an internal short circuit has occurred by determining the first predetermined time within a range of 5 to 72 hours and detecting the first voltage value Vb.

さらに、図8より、第2所定時間を48時間以上に定めて第2電圧値Vcを検知(すなわち、第1電圧値Vbを検知したときから48時間以上が経過したときに、当該電池の電池電圧値である第2電圧値Vcを検知)して、電池電圧差ΔVbc(=第1電圧値Vb−第2電圧値Vc)を測定することで、正常電池と内部短絡電池との間で、電池電圧差ΔVbcに明確な違いが現れるようになることがわかる。   Further, from FIG. 8, the second predetermined time is set to 48 hours or more, and the second voltage value Vc is detected (that is, when 48 hours or more have elapsed since the first voltage value Vb was detected) By detecting the second voltage value Vc that is a voltage value) and measuring the battery voltage difference ΔVbc (= first voltage value Vb−second voltage value Vc), between the normal battery and the internal short-circuit battery, It can be seen that a clear difference appears in the battery voltage difference ΔVbc.

具体的には、図8に示す例において、第1電圧値Vbを検知したときから48時間以上が経過したとき(すなわち、放置開始から84時間以上経過したとき)に第2電圧値Vcを検知すると、正常電池のうち最も電圧変化量(低下量)が大きい電池(図8において○で示す)と、内部短絡電池のうち最も電圧変化量(低下量)が小さい電池(図8において◇で示す)とでは、電池電圧差ΔVbcの差(電圧変化量の差に等しい)が1mV以上になる。すなわち、正常電池の電池電圧差ΔVbcと内部短絡電池の電池電圧差ΔVbcとの差が、1mV以上になる。   Specifically, in the example shown in FIG. 8, the second voltage value Vc is detected when 48 hours or more have elapsed since the first voltage value Vb was detected (that is, when 84 hours or more have elapsed since the start of leaving). Then, among the normal batteries, the battery having the largest voltage change amount (reduction amount) (indicated by a circle in FIG. 8) and the battery having the smallest voltage change amount (reduction amount) among the internal short-circuit batteries (indicated by ◇ in FIG. 8). ), The difference in battery voltage difference ΔVbc (equal to the difference in voltage change) is 1 mV or more. That is, the difference between the battery voltage difference ΔVbc of the normal battery and the battery voltage difference ΔVbc of the internal short circuit battery is 1 mV or more.

なお、本願では、正常電池のうち最も電圧変化量(低下量)が大きい電池(図8において○で示す)の電池電圧差ΔVbcと、内部短絡電池のうち最も電圧変化量(低下量)が小さい電池(図8において◇で示す)の電池電圧差ΔVbcとの差を、電池電圧差ΔVbcの最小差ΔVminともいう。   In the present application, among the normal batteries, the battery voltage difference ΔVbc of the battery having the largest voltage change amount (reduction amount) (indicated by “◯” in FIG. 8) and the voltage change amount (reduction amount) of the internal short-circuit battery are the smallest. The difference from the battery voltage difference ΔVbc of the battery (indicated by ◇ in FIG. 8) is also referred to as the minimum difference ΔVmin of the battery voltage difference ΔVbc.

例えば、第1電圧値Vbを検知したときから84時間が経過したとき(すなわち、放置開始から120時間経過したとき)に第2電圧値Vcを検知した場合、電池電圧差ΔVbcの最小差ΔVminが、1.6mVにまで大きくなる。すなわち、正常電池の電池電圧差ΔVbcと内部短絡電池の電池電圧差ΔVbcとの差が、1.6mV以上になる。   For example, when the second voltage value Vc is detected when 84 hours have elapsed since the first voltage value Vb was detected (that is, when 120 hours have elapsed since the start of leaving), the minimum difference ΔVmin of the battery voltage difference ΔVbc is To 1.6 mV. That is, the difference between the battery voltage difference ΔVbc of the normal battery and the battery voltage difference ΔVbc of the internal short circuit battery is 1.6 mV or more.

このように、正常電池と内部短絡電池との間で電池電圧差ΔVbcに明確な違いが現れることで、内部短絡が生じている電池を精度良く検出することができる。図8に示す例では、例えば、閾値Tbcを2mVに設定することで、正常電池と内部短絡電池とを明確に判別することができる(電池電圧差ΔVbcが2mV以上となった電池を内部短絡電池と判断できる)ので、内部短絡が生じている電池を精度良く検出することができる。   Thus, a clear difference appears in the battery voltage difference ΔVbc between the normal battery and the internal short circuit battery, so that the battery in which the internal short circuit has occurred can be detected with high accuracy. In the example shown in FIG. 8, for example, by setting the threshold Tbc to 2 mV, a normal battery and an internal short-circuit battery can be clearly discriminated (a battery having a battery voltage difference ΔVbc of 2 mV or more is identified as an internal short-circuit battery). Therefore, it is possible to accurately detect a battery in which an internal short circuit has occurred.

第1所定時間を5〜72時間の範囲内に定めて第1電圧値Vbを検知し、さらに、第2所定時間を48時間以上に定めて第2電圧値Vcを検知する場合には、いずれも、図8のように、正常電池と内部短絡電池の両者において、正常電池と内部短絡電池との間で電池電圧差ΔVbcに明確な違いが現れ、電池電圧差ΔVbcの最小差ΔVminが大きくなる。このため、第1所定時間を5〜72時間の範囲内に定めて第1電圧値Vbを検知し、さらに、第2所定時間を48時間以上に定めて第2電圧値Vcを検知して、電池電圧差ΔVbc(=Vb−Vc)に基づいて内部短絡の有無を判断することで、内部短絡が生じている電池を精度良く検出することができる。   When the first predetermined time is set within the range of 5 to 72 hours to detect the first voltage value Vb, and the second predetermined time is set to 48 hours or more to detect the second voltage value Vc, However, as shown in FIG. 8, there is a clear difference in the battery voltage difference ΔVbc between the normal battery and the internal short circuit battery between the normal battery and the internal short circuit battery, and the minimum difference ΔVmin of the battery voltage difference ΔVbc increases. . For this reason, the first predetermined time is set within a range of 5 to 72 hours to detect the first voltage value Vb, and the second predetermined time is set to 48 hours or more to detect the second voltage value Vc, By determining whether or not there is an internal short circuit based on the battery voltage difference ΔVbc (= Vb−Vc), it is possible to accurately detect the battery in which the internal short circuit has occurred.

また、上述の放置試験の結果に基づいて、第1所定時間と電池電圧差ΔVbcの最小差ΔVminとの関係を表すグラフを作成した。これを図9に示す。なお、図9に示すデータは、放置期間を120時間(5日間)として、放置開始から120時間経過したときに第2電圧値Vcを検知した場合のデータである。   Further, based on the result of the above-mentioned neglect test, a graph representing the relationship between the first predetermined time and the minimum difference ΔVmin of the battery voltage difference ΔVbc was created. This is shown in FIG. Note that the data shown in FIG. 9 is data when the second voltage value Vc is detected when 120 hours have elapsed since the start of leaving, with the leaving period being 120 hours (5 days).

ところで、電池電圧差ΔVbc(=Vb−Vc)に基づいて内部短絡電池を精度良く検出するためには、電池電圧差ΔVbcの最小差ΔVminができるだけ大きくなる条件が好ましい。具体的には、最小差ΔVminが0.8mV以上であると、精度良く、正常電池と内部短絡電池とを区別することができる。さらに、最小差ΔVminが1.0mV以上であると、極めて精度良く、正常電池と内部短絡電池とを区別することができる。   By the way, in order to detect the internal short-circuit battery with high accuracy based on the battery voltage difference ΔVbc (= Vb−Vc), it is preferable that the minimum difference ΔVmin of the battery voltage difference ΔVbc is as large as possible. Specifically, when the minimum difference ΔVmin is 0.8 mV or more, it is possible to accurately distinguish between a normal battery and an internal short-circuit battery. Furthermore, when the minimum difference ΔVmin is 1.0 mV or more, a normal battery and an internal short-circuit battery can be distinguished with extremely high accuracy.

そこで、図9を検討すると、第1所定時間を0.5〜72時間の範囲内にした場合に、最小差ΔVminが0.8mV以上となることがわかる。従って、第1所定時間を5〜72時間の範囲内に定めて第1電圧値Vbを検知することで、内部短絡が生じている電池を精度良く検出することができるといえる。   Therefore, when FIG. 9 is examined, it is found that the minimum difference ΔVmin is 0.8 mV or more when the first predetermined time is in the range of 0.5 to 72 hours. Therefore, it can be said that by detecting the first voltage value Vb by setting the first predetermined time within a range of 5 to 72 hours, it is possible to accurately detect a battery in which an internal short circuit has occurred.

また、図9に示すデータは、放置開始から120時間経過したときに第2電圧値Vcを検知した場合のデータであるので、第1所定時間を0.5〜72時間の範囲内にした場合、第2所定時間は少なくとも48時間となる。従って、内部短絡が生じている電池を精度良く検出するために、第2所定時間を48時間以上とするのが好ましいといえる。   Further, since the data shown in FIG. 9 is data when the second voltage value Vc is detected when 120 hours have passed since the start of being left standing, the first predetermined time is in the range of 0.5 to 72 hours. The second predetermined time is at least 48 hours. Therefore, it can be said that it is preferable to set the second predetermined time to 48 hours or longer in order to accurately detect a battery in which an internal short circuit has occurred.

さらに、図9を検討すると、第1所定時間を24〜60時間の範囲内にした場合に、最小差ΔVminが1.0mV以上となることがわかる。従って、第1所定時間を24〜60時間の範囲内に定めて第1電圧値Vbを検知することで、内部短絡が生じている電池をより精度良く検出することができるといえる。   Furthermore, when FIG. 9 is examined, it is found that the minimum difference ΔVmin is 1.0 mV or more when the first predetermined time is in the range of 24 to 60 hours. Therefore, it can be said that a battery having an internal short circuit can be detected with higher accuracy by determining the first predetermined time within a range of 24 to 60 hours and detecting the first voltage value Vb.

また、図9に示すデータは、放置開始から120時間経過したときに第2電圧値Vcを検知した場合のデータであるので、第1所定時間を24〜60時間の範囲内にした場合、第2所定時間は少なくとも60時間となる。従って、内部短絡電池をより精度良く検出するために、第2所定時間を60時間以上とするのが好ましいといえる。   Further, since the data shown in FIG. 9 is data when the second voltage value Vc is detected when 120 hours have passed since the start of leaving, when the first predetermined time is within a range of 24 to 60 hours, 2 The predetermined time is at least 60 hours. Therefore, it can be said that the second predetermined time is preferably 60 hours or more in order to detect the internal short-circuit battery with higher accuracy.

これに対し、図9に示すデータは、電池を放置する「所定期間」を7日間以内、詳細には、「所定期間」を120時間(5日間)としたときのデータである。このように、電池を放置する「所定期間」を7日間以内と短くしても、前述の通り、第1所定時間を5〜72時間の範囲内に定めて第1電圧値Vbを検知し、さらに、第2所定時間を48時間以上に定めて第2電圧値Vcを検知することで、内部短絡が生じている電池を精度良く検出することができる(図9参照)。従って、本実施形態では、電池を放置する「所定期間」を7日間以内にすることで、自己放電工程の期間を短くすることができ、ひいては、電池の生産効率を良好とすることができる。   On the other hand, the data shown in FIG. 9 is data when the “predetermined period” in which the battery is left is within 7 days, specifically, when the “predetermined period” is 120 hours (5 days). Thus, even if the “predetermined period” in which the battery is left is shortened to within 7 days, as described above, the first predetermined time is set within the range of 5 to 72 hours, and the first voltage value Vb is detected. Furthermore, by detecting the second voltage value Vc by setting the second predetermined time to 48 hours or longer, it is possible to accurately detect a battery in which an internal short circuit has occurred (see FIG. 9). Therefore, in the present embodiment, by setting the “predetermined period” during which the battery is left to be within 7 days, the period of the self-discharge process can be shortened, and as a result, the production efficiency of the battery can be improved.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.

例えば、実施形態では、ステップS2(電池拘束工程)及びステップS8(拘束解除工程)を設けたが、これらの工程を設けることなく、非水電解質二次電池を製造するようにしても良い。すなわち、組み付け工程(ステップS1)において作製された非水電解質二次電池100を押圧治具30,40で挟んで拘束状態にすることなく、ステップS3〜S7の処理を行うようにしても良い。   For example, although step S2 (battery restraint process) and step S8 (restraint release process) are provided in the embodiment, a nonaqueous electrolyte secondary battery may be manufactured without providing these processes. That is, you may make it perform the process of step S3-S7, without pinching the nonaqueous electrolyte secondary battery 100 produced in the assembly | attachment process (step S1) with the pressing jigs 30 and 40, and making it a restraint state.

100 非水電解質二次電池(リチウムイオン二次電池)
110 電極体
120 負極板
121 負極活物質層
127 負極活物質
128 負極集電板
130 正極板
131 正極活物質層
137 正極活物質
138 正極集電板
150 セパレータ
160 非水電解液
180 電池ケース
100 Non-aqueous electrolyte secondary battery (lithium ion secondary battery)
DESCRIPTION OF SYMBOLS 110 Electrode body 120 Negative electrode plate 121 Negative electrode active material layer 127 Negative electrode active material 128 Negative electrode current collecting plate 130 Positive electrode plate 131 Positive electrode active material layer 137 Positive electrode active material 138 Positive electrode current collecting plate 150 Separator 160 Nonaqueous electrolyte solution 180 Battery case

Claims (3)

電極体及び非水電解液を電池ケース内に収容した非水電解質二次電池を、所定期間放置することにより、上記電池を自己放電させる自己放電工程、を備える
非水電解質二次電池の製造方法において、
上記自己放電工程は、
上記電池の放置を開始してから第1所定時間が経過したときの当該電池の電池電圧値である第1電圧値Vbを検知し、さらに、第1電圧値Vbを検知したときから第2所定時間が経過したときの当該電池の電池電圧値である第2電圧値Vcを検知して、上記第1電圧値Vbから上記第2電圧値Vcを差し引いた電池電圧差ΔVbcが、所定の閾値以上である場合、当該電池に内部短絡が生じていると判定する工程であり、
上記第1所定時間を5〜72時間の範囲内に定め、上記第2所定時間を48時間以上に定めて、上記第1電圧値Vb及び上記第2電圧値Vcを検知する
非水電解質二次電池の製造方法。
A non-aqueous electrolyte secondary battery manufacturing method comprising: a self-discharge step of self-discharging the battery by leaving the non-aqueous electrolyte secondary battery containing the electrode body and the non-aqueous electrolyte in a battery case for a predetermined period of time In
The self-discharge process is
The first voltage value Vb, which is the battery voltage value of the battery when the first predetermined time has elapsed since the start of the leaving of the battery, is detected, and further, the second predetermined value from when the first voltage value Vb is detected. A battery voltage difference ΔVbc obtained by subtracting the second voltage value Vc from the first voltage value Vb by detecting the second voltage value Vc that is the battery voltage value of the battery when time has elapsed is equal to or greater than a predetermined threshold value. Is a step of determining that an internal short circuit has occurred in the battery,
The non-aqueous electrolyte secondary that detects the first voltage value Vb and the second voltage value Vc by setting the first predetermined time within a range of 5 to 72 hours and the second predetermined time being 48 hours or more. Battery manufacturing method.
請求項1に記載の非水電解質二次電池の製造方法であって、
前記自己放電工程では、
前記第1所定時間を24〜60時間の範囲内に定め、前記第2所定時間を60時間以上に定めて、前記第1電圧値Vb及び前記第2電圧値Vcを検知する
非水電解質二次電池の製造方法。
It is a manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1,
In the self-discharge process,
A non-aqueous electrolyte secondary that detects the first voltage value Vb and the second voltage value Vc by setting the first predetermined time in a range of 24 to 60 hours and setting the second predetermined time to 60 hours or more. A battery manufacturing method.
請求項1または請求項2に記載の非水電解質二次電池の製造方法であって、
前記自己放電工程では、前記電池を放置する前記所定期間を7日間以内とする
非水電解質二次電池の製造方法。
It is a manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1 or 2,
In the self-discharge step, a method for producing a non-aqueous electrolyte secondary battery, wherein the predetermined period in which the battery is left is within 7 days.
JP2011084311A 2011-04-06 2011-04-06 Manufacturing method of nonaqueous electrolyte secondary battery Pending JP2012221648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084311A JP2012221648A (en) 2011-04-06 2011-04-06 Manufacturing method of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084311A JP2012221648A (en) 2011-04-06 2011-04-06 Manufacturing method of nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2012221648A true JP2012221648A (en) 2012-11-12

Family

ID=47272964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084311A Pending JP2012221648A (en) 2011-04-06 2011-04-06 Manufacturing method of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2012221648A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192015A (en) * 2013-03-27 2014-10-06 Toyota Motor Corp Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2015125900A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Inspecting method for secondary battery
WO2016009263A1 (en) * 2014-07-14 2016-01-21 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous secondary battery
WO2018025478A1 (en) * 2016-08-05 2018-02-08 東芝ライフスタイル株式会社 Electric vacuum cleaner
JP7488245B2 (en) 2021-12-03 2024-05-21 プライムアースEvエナジー株式会社 Method for inspecting non-aqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250929A (en) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd Manufacture of lithium secondary battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2006253027A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Method for manufacturing secondary battery
JP2008097857A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2012138192A (en) * 2010-12-24 2012-07-19 Hitachi Vehicle Energy Ltd Method of manufacturing battery module and battery module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250929A (en) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd Manufacture of lithium secondary battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2006253027A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Method for manufacturing secondary battery
JP2008097857A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2012138192A (en) * 2010-12-24 2012-07-19 Hitachi Vehicle Energy Ltd Method of manufacturing battery module and battery module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192015A (en) * 2013-03-27 2014-10-06 Toyota Motor Corp Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2015125900A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Inspecting method for secondary battery
WO2016009263A1 (en) * 2014-07-14 2016-01-21 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous secondary battery
JP2016021300A (en) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
WO2018025478A1 (en) * 2016-08-05 2018-02-08 東芝ライフスタイル株式会社 Electric vacuum cleaner
US11141033B2 (en) 2016-08-05 2021-10-12 Toshiba Lifestyle Products & Services Corporation Electric vacuum cleaner
JP7488245B2 (en) 2021-12-03 2024-05-21 プライムアースEvエナジー株式会社 Method for inspecting non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5464119B2 (en) Method for producing lithium ion secondary battery
JP5464116B2 (en) Method for producing lithium ion secondary battery
US10794960B2 (en) Method and apparatus for detecting low voltage defect of secondary battery
US8653793B2 (en) Secondary battery system
JP5464118B2 (en) Method for producing lithium ion secondary battery
JP5464117B2 (en) Method for producing lithium ion secondary battery
JP5583480B2 (en) Inspection method for lithium ion secondary battery
TWI465749B (en) Methods for testing lithium ion battery and judging safety of lithium ion battery
JP2014222603A (en) Inspection method for battery
JP2009145137A (en) Inspection method of secondary battery
US10539627B2 (en) Method of restoring secondary battery and method of reusing secondary battery
KR20170009767A (en) Method of manufacturing lithium ion secondary battery
JP7403075B2 (en) Charging method for non-aqueous electrolyte secondary battery and charging system for non-aqueous electrolyte secondary battery
KR101674289B1 (en) Method for manufacturing non-aqueous electrolyte secondary battery
WO2020044932A1 (en) Secondary battery charging system
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP4179528B2 (en) Secondary battery inspection method
JP6607167B2 (en) Inspection method for lithium ion secondary battery
JP2012252839A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6493762B2 (en) Battery system
JP2014082121A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2014127283A (en) Method for recovering capacity of lithium ion secondary battery
JP2005158643A (en) Inspection method for lithium secondary battery
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery
WO2022163456A1 (en) Charging method for non-aqueous electrolyte secondary battery, charging/discharging method, and charging system for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909